
http://ijr.sagepub.com

Research 
The International Journal of Robotics

DOI: 10.1177/0278364908092463 
 2008; 27; 832 The International Journal of Robotics Research

Peng Tang and Jing Xiao 
 Automatic Generation of High-level Contact State Space between 3D Curved Objects

http://ijr.sagepub.com/cgi/content/abstract/27/7/832
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 Multimedia Archives

 can be found at:The International Journal of Robotics Research Additional services and information for 

 http://ijr.sagepub.com/cgi/alerts Email Alerts:

 http://ijr.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.com/journalsPermissions.navPermissions: 

 http://ijr.sagepub.com/cgi/content/refs/27/7/832
SAGE Journals Online and HighWire Press platforms):

 (this article cites 11 articles hosted on the Citations

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://www.ijrr.org/multimedia.html
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/cgi/content/refs/27/7/832
http://ijr.sagepub.com


Peng Tang
Jing Xiao
University of North Carolina
Charlotte, NC 28223, US
xiao@uncc.edu

Automatic Generation of
High-level Contact State
Space between
3D Curved Objects

Abstract

Information of high-level, topological contact states is useful and
sometimes even necessary for a wide range of applications, from ro-
botic tasks involving compliant motion to virtual prototyping and sim-
ulation. This paper addresses how to represent concisely and gener-
ate automatically graphs of contact states between 3D curved objects
of a broad class, which may include smooth curved or planar sur-
faces. The approach is sound and complete if the step size of dis-
cretization is smaller than a finite threshold. By exploiting topologi-
cal and geometrical constraints, it is also quite efficient. The imple-
mented examples demonstrate the effectiveness of the approach.

KEY WORDS—Contact states, 3D curved objects, principal
contacts, automatic generation, compliant motion

1. Introduction

Many robotic tasks involve objects in contact and compli-
ant motion. Compliant motion is preferred in high-precision
assembly operations to reduce uncertainty and is needed in
tasks that require scribing, painting, grinding, polishing, con-
tour following, object aligning and plotting in manipulation.
For such tasks, it is often necessary to know not just the con-
tact configurations between two objects but also the high-level,
discrete, topological contact state shared by two or more con-
tact configurations� this is more descriptive of the topological
and physical characteristics of contact. For example, to polish
a desk, the control strategy to keep the robotic tool contacting
the desk top is usually different from that of keeping the tool
contacting a side of the desk, and so on. The tool on the desk
top can be considered a different contact state from the tool

The International Journal of Robotics Research
Vol. 27, No. 7, July 2008, pp. 832–854
DOI: 10.1177/0278364908092463
c�SAGE Publications 2008 Los Angeles, London, New Delhi and Singapore
Figures 18–24 appear in color online: http://ijr.sagepub.com

on the side of the desk. Each contact state describes a set of
contact configurations of the tool with respect to the desk.

In general, contact states between two objects can be con-
sidered as partitioning the surface of configuration space ob-
stacles (C-obstacles) (Lozano-Pérez 1983) of one object with
respect to the other. Contact states and adjacency informa-
tion can be captured by a contact state graph, where each
node denotes a contact state and each arc links two adjacent
contact states. Information of a contact state graph is usually
needed for automatic assembly planning or control (Sturges
and Laowattana 1995�McCarragher 1996� Pan and Schimmels
2003� Lefebvre et al. 2005). Such information is also required
for general compliant motion planning and control.

Planning compliant motion means planning motion on the
surface of C-obstacles. However, computing C-obstacles ex-
actly in high-dimensional space remains a formidable task to
date (Canny 1988). Most of the relevant work is limited to 3D
C-obstacles (i.e. C-obstacles of planar objects) (Avnaim et al.
1988� Brost 1989� Rosell et al. 1997� Sacks and Bajaj 1998),
and only a few approximations of C-obstacles of 3D polyhedra
(Donald 1985� Joskowicz and Taylor 1996).

If a contact state graph is known, however, planning com-
pliant motion can be greatly simplified as (1) a graph search
problem to plan a sequence of contact state transitions in the
contact state graph at the high level, and (2) planning mo-
tion compliant to a known contact state and the transition to
a neighboring contact state at the low level, which is a lower
dimension and smaller scope motion-planning problem. In-
deed, a method for planning motion compliant with a known
contact state was introduced for contacting polyhedral objects
without requiring the construction of the C-obstacle in a 6D
configuration space (Ji and Xiao 2001). The method takes ad-
vantage of known geometric features of the physical objects in
the known contact state.

Such a two-level planning approach is also preferred
to provide naturally the correspondences between contact
configurations and higher level contact states that a compli-
ant controller requires to execute a compliant motion plan

832

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 833

(Lefebvre 2003� Meeussen et al. 2005). To enable compli-
ant control it is not sufficient to know only a path of con-
tact configurations. The information of a sequence of high-
level contact state transitions is necessary for designing proper
compliant controllers (Meeussen et al. 2005). In other words,
it is not possible to have a compliant control law applica-
ble to all contact configurations. A practical way is to have
a stratification of compliant control strategies based on differ-
ent contact states and transitions, i.e. information of a contact
state graph is necessary.

In haptic rendering and dynamic simulation (e.g. Ruspini
and Khatib 1999� Luo and Xiao 2004), collision detection is
inevitably subject to digital error. If object models are based on
polygonal mesh approximation, which is very common, there
are additional approximation errors. As a result, although mul-
tiple collisions are detected at the same time during simula-
tion, not all of these collisions may be able to happen at the
same time in reality. In other words, a false contact state may
be identified. A false contact state leads to false force and dy-
namic effects, which should be prevented in high-fidelity sim-
ulation. Clearly, with a pre-determined graph of (valid) contact
states, a simple search of the graph can rule out impossible
contact states. Hence, information of a contact state graph is
also needed.

For contacting polyhedral objects, it is common to de-
scribe or represent a contact state as a set of primitive con-
tacts. Each primitive contact is defined in terms of a pair of
contacting surface elements, which are faces, edges and ver-
tices. One common representation (Lozano-Pérez 1983� Don-
ald 1985) defines primitive contacts as point contacts in terms
of vertex-edge contacts for 2D polygons, and vertex-face and
edge-edge contacts for 3D polyhedra. Another representation
(Xiao 1993) uses the notion of principal contacts as primitive
contacts, where a principal contact can be a face contact, an
edge contact or a point contact. Figure 1a shows different types
of principal contacts (PCs) between two polyhedral objects.
Figure 1b shows an example contact state described as a set of
PCs. For convex curved objects, contact states are described
similarly with each primitive contact defined in terms of a pair
of contacting curved surface elements (Thompson II and Co-
hen 1999).

However, if non-convex curved surfaces or curves are
present, there can be one or more than one contact region
formed between the same pair of curved surface elements, re-
sulting in different contact states with different contact con-
straints. Figure 2 shows an example. To resolve the ambi-
guity caused by such one-to-many mappings, one approach
was to divide curved surface elements into so-called curvature
monotonic segments (Luo et al. 2004� Tang and Xiao 2006a) so
that between two curvature monotonic segments only one con-
tact region can be formed (i.e. a one-to-one mapping). How-
ever, this approach of artificially dividing natural surface ele-
ments leads to a large number of contact states. A more con-
cise approach is used (Tang and Xiao 2006b) to represent point

Fig. 1. Contact states between two polyhedral objects.

Fig. 2. Different numbers of contact regions can be formed
between the same pair of contacting surfaces.

contacts between strictly curved objects (i.e. without line seg-
ments in their surfaces).

If ruled curved surfaces (i.e. curved surfaces that include
line segments) are involved, there can be different types of con-
tact regions between the same pair of surface elements. Fig-
ure 3 shows an example where there can be either a point con-
tact or a line contact which have different contact constraints
(or degrees of freedom). This type of ambiguity was not ad-
dressed before.

Under a suitable representation of contact states, automatic
generation of a contact state graph is much desired. This is

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


834 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

Fig. 3. Different types of contact regions can be formed be-
tween the same two contacting surfaces.

because building a contact state graph by hand is tedious for
tasks of even simple geometry and is practically infeasible for
cases involving (1) a large number of contact states and/or (2)
contact states that are difficult to be visualized correctly (espe-
cially when curved objects are involved).

An early approach (Hirukawa et al. 1994) enumerated all
possible contact states and connections between two convex
polyhedra. A general approach was later developed to auto-
matically generate graphs of contact states between polyhedral
objects (Xiao and Ji 2001), where each contact state is repre-
sented as a set of principal contacts. The basic idea is to gen-
erate so-called goal-contact relaxation (GCR) graphs and then
merge them, all done automatically. A GCR graph is grown
from a seed contact state and includes its less-constrained
neighboring contact states, their less-constrained neighboring
contact states, and so on. However, a randomized strategy is
sometimes used to find a valid neighboring transition. As such,
the algorithm is not a complete algorithm. More recently, a
method of automatically generating point-contact states be-
tween strictly curved objects was introduced (Tang and Xiao
2006b), but the issue of completeness has not been discussed.

In this paper, we study the problem not addressed by pre-
vious work: representing contact states and automatically gen-
erating contact state graphs between curved objects of a broad
class (with curved, ruled or planar surfaces). In particular, we
seek sound and complete algorithms for automatic generation
of contact states between such general objects. We first de-
scribe the class of basic curved objects in Section 2. Next we
introduce a concise representation of contact states between
these objects that consist of point, line and planar types of
contact regions in Section 3. Special neighboring relations be-
tween contact states are considered. In Section 4, we present
the details of our approach to automatically generate contact
state graphs and analyze the soundness and completeness of
the approach. In Section 5, we describe some implementation
results. In Section 6, we provide a discussion of complexity.
We conclude the paper in Section 7.

2. Basic Curved Objects

Definition 2.1 (basic curved object): A basic curved object is
a solid object in R3 with its boundary consisting of smooth
surface patches or closed smooth surfaces of finite size (such
as spheres or ellipsoids) that satisfy the conditions:

1. each surface patch or closed surface can be described
parametrically, referred to as face�

2. each face is bounded by curve segments or a closed
curve of finite length that are planar, not self-intersected,
and can be described parametrically (including line seg-
ments), referred to as edges�

3 each face can be curved or flat and has no self-
intersection�

4. two adjacent faces are connected by either a common
edge or a common point� and

5. the intersection point of three adjacent faces (i.e. the in-
tersection point of two adjacent edges) or the contact
point of two adjacent faces defines a vertex.

Many types of faces (surface patches) satisfy the above con-
ditions, including those constructed by rotating or sweeping
a planar parametric curved segment without self-penetration,
quadric surface patches and non-degenerate parametric sur-
face patches such as bicubic, Bezier and B-spline surface
patches (Mortenson 1985). In fact, many man-made objects
from CAD/CAM design satisfy the above conditions on their
boundary surfaces. Figure 4 shows some different examples of
applicable surface patches.

We do not consider objects with space curves (edges) in this
paper, which can make contact regions more complex.

Definition 2.2 (surface element): Faces, edges and vertices as
defined in Definition 2.1 are called surface elements of basic
curved objects. Moreover, a face that is not closed is bounded
by edges and vertices, and an edge that is not closed is bounded
by vertices. Such edges and vertices are referred to as bound-
ing elements of a face and an edge, respectively.

Definition 2.3 (adjacent elements): Two elements of a basic
curved object are adjacent elements if one is the bounding el-
ement of the other.

For simplicity, we use f , e and � to denote face, edge and
vertex, respectively, in the rest of the paper.

3. Contact States between Basic Curved Objects

We first analyze and describe the contact primitives between
basic curved objects and then introduce a concise representa-
tion of contact states.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 835

Fig. 4. Examples of different surface patch elements (faces),
constructed by (a) rotating a curve segment� (b) sweeping a
curve segment along a line� and (c) sweeping a curve segment
along a curve segment. (d) An example of elliptic paraboloid
(not a surface patch or revolution of sweeping).

3.1. Contact Regions between Two Surface Elements

We consider the following types of contact region between two
surface elements:

� point contact: the contact region is an isolated point�

� line contact: the contact region is a continuous line seg-
ment� and

� plane contact: the contact region is a continuous set of
points on a plane, which can be on a curve but not on a
line.

A point contact can happen between many different surface
elements, not necessarily involving a vertex, as shown in Fig-
ure 5. However, between two planar faces or one planar face
and one straight line edge, no point contact can be formed.
A line contact can happen between two ruled surfaces or a
straight line edge and a ruled surface. Figure 6 shows two ex-
amples of line contacts. A plane contact can happen between
two planar faces or between a planar face and a planar curved
edge. Figure 7 shows two examples of plane contacts. Fig-
ure 7a is an example of a plane contact between two planar
faces. Figure 7b is an example of a plane contact between a
planar face and a planar curved edge.

Fig. 5. Examples of different point contacts between two non-
vertex surface elements.

Fig. 6. Examples of line contacts.

Fig. 7. Examples of plane contacts.

We do not consider the cases where two curved edges form
a contact region that is also a curve or two curved faces form
a contact region that is a non-flat surface region, because these
cases hardly occur in practice. As shown in Figure 8, in or-

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


836 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

Fig. 8. Contact cases that rarely occur in practice.

der for the contact region in case (a) to be a curve, the two
contacting edges have to have identical portions in size and
curvature that happen to be in contact. Similarly, the contact
region in case Figure 8b can be a curved surface region only if
the two faces have identical portions that happen to be in con-
tact. Usually a point contact will only occur in case (a), and a
line contact or multiple (isolated) point contacts will occur in
case (b).

3.2. Contact Primitives between Two Surface Elements

We can extend the notion of principal contacts introduced be-
tween polyhedral objects (Xiao 1993) to describe a contact re-
gion between two surface elements of curved objects, taking
into account contact types as follows.

Definition 3.1 (principal contact): A principal contact (PC)
between two curved objects A and B describes a continuous
contact region between a pair of surface elements (i.e. faces,
edges and vertices) �A and �B that are not bounding elements
of other pair(s) of contacting surface elements at a subset of
the region. This is denoted

PC � �A

�� �B� where � � �P�L�PL��
and P, L and PL indicate the type of the contact region as point
contact, line contact and plane contact, respectively.

Moreover, a PC between two faces is a face tangential con-
tact because the two faces are tangent to each other. A PC be-
tween a face and an edge is an edge tangential contact but not
a face tangential contact.

A PC between two edges is either an e-e-touch PC if the
tangent lines of the two edges are collinear or an e-e-cross PC,
otherwise. An e-e-touch PC can be either a point contact if

Fig. 9. PCs for both (a) degenerate and (b) non-degenerate
cases.

one of the edges is curved or a line contact if both edges are
straight-line edges. An e-e-cross PC is a point contact. An e-
e-cross PC, e-e-touch PC or a PC involving a vertex is neither
face tangential nor edge tangential because there is no face–
face or face–edge pairs that are tangent to each other� these are
referred to as non-tangential contacts.

Note that PCs of types �-� , �-e and e-e-touch have both
degenerate cases, defined as extremely unstable contacts that
rarely occur in practice. Note that this definition is differ-
ent from what degeneracies usually mean in solid model-
ing (Edelsbrunner and Mucke 1990� Stroud 1990) and non-
degenerate cases, as illustrated in Figure 9. We consider these
PC types because of the non-degenerate cases.

We further define the contact plane and contact line for cer-
tain types of PCs as follows.

Definition 3.2 (contact plane and contact line): The contact
plane of a PC involving at least one face is the plane tangent
to the face and passing the contact region. For an edge-edge-
cross PC, it is the plane determined by the two tangent lines
of the two edges at the contact point. The contact line of a

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 837

Fig. 10. A contact formation between two curved objects.

vertex-edge PC or an edge-edge-touch PC is the tangent line
of the edge or both edges at the contact point.

Note that no single contact plane or contact line can be
defined for a vertex-vertex PC.

3.3. Contact Formations between Curved Objects

As shown in Figures 2 and 3, there can be different numbers
and types of PCs between two non-vertex surface elements of
two contacting curved objects. Therefore, we characterize a
general topological contact state between two curved objects
by specifying the number and types of PCs involved, as fol-
lows.

Definition 3.3 (contact formation): A contact formation(CF)
between two general curved objects is defined as the set of
principal contacts (PCs) formed, where the same PC may be
formed more than once, denoted

CF � �PC1� n1�� �PC2� n2�� � � � � �PCm� nm��

where ni � N�N is the set of positive integers i � 1� � � � �m.
Moreover, the cardinality of a CF is denoted as:

card�CF� � n1 � n2 � � � �� nm �

Figure 10 illustrates a contact formation between two curved
objects.

3.4. Contact States and CF-Compliant Path

Given two objects A and B in a contact formation (CF), we
denote the geometrical representation of a CF as the set of

relative contact configurations of A with respect to B (as ex-
pressed by the homogeneous transformation matrix B TA) that
satisfy the contact conditions of all the PCs in the CF at the
same time.

In general, the set of contact configurations in the geometri-
cal representation of a contact formation may consist of one or
more connected regions of contact configurations, called CF-
connected regions on the configuration space obstacle (i.e. C-
obstacle) surface. Moving from one configuration to another
within a CF-connected region does not need to change the CF.
We therefore define a contact state as follows

Definition 3.4 (contact state): A single CF-connected region
of contact configurations between two curved objects defines
a contact state between the objects, represented by the CF and
a representative contact configuration C in the region, denoted
as a pair � C F�C 	.

Definition 3.5 (CF-compliant motion): Within a contact state,
from any contact configuration to any other, there exists a path
as a continuous curve of contact configurations constrained by
the CF, called a CF-compliant motion.

3.5. Neighboring Contact States and Contact Formations

Clearly, a C-obstacle surface (in the configuration space) is
partitioned by contact states, and two adjacent contact states
are called neighboring contact states. Alternatively, neighbor-
ing contact states can be defined in terms of neighboring tran-
sition motions.

Definition 3.6 (neighboring contact states, neighboring transi-
tion motion and neighboring CFs): Two different contact states
� C Fi �Ci 	 and � C Fj �C j 	, i 	� j are called neigh-
boring contact states if there exists a C Fi -compliant motion
succeeded by a transition to a C Fj -compliant motion from Ci

to C j , and such a compliant motion from � C Fi �Ci 	 to
� C Fj �C j 	 is called a neighboring transition motion. More-
over, C Fi and C Fj are called neighboring contact formations.

A contact state space between two curved objects can
be represented as a contact state graph � which includes
nodes and arcs, where each node denotes a valid contact state
� C F�C 	, and each arc connects two neighboring contact
states.

If two single-PC CFs C Fi � ��PCi � 1�� and C Fj �
��PC j � 1�� are neighboring contact formations, then PCi and
PC j are called neighboring PCs. Neighboring PCs satisfy cer-
tain topological conditions, described as follows.

Theorem 3.1: If PCi = �i A

� i��i B and PC j = � j A

� j�� j B are
neighboring PCs, then one of the following is true.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


838 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

1. If � i � � j , then either (i) �i A � � j A and �i B and � j B

are adjacent, or (ii) �i A and � j A are adjacent and �i B �
� j B or (iii) �i A and � j A are adjacent and �i B and � j B

are adjacent.

2. If � i 	� � j , then either (i), (ii) or (iii) above is true or
�i A � � j A and �i B � � j B .

Proof: Suppose PCi and PC j are neighbors but neither con-
dition in the theorem is held. If �i A and � j A are neither equal
nor adjacent, changing the contact from PCi and PC j so that
�i A is changed to � j A requires a compliant motion that has to
go through another element �k A, which results in another PC.
This contradicts the fact that PCi and PC j are neighbors. �

We now describe the topological conditions satisfied by two
neighboring CFs.

Theorem 3.2: If two CFs C Fi and C Fj are neighboring CFs,
and if card�C Fj � 
 card�C Fi �, then every PC in C Fj either
belongs to C Fi or is a neighboring PC of a PC in C Fi .

Proof: We only need to prove that from a contact state in C Fi

to a contact state in C Fj , a PC can be broken, changed to a
neighboring PC compliantly or kept in the neighboring transi-
tion motion, but no new PC can be added. Suppose a new PC
PC j is added during the transition from C Fi to C Fj . A PC
in C Fi , PCk , has to be broken in order to have card�C Fj � 

card�C Fi �. As breaking a PC requires only infinitesimal mo-
tion, but gaining a new PC requires a finite motion, breaking
PCk has to occur before the new PC j is established. This im-
plies that the transition has to go through at least another con-
tact formation: either C Fi � PCk or C Fj � PC j before C Fj

is reached, contradicting the fact that C Fi and C Fj are neigh-
bors. �

We can further distinguish two types of neighboring rela-
tions, as follows.

Definition 3.7 (locally-defined neighbor): If C Fi and C Fj are
neighboring CFs, and card�C Fj � 
 card�C Fi �, we call C Fj

a locally-defined neighbor (LN) CF of C Fi . Accordingly, the
contact state � C Fj �C j 	 is a locally-defined neighboring
contact state of the contact state � C Fi �Ci 	.

Figure 11 shows an example, where C F1 and C F2 are two
(mutually) LN CFs.

Definition 3.8 (globally-defined neighbor): If C Fi and C Fj

are neighboring CFs, and card�C Fi � 	 card�C Fj �, we call
C Fi a globally-defined neighbor (GN) CF C Fj . Accordingly,
� C Fi �Ci 	 is a globally-defined neighboring contact state
of � C Fj �C j 	.

The reason we differentiate LNs and GNs is that given C Fi ,
according to Theorem 3.2, the topological information of its

Fig. 11. An example of locally-defined neighbor (LN) CFs.

Fig. 12. Example of a locally-defined neighbor (LN) and a
globally-defined neighbor (GN) CF.

LN CFs can be derived directly from the topological infor-
mation of C Fi � i.e. from the PCs in C Fi , one can obtain the
possible PCs of the LN CFs of C Fi . In the example shown
in Figure 12, C F1 is a LN CF of C F2, which is derived from
C F2 by simply dropping the edge-face PC of C F2. However,
one cannot derive C F2, which is a GN CF of C F1, directly
from C F1.

Such a property means that given a contact state
� C Fs�Cs 	, the subsets of PCs in C Fs provide possible LN
CFs of C Fs . In other words, possible LN CFs can be enumer-
ated directly from C Fs , which can facilitate automatic genera-
tion of the corresponding LN contact states. We define the LN
graph of � C Fs�Cs 	 as an undirected graph consisting of
�C Fs�Cs	, its LN contact states, their subsequent LN con-
tact states and so on. Clearly the LN graph is finite.

On the other hand, it is difficult to enumerate all possible
GN CFs of C Fs because there is no upperbound on the num-
ber of combinations of PCs (especially since the same PC can
occur multiple times in a CF).

Fortunately, to obtain an entire contact state graph, it is
sufficient to simply automatically generate the largest LN
graphs and merge them, as explained in Section 4.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 839

Algorithm 1 Generating LN Graph
1: Initialize the LN graph L N G with a single node containing � C Fs�Cs 	
2: Initialize the FIFO queue new with a single node � C Fs�Cs 	
3: while new is not empty do
4: Remove node � C Fi �Ci 	 from new
5: Hypothesize topologically all possible LN CFs of C Fi

6: for each hypothesized LN CF, C Fh , of C Fi do
7: if L N G has no node with C Fh as the CF then
8: if there exists a feasible neighboring transition motion from Ci in � C Fi �Ci 	 to configuration Ch with C Fh then
9: create a node for � C Fh�Ch 	, link it to the node of � C Fi �Ci 	 in L N G, and add it to the end of new

10: end if
11: else
12: for each node � C Fh�Ch�k 	 in L N G do
13: if there is no link between it and� C Fi �Ci 	 and there exists a feasible neighboring transition motion from Ci in

� C Fi �Ci 	 to Ch�k in � C Fh�Ch�k 	, then
14: build a link between the node � C Fh�Ch�k 	 and the node � C Fi �Ci 	 in L N G
15: end if
16: end for
17: if there exists a feasible neighboring transition motion from Ci to a different configuration Ch�� (Ch�� 	� Ch�k , for all

k), then
18: create a node � C Fh�Ch�� 	, link it to the node of � C Fi �Ci 	 in L N G, and add it to the end of new
19: end if
20: end if
21: end for
22: end while
23: Output L N G

4. Generation of Contact State Graphs between
Curved Objects

Our approach is to generate special subgraphs of the contact
state graph � automatically and to merge these subgraphs au-
tomatically. That may appear similar to the approach used in
Xiao and Ji (2001) for polyhedral objects, but there are major
differences as listed below.

1. First, the special subgraphs here are LN graphs, which
are different from and less restrictive than the GCR
graphs considered in Xiao and Ji (2001). Given a seed
contact state� C Fs�Cs 	, its LN graph is usually much
larger than its GCR graph. Fewer LN graphs are needed
for obtaining �, especially by using seed CFs of locally
maximum cardinality (i.e. number of PCs in a CF) which
are much fewer than the seeds for GCR graphs (which
are the locally most constrained CFs).

2. Second, curved objects are considered here, for which
contact state representations are different and neighbor-
ing transition motions are more complex.

3. Lastly, our approach for generating LN graphs automat-
ically is assured to be sound and complete under a finite
resolution for discretization.

Starting from a seed contact state � C Fs�Cs 	, the LN
graph can be grown by repeatedly obtaining LN contact states
until all the LN contact states have been generated in a breadth-
first search. We explain the details in the following subsec-
tions.

4.1. Algorithm for Generating LN Graphs

Algorithm 1 for constructing an LN graph from a seed contact
state � C Fs�Cs 	 is outlined below.

Note that in Algorithm 1, if two or more contact states are
generated under the same contact formation C Fh , it means that
the geometrical representation of C Fh has two or more C Fh-
connected regions in the configuration space, and Ch�k is the
representative contact configuration of the kth C Fh-connected
region.

There are two key procedures in the algorithm.

1. From a known contact state�C Fi �Ci	, hypothesize its
LN CFs based on the topological information of C Fi .

2. Determine if there exists a feasible neighboring transi-
tion motion from Ci under C Fi to some configuration
C j under a hypothesized LN CF C Fj . If so,
�C Fj �C j 	 is a valid LN contact state of�C Fi �Ci 	.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


840 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

We explain both procedures in detail in the following sub-
sections.

4.2. Hypothesizing Locally-defined Neighbor (LN) Contact
Formations (CFs)

To obtain a hypothesized LN CF of a single-PC CF, C Fi �
��PCi � 1��, is to change PCi � �A

�� �B to one of its neigh-
boring PCs. This involves changing either the type of contact
� or a surface element �A or �B to an adjacent element. We
can avoid hypothesizing topologically impossible PCs based
on different kinds of topological properties of surface elements
as detailed in Appendix A.

For a CF with multiple PCs, i.e. card�C F� � 2, we use the
following action sets to hypothesize its possible LN CFs.

� Action set 1: keep some PCs and change some other
PCs to their neighboring PCs.

� Action set 2: keep some PCs and remove some PCs.

Note that no keep action can be applied simultaneously to
all PCs in the CF, and no remove action can be applied simul-
taneously to all PCs in the CF. Note also that the neighbor-
ing PCs should be topologically possible, according to Appen-
dix A.

Once LN CFs are hypothesized, we next check if they are
geometrically feasible by considering the relevant neighboring
transition motions.

4.3. Neighboring Transition Motions

Between two neighboring contact states of two curved objects
A and B, a neighboring transition motion can be one of the
following four types of compliant motions of object A with
respect to object B or certain combinations of these types:

� slidingA, where the contact points of A do not change
but the contact points of B changes (Figure 13a)�

� slidingB, where the contact points of B do not change
but the contact points of A changes (Figure 13a)�

� pure rotation about an axis through a contact point,
which is usually either normal or tangent to the contact
plane (if the contact plane exists) (Figure 13b)� or

� pure translation along the contact plane of a line con-
tact or plane contact (Figure 13b).

Note that neither slidingA nor slidingB are pure rotations
or translations.

Neighboring transition motions can also be of the following
types of combined motions:

Fig. 13. Types of neighboring transition motions.

� a combined slidingA and slidingB, where the contact
points of A and B both change (note that if the contact
points of A and B change in equal displacements, the
motion is in fact a rolling motion) (Figure 13a)�

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 841

� a combined sliding and rotation motion, where a
slidingA or a slidingB motion or a combined sliding
is combined with a pure rotation (Figure 13a)�

� a combined translation and rotation motion (Fig-
ure 13b).

In order to implement a neighboring transition motion, we
need to set up a good moving task frame. The origin of the
task frame should be at a contact point. For a PC with a contact
plane, the x � y plane is along the contact plane and the z axis
is along the normal direction of the plane. Moreover, using the
parametric representation of a face s � s�u� ��, either the x or
the y axis can be along one parametric derivative vector su or
s� . For an e-e-cross PC, either the x or the y axis can be along
the tangent line of one of the edges.

For a PC with a contact line the x axis is along the contact
line. If the edge (or one of the edges) at the contact point is
a curved edge, the z axis is on the plane formed by the con-
tact line and that edge at the contact point, and is normal to
the edge. In all other cases, the axes of the task frame can be
set based on a neighboring PC that the transition is aimed at,
which should have either a contact plane or a contact line.

Each slidingA and slidingB can be generally viewed as an
integral of instantaneous pure translation ds combined with
an instantaneous pure rotation d
 , and the results can be im-
plemented by a summation of digitized small motion steps.
Each small motion step is implemented as a small translation
�s combined with a small rotation �
 . Specifically, by digi-
tizing the u and � parameters of a face, we get a grid of points
on the face. Each small sliding motion along the face is im-
plemented as a small translation from one grid point p to an
adjacent grid point q on the face followed by a small rotation
along an axis through q on the tangent plane and orthogonal to
the translation vector from p to q. The angle �
 of the rota-
tion is determined by the tangent plane T1 at p and the tangent
plane T2 at q. A similar strategy can be used to implement a
small sliding step along an edge.

Each combined motion can be similarly implemented as an
integral (or summation) of small motion steps such that each
small step consists of one small single-type motion �1 followed
by another small single-type motion �2, etc.

4.4. Feasibility Check of Neighboring Transition Motions

Given a valid contact state � C Fi �Ci 	 and a hypothesized
LN CF C Fj between two curved objects A and B, to deter-
mine if there exists a valid LN contact state � C Fj �C j 	
of � C Fi �Ci 	 is to check if there is a feasible neigh-
boring transition motion from Ci to a configuration C j of
� C Fj �C j 	. Any neighboring transition may involve re-
move, keep or change one or more PCs of C Fi , based on Sec-
tion 4.2. The change action is to change a PC to a neighboring
PC.

The types of possible compliant motions to keep or main-

tain a principal contact PCi � �i
A

���i
B depends on the contact

type � and the types of the surface elements of �i
A and �i

B , as
presented in Appendix B.

The types of possible compliant motions to change a prin-
cipal contact PCi to a neighboring PC j between objects A
and B may consist of a keep motion of PCi (i.e. object A’s
motion compliant to PCi ) followed by a transition motion to
PC j . The keep motion is to bring A to a configuration where
the change of PCi to PC j can happen. This configuration is
determined based on the contact types of PCi and PC j as well
as which boundary element in PCi is changed from PCi to
PC j . Once A is in such a configuration, a rotation is needed
for the transition motion between:

� a face- or edge-tangential contact and a non-tangential
contact�

� a face-tangential contact and an edge-tangential contact�
and

� two PCs sharing the same contacting elements but hav-
ing different � types.

In general, if a neighboring transition from state
� C Fi �Ci 	 to a hypothesized LN state � C Fj �C j 	 re-
quires changing some PCs while keeping or removing some
other PCs, our strategy is to realize a change action from a
PC PCk to a desired neighboring PC PCk
 . If multiple PCs
need to be changed to their neighbors, we prefer to pick such
PCk and PCk
 that do not involve a face to have lower degrees
of motion freedom. Once a pair of PCk and PCk
 are chosen,
we construct a possible compliant motion of A to realize the
change action from PCk to PCk
 .

On the other hand, if a neighboring transition from state
� C Fi �Ci 	 to a hypothesized LN state � C Fj �C j 	 only
requires keeping some PCs while removing other PCs, our
strategy is to realize a keep action of one PC under a direc-
tion to remove another PC. If multiple PCs need to be kept,
we prefer to pick a PC that does not involve a face or is not
of e-e-cross type to have lower degrees of motion freedom.
With the chosen PC and the direction to remove another PC,
we construct a possible compliant motion of A to keep it.

If a compliant motion can be constructed without causing
additional collisions and is able to keep, change or remove
other PCs required by the transition, the motion is consid-
ered feasible and the hypothesized contact state is considered
a valid LN contact state.

Sometimes a compliant motion can be immediately recog-
nized as unfeasible even without construction. This happens
when a chosen motion to change a PC is not a type of mo-
tion that can keep another PC also required by the neighboring
transition. If such a motion is the only possible compliant mo-
tion, then the corresponding hypothesized LN CF is not valid.
For example, the only type of motion that can keep a � � �

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


842 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

Fig. 14. An example of a hypothesized LN CF that is invalid.

PC is a pure rotation. As shown in Figure 14, a pure rotation is
needed to keep the �-� type of PC from C F1 to a hypothesized
C F2, but to change the e-e type of PC to the neighboring e-�
type of PC requires a sliding motion. C F2 is therefore not a
valid LN CF.

If a neighboring transition motion is constrained to be a 1-
DOF motion, there are only a finite number of possible neigh-
boring transition motions. Our algorithm simply checks the
feasibility of each possible neighboring transition motion one
by one until either (1) a feasible motion is found to conclude
that the corresponding LN CF and the LN contact state exists�
or (2) no motion is feasible to conclude that the hypothesized
LN CF is not valid and the LN contact state does not exist.

If a neighboring transition motion has two or more DOFs,
there are an infinite number of possible neighboring transi-
tion motions and discretization is necessary. For example, in
the case where neighboring transition is to remove a PC while
keeping another PC that involves a face (i.e. a face-face, edge-
face or vertex-face PC), there can be an infinite number of pos-
sible directions for the motion, but the motion itself can be
infinitesimal and only needs a small step in practice. Our strat-
egy is to discretize the directions and check the motion along
each direction to see if a feasible small motion step exists or
not.

Another case is where a neighboring transition motion has
to have a finite length (more than a small step) and has more
than one degree of freedom (DOF). For example, to change

C Fi = �� f A
P� fB� 1�� (i.e. a CF with a single face-face contact)

to C Fj = �� fA
P�eB� 1��, where eB is an edge of face fB , there

can be an infinite number of possible C Fi -compliant motions
to move A along fB to reach (any point on) eB before a ro-
tation can be done to make the transition. For such cases, we
have developed an obstacle-tracing algorithm to check if there
exists a feasible motion (or not) as detailed below.

4.5. Obstacle-tracing Algorithm for Finding Neighboring
Transition Motions

If a neighboring transition motion has more than one degree of
freedom and has to be finite (i.e. not infinitesimal so that more

Fig. 15. Conversion of a multiply-connected region to a simply
connected region.

than a small step is required), it involves moving an object A
compliantly along a face of the other object B to reach an edge
or vertex of the face. In such a case, there are an infinite num-
ber of possible neighboring transition motions. Without losing
generality, consider moving A along the face fB of B compli-
antly to reach an edge eB of fB for neighboring transition. Our
goal is to either find a feasible motion if one exists or report
that no feasible motion exists.

The basic idea of our algorithm, called obstacle-tracing, ap-
plies to a simply-connected fB . If fB is a multiply-connected
region, it can be pre-converted to a simply connected region
by introducing pseudo edges, before the obstacle-tracing algo-
rithm is applied. Figure 15 depicts an example of conversion
to a simply connected region.

The algorithm moves object A compliantly on fB towards
the boundary edges of fB until either an edge of fB is reached
or an obstacle is encountered. Then it makes A follow the
boundary of fB in one direction by either moving along bound-
ary edges of fB that A can reach without collision or tracing
the extruding parts of obstacles that prevent A from reaching
some boundary edges of fB . In this way, A will either reach eB

(the desired edge of B) or travel in some loops. The algorithm
searches a feasible motion by discretizing starting orientations
of A and, for each starting orientation, moving A in digitized
steps as described in Section 4.3. For each small step, it tries
different possible moves of A and does collision checking for
each move. We describe the algorithm in detail below.

First, a path 
 as a sequence of curves on fB , with para-
metric representation fB�u� ��, is constructed in the following
way: 
 starts from the point �u0� �0� on fB that A’s task frame
origin oA contacts. It continues along the u axis (or the � axis)

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 843

Fig. 16. An example path 
 for a point contact.

until A contacts a point on an edge e
B of fB (i.e. by updating
only the u (or �) value). If e
B � eB , the path 
 ends. If not, the
path 
 makes a turn to continue along e
B until another edge
(i.e. a vertex of another edge) is encountered by A, and so on,
until eB is reached. Figure 16 shows an example of a path of 
 .

Our obstacle-tracing algorithm is outlined in Algorithm 2.
It starts by making A follow path 
 . When a collision is de-
tected, the motion is deviated to trace the obstacle boundary
while avoiding it until an edge of fB is reached or certain con-
ditions are satisfied. If an edge is reached, the motion will con-
tinue along the edge when a collision may again occur so that
the motion may again deviate to trace the obstacle boundary.
A feasible neighboring transition motion is found if eB can be
reached eventually, and the algorithm returns ‘solution is true’.

There are two conditions indicating that eB cannot be
reached by the current motion. One condition is that the first
surface element � c of B which has collided is encountered
again after A collides with some other elements of B, M times.
Here the integer M 	 2 depends on the characteristics of � c. It
is set to make sure that after M times, some loops have been ac-
complished. The other condition is to deal with the case where
A can only collide with � c and no other element of B. The
large integer N depending on the size of � c is set to ensure that
after N collisions of A with � c, some loops have been accom-
plished. If either condition is satisfied, the obstacle-tracing al-
gorithm changes the starting orientation of A and again con-
structs a motion as described above. If no feasible motion is
found for all possible starting orientations, the algorithm con-
cludes that no feasible neighboring transition motion exists
and returns ‘solution is false’.

The function FollowPath checks if a feasible motion can be
found by having A’s task frame origin oA following the path 

step by step: the motion starts from the point p on 
 and calls a
function TryPossibleStepMotions to see if there is a feasible
step motion from p to the next point on 
 . If such a step motion
exists, the motion is made and the function FollowPath con-

Algorithm 2 Obstacle-tracing
1: Initialize 
 , p � �u0� �0�, CA � C0

2: repeat
3: collision � f alse
4: �p� � �� FollowPath�p� 
 � collision�
5: if collision then
6: � c � � {Remember the first collided surface ele-

ment of B}
7: m � 1
8: n � 1
9: repeat

10: �p� � �� ObstacleTrace�p� � c� � �
11: collision � f alse
12: if A reaches an edge of fB then
13: �p� � �� FollowEdge�p� collision� � c� � �
14: end if
15: until eB is reached OR m � M OR n � N
16: end if
17: if eB is reached then
18: solution � true and go to 26
19: else
20: FindNewStart�u0� �0�CA�
21: end if
22: until no new start configuration
23: if no new start configuration then
24: solution � f alse
25: end if
26: report solution

tinues to check for the next step motion and so on until either:
(1) eB is reached, i.e. the end of 
 is reached� or (2) there is a
collision. If (1), it returns the end point of 
 and sets the flag
that eB is reached to be true. If (2), it sets collision to be true
and returns the collided surface element � of B and the point
from which the next step causes the collision.

The function TryPossibleStepMotions checks possible
step motions to return a feasible one if it exists. A step mo-
tion is a slidingA motion with or without a rotation along an
axis through oA. In the case of neighboring transitions between
a C Fi of a single PC fA � fB and an LN CF C Fj of a sin-
gle PC fA � eB (or fA � �B), there are three possible step
motions: a small slidingA and two small combined motions
of slidingA and rotation about an axis through oA and nor-
mal to fB . The two combined motions involve clockwise and
counter-clockwise rotations, respectively. Note that the rota-
tion amount does not vary� it is a fixed small angle in one small
step in either direction. If fB is flat, slidingA becomes a trans-
lation.

In some other cases of neighboring transition, there can be
an infinite number of possible step motions. For example, in
the case of a neighboring transition between a C Fi of a sin-
gle �- f PC and an LN C Fj of a single �-e PC, the possible

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


844 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

Algorithm 3 Procedure of ObstacleTrace
1: ObstacleTrace�p� � c� � �
2: D1 � le f t (or right)
3: D2 � right (or le f t , the opposite of D1)
4: � 1 � � � � 2 � �
5: repeat
6: from p perform a trace step by turning D1 to find the next point p1

7: if TryPossibleStepMotions�p� p1� does not return a feasible step motion then
8: from p turning D1 again to find the next point p2

9: p1 � p2

10: � 1 � � 2
11: � 2 � the new collided surface element of B
12: else
13: p � p1

14: from p perform an approach step by turning D2 to find the next point p1

15: f easible � true
16: repeat
17: if TryPossibleStepMotions�p� p1� returns a feasible step motion AND an edge of fB is not reached then
18: p � p1

19: from p perform another approach step without changing direction to find the next point p1

20: if TryPossibleStepMotions�p� p1� returns a feasible step motion AND an edge of fB is not reached then
21: p � p1

22: from p perform another approach step by turning D2 to find the next point p1

23: else
24: f easible � f alse
25: � 1 � � 2
26: � 2 � the collided surface element of B
27: end if
28: else
29: f easible � f alse
30: � 1 � � 2
31: � 2 � the collided surface element of B
32: end if
33: until NOT f easible OR an edge of fB is reached
34: if � 2 	� � 1 AND � 2 � � c then
35: m � m � 1 {� c is encountered again}
36: else if m � 1 AND � 2 � � c then
37: n � n � 1
38: end if
39: end if
40: until an edge of fB is reached OR m � M OR n � N
41: return p� � 2

step motions include: a small slidingA motion and an infinite
number of small combined motions of slidingA and rotation as
there are an infinite number of possible rotation axes through
the contacting vertex oA. In such a case, TryPossibleStepMo-
tions discretize the space of rotation axes in order to discretize
possible step motions into a finite set to find a feasible motion
among them. If no feasible motion can be found, TryPossi-
bleStepMotions reports that and returns the collided elements
of B.

The function FollowEdge checks if a feasible motion can
be found step by step to reach the desired eB by following an-
other edge, where the direction of p is the direction of motion.
The feasible motion will be along a sequence of edges until eB

is reached. Note that A could change its contact points with
an edge by sliding or translating in directions orthogonal to p
during the edge following.

The function ObstacleTrace as shown in Algorithm 3 is
called once a collision is detected. It finds a motion to trace

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 845

the obstacle by alternating trace steps to move sideway (in the
outer loop) and approach steps to move towards the obstacle
(in the inner loop). Note that two global variables m and n are
incremented in this procedure. The algorithm terminates when
either an edge of fB is reached or some loops are formed, as
indicated by m � M or n � N (Algorithm 2).

Figure 17 uses an example to illustrate how ObstacleTrace
works. Figure 17a shows a contact state under a CF of a single
f-f PC. Figure 17b shows the top view of the face fB of object
B, in which object A is viewed as a disc. The shadow area
indicates the protrudent region of object B projected to fB ,
which causes collision with object A. The path 
 starts from
�u0� �0� along � to reach eB , the desired edge. The resulting
path as a curve on fB from ObstacleTrace is shown in thick
lines until another edge e
B is reached.

The procedure FindNewStart is called when the previous
starting configuration of A cannot result in a feasible motion
to reach eB , even although A’s orientation during the motion
may also be adjusted step by step by TryPossibleStepMo-
tions. The procedure FindNewStart finds a different starting
orientation of A compliant to C Fi and, if necessary, a different
starting point �u0� �0� of 
 . Given the previous starting point
�u0� �0� of 
 that A’s task frame origin oA contacts, A’s ori-
entation can be changed by pure rotations about an axis (or
axes) through �u0� �0� or slidingB in different directions and
different amount as long as there is no collision.

As there can be an infinite number of starting orientations,
FindNewStart systematically discretizes the possible direc-
tions (axes) and amounts of rotation so that the number of
starting orientations form a finite set. If an orientation change
by rotation or slidingB cannot be achieved at �u0� �0� due to
collision, a one-step slidingA motion (or a translation for a flat
fB) in the opposite direction of 
 , e.g. in the opposite direction
of u, is conducted before the orientation change.

If the orientation change still cannot be achieved, a one-step
slidingA motion sideways (i.e. along � if 
 starts by along u) is
conducted before the orientation change. This process of one-
step back slidingA or one-step sideways slidingA followed by
the orientation change is repeated until either (1) the orienta-
tion change is done or (2) a new collision is formed so that C Fi

cannot be maintained. If (2) occurs, it means that the intended
orientation change cannot happen. FindNewStart then pro-
ceeds to seek the next possible orientation change. Note that
each sliding (or translation) motion will move oA away from
�u0� �0�. In such a case, we either update A’s task frame and
make the point contacting �u0� �0� be the new origin oA (in the
case of slidingB) or update �u0� �0� (in the case of slidingA).

Alternatively, in order to apply to multiply-connected faces
directly, our algorithm can be modified in a similar way to
Bug algorithms (Lumelsky and Stepanov 1986� Kutulakos et
al. 1993). In general, the path 
 in our approach is similar to
the M-line in Bug algorithms. In the basic Bug algorithms, the
robot initially moves towards the goal until it encounters an
obstacle� it then follows obstacle boundary. It leaves the ob-

Fig. 17. Obstacle tracing example.

stacle boundary when some conditions are satisfied. In our ap-
proach, the TryPossibleStepMotions could be used to find the
hit point as in Bug algorithms. Our ObstacleTrace procedure
can be extended to include functionality of finding the leave
point as in the Bug algorithms.

4.6. Soundness and Completeness

We now analyze our algorithm for generating LN graphs in
terms of soundness and completeness. Recall that the algo-
rithm generates an LN graph in a breadth-first search fashion,
starting from a known seed contact state, and the generation of

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


846 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

each locally-defined (LN) contact state consists of hypothesis
and test steps.

The first procedure, i.e. hypothesizing LN CFs, does not
miss any topologically possible combinations of PCs in pro-
ducing hypothesized LN CFs, and each hypothesized LN CF
C Fj of a CF C Fi satisfies the requirements presented in The-
orem 3.2 and Definition 3.7 for LN CFs. This procedure is
therefore sound and complete.

We now examine the second procedure, i.e. checking if
there exists a feasible neighboring transition motion from
configuration Ci of a valid contact state � C Fi �Ci 	 to a
configuration C j under a hypothesized LN CF C Fj . Here dis-
cretization is involved in a number of ways. Recall that a pos-
sible neighboring transition motion is constructed step by step
as described in Section 4.3 to achieve compliant motion along
a curved surface and, in each step, collision (other than the
desired contact) is also checked.

In the cases where there are an infinite number of possi-
ble directions of one-step neighboring transition motions to
remove some PCs, the directions are discretized and the step
motion along each direction is checked until either a feasible
motion is found or no motion is feasible. In the cases where
the obstacle-tracing algorithm is used to find a feasible neigh-
boring transition motion, if there is a solution under the dis-
cretizations of FindNewStart and TryPossibleStepMotions,
the algorithm will find it� otherwise, it will report no solution.

We can show that there exists a finite threshold for the
step size of discretization under which the second procedure
is sound and complete. That is, it will find a feasible neigh-
boring transition motion if one exists and it will discover and
report correctly if no feasible motion exists. Let A and B be
the two objects in contact.

Recall that a neighboring transition motion is a curve � on
the C-obstacle surface (of the configuration of A with respect
to B) between two neighboring contact states � C Fi �Ci 	
and � C Fj �C j 	. � consists of a C Fi -compliant continu-
ous segment � i and a C Fj -compliant continuous segment � j

(Definitions 3.5 and 3.6). A feasible � is one such that both � i

and � j are free of collisions other than the contacts required
by C Fi and C Fj respectively, i.e. both � i and � j are feasible.

Theorem 4.1: If there exists a feasible neighboring transition
motion � between � C Fi �Ci 	 and � C Fj �C j 	, and if a
C Fi -compliant motion has more than 1 DOF, then there exists
at least a homotopy class of infinite number of C Fi -compliant
motions that � i of � belongs to, all leading to the feasible � j of
� . These homotopic C Fi -compliant curves form a continuous
hyper-region Si of a finite size in the patch of � C Fi �Ci 	 on
the C-obstacle (hyper)surface based on the Continuum Theory.

Proof: Suppose the theorem does not hold, then there is either
only one feasible C Fi -compliant motion � i , or at least another
feasible C Fi -compliant motion � 
i that is not homotopic to � i

but also meets � j at its starting point. This means that the re-

gion of� C Fi �Ci 	 on the C-obstacle surface is a hypercurve
(or a set of connected hypercurves), which has only 1 DOF
(or independent variable). That contradicts the given condition
that a C Fi -compliant motion has more than 1 DOF. �

Based on the above theorem, as long as the discretized step
size for each dimension is smaller than the size of Si along
that dimension, our procedure always finds a feasible � i if one
exists. If a C Fi -compliant motion has only 1 DOF, there is
only a finite set of possible feasible candidates. By checking
each candidate one by one, a feasible � i can always be found
if one exists. Thus, our procedure can find a feasible � i if one
exists and correctly report no feasible � i if it cannot find one.
We can prove a similar theorem for C Fj -compliant motion.

To determine the size of Si along each dimension, we find
the smallest non-zero range for each dimension by mating two
objects A and B in the most limiting way, which usually in-
volves contacting the most narrow concave region of one of
the objects. We then try to move A along that dimension to
find out the range of motion, which determines the smallest
non-zero size of Si along that dimension. This is practically
doable with an interactive system, such as the system moving
a virtual A via a haptic device to contact a virtual B (Chou and
Xiao 2005).

In summary, our algorithm for generating LN graphs is both
sound and complete under a finite step size. This can be found
rather easily based on the given geometry of the two objects
A and B, taking into account the tolerances between their ele-
ments when the two objects are in contact.

5. Implementation

We have implemented the general algorithm as described in
Section 4 for automatic generation of an LN graph from a
seed contact state between two basic curved objects A and B.
The algorithm is implemented in Microsoft Visual C++ 6.0.
We currently use the free OPCODE collision detection library
(Terdiman Terdiman) for detecting collisions other than the de-
sired contacts in feasibility checking of neighboring transition
motions. Note that all we need to know here is whether a colli-
sion happens beyond the desired contacts and is not how a col-
lision happens. Thus, a mesh-based detection package serves
the purpose well. Other polygonal mesh-based collision detec-
tion packages could be used too. On the other hand, it should
be emphasized that our approach generates exact contacts di-
rectly from contacting smooth surface features (represented
parametrically) without polygonal mesh approximation.

Figures 18–20 show three examples where our algorithm
has been applied. In Figure 18, objects are strictly curved ob-
jects without any planar region. In Figures 19 and 20, objects
include some curved surfaces and planar surfaces. For all three
examples, the step size for angular discretization is ��24. The
step size for non-angular discretization is usually 1�25 unit in

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 847

Fig. 18. Example 1.

the parametric domain and larger for contacts occurring on the
outer surface of B.

In Figure 18, object A has a surface consisting of two el-
liptic paraboloid faces: fA0 and fA1 which meet at edge eA0.
Object B includes three different faces: the upper part fB0 is an
elliptic paraboloid concave face, the middle one fB1 is a part of
a sphere and the lower part fB3 is an elliptic paraboloid face. It
also includes two planar circular edges eB0 and eB1. The para-
metric equations of the objects are in Appendix C.

In Figure 19, object A is a quarter of a solid ellipsoid. Its
surface consists of three different smooth surface patches: an
elliptic face fA0 and two planar faces fA1 and fA2. Its surface
also includes two curved edges eA0 and eA2, one straight line
edge eA1 and two vertices vA1 and vA2. Object B is a curved ob-
ject with three faces: the upper part fB0 is an elliptic paraboloid
concave face, the middle part fB1 is a cylinder and the lower
part fB2 is an elliptic paraboloid face. It also has two circular
edges eB0 and eB1. The corresponding parametric equations
are in Appendix C.

In Figure 20, object A is the first quadrant of a solid sphere
which includes one face fA0, three planar faces fA1, fA2 and
fA3, four vertices �A0, �A1, �A2 and �A3, three curved edges
eA3, eA4 and eA5 and three straight line edges eA0, eA1 and eA2.
Object B is a solid sphere with the first quadrant cut off. It

Fig. 19. Example 2.

includes one curved face fB0, three planar faces fB1, fB2 and
fB3, four vertices �B0, �B1, �B2 and �B3, three curved edges
eB3, eB4 and eB5 and three straight line edges eB0, eB1 and
eB2. The corresponding parametric equations can be found in
Appendix C.

In order to have a clear observation, the objects are dis-
played with transparency and edges are drawn in solid lines.
The seed contact states for the three examples are shown in
Figures 18b, 19b and 20b respectively, with the contact for-
mations labeled. In Figure 18b, the seed contact state shows a
case where two point contacts are between two different pairs
of surface elements. In Figure 18b, the seed contact state shows
a case where two point contacts are between the same pair
of surface elements. In Figure 19b, the seed contact state has
three plane contacts among three pairs of planar faces.

For Example 1 in Figure 18, our algorithm has generated a
LN graph of 18 valid nodes automatically from the seed con-
tact state C Ss , which is the complete contact state graph for
that example. Figure 21 displays some valid contact states gen-
erated. Figure 22 displays the entire contact state graph with 18
states. For Example 2 in Figure 23, our algorithm has gener-
ated a LN graph of 43 valid nodes including the seed from the

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


848 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

Fig. 20. Example 3.

seed contact state C Ss . This is the complete contact state graph
for Example 2. Figure 23 displays some valid contact states
generated for this example. For Example 3 in Figure 20, our
algorithm has generated its LN graph consisting of 156 valid
nodes (including the seed) automatically from C Ss . Figure 24
displays some valid contact states generated.

From these examples we can see that because a seed con-
tact state is chosen to maximize the number of PCs, if there is
one such contact state globally a complete contact state graph
can be generated from the seed. This is a very nice property
of an LN graph. If a complete contact state graph requires the
merging of two or more LN graphs, the minimum number of
necessary seed contact states (or LN graphs) is the number
of local maxima states, i.e. states that have the most number
of PCs compared to all neighboring states. A local maximum
state usually involves concave elements in contact.

The program was executed on a Pentium 4, 2.8 GHz ma-
chine with 1024 MB RAM. The running time for Example 1
(in Figures 18 and 21) is 27.364 s. The running time for Exam-
ple 2 (in Figures 19 and 23) is 21.484 s. The running time for
Example 3 (in Figures 20 and 24) is 42.007 s.

Fig. 21. Some contact states generated in Example 1.

6. Discussion of Complexity

The complexity of our algorithm for generating a LN graph
mainly depends on the total number of hypothesized nodes in
the LN graph the number of collision checks in constructing

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 849

Fig. 22. The contact state graph for Example 1.

neighboring transition motions, and the time for each collision
detection query.

Let NA and NB be the total number of surface elements
of two contacting curved objects A and B, respectively. For
a pair of elements �A and �B , there are up to three different
contact types (i.e. point, line and plane contacts). Thus, an up-
per bound on the total number of different single-PC CFs is
3NA NB . In a multi-PC CF, there could be the same PC for
multiple times, depending on the geometric characteristics of
the contacting elements of the PC related to convexity and con-
cavity. Therefore, the greatest upper bound on the total number
of hypothesized contact states with no more than three PCs is:

9NA NB �
�
� 3NA NB

2

�
��

�
� 3NA NB

3

�
�

which is of O�N 3
A N 3

B�. In practice, the actual number of
hypothesized contact states is much smaller, with topologi-
cally impossible cases eliminated according to Appendix A.
For the three examples presented in the previous section,
the actual numbers of hypothesized contact states are 57,
212 and 3163 respectively. These numbers are 5.3%, 2.9%
and 0.0093% of the greatest upper bounds respectively. Note
also that, as shown in the previous section, the actual num-
ber of valid contact states generated for these examples are

18, 43 and 156 respectively, which represent 31%, 20% and
5% of hypothesized states, respectively. The more combina-
tions of PCs, the more drastic is the reduction of numbers in
percentage.

Note also that for m 	 3, an m-PC CF is likely to con-
tain redundancy in contact constraints because an object can
usually be immobilized by three contact points. Therefore, an
LN CF of a m-PC CF (m 	 3) is usually a two-PC CF or a
single-PC CF.

7. Conclusions

We have presented a general and concise representation of
contact states between two basic curved objects and provided
a systematic approach for automatic generation of such con-
tact state space as contact state graphs. The approach is sound
and complete if the step size of discretization is smaller than
a finite threshold. By exploiting topological and geometrical
constraints, it is also quite efficient.

Automatic generation of contact state graphs between
curved objects is not only highly desirable (because it is te-
dious to generate such states manually), but also necessary
since many contact states cannot be accurately visualized eas-
ily. Unlike contact states between polyhedral objects, it is often

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


850 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

Fig. 23. Some contact states generated in Example 2.

much less obvious to human eyes whether a contact state is ac-
tually possible or not between two curved objects. On the other
hand, there are more curved objects than polyhedral objects in
the real world.

Fig. 24. Some contact states generated in Example 3.

As a future step, our work can be extended to address con-
tact states between an even broader class of curved objects,
including those with space curves (edges).

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 851

Acknowledgements

This work is supported by the US National Science Foundation
under grant No. IIS-#0328782.

Appendix A: Ruling Out Topologically
Impossible Principal Contacts

Given a pair of surface elements only certain types of principal
contacts (PCs) are possible and, in some cases, no PC is possi-
ble – all depending on the topological properties of the surface
elements.

Based on different properties, we can differentiate surface
elements into different types. First, we say that a curved face is
convex if all its outward normals point away from each other,
concave if all its outward normals point toward each other or
is convex-concave if it contains both convex and concave seg-
ments. We say that two faces of an edge form a valley if the
edge’s neighboring points on the faces have normals pointing
toward each other� otherwise, they form a hump.

We further define the different types of vertices and edges:

� convex edge: an edge that is a convex curve or a line
segment and whose faces form a hump�

� convex vertex: a vertex such that every pair of adjacent
faces form a hump, or it is a singular point on a convex
(part of a) face�

� concave edge: an edge that is a concave curve or a line
segment and whose faces form a valley�

� concave vertex: a vertex such that every pair of adjacent
faces form a valley, or it is a singular point on a concave
(part of a) face�

� convex-edge in valley: an edge that is a convex curve and
whose faces form a valley�

� concave-edge on hump: an edge that is a concave curve
and its faces form a hump� and

� convex-concave vertex: a vertex with both valleys and
humps formed between its adjacent faces.

Figure 25 shows some examples of different kinds of faces,
vertices and edges.

We now can use simple rules to eliminate topologically im-
possible PCs:

� no PC with a vertex can be a line or plane contact�

� no PC with two planar faces can be a point contact�

� no PC with a straight-line edge and a planar face can be
a point or plane contact�

Fig. 25. Different types of vertices and edges.

� no PC with two edges can be a plane contact�

� no PC with a curved edge can be a line contact�

� no PC with a non-ruled face can be a line contact�

� no PC can be formed between two concave surface ele-
ments�

� no PC can be formed between a convex-in-valley edge
or concave edge and a face�

� no PC can be formed between a concave vertex and a
face or an edge�

� no PC can be formed between a concave-on-hump edge
and a concave face/edge� and

� no PC can be formed between a concave face and a pla-
nar face or a straight-line edge.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


852 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

Appendix B: Possible Compliant Motions to
Maintain a Principal Contact

The types of possible compliant motions to keep or maintain a

principal contact PCi � �i
A

���i
B depends on the contact type

� and the types of the boundary elements of �i
A and �i

B , as
follows.

� To keep a v-v point PC, the only possible motion is a
pure rotation.

� To keep a v-e/v-f point PC, if �i
B is a curved edge or non-

ruled surface, the possible motions are pure rotation,
slidingA motion, or combined slidingA and rotation.
If �i

B is a straight-line edge or a ruled surface, additional
possible motions are pure translation and combined
rotation and translation.

� To keep a e-v/f-v point PC, the possible motions are sim-
ilar to the case of a v-e/v-f PC but the edge/face in this
case is �i

A, and slidingA above becomes slidingB.

� To keep an e-f point PC, if the edge e is curved and
the face f is a non-ruled surface, the possible motions
are pure rotation (about the tangent line of the edge
or about the normal line at the contact point), slidingA,
slidingB along the edge (i.e. one-dimensional), com-
bined slidingA and slidingB, and combined sliding
and rotation motions� if the edge e is a straight line edge
or the face f is a ruled surface, then additional possible
motions are pure translation and combined transla-
tion and rotation.

� To keep a f-e point PC, the possible motions are similar
to the above for case e-f, except that slidingA is along
the edge.

� To keep a f-f point PC where no face is a ruled sur-
face, the possible motions are pure rotation about the
contact normal, slidingA, slidingB, combined slidingA
and slidingB, and combined sliding and rotation mo-
tions.

� To keep a f-f point PC where at least one face is a ruled
surface but no face is planar, the possible motions are
pure rotation about the contact normal, pure transla-
tion, slidingA, slidingB, combined slidingA and slid-
ingB, combined sliding and rotation, and combined
translation and rotation motions.

� To keep a f-f point PC where one face is a planar, the
possible motions are pure rotation about the contact
normal, pure translation, slidingA if �i

A is the planar
face, else slidingB, combined translation and rotation
and combined sliding and rotation.

� To keep an e-e-touch point PC where both edges are
curved, the possible motions pure rotation about the
tangent line, slidingA along the edge of B, slidingB
along the edge of A, combined slidingA and slidingB,
and combined sliding and rotation.

� To keep an e-e-touch point PC where one edge is curved
and the other is a straight line edge, the possible mo-
tions are pure rotation about the straight line edge,
pure translation along the straight line edge, combined
translation and rotation, slidingA if the edge of B is
curved, else slidingB and combined sliding and rota-
tion.

� To keep an e-e-touch point PC where both edges are
straight line edges, the possible motions are pure ro-
tation about the straight line(s), pure translation along
the straight line(s) and combined translation and rota-
tion.

� To keep an e-e-cross point PC where both edges are
curved, in addition to the motions possible for an e-e-
touch point PC where both edges are curved, pure rota-
tion about the contact normal is also possible.

� To keep an e-e-cross point PC where one edge is curved
and the other is a straight line edge, in addition to the
motions possible for an e-e-touch point PC where one
edge is curved and the other is a straight line edge, pure
rotation about the contact normal and a combined trans-
lation, rotation and sliding motion are possible.

� To keep an e-e-cross point PC where both edges are
straight line edges, the possible motions are pure ro-
tation about the straight line(s) or about the contact nor-
mal, pure translation and combined translation and
rotation.

� To keep an e-f/f-e line PC where the edge e is straight
line and the face f is planar, the possible motions are
pure rotation (about the edge or about a contact nor-
mal), pure translation and combined translation and
rotation.

� To keep an e-f/f-e line PC where the edge e is straight
line and the face f is a ruled surface, the possible mo-
tions are pure rotation about the edge, pure transla-
tion along the edge, combined translation and rota-
tion, slidingA if �i

A is the edge e else slidingB and com-
bined sliding and rotation motions.

� To keep an f-f plane contact, the possible motions are
pure rotation, pure translation and combined trans-
lation and rotation motions.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Tang and Xiao / Automatic Generation of High-level Contact State Space between 3D Curved Objects 853

Appendix C: Parametric Equations of Example
Objects

Object A (Example 1, Figure 18)

fA0 : x � 1�5� cos u� y � 1�5� sin u� z � 2� 2�2�

fA1 : x � 1�5� cos u� y � 1�5� sin u� z � 2�2 � 2

where u � [0� 2� ]� � � [0� 1]�

Object B (Example 1, Figure 18)

fB0 : x � 3�1734� cos u� y � 3�1734� sin u�

z � 4�
2 � 1�56495

where u � [0� 2� ]� � � [0� 1]�

fB1 : x � 4 cos u sin �� y � 4 sin u sin �� z � 4 cos v

where u � [0� 2� ]� � �
�

7

24
��

1

2
�

�
�

fB2 : x � 4� cos u� y � 4� sin u� z � 4�2 � 4

where u � [0� 2� ]� � � [0� 1]�

Object A (Example 2, Figure 19)

f A0 : x � 2 cos u sin �� y � 2 sin u sin �� z � 2�5 cos �

where u �
�
0�
�

2

�
� � � [0� �]�

fA1 : x � � sin u� y � 0� z � 1�25� cos u

where u � [0� �]� � � [0� 2]�

f A2 : x � 0� y � � cos u� z � 1�25� sin u

where u �
�
��

2
�
�

2

�
� � � [0� 2]�

Object B (Example 2, Figure 19)

fB0 : x � 3� cos u� y � 3� sin u� z � 3�2 � 2

where u � [0� 2� ]� � � [0� 1]�

fB1 : x � 3 cos u� y � 3 sin u� z � �
where u � [0� 2� ]� � � [0� 5]�

fB2 : x � 3� cos u� y � 3� sin u� z � �3�2

where u � [0� 2� ]� � � [0� 1]�

Object A (Example 3, Figure 20)

f A0 : x � 2 cos u sin �� y � 2 sin u sin �� z � 2 cos �

where u �
�
0�
�

2

�
� � �

�
0�
�

2

�
and

fA1 : x � � cos u� y � 0� z � � sin u�

fA2 : x � 0� y � � cos u� z � � sin u�

fA3 : x � � cos u� y � � sin u� z � 0

where u �
�
0�
�

2

�
� � � [0� 2]�

Object B (Example 3, Figure 20)

Upper fB0 : x � 3 cos u sin �� y � 3 sin u sin ��

z � 3 cos �

where u �
�

0�
3�

2

�
� � �

�
0�
�

2

�
�

Lower fB0 : x � 3 cos u sin �� y � 3 sin u sin ��

z � �3 cos �

where u � [0� 2�]� � �
�
0�
�

2

�
�

fB1 : x � � cos u� y � 0� z � � sin u�

fB2 : x � 0� y � �� cos u� z � � sin u�

fB3 : x � � cos u� y � �� sin u� z � 0

where u �
�
0�
�

2

�
� � � [0� 3]�

References

Avnaim, F., Boissonnat, J. D., and Faverjon, B. (1988). A prac-
tical exact motion planning algorithm for polygonal objects
amidst polygonal obstacles. In Proceedings of IEEE Inter-
national Conference on Robotics & Automation, pp. 1656–
1661.

Brost, R. (1989). Computing metric and topological properties
of configuration-space obstacles. In Proceedings of IEEE
International Conference on Robotics & Automation, pp.
170–176.

Canny, J. (1988). The Complexity of Robot Motion Planning.
MIT Press, Cambridge, MA.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


854 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

Chou, W. and Xiao, J. (2005). An interactive approach to de-
termining complex contact states. In Proceedings of 2005
IEEE Symposium on Assembly & Task Planning, pp. 106–
111.

Donald, B. (1985). On motion planning with six de-
grees of freedoms: Solving the intersection problems in
configuration space. In Proceedings of IEEE International
Conference on Robotics & Automation, pp. 536–541.

Edelsbrunner, H. and Mucke, E. (1990). Simulation of simplic-
ity: A technique to cope with degenerate cases in geomet-
ric algorithms. ACM Transactions on Graphics, 9(1): 66–
104.

Hirukawa, H., Paperguy, Y., and Mastui, T. (1994). A motion
planning algorithm for convex polyhedra in contact under
translation and rotation. In Proceedings of IEEE Interna-
tional Conference on Robotics & Automation, pp. 3020–
3027.

Ji, X. and Xiao, J. (2001). Planning motion compliant to com-
plex contact states. International Journal of Robotics Re-
search, 20(6): 446–465.

Joskowicz, L. and Taylor, R. H. (1996). Interference-free in-
sertion of a solid body into a cavity: An algorithm and a
medical application. International Journal of Robotics Re-
search, 15(3): 211–229.

Kutulakos, K. N., Lumelsky, V. J., and Dyer, C. R. (1993).
Vision-guided exploration: A step toward general motion
planning in three dimensions. In Proceedings of IEEE In-
ternational Conference on Robotics and Automation, pp.
289–296.

Lefebvre, T. (2003). Contact Modeling, Parameter Iden-
tification and Task Planning for Autonomous Compli-
ant Motion using Elementary Contacts. Ph. D. thesis,
Katholieke Universiteit Leuven, Leuven, Belgium.

Lefebvre, T., Xiao, J., Bruyninckx, H., and Gersem, G. D.
(2005). Active compliant motion: A survey. Advanced Ro-
botics, 19(5): 479–500.

Lozano-Pérez, T. (1983). Spatial planning: A configuration
space approach. IEEE Transactions on Computing, 32(2):
108–120.

Lumelsky, V. J. and Stepanov, A. A. (1986). Dynamic path
planning for a mobile automaton with limited information
on the environment. IEEE Transactions on Automatic Con-
trol, 31(11): 1058–1063.

Luo, Q., Staffetti, E., and Xiao, J. (2004). Representation of
contact states between free-form objects. pp. 3589–3595.

Luo, Q. and Xiao, J. (2004). Physically accurate haptic ren-
dering with dynamic effects. IEEE Computer Graphics and
Applications (Special Issue: Touch-Enabled Interfaces), 24:
60–69.

McCarragher, B. J. (1996). Task primitives for the discrete
event modeling and control of 6-DOF assembly tasks. IEEE
Transactions on Robotics and Automation, 12(2): 280–289.

Meeussen, W., De Schutter, J., Bruyninckx, H., Xiao, J., and
Staffetti, E. (2005). Integration of planning and execution
in force controlled compliant motion. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 1217–1222.

Mortenson, M. E. (1985). Geometric Modeling. John Wiley &
Sons Inc, New York, NY.

Pan, F. and Schimmels, J. M. (2003). Efficient contact state
graph generation for assembly applications. In Proceedings
of IEEE International Conference on Robotics & Automa-
tion, pp. 2591–2598.

Rosell, J., Basañez, L., and Suárez, R. (1997). Determining
compliant motions for planar assembly tasks in the pres-
ence of friction. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots & Systems, pp. 946–951.

Ruspini, D. and Khatib, O. (1999). Collision/contact models
for dynamic simulation and haptic interaction. In Proceed-
ings of 9th International Symposium on Robotics Research,
pp. 185–194.

Sacks, E. and Bajaj, C. (1998). Sliced configuration spaces for
curved planar bodies. International Journal of Robotics Re-
search, 17(6): 639–651.

Stroud, I. (1990). Modeling with degenerate objects.
Computer-Aided Design, 22(6): 344–351.

Sturges, R. H. and Laowattana, S. (1995). Fine motion plan-
ning through constraint network analysis. In Proceedings of
International Conference on Assembly and Task Planning,
pp. 160–170.

Tang, P. and Xiao, J. (2006a). Automatic generation of contact
state graphs based on curvature monotonic segmentation. In
Proceedings of IEEE International Conference on Robotics
& Automation, pp. 2633–2640.

Tang, P. and Xiao, J. (2006b). Generation of point-contact state
space between strictly curved objects. In Proceedings of
Robotics: Science and Systems Conference, pp. 31–38.

Terdiman, P. http://www.codercorner.com/opcode.htm.
Thompson II, T. V. and Cohen, E. (1999). Direct haptic render-

ing of complex trimmed nurbs models. ASME Haptic Inter-
faces for Virtual Environment and Teleoperator Systems.

Xiao, J. (1993). Automatic determination of topological con-
tacts in the presence of sensing uncertainties. In Proceed-
ings of IEEE International Conference on Robotics & Au-
tomation, pp. 65–70.

Xiao, J. and Ji, X. (2001). On automatic generation of high-
level contact state space. International Journal of Robotics
Research, 20(7): 584–606.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com

