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Abstract— Information of high-level, topological contact
states is useful and sometimes even necessary for a wide range
of robotic tasks involving interactions between a robot and
its environment or objects of manipulation. While most of
the existing research is focused on contact states between
two rigid bodies, this paper presents a practical approach
to represent concisely and generate automatically graphs of
contact states between a polygonal object and an articulated
planar object, i.e., a planar kinematic chain. The approach
effectively exploits topological and geometrical constraints
associated with such contact states to ensure both correctness
and efficiency, as demonstrated by the implementation and
applied examples.

Index Terms— contact state graphs, planar kinematic chain,
polygon, automatic generation, topological and geometrical
constraints, contact constraints, compliant motion

I. INTRODUCTION

Many robotic tasks involve articulated robots in contact
with the environment or objects and in compliant motion,
ranging from grasping to whole arm manipulation to snake
robot maneuvering inside a tight space for inspection, etc.
It is often necessary to know not only the precise contact
configuration of a robot but also the contact topology and
geometry characterized by high-level, discrete, topological
contact states. For example, when a robot arm is in a
contact configuration, one needs to know which parts of the
robot arm (e.g., upper or lower or both, inside or outside)
are in what kind of contacts (e.g., point or line or area
contacts), i.e., information captured in a contact state, in
order to devise motions for whole-arm manipulation (e.g.,
[5], [8], [2]).

Contact states and adjacency information can be captured
by a discrete contact state graph, where each node denotes
a contact state and each arc links two adjacent contact
states. Such a graph can be viewed as a partition of contact
configurations on the surface of a C-obstacle. It offers a
good characterization of a C-obstacle, which is difficult to
compute in high-dimensional configuration space[1]. There
is considerable research on representation and automatic
generation of contact state graphs between two rigid bodies
[7], [4], but not much attention is given to contact state
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space involving articulated objects, which introduce more
degrees of freedom. Indeed, even for a planar kinematic
chain interacting with a planar object, the corresponding
C-obstacle can be of very high-dimensions if the chain has
many degrees of freedom. In [3], a formalism was intro-
duced to represent contact states involving an articulated
polyhedral object based on the oriented matroid theory.
However, it is too complex for implementation.

In this paper we present a practical approach to represent
and generate automatically graphs of contact states between
a polygonal object and a planar kinematic chain with
revolute joints. A kinematic chain is the basic form of
various components in an articulated robot (e.g., a finger,
an arm, a leg, or a snake). Our approach effectively
exploits topological and geometrical constraints associated
with such contact states to ensure both correctness and
efficiency, as demonstrated by the implementation and a
test example. Note that we only consider geometrically
feasible contact states without regarding the aspects of
contact forces (such as force closure property).

The paper is organized as follows. Section II introduces
the planar kinematic chain considered in this paper. Section
III represents contact states between a polygonal object
and a planar kinematic chain. In Section IV, neighboring
contact states are defined, and in particular, locally-defined
neighboring (LN) contact states, are analyzed. Section
V describes our algorithm to generate automatically a
graph of LN contact states from a seed contact state. The
implementation and a testing example are introduced in
Section VI, and Section VII concludes the paper.

II. PLANAR KINEMATIC CHAIN, ITS JOINT STATES,
AND ARTICULATED FORMATION

For simplicity, we consider a planar kinematic chain with
revolute joints as consisting of only link edges (of fixed
lengths) and vertices, which include joint vertices, as shown
in Figure 1.

The configuration of a planar kinematic chain with revo-
lute joints can be defined as consisting of its base position
and orientation and joint angles: (xb, yb, φb, θ1, ..., θn), as
shown in Figure 2.

We can qualitatively characterize the joint configurations
(θ1, ..., θn) of a planar kinematic chain in the following
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Fig. 1. An example planar kinematic chain, where v1 and v2 are joint
vertices
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Fig. 2. The configuration of a planar kinematic chain

way. We use “+” and “-” to distinguish two sides of a planar
kinematic chain. We further define the following types of
topological joint states between two adjacent links:
• acute state: two adjacent links form an acute angle;
• obtuse state: two adjacent links form an obtuse angle;
• line state: two adjacent links form a straight line.

Figure 3 shows different types of joint states. Depending
on which side the angle is formed between two adjacent
links, we use “ + +” and “ + ” to denote a “+” side acute
and obtuse state respectively and use “−−” and “− ” to
denote a “-” side acute and obtuse state respectively. We
use “0” to denote the line state.

III. CONTACT STATES BETWEEN A POLYGONAL
OBJECT AND A PLANAR KINEMATIC CHAIN

We define edges and vertices of a polygon or a planar
kinematic chain as its boundary elements. We further define
the vertices of an edge as the boundary elements of the
edge. For simplicity, we use e and v to denote edge and
vertex respectively.

Between a polygonal object A and a planar kinematic
chain B, a joint vertex v of B is considered in a concave
state if A is on the side where the links form v are in an
acute or obtuse state; otherwise, it is convex. For example,

acute state obtuse state

line state

Fig. 3. Different topological joint states between two adjacent links of
a planar kinematic chain
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Fig. 4. Examples of different PCs between a polygon and a planar
kinematic chain
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Fig. 5. Examples of contact formations

if v is in a “+” side acute state, and A is on the “+” side
of B, then v is concave.

We now extend the notion of principal contact (PC) [6]
to describe a primitive contact between a polygonal object
A and a planar kinematic chain B: A principal contact is
in terms of a pair of contacting boundary elements αA of
A and αB of B such that not both elements are convex
bounding elements of other contacting boundary elements.

There are three types of PCs: v-v, v-e/e-v, and e-e,
where the first two types are point contacts, and the last
type is a line contact.

Figure 4 shows two examples with different number of
PCs. Figure 4a shows an example with two PCs, a point
contact and a line contact. Figure 4b shows an example
with only one PC of line contact.

We further extend the notion of contact formation [6],
[7] to describe a general contact state between a polygonal
object A and a planar kinematic chain B as a set of PCs
formed: CF = {PC1, PC2, · · ·, PCm}. Moreover, the
cardinality of a CF describes the total number of PCs
included in the CF, denoted as card(CF).

Figure 5 shows some examples of contact formations.
The geometrical representation of a CF denotes the set

of configurations of the kinematic chain B relative to the
contacting polygonal object A that satisfy all conditions
of the PCs in the CF. Generally, such a set may consist
of one or more connected regions of configurations, called
CF-connected regions in the configuration space. Within a
CF-connected region, there exists a motion constrained by
the CF from any contact configuration to any other one,
called a CF-compliant motion. In other words, there is no1565



Fig. 6. Examples of LN CFs

need to change the CF in moving from one configuration
to another within a CF-connected region. Thus, we define
a contact state(CS) as a single CF-connected region of
configurations, represented by the CF and a representative
configuration in the region, denoted as a pair <CF, C>.

IV. NEIGHBORING CONTACT STATES

Two contact states <CFi, Ci> and <CFj , Cj> are
called neighboring contact states if there exists a rela-
tive and compliant motion of the contacting objects that
changes CFi to CFj without going through another CF
or complete loss of contact, and CFi and CFj are called
neighboring contact formations. The motion is called a
neighboring transition motion.

If two single-PC CFs, CFi = {(PCi, 1)} and CFj =
{(PCj , 1)}, where PCi 6= PCj , are neighboring CFs, then
PCi and PCj are called neighboring principal contacts.
Moreover, two neighboring PCs PCi =αiA-αiB and PCj

= αjA-αjB satisfy one of the following conditions:
1) αiA = αjA and αiB is adjacent to αjB ;
2) αiB = αjB and αiA is adjacent to αjA;
We can now further distinguish two kinds of neighboring

contact states based on the topological information of
the neighboring CFs. For two neighboring contact states
<CFi, Ci> and <CFj , Cj>, <CFj , Cj> is a locally-
defined neighbor (LN) of <CFi, Ci> if the following
conditions are satisfied:
• card(CFj) ≤ card(CFi), and
• every PC in CFj either belongs to CFi or is a

neighboring PC of a PC in CFi.
If card(CFj) < card(CFi), then CFi is a globally-

defined neighbor (GN) of CFj ; <CFi, Ci> is a GN
contact state of <CFj , Cj>, and <CFj , Cj> is an LN
contact state of <CFi, Ci>.

The reason we differentiate LNs and GNs is that given
a CF, the topological information of its LN CFs can be
derived directly from its own topological information; that
is, from the PCs in the CF, one can obtain the possible PCs
of the LN CFs of the CF. This is a very useful property
for automatic generation of articulate contact states.

Figure 6 shows an example of LN CFs. Figure 7 shows
an example of LN and GN CFs, where CF1 is a LN
CF of CF2, and its topological representation can be
derived directly from CF2; however, one cannot obtain the
topological representation of CF2, which is a GN CF of
CF1, directly from that of CF1.

The contact state space can be defined as a contact state
graph G, where each node denotes a valid contact state

CF v-e
1
={ } CF

2
={ , }v-e v-e

Fig. 7. An example of LN and GN CFs

<CF , C>, each link connects two neighboring contact
states.

V. GENERATION OF CONTACT STATE SPACE

Our approach to generate a contact state graph is similar
to that used to generate a contact state graph between
two rigid bodies [4] at the high-level: generate special
subgraphs of the contact state graph G automatically and
merge these subgraphs automatically.

Each special subgraph we generate is an undirected
graph consisting of a seed contact state <CFs, Cs>, its
LN contact states, their subsequent LN contact states, and
so on, which we call a LN graph of <CFs, Cs>. Starting
from the seed contact state <CFs, Cs>, the LN graph can
be grown by repeatedly obtaining LN contact states until
all the LN contact states have been generated in a breadth-
first search. In the loop for obtaining an LN contact state,
there are two key steps:

(1) From a known contact state <CFi, Ci>, hypothesize
its LN CFs based on the topological information of CFi,
and

(2) determine if a hypothesized LN CF, CFj , is valid or
not by checking if there is a feasible neighboring transition
motion from Ci under CFi to some configuration Cj under
CFj that changes CFi to CFj . If such a feasible motion
exist, then <CFj , Cj> is a valid LN contact state of
<CFi, Ci>.

It is in the above two key steps that our approach
deals with challenges specific to contact states involving
an articulated object (or in our case, a planar kinematic
chain). We explain both steps in detail below.

A. Hypothesizing LN CFs

For a CF with a single principal contact CFi = {PCi},
to obtain a hypothesized LN CF of CFi is to change PCi

to one of its neighboring PCs.
For a CF CFi with multiple principal contacts, i.e.,

card(CFi) ≥ 2, an LN CF can be obtained by a combina-
tion of the following actions: keep some PCs, change some
PCs to neighboring PCs, and remove some PCs. Thus, we
also use these actions to hypothesize possible LN CFs of
CFi. Note that no keep or remove action can be applied
simultaneously to all PCs in the CF.

However, if we blindly hypothesize LN CFs by taking
a combination of keep, change, and remove PCs in CFi,
The number of hypothesized LN CFs will be too large
as the result of the combinatorial explosion, but most of1566



these hypothesized ones are not possible topologically or
geometrically.

Our strategy is therefore to try to hypothesize only
topologically possible combinations as candidate LN CFs,
and for these candidates, we next check if they are geo-
metrically feasible by considering the relevant neighboring
transition motions (see next subsection). For CFs between
a polygonal object A and a planar kinematic chain B,
many topologically infeasible combinations can be ruled
out based on the following:

1) A vertex of one object cannot contact two different
edges or vertices of the other object.

2) If A is convex, then it is impossible for an edge of B
to contact two different edges of A or to contact two
different vertices of A not sharing the same edge.

3) It is impossible for a CF to include such two pairs
of v-v type PCs that the vertices on each object are
bounds of one edge, but the two edges are not of the
same length.

4) It is impossible for a CF to include two PCs defined
by the two vertices of one edge eA contacting an
edge eB or its bounding vertices at the same time, if
eA is longer than eB .

5) It is impossible for a CF to include two PCs defined
by the two vertices of one edge eB contacting an
edge eA or its bounding vertices at the same time, if
eB is longer than eA.

6) It is impossible for a CF to include the following
three types of PCs: vA

1-eB
1 , vA

2 -eB
2 , and eA-eB

3 ,
where vA

1 and vA
2 bound eA and eB

3 is adjacent to
either eB

1 or eB
2 .

7) It is impossible for a CF to include the following
three types of PCs: eA

1 -eB
1 , eA

2 -eB
2 , and vA-vB , where

vA is common to both eA
1 and eA

2 , eB
1 and eB

2 have
no more than one link between them, but vB is not
shared by eB

1 and eB
2 .

8) It is impossible for a CF to include the following
two types of PCs: vA-eB and eA-vB , where vB is a
vertex of eB , but vA is a vertex of eA. If A is convex,
then it is impossible to have those two types of PCs
even if vA is not a vertex of eA.

9) It is impossible for a CF to include the following two
types of PCs: eA-eB ,vA-vB , where vA is a vertex of
eA, vB is not a vertex of eB but is a vertex of an
edge adjacent to eB .

10) It is impossible for a CF to include the following two
types of PCs: eA

1 -eB , eA
2 -vB , where eA

1 and eA
2 are

adjacent, and vB is a vertex of eB .

B. Neighboring Transition Motions
Given a rigid polygonal object A and a planar kinematic

chain B. To change the CF between them to a locally-
defined neighboring (LN) CF, a neighboring transition
motion of the kinematic chain B can be used. B can both
translate and rotate without changing its joint configuration
or have joint motions, all under the contact constraints.
Figure 8 shows the neighboring transition motion of B
changing a vA-eB PC to a vA-vB PC in a three-PC CF.

Fig. 8. An example of neighboring transition motion.

To check if a hypothesized LN CF CFj from a CF CFi

is geometrically feasible is to see whether or not there
exists a neighboring transition motion from CFi to CFj .
Any neighboring transition motion may involve remove,
keep, or change one or more PCs of CFi, as introduced
earlier.

To find a neighboring transition motion, our strategy is
to first check if there are either v-v or e-e types of PCs to
keep because only a few types of motions can keep such
PCs:
• To keep a v-v type of PC, only pure rotations or

revolute joint motions are possible.
• To keep a e-e type of PC, only pure translations

or pure translations combined with revolute joint
motions are possible.

We next see if one of the above motions can also ac-
complish the change or remove actions as required by
the transition from CFi to CFj . If one motion can do so
without causing unwanted contact or loss of contact, we
then know that CFj is a valid LN CF of CFi.

If the transition from CFi to CFj does not require keep-
ing any v-v or e-e type of PCs, our strategy is to consider
a change motion of one PC PCi in CFi to a hypothesized
PC PCj in CFj if a change action is required. Such
a change motion can be a combination of base motions
(i.e., translation and rotation) and various joint motions of
the kinematic chain B, under the contact constraints on
contacting links of B and also the geometric constraints
on both the contacting and non-contacting links of B.
Such a motion of a kinematic chain can be quite complex
without an analytical expression (i.e., without analytical
solutions of the constraint equations and inequalities, which
are transcendental with respect to joint variables). Thus, we
use a numerical approach to construct such a motion and
to check its geometrical feasibility.

To be concrete, if a link eB is involved in changing
PCi in CFi to PCj in CFj , we first consider the required
motion of eB as classified in the following 8 categories:

1) To change a vA-eB type PC to an eA-eB type PC,
where vA is a vertex of eA, the motion of eB has to
include a rotation about vA of the angle between eA

and eB .
2) To change an eA-eB type PC to a vA-eB type PC,

where vA is a vertex of eA, if vA is on eB , the
motion of eB has to include a small rotation about
vA; otherwise, a translation of eB along eA is needed
to make vA on eB before the motion with the small1567



rotation of eB .
3) To change an eA-vB type PC to an eA-eB type PC,

where vB is a vertex of eB , the motion of eB has
to include a joint motion or rotation about vB of the
angle between eA and eB .

4) To change an eA-eB type PC to an eA-vB type PC,
where vB is a vertex of eB , the motion of eB has to
include a small joint motion or rotation about vB if
vB is on eA; otherwise, a translation of eB along eA

is needed to make vB on eB before the motion with
a small joint motion or rotation of eB .

5) To change a vA-vB type PC to an eA-vB type PC,
where vA is a vertex of eA, the motion of either link
sharing vB has to include a small translation along
eA.

6) To change an eA-vB type PC to a vA-vB type PC,
where vA is a vertex of eA, the motion of either link
sharing vB has to include a translation along eA to
make vB meet vA.

7) To change a vA-eB type PC to a vA-vB type PC,
where vB is a vertex of link eB , the motion of eB

has to include a translation to make vB reach vA

while keeping eB in contact with vA.
8) To change a vA-vB type PC to a vA-eB type PC,

where vB is a vertex of eB , the motion of eB has
to include a translation to move vB away from vA

while keeping vA contacting eB .

Note that in the above, only the required motions are
specified, and such motions of eB are of one degree
of freedom. However, a v-e/e-v PC allows two degrees
of motion freedom for an involved edge. Therefore, a
required compliant rotation (or translation) of eB in a v-
e/e-v PC can be accompanied by compliant translations (or
rotations/joint motions). The extra degree of freedom can
be used to add a ”wiggling” component to the required
motion in order to satisfy the geometric constraints and
other contact constraints when the motion of the entire
kinematic chain is considered. When there is an extra
degree of freedom, if the required motion of eB is a
translation, then a wiggling rotational motion can be added,
and if the required motion of eB is a rotation, then a
wiggling translational motion can be added if helpful.

To incorporate the corresponding motions of the other
links of B when eB moves, we digitize the motion of eB

into small steps, and for each small step motion of eB ,
our algorithm then moves the other relevant links of B
in corresponding small steps to satisfy both the geometric
constraints of B and the contact constraints of the other
PCs in CFj . If each small step of every moving link
is free of unintended contact/collision or unintended loss
of contact, we say that a feasible neighboring transition
motion exists (as the integration or sum of the small steps)
between CFi and CFj . We then know that CFj is a valid
LN CF of CFi.

As an example, let us consider how the neighboring
transition motion indicated in Figure 8 is found. The object
boundary elements and the starting CF of that example

Object A
Object B

v0

A

v1

A

v2

A

v0

B

v1

B

v2

B

v3

B

Fig. 9. Two objects A and B for the example in Figure 8

are drawn in Figure 9. Object A is assumed fixed, and
the coordinates for vA

0 and vA
1 are (xA

0 , yA
0 ) and (xA

1 , yA
1 )

respectively. Let (xB
i , yB

i ) denote the coordinate of B’s
vertex vB

i , i = 0, 1, 2, 3. Let d(i, i+1) be the distance from
vB

i to vB
i+1, i=0, 1, 2. Let eB

i denote the i-th link of B,
and let li be the length of eB

i , i=0, 1, 2. The geometric
constraints of B can be expressed as ‖d(i,i+1)‖ = li,
i = 0, 1, 2, and the bounds on the angle between two
vectors d(i,i+1) and d(i+1, i+2), i=0, 1. Under the CF
shown on the left of the figure 8, there are three vA-eB

types of PCs, resulting in three contact constraint equations
and additional inequalities.

To change the CF on the left to the CF on the right
in Figure 8 requires the change of the PC vA

0 -eB
0 to the

neighboring PC vA
0 -vB

0 . Thus, according to our algorithm,
the motion of eB

0 requires a translation to make vB
0 reach

vA
0 . By adding a wiggling rotational motion, the actual

path of vB
0 is a waving one towards vA

0 . The wiggling
motion is characterized by a bound on magnitude and a
frequency: the magnitude is within the allowed interval
for the rotational degree of freedom, and the frequency is
related to the resolution of the digitization for the motion
of vB

0 (i.e., the finer resolution, the higher frequency). For
each small step motion of vB

0 , the corresponding small
motion of vB

1 is decided based on the geometric constraints
between vB

0 and vB
1 and the contact constraints involving

vA
0 . Subsequently, the corresponding small motion of vB

2

is decided based on the geometric constraints between vB
1

and vB
2 and the contact constraints involving vA

1 , and the
small motion of vB

3 can be decided in turn.
If, at any step, under the geometric constraints, some

contact constraints cannot be satisfied and loss of contact
or penetration occurs, the motion is considered not feasible.
A new motion can be tried by adjusting the wiggling
component (either its magnitudes or frequencies). Our
analysis and tests show that if a few wiggly motions cannot
be successful, the transition from CFi to a hypothesized
LN CF CFj is either extremely difficult or impossible.
Thus, CFj is discarded as not a valid LN CF of CFi.

Finally, if a neighboring transition motion only requires
to remove some PCs, the motion can be infinitesimal.
Again, our strategy first identifies a link eB of B involved
in a PC to be removed and an infinitesimal motion of
eB to remove the PC and then moves the other links
while satisfying the geometric constraints and other contact
constraints. If such a motion cannot be found without a1568
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Fig. 10. An example

violation of constraints, the hypothesized LN CF is not
valid.

VI. IMPLEMENTATION

We have implemented the general algorithm for auto-
matic generation of an LN graph from a seed contact state
between a polygonal object A and a planar kinematic chain
B. The algorithm is implemented in Microsoft Visual C++
6.0.

Figure 10 shows an example that our algorithm applied.
In Figure 10a, object A is a triangle, and its boundary
consists of three different vertices and edges. The three
edges eA

0 , eA
1 , and eA

2 have lengths 3.6, 6.0, and 5.0 mm
respectively. Object B has three links eB

0 , eB
1 , and eB

2 , with
lengths 4.8, 4.24, and 5.59 mm respectively. In Figure 10b,
a seed contact state is shown with three PCs. From this
seed contact state, our algorithm has generated an LN graph
with 86 contact states in 23 seconds. Figure 11 shows some
contact states generated.

Note that in Figure 11, the contact state (7) appears to
be the same as the contact state (1), but actually the two
states are not the same. Both contact states involve two
v-e types of PCs, but the contact state (1) has a v-v PC,
whereas the contact state (7) has a e-v PC, in addition.

Note that for the implemented example, if topologically
infeasible combinations are not ruled out in hypothesizing
LN CFs, the total number of PC combinations (for n PCs,
1 ≤ n ≤ 3) will be 26502. With many topologically
infeasible combinations ruled out as described in Section
V.A, the number of hypothesized CFs is drastically reduced
to 2098. Among these hypothesized CFs, 86 of them are
also geometrically feasible and therefore represent valid
contact states as generated by our algorithm.

VII. CONCLUSIONS

In this paper, we have presented a practical new approach
to generate automatically contact state graphs between a

seed

(4)

(2) (3)(1)

(5) (6)

(7) (8)

Fig. 11. Some contact states generated for the example

polygonal object and a planar kinematic chain. Automatic
generation of contact state graphs is not only very desirable
because it is tedious to do that manually but also necessary
since many contact states and state transitions cannot be
imagined or drawn easily. This is particularly true when
a kinematic chain, not just a rigid body, is involved in
a contact. The introduced algorithm is very efficient in
exploiting kinematic and contact constraints to determine
valid contact states and state transitions. It can be extended
to dealing with more than one kinematic chain in contact.
As a future step, more complex examples will be tested
with our algorithm, and more complex objects, such as
curved objects, will be considered. A long term objective
is to investigate extension to spatial kinematic chains and
objects.
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