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Abstract

A divide-and-merge approach is introduced for automatic genera-
tion of high-level, discrete contact state space, represented as con-
tact state graphs, between two contacting polyhedral solids from
their geometric models. Based on the fact that a contact state graph
is the union of the subgraphs called a goal-contact relaxation (GCR)
graph, the approach consists of algorithms (1) to generate a complete
GCR graph automatically given the most constrained contact state
in the GCR graph and (2) to merge GCR graphs automatically. The
algorithms are implemented for cases in which the most constrained
contact state in a GCR graph consists of up to three principal con-
tacts. The ability to capture and represent contact state information
effectively and efficiently is essential for robotic operations involving
compliant motions, for simulation of contact motions, and for haptic
interactions.

KEY WORDS—contact state graphs, contact formations,
polyhedral solids, goal-contact relaxation graphs, robotic
assembly

1. Introduction

The work in this paper is motivated by two related goals:
one is to enable a computer to capture and represent high-
level contact state information effectively and efficiently, and
the other is to facilitate automatic planning and control of
compliant motions.

A high-level contact state as opposed to a low-level con-
tact configuration captures the topological and physical char-
acteristics of contact often common to two or more contact
configurations. For instance, the contact state of “a coffee
mug sitting on a table” means the bottom surface of the
mug contacting the top surface of the table, which is usu-
ally shared by infinitely many mug configurations relative to
the table, and within these configurations, contact motions do
not change degrees of freedom. A graph of such discrete,
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high-level contact states, where an arc links adjacent contact
states, is often needed in many tasks that require informa-
tion about contact geometry, including automatic assembly
or fine-motion planning (Buckley 1989; Dakin and Popple-
stone 1992; Desai 1989; Xiao and Volz 1989; McCarragher
1996; Sturges and Laowattana 1995; Kang et al. 1997), virtual
prototyping, haptic interactions, and so on. Such a contact
state graph is crucial for stratification of compliant control
strategies (De Schutter et al. 1999; Bruyninckx and Schut-
ter 1998; Shekhar and Khatib 1987) and for simulation of
collision responses and contact motions. However, the in-
formation is usually fed manually into the system as input
(i.e., contact states and the relations among contact states are
enumerated and presented to the system manually). This is te-
dious for even tasks of simple geometry (Sturges and Laowat-
tana 1995) and is practically infeasible for complex tasks due
to the huge number of different contact states. Therefore,
automatic generation of contact state graphs is necessary. Al-
though it is relatively straightforward to generate such graphs
automatically for convex polyhedra (Hirukawa, Papegay, and
Matsui 1994), the problem remains open for nonconvex
objects.

Many robotic tasks involve contact motions. Researchers
have long discovered that by taking advantage of contact con-
straints through compliance, uncertainties of motion can be
reduced along with reduced degrees of freedom (Inoue 1974;
Lozano-Pérez, Mason, and Taylor 1984; Mason 1982; Whit-
ney 1985). Itis clearly desirable to be able to plan and control
contact motions automatically.

From a classic motion-planning point of view, planning
contact motions means planning motions on the surface of
configuration space obstacles (C-obstacles) (Lozano-Pérez
1983). The key is to know the C-obstacles. However, com-
puting C-obstacles exactly in high-dimensional configuration
space remains a formidable problem. Most of the work in
the literature is limited to three-dimensional C-obstacles (i.e.,
C-obstacles of two-dimensional objects) (Avnaim, Boisson-
nat, and Faverjon 1988; Brost 1989; Rosell, Basafiez, and
Suarez 1997; Sacks and Bajaj 1998), and only a few studies
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concern the approximation of C-obstacles of three-
dimensional polyhedra (Donald 1985; Joskowicz and Taylor
1996). On the other hand, contact motions, unlike collision-
free motions, require exact knowledge of contact configu-
rations. Hence, a recent trend is to explore contact motion
planning without explicitly computing C-obstacles (Hirukawa
1996).

We reckon that the goals of acquiring high-level contact
state information and of planning general contact motion ef-
fectively and efficiently can be best achieved by tackling the
following two related problems (of two levels):

1. Automatic generation of a high-level contact state graph.

One of the many uses of such a contact state graph (as intro-
duced earlier) is to allow easy generation of a high-level plan
for contact motion as a sequence of contact state transitions
through graph search.

2. Planning contact motions between two known adjacent
contact states.

This problem can be further decomposed into (a) planning
an instantaneous contact transition (between the two adjacent
contact states) and (b) planning contact motions within the
same known contact state, which is a motion-planning prob-
lem of lower dimension and smaller scope.

We focus on the first problem and present a novel approach
toward automatically generating discrete contact state graphs
for general polyhedral objects. Our approach is character-
ized by directly exploiting both topological and geometrical
knowledge of contacts in the physical space of objects and by
dividing the problem into simpler subproblems of generating
and merging special subgraphs.

The paper is outlined below. In Section 2, we review the
notion of contact formation (CF) in terms of principal contacts
(PCs) (Xiao 1993) to characterize contact states, and we de-
fine contact states as CF-connected regions of contact config-
urations. We also examine the neighboring relations between
contact states and characterize the contact state space as a con-
tact state graph. In Section 3, we describe our approach for
automatic generation of the so-called goal-contact relaxation
(GCR) graphs (Xiao 1997), which are subgraphs of a contact
state graph, and automatic merge of the GCR graphs to form
a contact state graph between arbitrary polyhedra. In Sec-
tion 4, we describe and discuss the implemented algorithms,
their scopes of application, and some implementation results,
and refer to the multimedia extensions for more implementa-
tion material, including sample data, codes, and displays. We
summarize the work and discuss further research to conclude
the paper in Section 5.

2. Contact State Space

One important question is how and at what level of abstraction
a contact state should be defined and described. Topological
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representation is most commonly used. Usually, certain types
of topological contact primitives are defined in terms of con-
tacting topological surface elements, and a contact state is
characterized in terms of the topological contact primitives
formed. In this section, we first review PCs, which are higher
level topological contact primitives compared to other com-
monly used contact primitives, and explain why we use such
primitives to describe a topological contact state. We then
give the geometrical interpretations of the topological contact
primitives, discuss connectivity, and define contact states.

2.1. Topological Contact Primitives

Three types of topological contact primitives have been used
most often in the literature. One representation is the point-
contact notion for polyhedra introduced by Lozano-Pérez
(1983) and Donald (1985) in their attempt to construct C-
obstacles. Here, for two polyhedra A and B in contact, contact
primitives are defined as point contacts of the following types:
for two-dimensional polygons, type A (Edge4-Vertexp) and
type B (Vertex 4-Edgepg); and for three-dimensional polyhe-
dra, type A (Face4-Vertexp), type B (Vertex4-Facep), and
type C (Edge 4-Edgep, which are not collinear).

Another representation was introduced in Desai et al.
(1988) and Desai (1989), which used a single contact between
a pair of topological surface elements (i.e., faces, edges, and
vertices) of two polyhedra as primitives (known as elemental
contacts [ECs]).

The notion of PCs (Xiao 1993) are higher level primitives
compared to both the point-contact primitives and the ECs.
Denoting the boundary elements of a face as the edges and
vertices bounding the face, and the boundary elements of an
edge as the vertices bounding the edge, a PC can be defined
topologically as follows.

DEFINITION 1. A PC denotes the contact between a pair of
surface elements (i.e., faces, edges, or vertices) that are not
the boundary elements of other contacting surface elements
(if there is more than one pair in contact).

There are 10 types of PCs as shown in Figure 1. Each
nondegenerate PC is associated with a contact plane, defined
by a contacting face or the two contacting edges in an e-e-
cross PC. Each degenerate PC is characterized as between
two convex edge or vertex elements and not being associated
with a contact plane. Such PCs hardly occur in practice.
Note that except for the v-v type, every other degenerate PC
is associated with a contact line, defined by a contacting edge.
The normal of a contact line can be specified as the one along
the direction of the sum of the outward normals of the faces
forming the contacting edge.

A PC between a convex edge/vertex and a concave
edge/vertex is regarded not as a single PC but as a contact
state consisting of nondegenerate PCs, taking into account
the roundness of edges/vertices and the small deformation
due to contact in reality, as shown in Figure 2.
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Fig. 1. Principal contacts: face-face (f-f), face-edge/edge-face (f-e/e-f), face-vertex/vertex-face (f-v/v-f), edge-edge-cross
(e-e-c), edge-vertex/vertex-edge (e-v/v-e), vertex-vertex (v-v), edge-edge-touch (e-e-t).

two e-f PCs two v-f PCs

two e-e-cross PCs three v-f PCs

Fig. 2. Contact cases described in terms of nondegenerate principal contacts (PCs).

That PCs are higher level primitives compared to both the
point-contact primitives and the ECs is most evident from the
fact that every contact between two convex polyhedra forms a
single PC, but not so for either the point-contact primitives or
the ECs. This leads to important advantages in characterizing
contact states by PCs:

* PCs lead to the more concise description and smallest
number of topological contact states. A contact be-
tween two convex polyhedra forms a single PC; on the
other hand, if more than one PC is formed in a con-
tact, there must be at least one nonconvex object in
the contact. Using PCs as contact primitives simplifies
geometric reasoning of contact constraints (Xiao and
Zhang 1997).

» PCs are sufficient to capture precisely the reduced de-
grees of freedom as the result of contact, which is es-
sential for implementing compliant motions.

* PCs as higher level contact primitives enable more
robust recognition in the presence of sensing uncer-
tainties. For a nondegenerate PC (Fig. 1), one good
property is that its change to another nondegenerate PC
is often coincident with the discontinuity of the gen-
eral contact force (i.e., force and torque), which means
that the change can be captured by force/torque sensing
rather robustly in spite of sensing uncertainty.

2.2. Topological CFs

DEFINITION 2. A topological CF between two contacting
polyhedra is defined as the set of PCs formed.

Based on the types of PCs in a CF, which characterize
the extent of contact constraints, we can classify CFs into
different types.

DEFINITION 3. Two CFs are of the same type if they consist
of the same number of the same types of PCs.

For example, given objects A and B, if C F consists of one
f-f PC and one e-f PC between A and B, and C F> consists
of a different f-f PC and a different e-f PC between A and B,
then the two CFs are different CFs but they are of the same
type.

Because a PC between two objects A and B describes cer-
tain contact characteristics satisfied by one or more relative
contact configurations of A to B, which we simply call contact
configurations, we can define the geometrical representation
of a PC as the following:

DEFINITION 4. The geometrical representation of a PC,
Geopc, denotes the set of contact configurations that sat-
isfy the contact condition described by the PC’s topological
definition.

Subsequently, the geometrical representation of a CF can
be defined as the following:

DEFINITION 5. The geometrical representation of a CF,
GeocF, denotes the set of contact configurations that satisfy
every contact condition represented by every PC in the CF.

From the above definitions, we can obtain the following
corollary.

COROLLARY 1. Geocr is the intersection of the geometrical
representations of the PCs in the topological CF.

It is obvious that the geometrical representations of all the
CFs between two objects partition the contact configuration
space (of one object with respect to the other).
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2.3. Contact States and Connectivity

Based on the proof by Hopcroft and Wilfong (1986), if there is
a way to move two objects from one contact configuration to
another, then there is a way to do so with the objects remaining
in contact throughout the motion. With this in mind, we now
discuss the connectivity of CFs.

Within a CF, the connectivity question is whether the
Geoc r forms a single connected region or multiple connected
regions of configurations. In many cases, Geocr is a single
connected region of configurations, and thus the CF uniquely
determines a contact state. However, there are also many
cases in which Geoc r consists of multiple connected regions
of configurations. That is, from a contact configuration in one
connected region of Geocr, there is no path consisting of
only configurations satisfying the CF, or CF-compliant path,
leading to a contact configuration in another connected region
of Geocr. In such a case, each connected region of Geocr,
called a CF-connected region, is considered a separate contact
state. More formally:

DEFINITION 6. A CF between two objects, C F, and a con-
tact configuration C in a C F-connected region (in Geocr),
denoted as a pair <CF, C>, characterize the C F-connected
region and define a contact state between the objects.

With the above definition, <CFy, C;> and <CFy, C;>
denote two different C Fi-connected regions.

We now consider connectivity between contact states of
different CFs, <CF;, C;> and <CFj, Cj>.

DEFINITION 7.  If from a contact configurationin <C F;, C; >
to a contact configuration in <CF;, C;> there exists a path
consisting of only a segment of contact configurations in
<CF;, Ci> succeeded by a segment of contact configura-
tions in <CFj, Cj>, then <CF;, C;> and <CF;, C;> are
generally defined neighboring contact states and C F; and C F;
are generally defined neighboring CFs.

Because CFs characterize discrete contact states topolog-
ically, we can map the above configuration-based definition
of neighboring CFs to a topological description in terms of
how PCs (or the topological surface elements of the PCs) are
related. We first define a containment relation between PCs.

DEFINITION 8. Let PC; = (a*-bB)and PC; = (c*-d®) be
two PCs between two polyhedra A and B. PC; contains PC;
if and only if one of the following cases holds:

1. ¢ is on the boundary of a*, and d® is on the boundary
of bB.

2. ¢* is on the boundary of a*, and d? is b5.

3. ¢ isa?, and d® is on the boundary of b5.

With the above definition, we can define a containment rela-
tion between CFs.

Xiao and Ji / Generation of Contact State Space 587

DEFINITION 9. For two CFs, CF; and CF;, such that CF; #
CF;, CF; contains CF; if and only if

* card(CF;) > card(CFy), where card(x) returns the
cardinality.

* For every PC in CF}, either it also belongs to C F; or
it is contained by a unique PC in C F;, and no two PCs
in CF; are contained by the same PC in CF;.

Clearly, the following corollary holds.

COROLLARY 2. Fortwo CFs, CF;and CF;,if CF; C CFj,
then C F; contains C F;.

Now, we can describe neighboring relations between PCs
and between CFs in terms of the corresponding containment
relations.

THEOREM 1. Ifasingle-PC CF { PC;} is a generally defined
neighboring CF of another single-PC CF { PC} }, then one of
the PCs must contain the other. If PC; contains PC;, then
PC;j is called a less-constrained neighbor (LCN) of PC;, and
PC; is called a more-constrained neighbor of PC;.

Proof. Let A and B be the objects in contact. Assume that
there is no containment relation between { PC; } and { PC} },
which are two single-PC CFs between A and B. Then, the
two contacting surface elements of either object (A or B)
with respect to the two PCs are neither the same nor adjacent.
This implies that to change one surface element to the other,
the relative contact motion will have to result in a different
contacting surface element, which means a different PC, en
route; that is, {PC;} and {PC;} are not neighbors. The
theorem is proven by refutation.

Note that a PC of the v-v type (Fig. 1) (which is degenerate)
does not contain any other PC, and thus it is a least constrained
PC.

THEOREM 2. If two CFs, CF; and CF; (CF; # CFj), are
generally defined neighboring CFs, then one of them must
contain the other. If C F; contains C F;, then CF; is called an
LCN of CF;, and CF; is called a more-constrained neighbor
of CFj .

Proof. The proof is similar to the proof of Theorem 1, based
on the general definitions of neighboring CFs and that of the
CF containment.

Note that if a CF consists of a single v-v type of PC, then
it does not contain any other CF and is a least constrained CF.
Figure 3 shows examples of neighboring PCs and neighboring
CFs.

For better stratification, we further narrow our definition
of neighboring CFs by limiting the containment relations they
can have.

1. Based on Definition 2, the cardinality here gives the number of PCs in a
CF.
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PC, = £-f PC,=e-f

CF, = {f-f, f-f} CF, = {f-e, e-f}

Fig. 3. Examples of neighboring principal contacts (PCs) and contact formations (CFs).

DEFINITION 10. CF; is a specially defined neighboring CF
of CF; if and only if there is a containment relation between
C F; and C F;, and every containment between two PCs of C F;
and CF; satisfies either condition 2 or condition 3 of Defini-
tion 8 but not condition 1. Consequently, two generally de-
fined neighboring contact states <C F;, Cy> and <CFj, C,>
are now also specially defined neighboring contact states and
are simply called neighboring contact states.

Based on the proof by Hopcroft and Wilfong (1986) (ex-
plained at the beginning of this subsection) and the above
definitions, we can now define the entire contact state space.

DEFINITION 11. The contact state space between two poly-
hedra is a simple, connected graph § that consists of all the
distinct contact states as nodes and arcs connecting every pair
of neighboring contact states.

3. Generation of Contact State Graphs

Given two (or more) objects in contact, to construct the con-
tact state graph § automatically requires the handling of two
issues: (1) how to generate valid CFs, or how to tell whether
a set of PCs forms a geometrically valid CF, and (2) how to
find CF-connected regions (i.e., contact states) and the neigh-
boring relations between them. Both are difficult issues in
general® if considered in isolation. Our work exploits their
connections and handles the two issues simultaneously, as
detailed in the following subsections.

3.1. Divide-and-Merge Approach

Our approach is to divide § into certain subgraphs, automat-
ically generate the subgraphs, and merge the results.

The kind of subgraph we generate consists of a contact state
of a seed CF, C Fy, and those of all the less-constrained CFs,
which we call a GCR graph of CF, (Xiao 1997). Starting
from such a goal contact state, <C Fg, C,>, the GCR graph
can be grown by repeatedly “relaxing” contact constraints to
obtain contact states of LCN CFs. The process terminates

2. Only in the case of two convex objects are the issues trivial: every valid
CF consists of a single PC, and every possible PC is a valid CF. In addition,
Geoc for each CF is a single CF-connected region.

when there is no new contact state to be added to the graph.
Clearly, such a process will always terminate. As for the goal
CFs, they are the locally most constrained CFs, many of which
indicate goal or intermediate goal CFs of an assembly. Given
the goal contact states, § can be obtained either partially or
completely by merging the corresponding GCR graphs.

We prefer to form § from GCR graphs because a GCR
graph is much easier to generate automatically than an arbi-
trary subgraph of §, taking advantage of the following two
facts:

1. All CFs in the GCR graph of C F,; can be hypothesized
topologically from the topological expression of C Fy.

2. The transition motion from a CF to an LCN is often
simpler than that to a more-constrained neighboring
CF, and in many cases the motion can be infinitesimal
(see Section 3.3).

Our algorithm for constructing a GCR graph is outlined
below.

Algorithm GCR-Gen:
Add <CF,, Cy> to an empty FIFO queue open;

WHILE open is not empty DO
BEGIN

¢ <CF,, C.> < contact state removed from
open,

* hypothesize LCN CFs of CF, (Section
3.2);

e find feasible LCN contact states to
<CF,, C.> from hypothesized LCN CFs
(Sections 3.3 and 3.4);

* link each feasible LCN contact state found
to <CF,, C.>, and if it is already in the
(partially generated) GCR (i.e., it was gen-
erated previously), merge the two copies of
the same contact state to one, else, add the
new LCN contact state to open.

END
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Figure 4 shows the process to construct a GCR graph. From
the seed node, the construction proceeds from top to bottom,
connecting feasible nodes and discarding infeasible ones.

As an example, Figure 5 shows a GCR graph of a two-
dimensional peg-in-hole assembly where the contact state
with an asterisk is the seed node. Note that the clearance
between the peg and the hole was greatly exaggerated so that
different contact states can be seen clearly.

Once the GCR graphs are generated, we use a simple al-
gorithm to automatically merge GCR graphs into a single
contact state graph. In the following subsections, we provide
step-by-step descriptions of the divide-and-merge approach.

yooox
OO
cna» O

¥ 8
OO

Fig. 4. Construction of a goal-contact relaxation graph.

_ Goul Contact flelaxason(COR) graph for enhs ||

\ g

Fig. 5. A goal-contact relaxation graph of a two-dimensional
peg-in-hole assembly where the node with an asterisk is the
seed node.
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3.2. Hypothesizing LCNs

Givenavalid CF={PC; };7:1, where n > 1, its possible LCN
CFs can be hypothesized by applying one of the following
actions to each PC; of the CF according to Definitions 8-10
(Section 2.3):

remove PC;
change P C; to a PC it contains (i.e., an LCN PC)
keep PC;,

provided that remove or keep is not applied to all PCs in the
CF simultaneously to result in an empty set or the CF itself.
This implies that for a single-PC CF, only change can be
applied. Let A = {remove, change, keep}. A set of actions
that can be applied to an n-PC CF to hypothesize LCNs of the
CF can be expressed as «,, = {xj|x; € A,i =1, ...,n,3x; #
keep, 3x; # remove}. It can be shown that the number of
such «;,’s is

(n+Dn+2)

R(n) = >

2.

To be efficient, our strategy hypothesizes only LCNs that
are topologically feasible for a CF, considering the inter-
dependence of contact constraints between PCs. For example,
given two polyhedra A and B in a CF of two face-face PCs,
CF. = {f]A-f]B, sz-fZB }, it is impossible, regardless of spe-
cific object and contact geometry, to change one face-face
PC and keep another face-face PC. Therefore, the action set
{change, keep} is never applied to a CF of the type consisting
of two face-face PCs because it will not generate topologically
feasible results. As another example, if (e{*- sz ) is a valid
edge-face PC between A and B and vf‘ is a nonconvex vertex
of e{‘, then (le—sz) is not a topologically feasible LCN PC.
In general, for each «;,, we use rules to specify the types of
n-PC CFs that can be applied by «,, to produce topologically
feasible LCN hypotheses. We have implemented such rules
forn = 2, 3 (Section 4.1).

Once a topologically feasible LCN is hypothesized, the
next task is to check whether it represents a geometrically
valid CF. In the next subsection, we discuss how to determine
feasible contact states from such hypothesized LCN CFs.

3.3. Neighboring Relaxation and Feasibility Check

In general, we call the process of changing a CF to one of
its neighboring CFs without encountering other CFs a neigh-
boring transformation. Such a process is accomplished by
a contact motion changing one contact state <C Fp, Cp> to
another, which is called a neighboring transformation motion.
A neighboring transformation motion usually consists of two
parts:

* Reconfiguration, which changes contact configurations
within the same CF;
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* Transition, which changes a contact configuration in a
CF to one in a neighboring CF and is an infinitesimal
motion.

For the case in which the transformation is from a CF to one of
its LCN CFs, a neighboring transformation motion is further
called a neighboring relaxation motion.

Recall that in our approach, from a valid contact state
<CFp,Cp>, an LCN CF of CFp, CFy, is first hypothe-
sized. The task is then to check whether it can result in a geo-
metrically valid neighboring contact state. This task is equiv-
alent to checking whether there exists a feasible neighbor-
ing relaxation motion leading <C Fp, Cp>to <CFg, Cp>,
where Cg is a valid contact configuration under C Fg. This
problem can be further divided into two subproblems:

1. Checking whether there exists a feasible finite reconfig-
uration motion from Cp to C ;3 within the same C Fp;

2. Checking whether there exists a feasible infinitesimal
transition motion from <CFp, Cjp>to <CFg, Cp>.

Note that such a contact motion is feasible if there is no col-
lision before the goal is achieved. Figure 6 shows a two-
dimensional (polygonal) example of a feasible neighboring
relaxation motion from <{(ei4—e§)}, Cp> to <{(v1A—v§)},
Co> via C).

3.3.1. Reconfiguration

Subproblem 1 (of finding feasible reconfiguration motion) is
generally a motion-planning problem in a configuration space
of reduced degrees of freedom (DOFs) and reduced scope
as the space is constrained by a known CF; thus, we call it
a CF-compliant motion-planning problem. The cases with
the highest DOFs occur when the CF simply consists of a
single vertex-face PC and the CF-compliant motion has five
DOFs. Usually, the more PCs a CF has, the fewer DOFs the
CF-compliant motion has.? In addition to the general advan-
tages of reduced DOF and reduced scope offered by a CF, this
compensating nature (i.e., higher DOFs with simpler CF, and
lower DOFs with more complex CF) reduces the complex-
ity of motion planning. For our particular reconfiguration
problem (i.e., subproblem 1), planning is further simplified
because it is an any-path (as opposed to a best-path) problem
and the path destination is often not restricted to a specific
configuration.

On the other hand, CF-compliant motion planning poses
a special challenge that collision-free motion planning does
not: how to make sure that a path generated is CF compli-
ant (i.e., consisting of only those configurations satisfying
the constraints of the CF). To tackle the problem, we de-
veloped an effective and efficient strategy to generate CF-
compliant configurations randomly (Ji and Xiao 2001a) and a

3. Except for cases with redundant PCs, such as those with collinear faces in
contact.

method to produce CF-compliant interpolations between two
CF-compliant configurations (Ji 2000; Ji and Xiao 2001b).
These techniques enable us to apply a randomized planner,
such as one based on the probabilistic road map approach
(Kavraki et al. 1996; Kavraki and Latombe 1998), to generate
CF-compliant paths free of other collisions (collisions other
than the contact described by the CF). In our implementa-
tion, we also adapted the general collision-detection package
RAPID (Lin and Manocha 1996) to detect only those other
collisions additional to the desired CF (Ji 2000; Ji and Xiao
2001b). Figures 7 and 8 (Extension 74) show two examples
of planning results. In both figures, (a) shows the initial and
the end configurations and (b) shows the planned motion se-
quence. Note that in both cases, there are obstacles that can
cause collisions in addition to the CF.

3.3.2. Transition for Relaxation

In addition to a clear division of motion between a finite re-
configuration and an infinitesimal transition, neighboring re-
laxation has another important advantage over neighboring
transformation to a more-constrained CF. In many cases, es-
pecially when a CF involves multiple PCs with nonparallel
contact planes, there is no need for finite reconfiguration; that
is, if the LCN is feasible, there is a neighboring relaxation
motion consisting of only an infinitesimal transition. Figure 9
shows some examples in which all the neighboring relaxations
require only infinitesimal transition motions.

Subproblem 2 (i.e., to find a feasible infinitesimal tran-
sition motion) is generally an easier problem. Because the
transition is toward an LCN CF, the infinitesimal transition
motion partially breaks the current contact to change it to
a less-constrained one. There are three types of infinitesi-
mal transition motions, as shown in Figure 9: infinitesimal
translation (IT), infinitesimal rotation (IR), and infinitesimal
combined translation and rotation (IC).

Note that an infinitesimal motion is characterized by the
axis of the motion and the direction of velocity. Such a mo-
tion can be hypothesized in topological terms of the contact
elements involved in the change. Figure 10 shows some ex-
amples. In Figure 10a, an IT motion can be partially specified
as parallel to the contact plane C P, and in a direction v point-
ing away from the contact plane C P;. In Figure 10b, the IR
motion can be completely specified as about the edge of A
in the edge-face PC to maintain the PC, and the direction of
motion (or velocity) is the one that will not cause penetration
of A into B. In Figure 10c, the IC motion can be specified as
a combination of IT motion of Figure 10a and IR motion of
Figure 10b. Note that the above candidates of infinitesimal
motions are general for any CFs consisting of an edge-face
PC and a face-face PC with nonparallel contact planes. We
use a number of such general and concise rules according to

4. Please see the Index to Multimedia Extensions at the end of this article.
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Fig. 6. Neighboring relaxation motions.

Fig. 7. Reconfiguration motion in a contact formation consisting of one vertex-face principal contact.

(b
Fig. 8. Reconfiguration motion in a contact formation consisting of two edge-face principal contacts (see also Extension 7).
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Fig. 9. Examples in which only infinitesimal transition motions are needed. IT = infinitesimal translation, IR = infinitesimal

rotation, IC = infinitesimal combined translation and rotation.

different CF types to determine candidates of infinitesimal
transition motions.

Whether a topologically determined candidate infinitesi-
mal motion is indeed geometrically feasible depends on the
specific geometries of the objects. Figure 11 shows an ex-
ample in which the topological information is the same for
all three cases but the feasibilities of the transition motions
are different for different geometries. Thus, there is a need
to check the feasibility of an intended infinitesimal transition
motion.

Let A and B be two polyhedra in contact, and suppose the
neighboring relaxation motion is intended on A. Let n denote
the normal of a contact plane pointing toward the static object
B. Given the type, axis, and direction of an infinitesimal mo-
tion, we use the following algorithms to check its feasibility.

IT. It is feasible if the direction of translation, in terms of
the linear velocity vector v, does not penetrate through all the
contact planes (and/or contact lines) into B: v -n < 0 means
no penetration through the contact plane with normal n.

IR. The specified rotation is feasible if the tangent velocity
vector v at each contacting vertex (of either object) does not

penetrate through the corresponding contact plane with nor-
mal n; thatis, v-n < 0.5

IC. An IC motion can be implemented as being equivalent to
either (i) an IR followed by a guarded straight-line translation
(GT) or (ii) an IT followed by a guarded rotation (GR) (see
Fig. 12). Note that a guarded motion is terminated by a colli-
sion/contact. It is feasible if either (i) or (ii) is feasible. The
amount of GT or GR is determined by the § amount of the
preceding IR or IT, respectively.®

The algorithms were implemented in the form of a predi-
cate function,

feasible (type, axis, direc, §), (D

which returns “true” if the specified infinitesimal motion is
feasible.

5. Note, however, that if the vertex belongs to B, then the IR can be feasible
only whenv-n < 0.
6. Theoretically, § can be arbitrarily small, but it is finite in implementation.
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Fig. 10. Infinitesimal transition motions can be specified topologically. IT = infinitesimal translation, IR = infinitesimal
rotation, IC = infinitesimal combined translation and rotation.
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Fig. 11. The feasibility of a possible neighboring relaxation motion depends on specific contact geometry. IT = infinitesimal
translation, IR = infinitesimal rotation, IC = infinitesimal combined translation and rotation.
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Fig. 12. Equivalent motions of infinitesimal combined translation and rotation (IC) type of motions. IT = infinitesimal
translation, IR = infinitesimal rotation, GT = guarded straight-line translation, GR = guarded rotation.

3.4. Merging Nodes and GCR Graphs

Given any contacting objects, there are usually a number of
CFs that cannot be obtained by relaxing some contact states
of other CFs (i.e., they cannot be found in the GCR graphs of
some other CFs). These CFs are the locally most-constrained
CFs and, thus, the natural candidates of goal (or seed) CFs
for generating GCR graphs. A larger contact state graph can
be created by merging GCR graphs. The entire contact state
graph §, is obtained if all GCR graphs are merged. There are
two ways to combine multiple GCR graphs. One is to do it
sequentially by growing a new GCR graph to meet an existing
graph (which could consist of one or more GCR graphs) where
there are shared states. Another is to generate each GCR graph
independently and then merge the GCR graphs in a separate
phase.

The key issue in automatic merge is to determine whether
one node in one graph represents the same contact state as a
node in the other graph so that the two nodes should be merged
in the combined graph. Clearly, only the nodes sharing the
same CF can possibly represent the same contact state. By
dividing nodes in a contact state graph G (which can be
either a GCR graph or the result of some merged GCR graphs

into levels based on their CF types [Definition 3]), searching a
node with a given CFin G can be reduced to simply searching
the nodes in the same level (i.e., of the same type of CFs as
the given CF) in G1. Once two nodes are found sharing the
same CF, say, <CF;, C1> and <CF;, Co>, the problem is
to determine whether they represent the same C F;-connected
region; in other words, whether there exists a C F;-compliant
path connecting C; and C3, as addressed in more detail in the
following subsection.

If two nodes <CF;, C;> and <CF;, Co> can be merged,
merge is done by linking all the (more constrained and less
constrained) neighboring contact states of <CF;, Co> to
<CF;, C1> and discarding <C F;, Cp> (Fig. 13).

3.5. Handling CFs with Multiple Connected Regions

As described in Section 2.3, the geometric representation
Geocr of a CF (Section 2.2) may consist of more than one
CF-connected region, and each CF-connected region