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Contact and Deformation Modeling
for Interactive Environments
Qi Luo, Member, IEEE, and Jing Xiao, Senior Member, IEEE

Abstract—Contact and deformation modeling for interactive en-
vironments has seen many applications, from surgical simulation
and training, to virtual prototyping, to teleoperation, etc., where
both visual feedback and haptic feedback are needed. High-quality
feedback demands a high level of physical realism as well as a
high update rate in rendering, which are often conflicting require-
ments. In this paper, we present a unique approach to modeling
force and deformation between a rigid body and an elastic ob-
ject under complex contacts, which achieves a good compromise
of reasonable physical realism and real-time update rate (at least
1 kHz). We simulate contact forces based on a nonlinear physical
model. We further introduce a novel approximation of material de-
formation suitable for interactive environments based on applying
Bernoulli–Euler bending beam theory to the simulation of elastic
shape deformation. Our approach is able to simulate the contact
forces exerted upon the rigid body (that can be virtually held by a
user via a haptic device) not only when it forms one or more than
one contact with the elastic object, but also when it moves compli-
antly on the surface of the elastic object, taking friciton into ac-
count. Our approach is also able to simulate the global and local
shape deformation of the elastic object due to contact. All the simu-
lations can be performed in a combined update rate of over 1 kHz,
which we demonstrate in several examples.

Index Terms—Bending beam theory, compliant motion, contact
modeling, deformable object modeling, haptic rendering, interac-
tive environment, multiple contacts, nonhomogeneous material.

I. INTRODUCTION

MODELING deformable objects in contact has been
studied both for graphics rendering and for haptic

rendering. Gibson and Mirtich [1] provided a very detailed
and complete survey on deformable modeling used in graphics
rendering. More recent surveys on graphics and haptic ren-
dering involving deformable objects can be found in [2] and
[3]. Existing work can be divided mainly into two large cate-
gories of approaches: purely geometric approaches (including
methods based on splines and patches and free-form defor-
mation methods), and physically based approaches (based on
mass-spring models and continuum models).
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While graphics rendering only needs to make the modeled
object deformation look realistic, haptic rendering requires that
the deformed object feels realistic, as well. While the update rate
in graphics rendering needs to be around 20–30 Hz to look real-
istic, the update rate in haptic rendering needs to reach 1 kHz to
feel realistic. Therefore, haptic rendering has a much more strin-
gent requirement than graphics rendering for high rendering
quality, which is essential to many applications that simulate
manipulations or interactions in the real physical world.

In order to achieve a high rendering rate, existing approaches
on haptic rendering often apply certain simplifications to the
physically based deformable models used in graphics rendering,
such as mass-spring-damper models and continuum models, and
focus on simple contact cases.

In methods based on mass-spring-damper models [4]–[10],
an elastic object is constructed by applying a mass at each point
of a mesh and using springs to link the points as edges and di-
agonals. Elastic forces and damping forces act on mass points
as internal forces, and gravity and other possible forces act on
them as external forces. A linear strain model is often used as an
approximation of the real nonlinear model of the deformable ob-
ject. Such mass-spring-damper models have been widely used in
many applications. As simple physical models with well-under-
stood dynamics, they are easy to construct and can be used for
interactive and even real-time simulation. However, the mass-
spring-damper models have drawbacks. The physical accuracy
of modeling is often not sufficient. For example, incompressible
volumetric objects or thin surfaces that are resistant to bending
are difficult to model as mass-spring systems. The models are
linear, and in order to simulate nonlinear force responses, it is
necessary to use a precise integration mechanism, such as the fi-
nite element method (FEM), but such a method generally cannot
provide update rates that are sufficient for haptic interactions.

As for continuum models, which include models based on the
FEM [11]–[21], the finite difference method [22], the boundary
element method [23], and the long element method [24]–[26],
perceptually acceptable performance can be achieved only by
further simplifications or adaptive methods. With the aid of pre-
calculation and multiresolution approaches [27], deformation of
more complicated objects can be simulated in real-time.

However, to achieve real-time results, most of the current
approaches to contact force/torque modeling involving de-
formable objects are focused on single-point contacts [21],
[28]–[31], single-area contacts [23], [32], [33], and localized
deformation [13]. Little is done to model deformable objects
in complex contact states involving multiple contacts, in com-
pliant motions with friction and undergoing global deformation.

We introduce a novel approach to contact modeling and defor-
mation modeling between a rigid object and a deformable object
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in interactive environments. Our approach can handle complex
contact states with multiple contact regions and compliant mo-
tions with friction. We use the general Duffing equation [34] as a
foundation to simulate nonlinear contact forces from a deformed
object due to contact. The Duffing equation is one of the stan-
dard models for studying nonlinear systems subject to external
forces. It is well studied, relatively simple, and yet adequately
powerful to model very complex behaviors [35]. This model is
particularly suitable for modeling the nonlinear stiffness of bio-
materials, as common in surgical simulations. Contact forces of
different types of deformable objects (i.e., elastic, plastic, etc.)
can be simulated by changing the related parameters, which can
be obtained through precalculations [13].

We model both global deformation of the entire elastic object
and local deformation within neighborhoods of contact regions.
In order to handle the global shape change due to deformation,
we introduce a novel beam-skeleton model to compute the dis-
tribution of stresses and strains of a deformed elastic object at
certain anchor points, defined on the original undeformed sur-
face of the object. Based on this model, we further introduce
fast computation of global shape change through an interpola-
tion method that achieves minimization of elastic energy. We
next take into account the nonlinear effects within local neigh-
borhoods of contact regions and the effects of different areas of
contact regions (under the same force) on shape change.

This paper substantially extends our prior work [36] with a
modified beam-skeleton model more apt for modeling force and
deformation under multiple contact regions and applicable to
deformable objects of nonhomogeneous (i.e., piecewise homo-
geneous) material. It delivers a more detailed treatment of con-
tact detection, adds a description of contact force calculation of
a nonpoint contact region, and presents a more thorough method
for friction handling and compliant motion.

The overview of our approach for contact and shape defor-
mation modeling and rendering in an interactive environment is
shown in a flowchart in Fig. 1.

The rest of the paper is organized as follows. In Section II,
we introduce basic assumptions of our approach. In
Sections III and IV, we describe our methods for contact
detection and contact force modeling. In Section V, we present
our basic beam-skeleton model for shape deformation mod-
eling. In Section VI, we describe our strategy for dealing with
multiple contact regions. We present some implementation
results in Section VII, and conclude the paper in Section VIII.

II. BASIC ASSUMPTIONS

This section presents assumptions and associated termi-
nology.

A. Objects and Material

We focus on modeling the interactions between a rigid object
held by a human user and a deformable object. Depending on
material properties, deformable objects can be categorized into
many types [37]. In this paper, we focus on deformable objects
that are made of isotropic elastic material.

We use a mesh model representation for the geometry of the
rigid held object. We also use mesh models to represent the
elastic object in its original undeformed shape and in deformed

Fig. 1. Overview of approach (one time step per loop).

shapes. The elastic object we consider here is convex when un-
deformed, and there is a parametric model of the originally un-
deformed surface.

We assume that the force exerted to the held object from the
human user is applied to the mass center of the held object.
This assumption is useful later for estimating the distribution
of contact pressure (see Section IV-C and Appendix III).

B. Contacts and Compliant Motion

We define a single contact region as a cluster of contact points
such that the distance between a contact point in and its

nearest neighboring contact point in is less than a threshold
. A contact point outside is considered belonging to an-

other contact region, and there can be multiple contact regions
in general.

We only focus on cases where each single contact region is
relatively small so that within the contact region, the first partial
derivatives of the originally undeformed surface of the elastic
object hardly change. A contact region may consist of just a
single contact point.

For any point on the elastic object outside a certain immediate
neighborhood of a contact region, we consider its deforma-
tion as caused by the stresses and strains spread to it from the
contact region as a function of the contact force, and call such a
deformation global deformation. The stress causing the global
deformation can be considered as linearly distributed.
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Fig. 2. Example of shape deformation. (a) Originally undeformed elastic ob-
ject. (b) Global deformation over the whole elastic object (the red dash line
shows the surface before deformation). (c) Local neighborhood deformation.

For points inside the neighborhood of the contact region,
we take into account the nonlinear effect of deformation, and
also that the shape deformation is not only caused by the contact
force but also by the size of the contact region; the greater the
size, the smaller the pressures are under the same force, and thus
the smaller the deformation. We therefore modify the shape de-
formation inside accordingly, and call the result local neigh-
borhood deformation (Fig. 2).

There can exist multiple contact regions between the rigid ob-
ject and the elastic object at the same time, but multiple contact
regions are assumed to be formed one by one. The rigid object
can move compliantly on the surface of the elastic object, but
when there are multiple contact regions, no compliant motion is
considered between the rigid object and the elastic object.

C. Stable Equilibrium Configurations

We only consider modeling contact forces caused by quasi-
static collisions and compliant motion. This means that motions
considered are slow enough such that only deformations occur-
ring at stable equilibrium configurations need to be considered,
where the elastic energy is minimized. This provides an effec-
tive discretization of the otherwise continuous force and shape
changes on the elastic object in contact.

III. REAL-TIME COLLISION DETECTION

Although collision detection between rigid objects is well
investigated, collision detection involving dynamically de-
forming objects in an interactive environment is not a fully
solved problem. Teschner et al. [38] surveyed recent approaches
to collision detection involving deformable objects. These ap-
proaches are mainly based on bounding volume hierarchies
(BVH) [39], stochastic methods [32], [40], distance fields [41],
[42], spatial partitioning [43], and image-space techniques [44].
However, haptic interaction with deformable objects require
both real-time (in kHz) and exact contact detection with dis-
tance information. Currently, there is no fast contact detection
algorithm that can obtain accurate penetration distances when
there are multiple contacts between a globally deformable
object and another object.

Our strategy is to treat contact detection between a rigid body
and an elastic object as if between two rigid bodies at the time
of contact, and then dynamically change the surface model of
the elastic object to reflect the shape changes due to contacts. In
each time step , contact detection is characterized by one of the
following three phases.

Fig. 3. Contact force simulation. A single-point contact with normal compres-
sion (the hollow arrow indicates contact force direction).

In the first phase, no contact has yet happened between the
two objects, and thus the elastic object does not change its shape.
Here collision detection can be considered as just between two
rigid objects (in mesh models). We use a real-time collision de-
tection package SOLID [45] to detect the contact and provide
the distance information between the two objects.

The second phase is marked by the transition from no contact
to contact between the two objects, i.e., at least one contact point
is established in the current time step . Once that happens, one
contact region is formed and recorded.

The third phase describes the situation when the two objects
were already in contact in the previous time step and remain
in contact in the current time step , but the contact region(s)
may change. There are two possible changes: an existing contact
region changes because the contact points in it change; and a
new contact region is formed. How to detect new contact regions
and track multiple contact regions are detailed in Appendix I.

After all contact regions at time step are determined, contact
forces and the corresponding shape change of the elastic object
can be computed and rendered haptically and graphically for
time step in real-time, as detailed in Sections IV–VI. The shape
of the deformable object is then updated, and the updated shape
is used as the input shape for contact detection at the next time
step . In other words, in each time step, the shape update
of the deformable object is relative to the shape obtained in the
previous time step.

IV. CONTACT FORCE MODELING FOR HAPTIC RENDERING

In this section, we first apply the general Duffing equation to
provide a basic nonlinear contact force model for a single-point
contact caused by pressing the rigid object normally to a face of
the elastic object (Fig. 3). Then we extend the method to model
other cases of single-point contact or single-region contact.

A. Relation Between Contact Force and Deformation
Displacement

One of the commonly used nonlinear equations for char-
acterizing the behavior of nonlinear mechanical, electrical,
and chemical systems is the Duffing equation. We can use the
Duffing equation to characterize the nonlinear force response
of an elastic object in the basic single-point contact case at a
quasi-static state, as shown in Fig. 3, where indicates the
position of the contact point before the contact and the resulted
deformation, which we call the origin of deformation, and
is the distance from to the point of maximum deformation

, which we call the deformation displacement vector with
magnitude . From the Duffing equation, we can derive the
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Fig. 4. Contact force simulation. (a) Contact is normal to the elastic surface.
(b) Skewed deformation. (c) Compliant motion with deformation.

following relation between the contact force response and
:

(1)

where is the mass of the rigid object. , are the pa-
rameters of linear and nonlinear restoring terms in the Duffing
equation. All of them are constants and can be acquired by
measurement beforehand. A detailed derivation can be found
in Appendix II.

B. Skewed Deformation and Compliant Motion

Now we extend our basic method of contact force simulation
to point contact cases where the direction of deformation is not
normal to the surface of the elastic object before this deforma-
tion so that the held rigid object may get stuck or perform com-
pliant motion on the elastic object.

When the direction of deformation is not normal to the sur-
face of the elastic object before this deformation Fig. 4(b), the
deformation displacement vector can be decomposed into
tangential and normal components and , respectively.
The force response due to deformation along the normal direc-
tion can be computed from (1) with , pointing
to the direction against .

Now we need to detect whether the rigid body is stuck or per-
forms a compliant motion tangentially along the contact surface
of the elastic object. First, assume that the rigid body is stuck at
the current time step due to the tangential deformation force
response from the elastic object, which can be computed
from (1) with , pointing to the direction against .

According to [46], the maximum friction from objects of dif-
ferent elasticity is proportional to , , in the
empirical equation where the coefficient
and were given in [47] for various deformable materials. For
a truly elastic solid, .

Now our assumption that the rigid object is stuck is correct if
one of the following two conditions holds:

• C1: , and in the previous time step , the
rigid body was either stuck at contact or not in contact with
the elastic object;

• C2: , the rigid object was in compliant mo-
tion at time step , but , where is
the dynamic friction coefficient.

The C1 condition indicates that the rigid object remains stuck in
the current time step . The C2 condition indicates that the rigid
object stops and gets stuck in the current time step from the
motion in time step . This is because it is impossible for the
dynamic friction to be greater than if the rigid object is still
in motion. As the rigid object is stuck, only a skewed deforma-
tion happens (see Fig. 4(b). Note that the shape of deformation

Fig. 5. Examples of single-region contact and contact region discretization (d
is the direction of deformation). (a) Normal deformation. (b) Skewed deforma-
tion.

is modeled in Section V). The total contact force response from
the elastic object to the rigid body is .

Otherwise, the assumption is incorrect, that is, the rigid object
in fact moves in time step if one of the following two conditions
holds:

• C3: , the rigid body was in compliant motion
in time step , and ;

• C4: .
In both cases, needs to be recalculated to match the correct
scenario that the rigid object is in motion: if the contact point
(on the held rigid object) has moved tangentially from time step

to time step with a distance , then to model the ef-
fect of compliant motion, we also shift (i.e., the origin of the
deformation distribution) the distance to obtain its new po-
sition [as shown in Fig. 4(c)]. Then we recalculate the dynamic
friction as if C3 holds. If C4 holds, then

. Note that if ,
this shows again an impossible case. It means that the normal
displacement of the contact point is impossibly large. There-
fore, needs to be recalculated as , and
based on which, the normal displacement of needs to be ad-
justed to satisfy (1).

The total contact force response from the elastic object to
the rigid body corresponding to compliant motion of the rigid
body can be obtained as the sum of the recalculated and
(sometimes recalculated) .

C. Single Region Contact

A single-region contact is formed by a continuous set of con-
tact points. The total effect of contact forces can be obtained by
integrating contact forces generated on contact points (or infin-
itesimal contact areas) over the whole contact region. We dis-
cretize the force integration as the summation of contact forces
at a number of evenly distributed contact points with different
displacements of deformation, as shown in Fig. 5. To achieve
real-time processing, the discretization can be simply based on
the vertex points of the mesh model of the contact region of the
rigid object, provided that these vertex points are evenly dis-
tributed on the mesh. The contact force response at each con-
tact point can be calculated from the general Duffing equation
based on its deformation displacement (Fig. 5) and the mass

distributed on it (see Appendix III). Summing up all gives
the total force against the direction of deformation .

In the case of a normal deformation, Fig. 5(a), the computed
is the total contact force response along the normal of the

surface of the elastic object before this deformation.
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Fig. 6. Examples of equivalent contact point p . (a) Before normal deforma-
tion. (b) After normal deformation. (c) Before skewed deformation. (d) After
deformation.

However, in the case of skewed deformation [see Fig. 5(b)],
the computed with magnitude along direction should
be further decomposed to a normal component (i.e., normal
to the surface of the elastic object before this deformation) and
a tangential component . Depending on the magnitude of

, following the same analysis as presented in Section IV-B,
we can determine whether the held rigid object gets stuck or
performs compliant motion as the single-region contact occurs,
and obtain the corresponding total contact force .

Next, we can find an equivalent point contact to the single-re-
gion contact in that the contact force response to that point
contact is the same as the total contact force response of the
single-region contact . With known and ( is the mass
of the rigid object, which can be considered as concentrated on
the equivalent contact point), the equivalent deformation dis-
placement of the equivalent contact point can be obtained
from (1). The position of the equivalent contact point before
deformation can be considered as at the geometric center of the
projection of the contact region on the surface of the elastic ob-
ject before this deformation along the deformation direction ,
called again the origin of deformation. See Fig. 6. Using such an
equivalence of a point contact to the original single-region con-
tact simplifies the graphical shape rendering of the deformed
elastic object (see Section V).

V. SHAPE DEFORMATION MODELING

In Section IV, contact force response from a contact point or a
contact region of the elastic object to the rigid object is modeled.
In the case of a single-region contact, based on the Saint-Venant
principle [48], the contact forces integrated over the whole con-
tact region will have the same effect as a total contact force at
a single equivalent point contact. Thus, we use the equivalent
point contact (obtained in Section IV-C) to compute the defor-
mation just as in the case of a single-point contact.

Now we consider how to model the shape deformation oc-
curring on the elastic object due to contact. In the following, we
first address the modeling of global deformation outside local
neighborhoods of contact regions (Sections V-A–V-E) and next

consider effects of local deformation inside each local neigh-
borhood of a contact region (Section V-F).

A. Anchor Points

Because the elastic object without deformation consists of
smooth (flat or curved) surface patches, which may be bounded
by smooth (straight-line or curved) edges and vertices, its de-
formed surface patches and edges along with the corresponding
stresses and strains should also be smooth, except at bounding
vertices and the contact (or equivalent contact) point to mini-
mize elastic energy. Additionally, the stresses and strains reach
extremal values at other extremal points of the elastic surface.

We use the term anchor points to mean those vertices or ex-
tremal points: an anchor point is either a natural vertex, a cur-
vature discontinuous point, a discontinuous point of the first
derivative of curvature, a point with local minimum or max-
imum curvature, or an inflection point with zero curvature [49].
For a surface of revolution, which is a surface generated by ro-
tating a 2-D curve about an axis, no such point exists. Instead,
it has anchor circles formed by rotating the anchor points of the
initial 2-D curve. Since a complete circle has azimuthal sym-
metry, we can draw any two perpendicular axes through the
center of the circle to obtain four intersection points (of the
axes and the circle). We choose such four points on an anchor
circle as anchor points. This is a reasonable choice based on the
Four Vertex Theorem in differential geometry [50]: A closed
embedded smooth plane curve has at least four vertices, where
a vertex is defined as an extremum of curvature. As for a sphere,
which is a special case of revolution surface, we use six points
that are intersections of the sphere with any three perpendicular
axes set at its center as its anchor points.

B. Beam-Skeleton Model

Since the global shape deformation of the elastic object
is nearly linear, in order to compute it efficiently in real
time, we introduce a novel modeling approach based on the
Bernoulli–Euler bending beam theory as follows:

1) once a contact is formed, establish a beam-skeleton (to be
specified below) on the elastic object with beams ending at
anchor points, called beam ends;

2) compute values of stresses and strains at each beam end of
the beam-skeleton;

3) compute values of strains over the entire surface via
smooth interpolation of the values at beam ends to obtain
the shape of the elastic object after global deformation.

A beam-skeleton with respect to a contact is established as
follows: once a contact is formed, between the origin of defor-
mation and each anchor point on the elastic
object, a beam is established with the central line being the
line connecting and . The beam parameters are determined
by the physical properties as well as the smooth surface prop-
erties of the elastic object. The length of beam is , which is
the distance between and if is outside the local neighbor-
hood of the contact. If is inside the local neighborhood
of the contact, then , where is the radius of
centered at . The cross-section area of beam is . The com-
putation of is described in Appendix IV. The collection of
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Fig. 7. Beam skeleton (in solid lines) on an elastic ellipsoid object.

Fig. 8. Schematic of beam bending.

such beams forms a beam skeleton. Fig. 7 shows an example of
a beam skeleton on an elastic ellipsoid object.

Note that when the contact moves in compliant motion, the
beam-skeleton moves accordingly, and the beam length for
each beam will change. When the contact is broken, the beam-
skeleton disappears.

The above beam-skeleton model is quite powerful with the
underlying beam-bending theory, which can compute general
deformation effects resulted from extension/compression,
bending, and twisting beams, as detailed in the following
subsections.

C. Deformation Computation for Beams of Homogeneous
Objects

First we describe how deformation is computed for a beam of
length with cross-section area bent at one end, with the other
end fixed based on the Bernoulli–Euler bending beam theory
[51]. For a homogeneous object, such a beam is made of homo-
geneous material.

Establish the beam coordinate system as as shown
in Fig. 8, where the origin is set at the center point of the fixed
end of the beam, and the axis is along the central line of the
beam before it is bent and pointing to the other end of the beam.
The axis follows the bending force direction, and the axis is
orthogonal to both and axes following the right-hand rule.
A point on the central line of the beam before it is bent has
coordinates ( , 0, 0). Once the beam is pressed at the end that
is not fixed, the beam bends, and the new coordinates of is

satisfying

where is the modification item due
to possible large deformation. When is small, . is
the Young’s modulus, and is moment of inertia with respect
to the axis. At the end of the beam where , the relation

between the external force normally applied to the beam end
and the deformation distance is

(2)

We can relate to the stresses on the beam

where ’s are stresses, ’s are shear stresses, is the moment of
inertia, and is the bending function of the deformable object
depending on the shape of the cross section of the beam; for
different shapes, is different.

We call the above case where the external force is normal to
the beam a simple bending case.

In general, the external force applied to a beam at one end
is not necessarily normal to the beam central line. In such a
case, based on the Saint-Venant principle, we can decompose
the force into a normal force and a tangential one and decom-
pose the problem of relating the external force to beam defor-
mation into two simpler cases: one is the above simple bending
case, and the other is a simple compression/expansion case,
which we describe in the following.

For the simple compression/expansion of the beam caused by
a tangential external force , we can relate to the tangential
deformation (i.e., compression or expansion) at the beam
end with the following equation:

(3)

We can also relate to the stresses of the beam

The total stresses at a point of a beam are the vector sums of
the stresses from the simple bending case and simple compres-
sion/expansion case. Note that the tangential deformation
for the calculation of total stresses is the changed beam length
due to the deformation minus the due to bending.

In our application, the force applied to a contact or equiva-
lent contact point from the rigid object to the elastic object can
be viewed as applied to the common end of a beam skeleton
consisting of beams. The force can be obtained as opposing
the contact force response from the elastic object (as computed
in Section IV) with the same magnitude. Establish a coordinate
frame for each beam of the beam
skeleton such that the origin is located at the anchor point of
beam , which is at the other end of the beam , axis is along
the beam central line before it is deformed and pointing to the
common end, is on the plane determined by the axis and
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the force , and the axis is orthogonal to and axes fol-
lowing the right-hand rule.

Now we can view applied to the same (contact) point of the
common end of all the beams in the skeleton as the sum of the
forces applied to each beam at the same point, so that the
deformation occurred at each beam can then be computed sepa-
rately. Notice that does not have a component in the beam
’s frame. Let and be the and components of .

From (2) and (3), we can obtain the following relations among
all ’s, and the relation between each and the deformation
of beam at the common end of the beam skeleton expressed in
beam ’s frame:

(4)

(5)

where , , and are the cross-section area, the length, and
the moment of inertia of beam , respectively.

Additionally, the sum of all ’s, after transforming with re-
spect to the world coordinate system , should equal ex-
pressed in

(6)

where is the rotational transformation matrix from frame
to frame . From the (4), (5), and (6), can be solved for
each beam .

With the above method, we can compute the stresses at the
fixed end of each beam centered at an anchor point of the elastic
object. Now imagine the fixed end of each beam is no longer
fixed, in which case, the effect of the stresses will make the cor-
responding anchor point move to a new position. The position
change can be considered as the deformation at such an anchor
point, which can be computed from those stresses.

Now we describe how to compute strains from stresses and
subsequently compute the deformation at each beam end in the
beam-skeleton.

The relation between the strain at point and the
deformation displacement at this point can be repre-
sented as

(7)

and the relation between the strain and stress at point
can be represented as

(8)

Fig. 9. Derivation and interpretation of the moment-area method for deter-
mining deflections of a nonhomogeneous beam.

where is the inverse matrix of the elastic coefficient matrix
and

(9)

where is Young’s module, and is Poisson’s ratio.
Given an anchor point with coordinates and its

stresses, we can get its strains from (8). Next, its displacement
due to deformation can be solved from these strains
using (7).

D. Deformation Computation for Beams of Nonhomogeneous
Objects

Now we extend the above deformation computation method
to objects of nonhomogeneous materials. For such an object
under contact, a beam skeleton can be established in the same
way as in the case of a homogeneous object, but the computa-
tion of deformation for a beam of nonhomogeneous material is
different from that in the homogeneous case. Consider a beam
of nonhomogeneous material with one end fixed, and establish
a beam coordinate system in the same way as in the case of
a homogeneous beam. Let be a point on a beam and ( , 0,
0) be the position of before the beam is bent. Based on the
second moment-area theorem and its corollary on deflection of
any point on a beam with one end fixed [52], when the beam is
bent at the other end, the magnitude of tangential deviation at
point of the beam can be obtained from the moment of the area
of the diagram (where is the bending moment)
between the fixed end and , as shown in Fig. 9, and satisfies

(10)
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Fig. 10. Beam skeleton of a contact on an nonhomogeneous elastic ellipsoid.

Since each nonhomogeneous beam can be viewed as con-
sisting of different homogeneous segments, as long as the
number of such segments is relatively small, the above integral
can be computed very quickly.

As an example, consider the case shown in Fig. 10, where
a ball of different material exists inside an ellipsoidal object
so that the object is nonhomogeneous with two homogeneous
regions, named region 1 and region 2. The two regions have
Young’s modulus and and moments of inertia and

, respectively. A nonhomogeneous beam crosses region 2
at and . For simple bending of this beam at the end point ,
the displacement can be obtained from (10) in terms of the
bending force magnitude . Conversely, can be written as
a function of

(11)

where is the length of the beam, with
, , and and are the lengths of

and , respectively. is the length of the undeformed beam .
Stresses can also be obtained in segments.

For simple compression/expansion of the beam , we have

(12)

where , , are the tangential deformations of
each beam segments. Stresses can be calculated in the same way
as in the homogenous case.

If the nonhomogeneous beam is the th beam while the
other beams are homogeneous inside region 1, based on (12)
and (11), the force distribution (4) and (5) can be modified by
replacing the th right-hand terms, respectively, with the fol-
lowing:

(13)

(14)

If more beams are nonhomogeneous, i.e., crossing both two
regions, their corresponding terms in the right-hand side of (13)
and (14) should be replaced similarly as in the case of the th
terms. With the bending force solved for each beam based on the
modified force distribution equations, stresses can be computed.

Note that if the external surface of the elastic object con-
sists of different homogeneous patches corresponding to dif-
ferent homogeneous pieces of the object, beam ends may be
from different homogeneous patches. In this case, the extended
beam-skeleton model above captures the different stress effects
on anchor points from different homogeneous patches.

Subsequently, strains and deformation displacement at each
anchor point can be computed in the same way as in the case
of homogeneous objects, and the anchor points are still points
where the deformation has extreme values.

E. Global Deformation Rendering

With the displacements of all beam ends of the elastic object
and the displacement of the contact (or equivalent contact) point
due to deformation, we obtain the globally deformed shape of
the entire elastic object by an interpolation method extending
the Phong shading method [53]. Phong shading is used for linear
interpolation of vectors at vertices bounding a polygon across
internal points of the polygon.

In our case, however, the elastic object can have a general
surface with curved features with or without deformation. Let
be the set of beam ends on the surface of the elastic object before
the current deformation. Such a surface can be partitioned by
curves connecting each pair of points in into surface patches.
Let be a subset of corresponding to a single-surface patch

. Given the deformation displacement vectors of points in ,
we extend Phong shading to obtain a linear interpolation of the
deformation displacement vectors across the surface patch as
the following.

Let denote the angle between the direction of dis-
placement and the outward normal direction of point in

of surface patch , called the displacement angle of
point ; the directions of displacement vectors across the
surface patch are obtained by linearly interpolating the
displacement angles of the points in , and the magni-
tudes of displacement vectors across the surface patch are
obtained by linearly interpolating the magnitudes of dis-
placement vectors of points in .

We obtain the deformed shape of the entire elastic object by
performing the above shading on all surface patches. Note that
since we do graphical rendering of an object based on its polyg-
onal mesh approximation, the interpolated points of deforma-
tion shading of a face can be simply the corresponding mesh
points of the face.

The global shape deformation of the elastic object obtained
from interpolating these displacements is smooth and satisfies
that the closer a surface point to the contact point or the equiva-
lent contact point, the greater the deformation change is at this
point.

Once the deformed shape of the elastic object is obtained in
terms of new positions of its mesh points, the triangle normals
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Fig. 11. Two examples of local neighborhood shape deformation (where the
dotted lines indicate the results from global deformation). (a) Point contact. (b)
Region contact.

and normals at mesh points are then obtained in standard ways
of graphics rendering.

F. Local Neighborhood Deformation

The concentrated effect of load introduces very high stresses
in localized regions of a contact [54]. The shape deformation is
nonlinear inside the local neighborhood of a contact region,
and therefore, we need to modify the result of global shape de-
formation by adding the nonlinear effect inside .

For the case of a single-point contact with the origin of defor-
mation , we define a modification factor

for each noncontact point inside to capture
the nonlinear effect, where is the distance between before its
deformation caused by the contact and , is the radius of the
neighborhood centered at , and and are constants
that represent the nonlinear coefficients. Now, we multiply
to the displacement of global deformation at to obtain its mod-
ified displacement. The result is the combined effect of global
shape deformation with local nonlinear modification.

For the case of a single-region contact, the effect of the con-
tact area on shape deformation in the neighborhood also needs
to be taken into account. Since the number of mesh points in
the contact region (see Appendix III) is proportional to the area
of the contact region, we further modify our modification factor
at each noncontact point as

to also capture the effect of the contact area
on deformation: the larger the area, the shallower the deforma-
tion. By multiplying to the displacement of global deforma-
tion at , we obtain the deformation displacement at . Fig. 11
shows two examples of local neighborhood shape adjustment
for a single-point contact and a single-region contact, respec-
tively. As shown, the deformation is shallower for the single-re-
gion contact than the single-point contact when the equivalent
point contact is at the same depth as the single-point contact.

VI. DEALING WITH MULTIPLE CONTACT REGIONS

At time step , suppose there are contact regions as the
result of our contact detection algorithm (Section III). We view
them as a sequence, , , ordered by the times
of their creation.1 The effect of contact regions formed before

, i.e., , is taken into account by the fact that is
formed with respect to the already deformed shape of the elastic
object under , call it Shape . Note that Shape
is the originally undeformed shape of the elastic object.

1From Section II-B, it is assumed that only one contact region is created at
each time step.

We establish a beam skeleton with respect to each contact
region as follows: each beam in is from the origin of
deformation of to an anchor point of the elastic object
under Shape .

Now we describe how to compute the deformation force ef-
fect at and the deformed shape of the elastic object under
those contacts below.

A. Contact Force Modeling

The computation of contact force effect to the rigid object
at contact region depends on the existence of other contact
regions. Treating as the “undeformed” shape for ,
then we can compute a force in the same way as the force

is computed in Section IV-C. Note that we do not assume
compliant motion here. already takes into account the effects
of contact regions formed before as they are
captured by Shape .

Let , where , be the force effect on
from the contact region formed after . can be computed
from by integrating the stresses at contact points of due
to . The stresses at those contact points can be obtained by
interpolation based on stresses computed from at the related
anchor points (i.e., the anchor points bounding the face where

lies) following the same method as that for interpolating dis-
placements in Section V-E.

The total contact force effect at is thus
(of course, all forces are transformed to the same coordinate
frame before addition).

The total contact force effect under contact regions is
.

B. Shape Deformation Modeling

Now we describe how to obtain Shape , , based
on Shape at time step . The deformation displacement
caused by at each anchor point can be computed from in
the same way as described in Sections V-C or V-D. Note that the
deformation displacement at the (equivalent) contact point of
each contact region formed prior to (i.e., )
is considered zero, because these contact points are fixed by the
rigid object. Now, the global deformation caused by can be
computed based on the deformation displacements at all anchor
points and the zero displacement of the (equivalent) contact
points of all the contact regions formed prior to , using the
interpolation method as described in Section V-E.

Once the global deformation is obtained, local-neighborhood
deformation can be added inside the local neighborhood of ,
as described in Section V-F. The final result is Shape .

The globally deformed shape of the elastic object as the result
of all the contacts is simply Shape .

Fig. 12(a) shows an example beam skeleton of contact
built on an undeformed object, and Fig. 12(b) shows an example
beam skeleton of a new contact built on an already de-
formed object due to the existing contact .

VII. IMPLEMENTATION AND TEST RESULTS

We have implemented the above method and applied it to
real-time haptic rendering involving a virtual rigid body and
an elastic object via a PHANToM Premium 1.5/6-DOF device,
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Fig. 12. Beam skeletons (in solid lines) on an elastic ellipsoid for (a) a contact
S on the undeformed object, (b) a new contact S on the already deformed
object due to the existing contact S .

Fig. 13. Contact normal force rendering: downward motion and results.

which is connected to a PC with dual Intel Xeon 2.4 GHz Pro-
cessors and 1 GB system RAM. The human operator can vir-
tually hold the rigid object by attaching it to the haptic de-
vice and make arbitrary contact to the elastic object (with its
bottom center fixed, where a world coordinate system is set) by
guarded motions, and perform compliant motions on the elastic
object.

Figs. 13–18 show some test results, where the unit of force
is Newton, the unit of length is mm, and the unit of time is ms.
The world coordinate system in all examples is built as the fol-
lowing: -axis points right; -axis points up; and -axis points
out of the paper plane and is orthogonal to and axes fol-
lowing the right-hand rule.

Fig. 13 shows an experiment to test our method of nonlinear
contact normal force rendering. The human operator virtually
held the rigid ball and moved vertically down to the elastic cube.
As expected, the normal support force increased nonlinearly as
a function of the magnitude of deformation.

Fig. 14 shows an experiment to test contact friction force ren-
dering. The human operator virtually held the rigid ball and
moved vertically down to the elastic cube. When a contact was

Fig. 14. Friction force rendering: compliant motion and results.

Fig. 15. Comparison of deformation in two different cases of single-region
contact.

formed, the held ball was moved horizontally along the -axis.
As expected, the deformation amount along the -axis increased
from zero to an almost constant value, which generated a con-
stant contact normal force . The friction force was along
the -plane, and had components and , with almost
zero. Initially, it was a static friction, and after the maximum
static friction was reached and overcome, the friction became
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Fig. 16. Force rendering results when a mallet moved compliantly along an
ellipsoid.

Fig. 17. Multiple contact rendering. (upper left) No contact. (upper right) One
contact. (lower left) Two contacts. (lower right) One contact again.

dynamic with the direction always opposite the motion direc-
tion pointing approximately to the direction.

Fig. 15 shows an experiment to compare the different ef-
fects of two cases with different contact areas on local neighbor-
hood shape deformation. In case 1, a mallet’s head contacted an

Fig. 18. Comparing shape deformations between homogeneous and nonhomo-
geneous objects. (top) A homogeneous rubber ellipsoid under a contact force.
(bottom) A rubber ellipsoid with a smaller PVC ball inside its left side under
the same contact force, which has a larger shape deformation on its left side.

elastic cube, and in case 2, the mallet’s tail contacted the elastic
cube. The contact area in case 1 was larger than the contact area
in case 2. We can see that when the same force was applied, the
average deformation displacement of the contacting region
in case 1 is smaller than that of case 2, which resulted in a shal-
lower deformation that fits the related physics principle.

Fig. 16 shows a test example with a rigid mallet and an elastic
ellipsoid. The human operator first moved down the mallet to
make a contact with the elastic ellipsoid, and moved the mallet
compliantly along the direction, mostly, and slightly toward
the direction. Note that unlike in the case of a cube, where
the contact normal force is along the -axis, in this case, the
contact normal generally has three components: , , and

. Here during the compliant motion, the value changed
from negative to positive, was always positive and reached
the maximum value when the mallet was moved to the upmost
position of the ellipsoid, and only had a small positive value,
since the movement was slightly on the half of the ellipsoid to-
ward the direction. The friction force also has three com-
ponents in general: , , and . Here always had a neg-
ative value, since the movement was toward the direction,

increased from negative to positive, since the movement was
first upward then downward along the axis, and was almost
zero while the oscillation was due to the difficulty of moving the
mallet in a straight motion.

Fig. 17 shows an example contact sequence that includes the
shape of the deformable object under no contact, single contact,
and two contacts. A rigid compass first touches the deformable
object with one side pin and then both side pins. After that, the
first pin breaks contact with the deformable object.

Fig. 18 shows a comparison of the shape deformations of a
homogeneous object and a nonhomogeneous object. The homo-
geneous object is a rubber ellipsoid, and the nonhomogeneous
object is a rubber ellipsoid with a smaller PVC ball inside its
left side. We can see that asymmetric deformation is formed for
the nonhomogeneous object.

In all of our experiments, modeling and computing haptic
force per contact region took a constant and almost instant time
of approximately 30 s; that is, the computation had an update
rate of approximately 33 kHz, regardless of the object’s geom-
etry. This was negligible compared with the time needed for
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TABLE I
PARAMETERS USED IN EXPERIMENTS

real-time contact detection (Section III and Appendix I) plus
shape updating for the elastic object, which was in the order of
kHz. In all the examples, the numbers of triangles in the mesh
models of objects range from 1000 to 3952.

Table I lists the parameters used in our experiments.

VIII. CONCLUSIONS

We have introduced a novel approach to model and render
in real-time the nonlinear contact force response and the global
and local shape deformation of a general elastic object caused
by a rigid object contacting it and moving compliantly on it.
Our approach can handle complex contact cases with multiple
regions of contact. It achieves a good compromise of real-time
efficiency and physical realism by taking advantage of nonlinear
physics equations, elasticity principles, beam bending theory,
and geometrical properties of general surfaces. We have im-
plemented the approach to confirm its effectiveness. An up-
date rate of over 1 kHz is achieved for the entire modeling and
rendering process, including contact detection and rendering of
both haptic force and graphic shape change. The next step in
research is to add the effect of contact torque in such modeling
and rendering. We also intend to further test and improve the
implementation of the approach.

APPENDIX I
MULTIPLE CONTACT DETECTION

The collision-detection package SOLID [45] can detect the
penetration distance between two objects in mesh models in
real time, and also allow dynamic updates of meshes. These are
properties useful to contact detection involving a deformable
object. However, SOLID can only track one contact at each
time step. In order to detect and track multiple contacts, we dy-
namically divide the deformable object into multiple parts and
apply SOLID to the rigid object paired with each part of the de-
formable object, as detailed in the following.

When a contact point/region is formed, the mesh of the con-
tact region and its local neighborhood on the deformable ob-
ject are separated from the rest of the deformable object mesh.
SOLID is applied to the divided submeshes separately to detect
their contacts with the rigid object. Whenever a new contact re-
gion is formed, a new submesh of the contact region and its local
neighborhood on the deformable object is separated. Whenever
a contact no longer exists, the associated submesh is merged
back to the deformable object mesh. In this way, multiple con-
tact regions can be detected, tracked, and updated.

Fig. 19. Schematic of (a) a linear spring-damper model and (b) a nonlinear
spring-damper-restorer model.

As long as the number of contact regions at any time is lim-
ited, e.g., below 10, our contact detection algorithm can achieve
kHz update rate.

APPENDIX II
RELATION BETWEEN CONTACT FORCE AND DISPLACEMENT

FROM THE DUFFING EQUATION

The Duffing equation essentially defines a nonlinear spring-
damper-restorer model, as opposed to a linear spring-damper
model, as shown in Fig. 19.

A general Duffing equation has the following form:

(15)

where is the deformation distance, is the linear
restoring term, is the damping term, is the
nonlinear restoring term (with ), and is pro-
portional to the external force and is a constant. Note that
the nonlinear restoring force item represents the nonlinear
properties offered by the deformation of the nearby area. When

, the nonlinear restoring force is greater than the linear
restoring force, and it means hard nonlinear or hard spring.
Otherwise, the nonlinear restoring force is smaller than the
linear one, which means soft nonlinear or soft spring.

Now consider our problem of modeling the contact force re-
sponse from the elastic object to the rigid object via the contact
point in one time step. It is reasonable to assume that the external
force exerted to the held rigid body from the human operator is
constant during one short time step. Therefore, (15) becomes

(16)

In (16), when , by using the equivalent frequency
[34], , where is the value of at
steady-state, we have

and its solution is

where the first part in the above equation is the transient term,
and the second part is the steady-state term. With the quasi-static
assumption (Section II-C), under a large , the steady state is
achieved when reaches at the end of one time step, i.e.,

(17)
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Fig. 20. Examples on contact force response. (a) Contact force response de-
pends on both the depth at p along the direction of deformation and the angle
difference between the contact surface normal at p and the deformation direc-
tion. (b) No contact force response at p when its normal direction is orthogonal
to the deformation direction.

That is, at , the held rigid object becomes static, and
the contact force response from the elastic object balances
the external force , where is the mass of the rigid
object. Thus, from (17), by omitting the high-order term of
(since ), we have

APPENDIX III
MASS LOAD DISTRIBUTION OVER A CONTACT REGION

To calculate the total contact force response to a single-region
contact, we need to integrate the contact force responses over
the contact region. Our implementation is to discretize force
integration as the summation of contact forces at a number of
evenly distributed contact points corresponding to different dis-
placements of deformation (as shown in Fig. 5). We first need
to determine those contact points and how to distribute the mass

of the held rigid object to them, before we can compute the
contact force response to each such point with displacement

based on the Duffing equation.
Our approach is to use the set of vertex points of the mesh

model of the rigid object in the contact region, provided that
these vertex points are evenly distributed. Let indicate such a
set of contact vertex points on the mesh.

At each point in , , the amount of contact
response force not only depends on the displacement of
along the direction of deformation , but also depends on how
the contact surface normal at relates to the deformation
direction : the smaller the angle difference between and

, the larger the contact response force to (e.g., in Fig. 20(a),
though , since , the contact force response to

is greater than that to ). If and are parallel, the con-
tact response force at is the largest. On the other hand, if
and are orthogonal, does not contribute to the total contact
response force [see Fig. 20(b)]. This fact is taken into account
when we distribute the mass to each in the following, since
the contact force at is proportional to the mass contribution

at according to the Duffing equation.
Based on the assumption that the external force from the user

applies to the mass center of the held object, can be approx-

Fig. 21. Distribution of mass to point p .

imated as inversely proportional to the projection of the dis-
tance between and the mass center on a plane whose normal is
along the direction of deformation (see Fig. 21) and weighted
by

The distribution of over the contact region actually reflects
the distribution of the pressure of the held rigid object on the
contact region. Since such a pressure distribution depends on
many specific factors, such as the specific shape of the held ob-
ject, where the contact occurs, how large the deformation hap-
pens, the stress/strain properties of the elastic object, etc., it is
difficult to obtain it exactly with a general method and in real
time. The above formula for the distribution of is a reason-
able approximation.

With both and now known, the contact force response
at can be computed from (1) (with replacing ). Sum-

ming up all gives the total contact force response of the
contact region.

Since it is difficult to compute the exact shape of the contact
region in general, as such a region depends on the shape of the
rigid object and how the contact is made, it is difficult to de-
termine the exact set of the contacting vertex points of the
rigid object mesh in real time. Fortunately, the contributions of
such mesh points inside the contact region can be very reason-
ably approximated by the contributions of the easily obtained
set of mesh points on the portion of the rigid object that
is beneath the contact surface of the elastic object before this
deformation where each point in satisfies .
Note that all contact cases can be categorized into two groups:

, Fig. 22(a), and , Fig. 22(b). For the first group
of contact, each noncontact point in the set makes
little contribution to the computation of the total contact force
response , since the angle between the surface normal at
and the direction of deformation tends to be quite large, i.e.,

tends to be close to zero, and the deformation displace-
ment is usually small.

Clearly, there is a tradeoff between the resolution of the mesh
model (of the rigid object) and the computation efficiency of .
The finer the mesh model, the more accurate is, but the slower
the computation.

APPENDIX IV
CROSS-SECTION AREA OF A BEAM
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Fig. 22. Set M of points (points of both solid and hollow dots) versus the set
C of points (points of solid dots). (a) M > C . (b) M = C .

Fig. 23. Approximation of the Voronoi region of an anchor point p .

The surface of an elastic object can be partitioned into sur-
face patches that form a Voronoi diagram based on the anchor
points, such that each surface patch is a Voronoi region of
an anchor point , which contains all the points on the elastic
surface closer to if traveling along the surface than to other
anchor points.

Under a beam-skeleton , we can compute the stresses and
strains at each beam end , which should represent the stresses
and strains on the Voronoi region of . Therefore, we make
the cross-section area of a beam proportional to the area of

.
Since depends on the shape of the elastic surface before the

current contact, which can be already deformed, it is difficult to
find the area of each precisely in real time. We have to use
an approximation. Our strategy is to find all center points on the
shortest curves connecting to all adjacent anchor points.2 Let

be the center point between and . For two anchor points
and adjacent to , if and are also adjacent, then ,
, and form a triangle, as shown in Fig. 23(a), where a

segment of ’s Voronoi region is approximated by the triangle
bounded by , , and . The area of can be approximated
as the sum of the areas of all such triangles, denoted as , as
shown in Fig. 23(b).

Let be the following:

(18)

where is the number of beams in the beam-skeleton .

2We say two anchor points are adjacent if there exists a common boundary
between their Voronoi regions.

The cross-section area of beam in should be proportional
to , which captures the ratio of ’s area relative to the total
area of the elastic surface. In addition, since beam is for com-
puting the stress and strain at the anchor point , which is at
the center of the cross-section at the beam end, the cross-sec-
tion area of beam should be small enough so that the stress
and strain at can be approximated well. Therefore, we define

to be the cross-section area of beam as follows:

(19)

where is a constant area, and its value can be adjusted in order
to best approximate the computation of stress and strain at an
anchor point.
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