
http://ijr.sagepub.com

The International Journal of Robotics Research

DOI: 10.1177/02783640122067552
 2001; 20; 584 The International Journal of Robotics Research

Jing Xiao and Xuerong Ji
 Automatic Generation of High-Level Contact State Space

http://ijr.sagepub.com/cgi/content/abstract/20/7/584
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 Multimedia Archives

 can be found at:The International Journal of Robotics Research Additional services and information for

 http://ijr.sagepub.com/cgi/alerts Email Alerts:

 http://ijr.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://ijr.sagepub.com/cgi/content/refs/20/7/584
SAGE Journals Online and HighWire Press platforms):

 (this article cites 10 articles hosted on the Citations

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://www.ijrr.org/multimedia.html
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/cgi/content/refs/20/7/584
http://ijr.sagepub.com

Jing Xiao
Xuerong Ji
Computer Science Department
University of North Carolina at Charlotte
Charlotte, NC 28223, USA
xiao@uncc.edu
xji@lucent.com

Automatic Generation
of High-Level Contact
State Space

Abstract

A divide-and-merge approach is introduced for automatic genera-
tion of high-level, discrete contact state space, represented as con-
tact state graphs, between two contacting polyhedral solids from
their geometric models. Based on the fact that a contact state graph
is the union of the subgraphs called a goal-contact relaxation (GCR)
graph, the approach consists of algorithms (1) to generate a complete
GCR graph automatically given the most constrained contact state
in the GCR graph and (2) to merge GCR graphs automatically. The
algorithms are implemented for cases in which the most constrained
contact state in a GCR graph consists of up to three principal con-
tacts. The ability to capture and represent contact state information
effectively and efficiently is essential for robotic operations involving
compliant motions, for simulation of contact motions, and for haptic
interactions.

KEY WORDS—contact state graphs, contact formations,
polyhedral solids, goal-contact relaxation graphs, robotic
assembly

1. Introduction

The work in this paper is motivated by two related goals:
one is to enable a computer to capture and represent high-
level contact state information effectively and efficiently, and
the other is to facilitate automatic planning and control of
compliant motions.

A high-level contact state as opposed to a low-level con-
tact configuration captures the topological and physical char-
acteristics of contact often common to two or more contact
configurations. For instance, the contact state of “a coffee
mug sitting on a table” means the bottom surface of the
mug contacting the top surface of the table, which is usu-
ally shared by infinitely many mug configurations relative to
the table, and within these configurations, contact motions do
not change degrees of freedom. A graph of such discrete,

The International Journal of Robotics Research
Vol. 20, No. 7, July 2001, pp. 584-606,
©2001 Sage Publications

high-level contact states, where an arc links adjacent contact
states, is often needed in many tasks that require informa-
tion about contact geometry, including automatic assembly
or fine-motion planning (Buckley 1989; Dakin and Popple-
stone 1992; Desai 1989; Xiao and Volz 1989; McCarragher
1996; Sturges and Laowattana 1995; Kang et al. 1997), virtual
prototyping, haptic interactions, and so on. Such a contact
state graph is crucial for stratification of compliant control
strategies (De Schutter et al. 1999; Bruyninckx and Schut-
ter 1998; Shekhar and Khatib 1987) and for simulation of
collision responses and contact motions. However, the in-
formation is usually fed manually into the system as input
(i.e., contact states and the relations among contact states are
enumerated and presented to the system manually). This is te-
dious for even tasks of simple geometry (Sturges and Laowat-
tana 1995) and is practically infeasible for complex tasks due
to the huge number of different contact states. Therefore,
automatic generation of contact state graphs is necessary. Al-
though it is relatively straightforward to generate such graphs
automatically for convex polyhedra (Hirukawa, Papegay, and
Matsui 1994), the problem remains open for nonconvex
objects.

Many robotic tasks involve contact motions. Researchers
have long discovered that by taking advantage of contact con-
straints through compliance, uncertainties of motion can be
reduced along with reduced degrees of freedom (Inoue 1974;
Lozano-Pérez, Mason, and Taylor 1984; Mason 1982; Whit-
ney 1985). It is clearly desirable to be able to plan and control
contact motions automatically.

From a classic motion-planning point of view, planning
contact motions means planning motions on the surface of
configuration space obstacles (C-obstacles) (Lozano-Pérez
1983). The key is to know the C-obstacles. However, com-
puting C-obstacles exactly in high-dimensional configuration
space remains a formidable problem. Most of the work in
the literature is limited to three-dimensional C-obstacles (i.e.,
C-obstacles of two-dimensional objects) (Avnaim, Boisson-
nat, and Faverjon 1988; Brost 1989; Rosell, Basañez, and
Suárez 1997; Sacks and Bajaj 1998), and only a few studies

584

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 585

concern the approximation of C-obstacles of three-
dimensional polyhedra (Donald 1985; Joskowicz and Taylor
1996). On the other hand, contact motions, unlike collision-
free motions, require exact knowledge of contact configu-
rations. Hence, a recent trend is to explore contact motion
planning without explicitly computing C-obstacles (Hirukawa
1996).

We reckon that the goals of acquiring high-level contact
state information and of planning general contact motion ef-
fectively and efficiently can be best achieved by tackling the
following two related problems (of two levels):

1. Automatic generation of a high-level contact state graph.

One of the many uses of such a contact state graph (as intro-
duced earlier) is to allow easy generation of a high-level plan
for contact motion as a sequence of contact state transitions
through graph search.

2. Planning contact motions between two known adjacent
contact states.

This problem can be further decomposed into (a) planning
an instantaneous contact transition (between the two adjacent
contact states) and (b) planning contact motions within the
same known contact state, which is a motion-planning prob-
lem of lower dimension and smaller scope.

We focus on the first problem and present a novel approach
toward automatically generating discrete contact state graphs
for general polyhedral objects. Our approach is character-
ized by directly exploiting both topological and geometrical
knowledge of contacts in the physical space of objects and by
dividing the problem into simpler subproblems of generating
and merging special subgraphs.

The paper is outlined below. In Section 2, we review the
notion of contact formation (CF) in terms of principal contacts
(PCs) (Xiao 1993) to characterize contact states, and we de-
fine contact states as CF-connected regions of contact config-
urations. We also examine the neighboring relations between
contact states and characterize the contact state space as a con-
tact state graph. In Section 3, we describe our approach for
automatic generation of the so-called goal-contact relaxation
(GCR) graphs (Xiao 1997), which are subgraphs of a contact
state graph, and automatic merge of the GCR graphs to form
a contact state graph between arbitrary polyhedra. In Sec-
tion 4, we describe and discuss the implemented algorithms,
their scopes of application, and some implementation results,
and refer to the multimedia extensions for more implementa-
tion material, including sample data, codes, and displays. We
summarize the work and discuss further research to conclude
the paper in Section 5.

2. Contact State Space

One important question is how and at what level of abstraction
a contact state should be defined and described. Topological

representation is most commonly used. Usually, certain types
of topological contact primitives are defined in terms of con-
tacting topological surface elements, and a contact state is
characterized in terms of the topological contact primitives
formed. In this section, we first review PCs, which are higher
level topological contact primitives compared to other com-
monly used contact primitives, and explain why we use such
primitives to describe a topological contact state. We then
give the geometrical interpretations of the topological contact
primitives, discuss connectivity, and define contact states.

2.1. Topological Contact Primitives

Three types of topological contact primitives have been used
most often in the literature. One representation is the point-
contact notion for polyhedra introduced by Lozano-Pérez
(1983) and Donald (1985) in their attempt to construct C-
obstacles. Here, for two polyhedra A and B in contact, contact
primitives are defined as point contacts of the following types:
for two-dimensional polygons, type A (EdgeA-VertexB) and
type B (VertexA-EdgeB); and for three-dimensional polyhe-
dra, type A (FaceA-VertexB), type B (VertexA-FaceB), and
type C (EdgeA-EdgeB , which are not collinear).

Another representation was introduced in Desai et al.
(1988) and Desai (1989), which used a single contact between
a pair of topological surface elements (i.e., faces, edges, and
vertices) of two polyhedra as primitives (known as elemental
contacts [ECs]).

The notion of PCs (Xiao 1993) are higher level primitives
compared to both the point-contact primitives and the ECs.
Denoting the boundary elements of a face as the edges and
vertices bounding the face, and the boundary elements of an
edge as the vertices bounding the edge, a PC can be defined
topologically as follows.

DEFINITION 1. A PC denotes the contact between a pair of
surface elements (i.e., faces, edges, or vertices) that are not
the boundary elements of other contacting surface elements
(if there is more than one pair in contact).

There are 10 types of PCs as shown in Figure 1. Each
nondegenerate PC is associated with a contact plane, defined
by a contacting face or the two contacting edges in an e-e-
cross PC. Each degenerate PC is characterized as between
two convex edge or vertex elements and not being associated
with a contact plane. Such PCs hardly occur in practice.
Note that except for the v-v type, every other degenerate PC
is associated with a contact line, defined by a contacting edge.
The normal of a contact line can be specified as the one along
the direction of the sum of the outward normals of the faces
forming the contacting edge.

A PC between a convex edge/vertex and a concave
edge/vertex is regarded not as a single PC but as a contact
state consisting of nondegenerate PCs, taking into account
the roundness of edges/vertices and the small deformation
due to contact in reality, as shown in Figure 2.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

586 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

Fig. 1. Principal contacts: face-face (f-f), face-edge/edge-face (f-e/e-f), face-vertex/vertex-face (f-v/v-f), edge-edge-cross
(e-e-c), edge-vertex/vertex-edge (e-v/v-e), vertex-vertex (v-v), edge-edge-touch (e-e-t).

Fig. 2. Contact cases described in terms of nondegenerate principal contacts (PCs).

That PCs are higher level primitives compared to both the
point-contact primitives and the ECs is most evident from the
fact that every contact between two convex polyhedra forms a
single PC, but not so for either the point-contact primitives or
the ECs. This leads to important advantages in characterizing
contact states by PCs:

• PCs lead to the more concise description and smallest
number of topological contact states. A contact be-
tween two convex polyhedra forms a single PC; on the
other hand, if more than one PC is formed in a con-
tact, there must be at least one nonconvex object in
the contact. Using PCs as contact primitives simplifies
geometric reasoning of contact constraints (Xiao and
Zhang 1997).

• PCs are sufficient to capture precisely the reduced de-
grees of freedom as the result of contact, which is es-
sential for implementing compliant motions.

• PCs as higher level contact primitives enable more
robust recognition in the presence of sensing uncer-
tainties. For a nondegenerate PC (Fig. 1), one good
property is that its change to another nondegenerate PC
is often coincident with the discontinuity of the gen-
eral contact force (i.e., force and torque), which means
that the change can be captured by force/torque sensing
rather robustly in spite of sensing uncertainty.

2.2. Topological CFs

DEFINITION 2. A topological CF between two contacting
polyhedra is defined as the set of PCs formed.

Based on the types of PCs in a CF, which characterize
the extent of contact constraints, we can classify CFs into
different types.

DEFINITION 3. Two CFs are of the same type if they consist
of the same number of the same types of PCs.

For example, given objects A and B, if CF1 consists of one
f-f PC and one e-f PC between A and B, and CF2 consists
of a different f-f PC and a different e-f PC between A and B,
then the two CFs are different CFs but they are of the same
type.

Because a PC between two objects A and B describes cer-
tain contact characteristics satisfied by one or more relative
contact configurations of A to B, which we simply call contact
configurations, we can define the geometrical representation
of a PC as the following:

DEFINITION 4. The geometrical representation of a PC,
GeoPC , denotes the set of contact configurations that sat-
isfy the contact condition described by the PC’s topological
definition.

Subsequently, the geometrical representation of a CF can
be defined as the following:

DEFINITION 5. The geometrical representation of a CF,
GeoCF , denotes the set of contact configurations that satisfy
every contact condition represented by every PC in the CF.

From the above definitions, we can obtain the following
corollary.

COROLLARY 1. GeoCF is the intersection of the geometrical
representations of the PCs in the topological CF.

It is obvious that the geometrical representations of all the
CFs between two objects partition the contact configuration
space (of one object with respect to the other).

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 587

2.3. Contact States and Connectivity

Based on the proof by Hopcroft and Wilfong (1986), if there is
a way to move two objects from one contact configuration to
another, then there is a way to do so with the objects remaining
in contact throughout the motion. With this in mind, we now
discuss the connectivity of CFs.

Within a CF, the connectivity question is whether the
GeoCF forms a single connected region or multiple connected
regions of configurations. In many cases, GeoCF is a single
connected region of configurations, and thus the CF uniquely
determines a contact state. However, there are also many
cases in which GeoCF consists of multiple connected regions
of configurations. That is, from a contact configuration in one
connected region of GeoCF , there is no path consisting of
only configurations satisfying the CF, or CF-compliant path,
leading to a contact configuration in another connected region
of GeoCF . In such a case, each connected region of GeoCF ,
called a CF-connected region, is considered a separate contact
state. More formally:

DEFINITION 6. A CF between two objects, CF , and a con-
tact configuration C in a CF -connected region (in GeoCF),
denoted as a pair <CF, C>, characterize the CF -connected
region and define a contact state between the objects.

With the above definition, <CFk, Ci> and <CFk, Cj>

denote two different CFk-connected regions.
We now consider connectivity between contact states of

different CFs, <CFi, Ci> and <CFj , Cj>.

DEFINITION 7. If from a contact configuration in<CFi, Ci>

to a contact configuration in <CFj , Cj> there exists a path
consisting of only a segment of contact configurations in
<CFi, Ci> succeeded by a segment of contact configura-
tions in <CFj , Cj>, then <CFi, Ci> and <CFj , Cj> are
generally defined neighboring contact states and CFi and CFj

are generally defined neighboring CFs.
Because CFs characterize discrete contact states topolog-

ically, we can map the above configuration-based definition
of neighboring CFs to a topological description in terms of
how PCs (or the topological surface elements of the PCs) are
related. We first define a containment relation between PCs.

DEFINITION 8. Let PCi = (aA-bB) and PCj = (cA-dB) be
two PCs between two polyhedra A and B. PCi contains PCj

if and only if one of the following cases holds:

1. cA is on the boundary of aA, and dB is on the boundary
of bB .

2. cA is on the boundary of aA, and dB is bB .

3. cA is aA, and dB is on the boundary of bB .

With the above definition, we can define a containment rela-
tion between CFs.

DEFINITION 9. For two CFs, CFi and CFj , such that CFi �=
CFj , CFi contains CFj if and only if

• card(CFi) ≥ card(CFj), where card(∗) returns the
cardinality.1

• For every PC in CFj , either it also belongs to CFi or
it is contained by a unique PC in CFi , and no two PCs
in CFj are contained by the same PC in CFi .

Clearly, the following corollary holds.

COROLLARY 2. For two CFs, CFi and CFj , if CFj ⊂ CFi ,
then CFi contains CFj .

Now, we can describe neighboring relations between PCs
and between CFs in terms of the corresponding containment
relations.

THEOREM 1. If a single-PC CF {PCi} is a generally defined
neighboring CF of another single-PC CF {PCj }, then one of
the PCs must contain the other. If PCi contains PCj , then
PCj is called a less-constrained neighbor (LCN) of PCi , and
PCi is called a more-constrained neighbor of PCj .

Proof. Let A and B be the objects in contact. Assume that
there is no containment relation between {PCi} and {PCj },
which are two single-PC CFs between A and B. Then, the
two contacting surface elements of either object (A or B)
with respect to the two PCs are neither the same nor adjacent.
This implies that to change one surface element to the other,
the relative contact motion will have to result in a different
contacting surface element, which means a different PC, en
route; that is, {PCi} and {PCj } are not neighbors. The
theorem is proven by refutation.

Note that a PC of the v-v type (Fig. 1) (which is degenerate)
does not contain any other PC, and thus it is a least constrained
PC.

THEOREM 2. If two CFs, CFi and CFj (CFi �= CFj), are
generally defined neighboring CFs, then one of them must
contain the other. If CFi contains CFj , then CFj is called an
LCN of CFi , and CFi is called a more-constrained neighbor
of CFj .

Proof. The proof is similar to the proof of Theorem 1, based
on the general definitions of neighboring CFs and that of the
CF containment.

Note that if a CF consists of a single v-v type of PC, then
it does not contain any other CF and is a least constrained CF.
Figure 3 shows examples of neighboring PCs and neighboring
CFs.

For better stratification, we further narrow our definition
of neighboring CFs by limiting the containment relations they
can have.

1. Based on Definition 2, the cardinality here gives the number of PCs in a
CF.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

588 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

Fig. 3. Examples of neighboring principal contacts (PCs) and contact formations (CFs).

DEFINITION 10. CFi is a specially defined neighboring CF
of CFj if and only if there is a containment relation between
CFi andCFj , and every containment between two PCs ofCFi

and CFj satisfies either condition 2 or condition 3 of Defini-
tion 8 but not condition 1. Consequently, two generally de-
fined neighboring contact states <CFi, Cs> and <CFj , Ct>

are now also specially defined neighboring contact states and
are simply called neighboring contact states.

Based on the proof by Hopcroft and Wilfong (1986) (ex-
plained at the beginning of this subsection) and the above
definitions, we can now define the entire contact state space.

DEFINITION 11. The contact state space between two poly-
hedra is a simple, connected graph G that consists of all the
distinct contact states as nodes and arcs connecting every pair
of neighboring contact states.

3. Generation of Contact State Graphs

Given two (or more) objects in contact, to construct the con-
tact state graph G automatically requires the handling of two
issues: (1) how to generate valid CFs, or how to tell whether
a set of PCs forms a geometrically valid CF, and (2) how to
find CF-connected regions (i.e., contact states) and the neigh-
boring relations between them. Both are difficult issues in
general2 if considered in isolation. Our work exploits their
connections and handles the two issues simultaneously, as
detailed in the following subsections.

3.1. Divide-and-Merge Approach

Our approach is to divide G into certain subgraphs, automat-
ically generate the subgraphs, and merge the results.

The kind of subgraph we generate consists of a contact state
of a seed CF, CFg , and those of all the less-constrained CFs,
which we call a GCR graph of CFg (Xiao 1997). Starting
from such a goal contact state, <CFg, Cg>, the GCR graph
can be grown by repeatedly “relaxing” contact constraints to
obtain contact states of LCN CFs. The process terminates

2. Only in the case of two convex objects are the issues trivial: every valid
CF consists of a single PC, and every possible PC is a valid CF. In addition,
GeoCF for each CF is a single CF-connected region.

when there is no new contact state to be added to the graph.
Clearly, such a process will always terminate. As for the goal
CFs, they are the locally most constrained CFs, many of which
indicate goal or intermediate goal CFs of an assembly. Given
the goal contact states, G can be obtained either partially or
completely by merging the corresponding GCR graphs.

We prefer to form G from GCR graphs because a GCR
graph is much easier to generate automatically than an arbi-
trary subgraph of G, taking advantage of the following two
facts:

1. All CFs in the GCR graph of CFg can be hypothesized
topologically from the topological expression of CFg .

2. The transition motion from a CF to an LCN is often
simpler than that to a more-constrained neighboring
CF, and in many cases the motion can be infinitesimal
(see Section 3.3).

Our algorithm for constructing a GCR graph is outlined
below.

Algorithm GCR-Gen:

Add <CFg, Cg> to an empty FIFO queue open;

WHILE open is not empty DO
BEGIN

• <CFc, Cc> ⇐ contact state removed from
open;

• hypothesize LCN CFs of CFc (Section
3.2);

• find feasible LCN contact states to
<CFc, Cc> from hypothesized LCN CFs
(Sections 3.3 and 3.4);

• link each feasible LCN contact state found
to <CFc, Cc>, and if it is already in the
(partially generated) GCR (i.e., it was gen-
erated previously), merge the two copies of
the same contact state to one, else, add the
new LCN contact state to open.

END

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 589

Figure 4 shows the process to construct a GCR graph. From
the seed node, the construction proceeds from top to bottom,
connecting feasible nodes and discarding infeasible ones.

As an example, Figure 5 shows a GCR graph of a two-
dimensional peg-in-hole assembly where the contact state
with an asterisk is the seed node. Note that the clearance
between the peg and the hole was greatly exaggerated so that
different contact states can be seen clearly.

Once the GCR graphs are generated, we use a simple al-
gorithm to automatically merge GCR graphs into a single
contact state graph. In the following subsections, we provide
step-by-step descriptions of the divide-and-merge approach.

< CF , C >g g

< CF , C >c c

Fig. 4. Construction of a goal-contact relaxation graph.

Fig. 5. A goal-contact relaxation graph of a two-dimensional
peg-in-hole assembly where the node with an asterisk is the
seed node.

3.2. Hypothesizing LCNs

Given a valid CF = {PCi}n
i=1, where n ≥ 1, its possible LCN

CFs can be hypothesized by applying one of the following
actions to each PCi of the CF according to Definitions 8-10
(Section 2.3):

remove PCi

change PCi to a PC it contains (i.e., an LCN PC)
keep PCi ,

provided that remove or keep is not applied to all PCs in the
CF simultaneously to result in an empty set or the CF itself.
This implies that for a single-PC CF, only change can be
applied. Let A = {remove, change, keep}. A set of actions
that can be applied to an n-PC CF to hypothesize LCNs of the
CF can be expressed as αn = {xi |xi ∈ A, i = 1, ..., n, ∃xi �=
keep, ∃xi �= remove}. It can be shown that the number of
such αn’s is

R(n) = (n + 1)(n + 2)

2
− 2.

To be efficient, our strategy hypothesizes only LCNs that
are topologically feasible for a CF, considering the inter-
dependence of contact constraints between PCs. For example,
given two polyhedra A and B in a CF of two face-face PCs,
CFc = {f A

1 -f B
1 , f A

2 -f B
2 }, it is impossible, regardless of spe-

cific object and contact geometry, to change one face-face
PC and keep another face-face PC. Therefore, the action set
{change, keep} is never applied to a CF of the type consisting
of two face-face PCs because it will not generate topologically
feasible results. As another example, if (eA

1 -f B
2) is a valid

edge-face PC between A and B and vA
1 is a nonconvex vertex

of eA
1 , then (vA

1 -f B
2) is not a topologically feasible LCN PC.

In general, for each αn, we use rules to specify the types of
n-PC CFs that can be applied by αn to produce topologically
feasible LCN hypotheses. We have implemented such rules
for n = 2, 3 (Section 4.1).

Once a topologically feasible LCN is hypothesized, the
next task is to check whether it represents a geometrically
valid CF. In the next subsection, we discuss how to determine
feasible contact states from such hypothesized LCN CFs.

3.3. Neighboring Relaxation and Feasibility Check

In general, we call the process of changing a CF to one of
its neighboring CFs without encountering other CFs a neigh-
boring transformation. Such a process is accomplished by
a contact motion changing one contact state <CFP , CP > to
another, which is called a neighboring transformation motion.
A neighboring transformation motion usually consists of two
parts:

• Reconfiguration, which changes contact configurations
within the same CF;

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

590 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

• Transition, which changes a contact configuration in a
CF to one in a neighboring CF and is an infinitesimal
motion.

For the case in which the transformation is from a CF to one of
its LCN CFs, a neighboring transformation motion is further
called a neighboring relaxation motion.

Recall that in our approach, from a valid contact state
<CFP , CP >, an LCN CF of CFP , CFQ, is first hypothe-
sized. The task is then to check whether it can result in a geo-
metrically valid neighboring contact state. This task is equiv-
alent to checking whether there exists a feasible neighbor-
ing relaxation motion leading <CFP , CP > to <CFQ, CQ>,
where CQ is a valid contact configuration under CFQ. This
problem can be further divided into two subproblems:

1. Checking whether there exists a feasible finite reconfig-
uration motion from CP to C′

P within the same CFP ;

2. Checking whether there exists a feasible infinitesimal
transition motion from <CFP , C′

P > to <CFQ, CQ>.

Note that such a contact motion is feasible if there is no col-
lision before the goal is achieved. Figure 6 shows a two-
dimensional (polygonal) example of a feasible neighboring
relaxation motion from <{(eA

1 -eB
2)}, CP > to <{(vA

1 -vB
2)},

CQ> via C′
P .

3.3.1. Reconfiguration

Subproblem 1 (of finding feasible reconfiguration motion) is
generally a motion-planning problem in a configuration space
of reduced degrees of freedom (DOFs) and reduced scope
as the space is constrained by a known CF; thus, we call it
a CF-compliant motion-planning problem. The cases with
the highest DOFs occur when the CF simply consists of a
single vertex-face PC and the CF-compliant motion has five
DOFs. Usually, the more PCs a CF has, the fewer DOFs the
CF-compliant motion has.3 In addition to the general advan-
tages of reduced DOF and reduced scope offered by a CF, this
compensating nature (i.e., higher DOFs with simpler CF, and
lower DOFs with more complex CF) reduces the complex-
ity of motion planning. For our particular reconfiguration
problem (i.e., subproblem 1), planning is further simplified
because it is an any-path (as opposed to a best-path) problem
and the path destination is often not restricted to a specific
configuration.

On the other hand, CF-compliant motion planning poses
a special challenge that collision-free motion planning does
not: how to make sure that a path generated is CF compli-
ant (i.e., consisting of only those configurations satisfying
the constraints of the CF). To tackle the problem, we de-
veloped an effective and efficient strategy to generate CF-
compliant configurations randomly (Ji and Xiao 2001a) and a

3. Except for cases with redundant PCs, such as those with collinear faces in
contact.

method to produce CF-compliant interpolations between two
CF-compliant configurations (Ji 2000; Ji and Xiao 2001b).
These techniques enable us to apply a randomized planner,
such as one based on the probabilistic road map approach
(Kavraki et al. 1996; Kavraki and Latombe 1998), to generate
CF-compliant paths free of other collisions (collisions other
than the contact described by the CF). In our implementa-
tion, we also adapted the general collision-detection package
RAPID (Lin and Manocha 1996) to detect only those other
collisions additional to the desired CF (Ji 2000; Ji and Xiao
2001b). Figures 7 and 8 (Extension 74) show two examples
of planning results. In both figures, (a) shows the initial and
the end configurations and (b) shows the planned motion se-
quence. Note that in both cases, there are obstacles that can
cause collisions in addition to the CF.

3.3.2. Transition for Relaxation

In addition to a clear division of motion between a finite re-
configuration and an infinitesimal transition, neighboring re-
laxation has another important advantage over neighboring
transformation to a more-constrained CF. In many cases, es-
pecially when a CF involves multiple PCs with nonparallel
contact planes, there is no need for finite reconfiguration; that
is, if the LCN is feasible, there is a neighboring relaxation
motion consisting of only an infinitesimal transition. Figure 9
shows some examples in which all the neighboring relaxations
require only infinitesimal transition motions.

Subproblem 2 (i.e., to find a feasible infinitesimal tran-
sition motion) is generally an easier problem. Because the
transition is toward an LCN CF, the infinitesimal transition
motion partially breaks the current contact to change it to
a less-constrained one. There are three types of infinitesi-
mal transition motions, as shown in Figure 9: infinitesimal
translation (IT), infinitesimal rotation (IR), and infinitesimal
combined translation and rotation (IC).

Note that an infinitesimal motion is characterized by the
axis of the motion and the direction of velocity. Such a mo-
tion can be hypothesized in topological terms of the contact
elements involved in the change. Figure 10 shows some ex-
amples. In Figure 10a, an IT motion can be partially specified
as parallel to the contact plane CP2 and in a direction v point-
ing away from the contact plane CP1. In Figure 10b, the IR
motion can be completely specified as about the edge of A

in the edge-face PC to maintain the PC, and the direction of
motion (or velocity) is the one that will not cause penetration
of A into B. In Figure 10c, the IC motion can be specified as
a combination of IT motion of Figure 10a and IR motion of
Figure 10b. Note that the above candidates of infinitesimal
motions are general for any CFs consisting of an edge-face
PC and a face-face PC with nonparallel contact planes. We
use a number of such general and concise rules according to

4. Please see the Index to Multimedia Extensions at the end of this article.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://www.ijrr.org/v20/7/xiao/index.htm
http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 591

<{ - }, >

e1
A

B
1e
A

B
A

B

A

B

e1
A B

1e <{ - }, >C’Pe1
A B

1e

v 1
A

e1
A

B
1e

v 1
A

e1
A

B
1e

<{ - }, >CQv1
A B

1eCP

Fig. 6. Neighboring relaxation motions.

(a)

(b)

Fig. 7. Reconfiguration motion in a contact formation consisting of one vertex-face principal contact.

(a)

(b)

Fig. 8. Reconfiguration motion in a contact formation consisting of two edge-face principal contacts (see also Extension 7).

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://www.ijrr.org/v20/7/xiao/index.htm
http://ijr.sagepub.com

592 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

IT

IR

IC

IT

IR

IR

IR

IC

Fig. 9. Examples in which only infinitesimal transition motions are needed. IT = infinitesimal translation, IR = infinitesimal
rotation, IC = infinitesimal combined translation and rotation.

different CF types to determine candidates of infinitesimal
transition motions.

Whether a topologically determined candidate infinitesi-
mal motion is indeed geometrically feasible depends on the
specific geometries of the objects. Figure 11 shows an ex-
ample in which the topological information is the same for
all three cases but the feasibilities of the transition motions
are different for different geometries. Thus, there is a need
to check the feasibility of an intended infinitesimal transition
motion.

Let A and B be two polyhedra in contact, and suppose the
neighboring relaxation motion is intended on A. Let n denote
the normal of a contact plane pointing toward the static object
B. Given the type, axis, and direction of an infinitesimal mo-
tion, we use the following algorithms to check its feasibility.

IT. It is feasible if the direction of translation, in terms of
the linear velocity vector v, does not penetrate through all the
contact planes (and/or contact lines) into B: v · n ≤ 0 means
no penetration through the contact plane with normal n.

IR. The specified rotation is feasible if the tangent velocity
vector v at each contacting vertex (of either object) does not

penetrate through the corresponding contact plane with nor-
mal n; that is, v · n ≤ 0.5

IC. An IC motion can be implemented as being equivalent to
either (i) an IR followed by a guarded straight-line translation
(GT) or (ii) an IT followed by a guarded rotation (GR) (see
Fig. 12). Note that a guarded motion is terminated by a colli-
sion/contact. It is feasible if either (i) or (ii) is feasible. The
amount of GT or GR is determined by the δ amount of the
preceding IR or IT, respectively.6

The algorithms were implemented in the form of a predi-
cate function,

feasible (type, axis, direc, δ), (1)

which returns “true” if the specified infinitesimal motion is
feasible.

5. Note, however, that if the vertex belongs to B, then the IR can be feasible
only when v · n < 0.
6. Theoretically, δ can be arbitrarily small, but it is finite in implementation.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 593

(a)

(b)

(c)

B
v

A

B

A

B

A

B

A

B

A

B

A

IT

IR

IC

CP 1

CP 2

CP 1

CP 2

CP 1

CP 2

CP 1

CP 2

CP 1

CP 2

CP 1

CP 2

{e-f, f-f}

{e-f, f-f}

{e-f, f-f}

{f-f}

{e-f}

{e-f, e-f}

Fig. 10. Infinitesimal transition motions can be specified topologically. IT = infinitesimal translation, IR = infinitesimal
rotation, IC = infinitesimal combined translation and rotation.

1
2

3 IR or IT

IC

CF i ={PC , PC , PC } CFj
= {PC }

neighboring

relaxation motion

1
2

3

1
2

3

3

3

1 2 3 3

Fig. 11. The feasibility of a possible neighboring relaxation motion depends on specific contact geometry. IT = infinitesimal
translation, IR = infinitesimal rotation, IC = infinitesimal combined translation and rotation.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

594 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

(b)

(c)

IR GT

IT GR

(a)

IC

Fig. 12. Equivalent motions of infinitesimal combined translation and rotation (IC) type of motions. IT = infinitesimal
translation, IR = infinitesimal rotation, GT = guarded straight-line translation, GR = guarded rotation.

3.4. Merging Nodes and GCR Graphs

Given any contacting objects, there are usually a number of
CFs that cannot be obtained by relaxing some contact states
of other CFs (i.e., they cannot be found in the GCR graphs of
some other CFs). These CFs are the locally most-constrained
CFs and, thus, the natural candidates of goal (or seed) CFs
for generating GCR graphs. A larger contact state graph can
be created by merging GCR graphs. The entire contact state
graph G is obtained if all GCR graphs are merged. There are
two ways to combine multiple GCR graphs. One is to do it
sequentially by growing a new GCR graph to meet an existing
graph (which could consist of one or more GCR graphs) where
there are shared states. Another is to generate each GCR graph
independently and then merge the GCR graphs in a separate
phase.

The key issue in automatic merge is to determine whether
one node in one graph represents the same contact state as a
node in the other graph so that the two nodes should be merged
in the combined graph. Clearly, only the nodes sharing the
same CF can possibly represent the same contact state. By
dividing nodes in a contact state graph G1 (which can be
either a GCR graph or the result of some merged GCR graphs

into levels based on their CF types [Definition 3]), searching a
node with a given CF in G1 can be reduced to simply searching
the nodes in the same level (i.e., of the same type of CFs as
the given CF) in G1. Once two nodes are found sharing the
same CF, say, <CFi, C1> and <CFi, C2>, the problem is
to determine whether they represent the same CFi-connected
region; in other words, whether there exists a CFi-compliant
path connecting C1 and C2, as addressed in more detail in the
following subsection.

If two nodes <CFi, C1> and <CFi, C2> can be merged,
merge is done by linking all the (more constrained and less
constrained) neighboring contact states of <CFi, C2> to
<CFi, C1> and discarding <CFi, C2> (Fig. 13).

3.5. Handling CFs with Multiple Connected Regions

As described in Section 2.3, the geometric representation
GeoCF of a CF (Section 2.2) may consist of more than one
CF-connected region, and each CF-connected region repre-
sents a separate contact state. One way to detect automati-
cally whether a given CF has multiple CF-connected regions
in its GeoCF is through CF-compliant motion planning. One
could use the same randomized planner for reconfiguration

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 595

G1 GCR 2

G1

n 1

n 2

(a)

(b)

n 1

n 2

Fig. 13. Merging of goal-contact relaxation (GCR) graphs: (a) before merging, (b) after merging n1 and n2 and discarding n2.

(Section 3.3.1) to explore the connectivities of CF-compliant
configurations (i.e., to build a roadmap on GeoCF exhaustive
enough so that the connectivity of the roadmap reflects the
connectivity of GeoCF). However, one can imagine that it
will be quite expensive computationally if all CFs have to be
treated this way.

Noticeably, in our divide-and-merge approach to generate
contact states, such detection of connectivity is transformed
into solving the following smaller and simpler problems for
nonseed CFs:

(1) During the generation of one GCR graph, from the cur-
rent contact state <CFc, Cc>, whether a generated LCN
CF should be split into two or more LCN states of
<CFc, Cc> (Fig. 14);

(2) Determine whether a contact state <CFi, C1> should be
merged with another existing contact state <CFi, C2>

of the same CF.

Fortunately, only for certain degenerate CFc’s is the state-
splitting scenario of (1) possible. First, the two contacting
objects, sayA andB, have to satisfy that at least one dimension
of A (i.e., distance between two surface elements) is exactly
the same as certain dimensions of B. Next, if we do not
consider any CF involving degenerate PCs (Section 2.1), since
these PCs have zero probability of occurrence in practice, then

< CF , C >c c

< CF , C’ >d d < CF , C" >d d

Fig. 14. State-splitting scenario.

the set of necessary conditions for the state-splitting scenario
is as follows:

• CFc is not a single-PC CF;

• No infinitesimal translation can break any PC in CFc;

• In CFc, A is “squeezed” by B where certain dimensions
between the squeezing elements of B are the same as
certain dimensions between the elements of A in con-
tact (with B).

For an n-PC CFc, where n > 2, the contact planes of the
PCs form a prismatic tunnel with parallel side edges. For

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

596 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

a two-PC CFc, the above necessary conditions manifest to
a pair of PCs whose contact planes are parallel with oppo-
site normals and the distance between the two contact planes
equals the dimension of A between the two elements of A in
contact (with B). Figure 15 shows two two-dimensional (i.e.,
polygon) examples with state-splitting scenarios. Note that
if we add a depth to the objects in the examples of Figure 15
to make them three-dimensional, then state splitting may not
happen. Because state splitting is rare and easily identifiable,
the involved states can be input to the program for generating
a GCR graph as exceptions. In all other cases, for each LCN
CF, only one contact state, produced by one feasible relax-
ation motion, will be linked to the parent contact state, and
there is no need to explore the LCN connectivity here because
further checking will be handled when solving (2).

Problem (2) can be encountered both in the generation
of one GCR graph and in the merging of GCR graphs. In
this case, the detection of connectivity is reduced to check-
ing whether there exists a CF-compliant path to connect one
known configuration C1 to another known configuration C2.
If a path exists, then the query can often be answered quickly
before the connectivity of the entire GeoCF is explored rather
exhaustively. Figure 16 shows a two-dimensional example in
which the two nodes with the same CF represent two CF-
connected regions and cannot be merged.

We have also begun to study (Johnston and Xiao 2000) how
the topological and geometrical characteristics of contacting
objects relate to disconnectedness of a CF in order to quickly
determine whether a CF has disjoint contact states without the
need of searching for CF-compliant motion and dealing with
the completeness problem of the search when such motion
does not exist. This is an interesting topic in itself but is
beyond the scope of this paper.

4. Implementation and Results

In implementation, we limited our current attention to contact
state graphs with CFs of ≤ 3 PCs between arbitrary polyhedra
A and B such that even the most constrained CF has no more
than three PCs. This is often sufficient practically because a
three-PC CF of many types, such as one with three f-f PCs,
three f-e PCs, or two f-f PCs and one f-v PC, and so on, can
be fully constrained (i.e., with zero DOFs) with nonparallel
contacting features, since the PCs provide six independent
constraint equations. Although theoretically if all PCs are of
f-v or e-e-cross types, at most six PCs are needed to fully
constrain a CF; in many cases, a CF with more than three
PCs often involves redundant PCs and can be found to be
equivalent to a CF with fewer PCs (Xiao and Zhang 1997).

If the seed CF of a GCR graph consists of ≤ 3 PCs, then
the total number of CFs in the GCR graph cannot exceed
(2 + u)3, where u is the maximum number of edges and ver-
tices bounding a face involved in the seed CF. The actual

number of feasible CFs is often much smaller because of geo-
metric constraints, as evident from the example results to be
presented.

4.1. Implemented Algorithms

In our implementation of the GCR generation algorithm
GCR-Gen (Section 3.1), we used rules to implement the
steps of finding LCNs for a given CF, which can be found
in Appendix B. For each αn combination of actions of types
remove, change, and keep (see Section 3.2), a rule describes
the possible LCNs that are topologically feasible for the type
of CF and the related possible neighboring relaxation motions
from the CF to each LCN candidate. It decides whether there
is a need for reconfiguration and calls the corresponding mo-
tion planner if this is so. It also calls the predicate function
f easible (Section 3.3.2) to determine the feasibility of the
transition motions. Finally, it returns the feasible LCN con-
tact states, each of which is associated with a representative
contact configuration. Note that a single-PC LCN contact
state cannot be of the degenerate type e-e-touch (Fig. 1)—if
there are only two edges in contact, GCR-Gen classifies such
a contact state as that of a single e-e-cross PC.

Most operations in GCR-Gen take constant time or are
bounded by constant time except for those requiring CF-
compliant motion planning for reconfiguration. We designed
and implemented a CF-compliant motion planner separately,
as briefly introduced in Section 3.3.1 and detailed in Ji (2000)
and Ji and Xiao (2001).

We also implemented a much simpler straight-line recon-
figuration planner for cases in which reconfiguration can be
achieved by CF-compliant straight-line translations so that
there is no need for GCR-Gen to call a full-fledged CF-
compliant motion planner. There are many such cases of
objects A and B, including, for example, all the cases given
in Figure 17. The time complexity of the straight-line planner
is that of collision detection (between A and B) along a given
direction. Extension 5 gives the code of GCR-gen using such
a straight-line reconfiguration planner. For a sample input file,
see Extension 1. The generated GCR graph is output into a
binary .gcr file (see Extension 2), where two display files of
the corresponding contact states obtained from the .gcr file are
also provided. Extension 3 displays the output GCR graph.

For the algorithm of merging GCR graphs, our current pro-
gram GCR-Merge does not call CF-compliant motion plan-
ning to check connectivity (Section 3.5). Thus, the current
code (Extension 5) simply merges all nodes sharing the same
CF into one node by requiring that the GeoCF of every CF
consist of a single CF-connected region, which, however, is
easily satisfied in many cases. Extension 4 displays an exam-
ple result of merge.

We have also developed, with David Johnston of our
group being the primary designer and programmer, a display

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://www.ijrr.org/v20/7/xiao/index.htm
http://www.ijrr.org/v20/7/xiao/index.htm
http://www.ijrr.org/v20/7/xiao/index.htm
http://www.ijrr.org/v20/7/xiao/index.htm
http://www.ijrr.org/v20/7/xiao/index.htm
http://www.ijrr.org/v20/7/xiao/index.htm
http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 597

(b)(a)
Fig. 15. Examples with state-splitting scenarios.

GCR GCR

<CF , C >i 1 <CF , C >i 2

1 2

Fig. 16. Two nodes have the same contact formation but cannot be merged.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

598 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

#PC Seed CF
#nodes
 in
 GCR

time
(s) Seed CF

#nodes
 in
 GCR

time
(s) Seed CF

#nodes
 in
 GCR

time
(s)

1PC

2PC

3PC

81 0.34 63 0.31 54 0.56

143 6.2 165 3.7 92 1.7

116 5.3 138 3.2

122 3.4194 38.9

76 3.3

126 6.8

208 20.4

252 9.3

124 5.6

77 2.0

170 14.0

162 17.0

199 8.2

89 4.6

127 14.3

65 3.5

252 5.5 131 27.4

Fig. 17. Several experimented examples. PC = principal contact, GCR = goal-contact relaxation, CF = contact formation.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 599

program to view the contact state graph and the contact states
between polyhedra. It runs on SUN/Sparc machines and Win-
dows NT and allows user interaction to choose what to view
and in what fashion, as demonstrated in Extension 3. Exten-
sion 6 provides the executable codes. The above algorithms
are all implemented in C.

4.2. Results

We now present and discuss some results obtained from run-
ning the implemented algorithms. Figure 18 shows a snapshot
of a GCR graph between two three-dimensional polyhedra as
viewed from running the interactive display program. The
GCR graph contains 186 nodes. Each actual contact state can
be displayed in a small window by clicking the corresponding
node, as shown by the foreground images. Node 1 shows the
seed contact state of the GCR graph, and other images show
some of the LCN contact states of the seed node. Generation
of the GCR graph takes 5 seconds.

We tested GCR-Gen on more than 30 different examples
involving polyhedra pairs of vastly different shapes. Figure
17 summarizes the number of nodes and running times of
some of the example GCR graphs generated, run on a SUN
Ultra 10 workstation (which is rated at 12.1 SPECint95 and
12.9 SPECfp95).

Figure 19a shows an example of a small cube contacting the
interior of a large S-shaped tunnel with square cross sections
(where the cube is shown in solid and the S-tunnel is shown
in wire frame).7 In this case, there are two types of locally
most-constrained CFs:

• Type 1, consisting of three face-face PCs between the
cube and the S-tunnel, which can be formed by pushing
the cube against a corner of the S-tunnel (as shown in
Fig. 19a);

• Type 2, consisting of two face-face PCs between the
cube and the S-tunnel, which can be formed by pushing
the cube against two adjacent side walls of a straight
segment of the tunnel.

Starting from eight such most-constrained CFs as seed nodes,
we applied our program to generate eight GCR graphs and
merged them automatically. The first row of Table 1 shows
the results. From the resulted contact state graph, we further
applied our CF-compliant random sampling strategy (Ji and
Xiao 2001b) to generate 10 random configurations for each
contact state. Figure 19b displays the accumulation of all
such configurations.

Figure 20 shows an example with a small triangular wedge
contacting a large star, where Figure 20a shows two contact
states and Figure 20b shows a path of contact configurations

7. This example is courtesy of Nancy Amato of Texas A&M University.

for contact motion between the two contact states. This ex-
ample demonstrates the idea of decomposing contact motion
planning into two levels introduced in Section 1. At the high
level, we obtained a contact state graph automatically by run-
ning GCR-gen to generate GCR graphs from five seed contact
states and by running the merge algorithm to merge the GCR
graphs. Seed contact states are formed by fitting the wedge
into each corner of the star, as shown in Figure 20a. The re-
sults are shown in the second row of Table 1. We then used
a breadth-first search program to find a sequence of contact
state transitions connecting the two states in Figure 20a in the
contact state graph. The sequence found contains 13 nodes.
Then, at the low level, we applied CF-compliant motion plan-
ning (Section 3.3.1) to each contact state in the sequence to
generate a CF-compliant path of configurations and connected
these CF-compliant path segments to form the final path in
Figure 20b (Extension 8).

In all the examples presented, the time for generating a
GCR graph is on the order of seconds, and merge usually
takes even less time (as evident from Table 1).

5. Summary and Future Research

We have introduced a general approach for modeling and au-
tomatic construction of contact state space in terms of contact
state graphs of the objects in contact. A contact state is charac-
terized by a topological CF and a representative contact con-
figuration under the CF, such that it represents a CF-connected
region of contact configurations. A contact state graph is par-
tially or completely formed by merging GCR graphs. Each
GCR graph originates from a seed contact state, which is from
a locally most-constrained CF.

With the currently implemented algorithms GCR-Gen and
GCR-Merge, the entire contact state graph G between two
convex polyhedra can be generated completely and fully au-
tomatically. This is because the seed CFs of all the GCR
graphs are simply all the f-f PCs, which can be easily enu-
merated automatically and input to GCR-Gen to generate all
the GCR graphs, and the results can be input to GCR-Merge
to obtain G.

For nonconvex polyhedra, the current implementation can
generate complete GCR graphs and merge them to obtain a
larger graph or even the entire contact state graph G if (1) the
seed contact states are given to GCR-Gen, (2) each seed CF
consists of ≤ 3 PCs, and (3) the GeoCF of every CF consists
of a single CF-connected region.

How to relax the above restrictions of the current imple-
mentation is naturally the concern of some further research
topics. One topic is how to obtain the locally most-constrained
CFs (i.e., the seed CFs for GCR graphs), semiautomatically
or automatically, from the geometric descriptions of the con-
tacting objects. This is related to the issue of characterizing

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://www.ijrr.org/v20/7/xiao/index.htm
http://www.ijrr.org/v20/7/xiao/index.htm
http://www.ijrr.org/v20/7/xiao/index.htm
http://ijr.sagepub.com

600 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

Fig. 18. Snapshot of a goal-contact relaxation graph between two polyhedra.

(a) (b)

Fig. 19. S-tunnel example: (a) a small cube contacting an S-shaped tunnel, (b) the accumulation result of 8250 random contact
configurations, with 10 for each automatically generated contact state.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 601

Table 1. Results of the S-Tunnel and Star Examples

No. Nodes per No. of Nodes
No. of GCRs GCR after Merge tGCR (s)a tmerge (s)b

S-Tunnel 8 172 or 98 825 ≤ 28 0.96
Star 5 127 590 ≤ 1.17 0.31

NOTE: GCR = goal-contact relaxation.
a. Time to generate a GCR graph.
b. Time to merge the GCR graphs.

(a)

(b)

Fig. 20. Star example: (a) two seed contact configurations, (b) a path of contact configurations connecting the two seed contact
configurations, which spans 13 contact states (see also Extension 8).

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://www.ijrr.org/v20/7/xiao/index.htm
http://ijr.sagepub.com

602 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

geometrical complexity of objects from a general perspec-
tive. For specific tasks, because only a certain portion of the
(complete) contact state graph is useful, the selection of the
relevant locally most-constrained CFs can take advantage of
task-oriented knowledge. Moreover, the goals or intermedi-
ate goals of an assembly or a manipulation task are usually
the locally most-constrained CFs. Further study is clearly
needed.

Another issue is how to handle CFs of (arbitrarily) many
PCs. Such CFs often include PCs that are not independent
contributors of contact constraints and thus can be collapsed
and represented by a fewer number of some equivalent PCs.
The key task is to find an automatic way of finding equivalent
PCs, which has been studied for two-dimensional polygons
(Xiao and Zhang 1997) but not for three-dimensional polyhe-
dra. Thus, it is another topic to be studied.

As mentioned in Section 3.5, we (Johnston and Xiao 2000)
have begun to study how to decide whether the GeoCF of a
CF has more than one CF-connected region directly from the
topological and geometrical characteristics of contacting ob-
jects so that exhaustive search for connectivity can be avoided.
We have made considerable progress for two-dimensional
objects but still need further research for three-dimensional
objects.

As introduced in Section 1, a high-level contact state graph
is not only needed in many tasks, both in the real and the vir-
tual world, but also essential for simplifying contact motion
planning and for enabling stratification for compliant control.
Our approach effectively relates and simplifies both the prob-
lem of automatic generation of contact state graphs and that of
planning contact motion: as we have shown, to accomplish
the former, planning within a CF or CF-compliant motion
planning is often needed, whereas the accomplishment of the
former reduces the complexity of the latter with the two-level
problem decomposition (Section 1). It is clear that for both
problems, motion planning is largely reduced to the smaller
problem of CF-compliant motion planning, which is easier to
handle. We think that this approach could be promising for ex-
tension into more general contact cases involving multibody
objects or nonpolyhedral objects.

The work also seems to have the potential to fa-
cilitate general motion planning (Latombe 1991). For
high-dimensional motion planning of collision-free paths,
randomized approaches (such as the probabilistic road map
approach) (Kavraki et al. 1996; Kavraki and Latombe 1998;
Xiao et al. 1997) and those based on evolutionary compu-
tation (Hocaoglu and Sanderson 1998) are often most vi-
able because they rely on random sampling in the C-space
to avoid the formidable task of building the C-obstacles ex-
plicitly. Such approaches could use the information of contact
states and representative contact configurations to character-
ize C-obstacles and increase the effectiveness and efficiency
of sampling.

Appendix A: Rules for Generating
Less-Constrained Neighbor Contact
States in GCR-Gen

Let A and B be two polyhedra. We use a-b to represent
a principal contact (PC), where a and b are elements (ver-
tices, edges, and faces) of A and B, respectively, and we use
{PCi}n

i=1 to represent a contact formation (CF) with n PCs.
If p is a boundary element of q (Section 2.1) and p is

convex, then it is denoted by p ⊂ ∂q. For a configuration of
A, if element a of A is on or intersects element b of B (i.e.,
a ∩ b �= ∅), then it is denoted by a ∈ b.

Recall that each nondegenerate PC uniquely determines a
contact plane (Section 2.1), and we use CP i to represent the
contact plane of PCi and use �nCP i

to denote the normal of
CP i . For a line PC PCi , we use CLi to represent the contact
line of the PC. Note that degenerate PCs are generated only
if they form single-PC CFs. For two-PC or three-PC CFs, all
the PCs in a CF are nondegenerate.

As described in Section 3.3, any less-constrained neighbor
(LCN) contact state of a <CFi, Ci> can be obtained from Ci

by one of the following motions: (1) an infinitesimal transi-
tion, which is either an infinitesimal rotation (IR), an infinites-
imal translation (IT), or a infinitesimal combined motion (IC);
(2) a finite reconfiguration motion (i.e., CF-compliant motion)
followed by an infinitesimal transition motion. The motions
of (2) are denoted by FM.

For an arbitrary motion in the above, the following predi-
cate indicates whether it is feasible:

feasible(type axis, direc,δ/�),

where it returns 1 if the motion is feasible and 0 otherwise.
The following parameters are passed to feasible:

• type can be IR, IT, IC, or FM;

• axis is the direction for translation, the axis for rotation,
or empty for FM motion (which indicates a call to a
reconfiguration planner [see Section 4.1]);

• direc denotes the direction (+ or −) of the axis (empty
for FM motion);

• δ indicates a prespecified amount of infinitesimal mo-
tion, and � indicates the straight-line distance required
of an FM motion, which is calculated.

We now describe the rules for generating LCN contact states
of a given contact state <CF, C> below. Each rule hypothe-
sizes topologically feasible LCN CFs based on the type of CF

and passes to the function feasible the information of possi-
ble neighboring relaxation motions to each hypothesized LCN
state. A true LCN state is found if feasible returns 1.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 603

For Single-PC CFs

• SR({a-b}): (change one PC)

1. {a′-b} is an LCN iff
(a is a face or an edge and a′ ⊂ ∂a) AND
(f easible(FM, , , �) while a′ ∈ b)

2. {a-b′} is an LCN iff
(b is a face or an edge and b′ ⊂ ∂b) AND
(f easible(FM, , , �) while b′ ∈ a)

For Two-PC CFs

1. PR1({a-b, PC2}): (keep one PC, remove one PC)
IF ¬(CP 1 ‖ CP 2), THEN

• {a-b} is an LCN iff
f easible(IT , �dCP 2 , +/−, δ),
where, �dCP 2 refers to the projection of �nCP 2 on
CP 1

ELSE,

• {a-b} is an LCN iff
((a-b is not an f-f with an edge e or vertex v in-
volved) AND
f easible(IR, v/e,+/−, δ))
OR
((a-b is an f-f PC) AND
f easible(FM, , , �) while PC1 is maintained
and PC2 is broken)

2. PR2({{a-b}, PC2}): (change one PC, keep one PC)
IF (a-b is an f-f or f-e/e-f PC) AND ¬(CP 1 ‖ CP 2)

THEN

(a) {a′-b, PC2} is an LCN iff
((a′ ⊂ ∂a) AND
(f easible(FM, , , �) while a′ ∈ b and PC2 is
maintained) AND
((a′ is an edge and a′ ⊥ CP 2, let d be a′) OR
(a′ is a vertex, let d be a line from a′ and
⊥ CP 2, and a and d are not collinear)) AND
f easible(IR, d,+/−, δ))
OR
((PC is not f-f with an edge e or vertex v involved)
AND
(a′ ⊂ ∂a) AND f easible(IC, e/v, +/−, δ))

(b) {a-b′, PC2} is an LCN iff
similar to the above by exchanging a and b.

3. PR3({a-b, PC2}): (change one PC, remove one PC)
IF {a-b} is an f-f or f-e/e-f PC, THEN

(a) {a′-b} is an LCN iff
(a′ ∈ ∂a) AND (f easible(FM, , , �) while a′ ∈
b and PC2 is maintained) AND
(f easible(IR, a′, +/−, δ)whilePC2 is broken)

(b) {a-b′} is an LCN iff
similar to the above by exchanging a and b.

4. PR4({a-b, c-d}): (change both PCs)
IF both are f-f or f-e/e-f PCs, THEN

(a) {a′-b, c′-d} is an LCN iff
((a′ ⊂ ∂a and a′ ∈ b) AND
(f easible(IR, a′, +/−, δ) while c-d is changed
to c′-d))
OR
((¬(CP 1 ‖ CP 2)) AND (a′ ⊂ ∂a and c′ ⊂ ∂c)
AND
(a′ ∈ b, c′ ∈ d) ANDf easible(IC, a′/c′, +/−, δ))

(b) {a-b′, c-d ′} is an LCN iff
similar to (a) by exchanging a with b, and c with
d.

(c) {a′-b, c-d ′} is an LCN iff
similar to (a) by exchanging c with d.

(d) {a-b′, c′-d} is an LCN iff
similar to (a) by exchanging a with b, and c with
d.

For Three-PC CFs

1. TR1({PC1, PC2, PC3}): (keep two PCs, remove one)

(a) IF ¬(CP 1 ‖ CP 2) and they intersect at CL

THEN

• {PC1, PC2} is an LCN iff
(¬(CL ‖ CP 3)AND feasible(IT , CL,+/−, δ))
OR
((CL ‖ CP 3) AND (No PC is f-f) AND
(feasible(IC, CL1/CL2, +/−, δ)whilePC3

is broken))
OR
((CL ‖ CP 3) AND (at least one PC is f-f)
AND
(feasible(FM, , , �) while PC3 is broken))

(b) IF only CP 1 ‖ CP 2 THEN

• {PC1, PC2} is an LCN iff
(feasible(IT , �dCP 3 , +/−, δ) while PC3 is
broken,
where �dCP 3 is the projection of �nCP 3 on
CP 1))

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

604 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

(c) IF CP 1 ‖ CP 2 and CP 2 ‖ CP 3 THEN

• {PC1, PC2} is an LCN iff
(Rule PR1 can be applied to {PC1, PC3} to
yield {PC1} while PC2 is maintained)
OR
(Rule PR1 can be applied to {PC2, PC3} to
yield {PC2} while PC1 is maintained)

2. TR2({PC1, PC2, PC3}): (keep one PC, remove two)

(a) {PC1} is an LCN iff
¬(CP 1 ‖ CP 2) AND ¬(CP 1 ‖ CP 3) AND
(feasible(IT , �dCP 23 , +/−, δ),
where �dCP 23 is the projection of �d on CP 1, and
�d = �nCP 2 + �nCP 3)

(b) {PC1} is an LCN iff
(PC1 is not an f-f PC with edge e or vertex v

involved) AND
feasible(IR, v/e,+/−, δ)

3. TR3({PC1, PC2, PC3}): (keep two PCs, change one)
IF PC3 is an f-f or f-e/e-f PC THEN

• {PC1, PC2, PC′
3} is an LCN iff

((CP 1 ‖ CP 2) AND
(feasible(IR, r,+/−, δ), where r ⊥ CP 1 and r

⊥ CP 2))
OR
((PC1 and PC2 are not f-f PCs) AND (¬(CP 1 ‖
CP 2)) AND
(feasible(IC, CL1/CL2, +/−, δ) while PC3 is
changed to PC′

3))

4. TR4({PC1, PC2, PC3}): (keep one PC, change two)
IF PC1 and PC2 are f-f or f-e/e-f PCs THEN

• {PC′
1, PC′

2, PC3} is an LCN iff
(Rule PR4 can be applied to {PC1, PC2}, while
PC3 is maintained)

5. TR5({PC1, PC2, PC3}): (change two PCs, remove
one)
IF PC1 and PC2 are f-f or f-e/e-f PCs THEN

• {PC′
1, PC′

2} is an LCN iff
(Rule PR4 can be applied to {PC1, PC2}, while
PC3 is broken)

6. TR6({PC1, PC2, PC3}): (change one PC, remove
two)
IF PC1 is an f-f or f-e/e-f PC THEN

• {PC′
1} is an LCN iff

(Rule PR3 can be applied to {PC1, PC2}, while
PC3 is broken)

7. TR7({PC1, PC2, PC3}): (keep one, change one, and
remove one)
IF PC2 is an f-f or f-e/e-f PC THEN

• {PC1, PC′
2} is an LCN iff

(Rule PR2 can be applied to {PC1, PC2}, while
PC3 is broken)

8. TR8({PC1, PC2, PC3}): (change three PCs)
IF all the three are f-f or f-e/e-f PCs THEN

• {PC′
1, PC′

2, PC′
3} is an LCN iff

(Rule PR4 can be applied to {PC1, PC2}, while
PC3 is changed to PC′

3)

Acknowledgments

This work was supported by the National Science Foundation
(IIS-9700412 and CDC-9726424). The authors are in debt to
David Johnston for his contribution in writing the interactive
three-dimensional display program for viewing contact state
graphs. The authors would also like to thank Jean-Claude
Latombe, Oussama Khatib, and Jean-Paul Laumond for help-
ful discussions. Finally, the authors are grateful to the anony-
mous reviewers for their efforts and comments.

References

Avnaim, F., Boissonnat, J. D., and Faverjon, B. 1988. A
practical exact motion planning algorithm for polygonal
objects amidst polygonal obstacles. Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, April, pp. 1656–1661.

Brost, R. 1989. Computing metric and topological proper-
ties of configuration-space obstacles. Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, May, pp. 170–176.

Bruyninckx, H., and Schutter, J. 1998. Modeling and speci-
fication of compliant motions with two and three contact
points. Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 1938–1943.

Buckley, S. J. 1989. Planning compliant motion strategies.
International Journal of Robotics Research 8(5):28–44.

Dakin, G., and Popplestone, R. 1992. Simplified fine-motion
planning in generalized contact space. IEEE International
Symposium on Intelligent Control, pp. 281–287.

Desai, R. 1989. On fine motion in mechanical assembly
in presence of uncertainty. Ph.D. thesis, University of
Michigan.

Desai, R., Xiao, J., and Volz, R. 1988. Contact formations
and design constraints: A new basis for the automatic

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

Xiao and Ji / Generation of Contact State Space 605

generation of robot programs. In NATO ARW: CAD Based
Programming for Sensor Based Robots, ed. B. Ravani,
361–395. New York: Springer-Verlag.

De Schutter, J., Bruyninckx, H., Dutré, S., De Geeter, J.,
Katupitiya, J., Demey, S., and Lefebvre, T. 1999. Estimat-
ing first order geometric parameters and monitoring con-
tact transitions during force controlled compliant motion.
International Journal of Robotics Research 18(12):1161–
1184.

Donald, B. R. 1985. On motion planning with six degree
of freedoms: Solving the intersection problems in con-
figuration space. Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 536–541.

Hirukawa, H. 1997. On motion planning of polyhedra in con-
tact. Algorithms for Robotic Motion and Manipulation:
Workshop on the Algorithmic Foundations of Robotics,
Boston: A. K. Peters, pp. 381–392.

Hirukawa, H., Papegay, Y., and Matsui, T. 1994. A motion
planning algorithm for convex polyhedra in contact under
translation and rotation. Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, May,
pp. 3020–3027.

Hocaoglu, C., and Sanderson, A. 1998. Evolutionary path
planning using multiresolution path representation. Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, May, pp. 318–323.

Hopcroft, J., and Wilfong, G. 1986. Motion of objects in con-
tact. International Journal of Robotics Research 4(4):32–
46.

Inoue, H. 1974. Force feedback in precise assembly tasks.
Report No. AIM-308, AI Lab, Massachusetts Institute of
Technology.

Ji, X. 2000. On generation of contact state space and con-
tact motion planning. Ph.D. thesis, University of North
Carolina at Charlotte.

Ji, X., and Xiao, J. 2001a. On random sampling in contact
configuration space. In New Directions in Algorithmic and
Computational Robotics, ed. B. R. Donald, K. Lynch, and
D. Rus. Boston: A. K. Peters.

Ji, X., and Xiao, J. 2001b. Planning motion compliant to
complex contact states. International Journal of Robotics
Research, forthcoming.

Johnston, D., and Xiao, J. 2000. On relating the discon-
nectedness of a topological contact state to the geometric
properties of its constituent objects. Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, April, pp. 2284–2289.

Joskowicz, L., and Taylor, R. H. 1996. Interference-free in-
sertion of a solid body into a cavity: An algorithm and
a medical application. International Journal of Robotics
Research 15(3):211–229.

Kang, S. C., et al. 1997. A compliant motion control for
insertion of complex shaped objects using contact. Pro-

ceedings of the IEEE International Conference on Robotics
and Automation, pp. 841–846.

Kavraki, L. E., and Latombe, J. C. 1998. Probabilistic
roadmaps for robot path planning. In Practical Motion
Planning in Robotics: Current Approaches and Future
Directions, ed. Gupta, K., and del Pobil, A. P., New York:
John Wiley & Sons, pp. 33–53.

Kavraki, L. E., Svestka, P., Latombe, L. C., and Overmars, M.
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12:566–580.

Latombe, J. C. 1991. Robot Motion Planning. Norwell, MA:
Kluwer Academic.

Lin, M. C., Manocha, D., Cohen, J., and Gottschalk, S. 1996.
Collision detection: Algorithms and applications. Pro-
ceedings of the Workshop on Algorithmic Foundations of
Robotics, March.

Lozano-Pérez, T. 1983. Spatial planning: A configuration
space approach. IEEE Transactions on Computing C-
32:108–120.

Lozano-Pérez, T., Mason, M. T., and Taylor, R. H. 1984.
Automatic synthesis of fine-motion strategies for robot.
International Journal of Robotics Research 3(1):3–24.

Mason, M. T. 1982. Compliant motion. In Robot Motion:
Planning and Control, ed. M. Brady et al., 305–322. Cam-
bridge, MA: MIT Press.

McCarragher, B. J. 1996. Task primitives for the dis-
crete event modeling and control of 6-DOF assembly
tasks. IEEE Transactions on Robotics and Automation
12(2):280–289.

Rosell, J., Basañez, L., and Suárez, R. 1997. Determin-
ing compliant motions for planar assembly tasks in the
presence of friction. Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 946–951.

Sacks, E., and Bajaj, C. 1998. Sliced configuration spaces for
curved planar bodies. International Journal of Robotics
Research 17(6):639–651.

Shekhar, S., and Khatib, O. 1987. Force strategies in real-time
fine motion assembly. Proceedings of the ASME Winter
Annual Meeting, Boston, MA.

Sturges, R. H., and Laowattana, S. 1995. Fine motion plan-
ning through constraint network analysis. IEEE Interna-
tional Conference on Assembly and Task Planning, Pitts-
burgh, PA, August, pp. 160–170.

Whitney, D. E. 1985. Historical perspective and state of the
art in robot force control. Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 262–
268.

Xiao, J. 1993. Automatic determination of topological con-
tacts in the presence of sensing uncertainties. Proceedings
of the IEEE International Conference on Robotics and Au-
tomation, Atlanta, May, pp. 65–70.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

606 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2001

Xiao, J. 1997. Goal-contact relaxation graphs for contact-
based fine motion planning. 1997 IEEE International Con-
ference on Assembly and Task Planning, Marina Del Rey,
CA, August, pp. 25–30.

Xiao, J., Michalewicz, Z., Zhang, L., and Trojanowski, K.
1997. Adaptive evolutionary planner/navigator for mobile
robots. IEEE Transactions on Evolutionary Computation
1:18–28.

Index to Multimedia Extensions
Extension Media Type Description

1 Data Sample input file to GCR-gen
2 Data Sample output of GCR-gen
3 Images Display of the sample GCR graph
4 Image Example of the merged result of two GCR graphs
5 Code GCR-gen and GCR-merge programs
6 Code Show-GCR program (executables)
7 Video Animation of the example in Figure 8
8 Videos Animations of the Star example

NOTE: GCR = goal-contact relaxation. The multimedia extensions can be found online by following the hyperlinks from
www.ijrr.org.

Xiao, J., and Volz, R. 1989. On replanning for assembly tasks
using robots in the presence of uncertainties. Proceedings
of the IEEE International Conference on Robotics and Au-
tomation, May, pp. 638–645.

Xiao, J., and Zhang, L. 1997. Contact constraint analysis and
determination of geometrically valid contact formations
from possible contact primitives. IEEE Transactions on
Robotics and Automation 13(3):456–466.

 © 2001 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Jing Xiao on July 24, 2008 http://ijr.sagepub.comDownloaded from

http://www.ijrr.org/v20/7/xiao/index.htm
http://www.ijrr.org
http://ijr.sagepub.com

