
Real-time Tight Coordination of Mobile Manipulators in

Unknown Dynamic Environments∗

John Vannoy
IMI Lab, Dept. of Computer Science

University of North Carolina - Charlotte
Charlotte, NC 28223, USA

jvannoy@uncc.edu

Jing Xiao
IMI Lab, Dept. of Computer Science

University of North Carolina - Charlotte
Charlotte, NC 28223, USA

xiao@uncc.edu

Abstract— This paper considers the problem of planning
closed-chain motion for a pair of mobile manipulators to
transport a common payload in a dynamically unknown
environment (i.e., an environment with moving obstacles of
unknown motion). We present a novel algorithm to plan the
actions of the two robots in the team, one leader and one
helper, in real-time to accomplish the task while avoiding
other obstacles in the unknown dynamic environment. Our
algorithm does not assign fixed roles to the two team members,
but rather it dynamically decides who should lead based on
circumstances to optimize the team’s performance. The planner
is readily extensible to handle a team of more than two robots in
tight collaboration. The approach is implemented and tested in
simulated task environments, which demonstrate the planning
algorithm’s effectiveness and efficiency.

Index Terms— real-time, cooperative transport task, tight co-
ordination, closed-chain, multiple mobile manipulators, adap-
tive, dynamic obstacles of unknown motion

I. INTRODUCTION

In order to transport an object too heavy/large for one

robot, two or more robots need to carry the object as

a common payload together and transfer it. This requires

tight coordination of the motions of the robot manipulators

in a closed-chain system. There has been much literature

addressing various aspects of tight coordination control and

dynamics (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],

[11]).

As for planning motions, an approach was introduced in

[12] for three fixed-base 6-DOF manipulators to re-orient

a large object together. The approach computed differential

motions for the three arms numerically. No obstacle other

than the robots and the manipulated object was considered.

A general scheme for planning optimal trajectories and

actuator forces/torques was introduced in [13] for two mobile

manipulators pushing a common object to a goal location.

Although obstacles were considered, they were static. In

[14], a control framework decoupling locomotion (base

motion) and manipulation (arm and gripper motion) was

introduced for a team of two or three mobile manipulators to

transport a large object. The robots were designed in such

∗The authors gratefully acknowledge the support of K. C. Wong Educa-
tion Foundation, Hong Kong.

ways to enable the decoupling. The team leader could be

temporarily replaced by a member to handle an obstacle.

However, no previous work has addressed the problem

of planning high-DOF tight-coordination motion of mobile

manipulators in an environment with dynamic obstacles of
unknown motion. In fact, there is relatively little research

on motion planning in such a dynamically unknown envi-

ronment for even a single high-DOF mobile manipulator.

Such an environment is very different from known static

or dynamic environments (i.e., with known obstacle tra-

jectories), where motion planning can reasonably rely on

exploring C-space or configuration-time space offline (e.g.,

[15][16][17][18]). A few researchers considered local colli-

sion avoidance of unknown, moving obstacles on-line for a

mobile manipulator base, while its arm follows certain given

contour [19][20][21][22]. A more recent work can provide

globally task-consistent motion in dynamic environments

[23].

Recently the authors introduced a real-time, adaptive mo-

tion planning (RAMP) paradigm for a single manipulator or

mobile manipulator working in a dynamic environment with

unknown obstacle trajectories [24][25][26]. This paradigm

is characterized by on-line, simultaneous planning and ex-

ecution of robot motion. It borrows the general anytime
and parallel planning idea of evolutionary computation [27]

but is otherwise unique and original as it does not follow

prescribed methods.

In this paper we address the problem of planning closed-

chain motion for a pair of mobile manipulators to transport

a common object in a dynamically unknown environment.

We present a novel approach to plan the high-dimensional

motions of the robot team in real-time with dynamic leader-

helper role switch based on circumstances. This approach

builds upon the RAMP paradigm ([24], [25]) to plan the

motion of the leader, extends that to plan the motion of the

helper, and adds a novel mechanism to handle the interaction

of the two robots in the team and their flexible switch of

roles. Our approach is distributed in the sense that each robot

in the team has its own instance of the same planner even

though they play different physical roles in their coordinated

movements (i.e., one leads and one helps/follows). In section

II, we further define the problem of this work. In sections

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

WeD2.2

1-4244-0912-8/07/$25.00 ©2007 IEEE. 2513

III–V, we introduce our approach. We provide implementa-

tion, experimental results, and discussions in section VI and

conclude the paper in section VII.

II. PROBLEM AND ASSUMPTIONS

We consider two mobile manipulators carrying a common

payload A together from one location to another. We are only

concerned with the coordinated transfer motion of the robots

once they lift A together and do not consider grasping issues

here. Therefore, we assume that (1) the end-effector grasping

configurations of the two robots are known with respect to

A, (2) once the end-effectors of the two robots are at the

two grasping configurations respectively, the robots can lift

the object together and be ready to go, (3) the two grasping

configurations are assumed to be rigidly attached to A so

that there is no rotation of A relative to the end-effector of

any robot. Figure 1 shows two grasping configurations. Once

A is carried by the two robots, it is assumed to be rigidly

attached to their end-effectors, and we do not consider force

control and system dynamics in this paper. A control scheme

based on [9] could be extended here.
Now the problem we consider can be defined as: planning

motion trajectories for two mobile manipulators that start at

initial configurations where their end-effectors are rigidly

attached to a common object A, have to move through an

environment with obstacles of unknown motion, and transfer

A to a goal location. Holonomic bases are assumed for the

manipulators in this paper.
Clearly the motions of the two robots in tight coordination

should be planned and executed in real-time to deal with an

environment of unknown changes due to moving obstacles of

unknown motions. Such coordinated motions usually require

two robots play different roles: one leads the move and

the other assists. It is desirable to allow switch of roles

dynamically during the transport process, in order to better

adapt to changes in the environment and maximize the

performance of the team.

(a) top view

(b) side view

Fig. 1. Two grasping configurations for the two robots

III. APPROACH

The main idea of our approach is as follows. First, each

mobile manipulator in the two-robot team is equipped with

its own instance of the same real-time planner, which we

call a leader-oriented planner. Each mobile manipulator uses

its own leader-oriented planner to plan its motion as the

leader and the other robot’s motion as the helper following

the leader. The leader-oriented planner, to be detailed in the

following subsections, is an anytime motion planner in the

RAMP paradigm introduced in our prior work [24][25][26]

that integrates planning, sensing, and execution of motion to

allow simultaneous motion planning and execution.

The two robots run their respective planners in parallel

at the same time as they move, but the actual motions that

the robots execute are determined by a simple coordinator
algorithm running on top of the two parallel planners. The

coordinator algorithm simply examines the outputs of the

two motion planners constantly to decide which robot’s

leader-helper motion plan is better, based on some optimiza-

tion criteria. It then lets the two-robot team to execute the

better leader-helper motion plan, i.e., make the robot with

the better plan the leader, and the other robot the helper

in actual execution. As the robots move, their respective

leader-oriented planners continue running to generate better

motion plans for the rest of the journey from their respective

perspectives. If, at some point, the current helper robot’s

leader-helper motion plan becomes better, the coordinator

may order the team to execute this better motion plan

and effectively switch the roles between the two robots.

At a later moment, the robots may again switch roles by

executing the better leader-helper motion plan at that time.

Thus, role switching is merit-based, dynamic and adaptive

to circumstances.

Note that the cost of switching from a pair of leader-

helper motion trajectories to another in mid-execution is

taken into account by the coordinator algorithm in making

its decision. Only when switching is clearly advantageous

even with its cost considered, will the coordinator algorithm

order a switch of roles (and trajectories).

Note also that when there is no role-switching, the two-

robot team is guided by the leader-oriented planner of

the current leader robot. The leader-oriented planner will

always make the team execute a better pair of leader-helper

trajectories it produces at any time. That is, the team may

constantly switch from executing one pair of trajectories

to executing a better pair from the same planner, if such

switching is advantageous with the cost of switching taken

into account.

In the following sections, the leader-oriented planner and

the coordinator algorithm are described in more detail.

IV. THE LEADER-ORIENTED PLANNER

This planner plans the leader motion based on an anytime

algorithm introduced in our prior work [24][25][26] and

then produces a corresponding trajectory for the helper. In

planning for the leader motion, it treats the payload A as a

“tool” attached to the end-effector of the leader robot such

that the grasping configuration of the helper end-effector

becomes the configuration of the “tool” frame at the “tip”

of the “tool”, as shown in figure 2.

2514

Fig. 2. Leader’s end-effector frame (left) and Helper’s end-effector frame
(right)

Once a trajectory for the leader robot is produced, which

includes both arm and base trajectories, the end-effector

trajectory for the helper robot is also decided. Given the

end-effector trajectory for the helper robot, the planner next

finds arm and base trajectories for the helper robot to satisfy

the required end-effector trajectory. We first review how to

generate leader trajectories based on the RAMP paradigm

and next describe how to find helper trajectories in the

subsections below.

A. Planning the leader motion

A path of the leader robot starts from the current con-

figuration of the leader mobile manipulator, ends at a goal

configuration, and may consist of a number of intermediate

configurations called knot configurations, specifying the

shape of the path. Correspondingly, a trajectory of the leader

robot consists of a base trajectory of the type of linear-with-

parabolic blends (i.e., parabolic around knot configurations)

and an arm trajectory of the type of cubic splines (connecting

knot configurations). Between two adjacent knot configura-

tions is a trajectory segment.
We call a trajectory of the lead robot feasible, if it is

collision-free and singularity-free; otherwise, it is infeasible.

The anytime motion planning algorithm introduced in the

RAMP paradigm [24][25][26] works as follows: it always

maintains a set of trajectories for a mobile manipulator.

A trajectory is evaluated through an evaluation function
coding certain optimization criteria for its fitness. A feasible

trajectory is considered fitter than an infeasible trajectory.

A trajectory is generated from a path by making the robot

moving as quickly as possible under a maximum speed and

a maximum acceleration. The initial set of paths can be

generated randomly with a random number of randomly

selected knot configurations. The initial set of trajectories is

then improved to a fitter set through iterations of improve-

ments, called generations. In each generation, a trajectory is

randomly selected from the set and altered in a random fash-

ion by a randomly selected modification operator among a

number of different modification operators, and the resulting

trajectory is used to replace a similar but worse (i.e., less fit)

trajectory to form a new generation. Therefore, the overall

fitness of trajectories improves from generation to generation

while sufficiently diverse trajectories are maintained. Each

generation is also called a planning cycle.

This algorithm can quickly improve a set of trajectories

such that the best trajectory in the set is either feasible

or partially feasible while satisfying certain optimization

criteria (to be explained later in Section IV-D), and it can

be readily executed. The algorithm is designed to exploit the

redundancy of a mobile manipulator effectively.

B. Planning the helper motion

Given a trajectory of the leader robot, the corresponding

trajectory of the end-effector of the helper robot is also

known. Our strategy to plan the helper motion avoids numer-

ical computation (such as the pseudo-inverse of a Jacobian)

as much as possible to achieve real-time performance. We

first plan a base trajectory for the helper robot according

to its end-effector trajectory. We do that by considering the

constraints on the base configurations imposed by the inverse

kinematic solutions of the helper robot.

If the manipulator has closed-form inverse kinematic

solutions, the constraints can be found easily. For a PUMA

manipulator, for example, if (bx, by) indicate a base position,

then (bx, by) has to satisfy the following constraints in order

for the end-effector to reach a given position (px, py, pz):

R1 ≤ (bx − px)2 + (by − py)2 ≤ R2 (1)

where

R1 = d3 (2)

R2 = 2a2

√
a2
3 + d2

4 + a2
2 + a2

3 + d2
3 + d2

4 − p2
z (3)

and a2, a3, d3, and d4 are link parameters of the PUMA [28].

Clearly the above constraints define a circular belt region for

allowable base positions, which we call the allowable region
of base positions for the end-effector position (px, py, pz),
as shown in figure 3.

Fig. 3. Valid base region for end-effector position (px, py , pz) given by
radii R1 and R2

We plan the trajectory of the helper base in the following

way. For each knot configuration on the trajectory of the

leader robot, we get the corresponding end-effector config-

uration of the helper robot (or the tool frame of the leader

robot), and from the allowable region of the helper base

configurations, we randomly pick a knot configuration for

the base. In this way, we get a path of the helper base

as a sequence of knot configurations corresponding to the

sequence of knot configurations of the leader base. Next

we make a smooth base trajectory of linear-with-parabolic

2515

blends for the helper based on its knot base configurations

in the same way as the leader’s base trajectory is made.

The arm trajectory of the helper corresponding to the base

trajectory and the end-effector trajectory can be generated by

discretizing the base and the end-effector trajectories into a

pair of discrete time series, and by finding the corresponding

time series for joint variables through inverse kinematics at

each discrete time. Closed-form inverse kinematic solutions

make the computation very fast.

A trajectory of the helper robot is feasible if it is (1)

collision-free, (2) singularity-free, and in addition, (3) sat-

isfies the end-effector trajectory determined by the leader

robot.

Condition (3) may be violated in two cases. One is

that the generated helper base trajectory may not be in

exact synchronization with the corresponding leader’s base

trajectory or consequently the helper end-effector trajectory.

This is because of the redundancy in the form of one-to-

many mapping between an end-effector location and a base

location. As the result, there can be a mismatch between a

base location and the end-effector location at a certain time

so that no inverse kinematic solution exists for the arm. The

other case is that the base path itself may include points

outside the allowable region of the base locations, which

is the union of the allowable regions for each end-effector

location along the path of the end-effector. Since this region

is generally not convex, even though we make sure that the

knot configurations of the base path are in the region, there

is no guarantee that the entire path is inside the allowable

region.

We describe how to deal with infeasible trajectories in the

following subsections.

Note that if a trajectory of the helper robot is feasible,

it is also smooth: both the end-effector and the base trajec-

tories are smooth, and so the arm trajectory generated also

converges to a smooth one as the time interval approaches

zero for the time series.

C. Trajectory feasibility and improvement as a team

As described above, from a trajectory of the leader, a

corresponding trajectory of the helper can be generated. A

pair of leader and helper trajectories form a team trajectory.

A team trajectory is infeasible if either the leader or the

helper trajectory is infeasible.

One may ask that if a leader trajectory is infeasible,

why the planner bothers to generate the corresponding

helper trajectory anyway. This in fact is a characteristic of

the leader-oriented planner carried over from the anytime

planner of the RAMP paradigm. In planning the leader

motion, the anytime planner always maintains a set of leader

trajectories, which may or may not be all feasible. Currently

infeasible trajectories may become feasible in some future

moments under the changing environment, whereas currently

feasible trajectories may become infeasible. Moreover, some

infeasible trajectories may easily be improved to be good

feasible ones after certain modification operators are applied

(see section IV-A). Therefore it is useful to keep infeasible

trajectories in the set of leader trajectories, and consequently,

the corresponding helper trajectories are generated.

The leader-oriented planner makes sure that right after a

leader trajectory is created, a corresponding helper trajectory

is also created, and right after a leader trajectory is modified,

the corresponding helper trajectory is also modified. In that

sense the leader-oriented planner maintains a set of team

trajectories and improves/adapts them from one planning

cycle to the next as described in section IV-A.

In addition to modifying a leader trajectory by one of a

number of randomized modification operators (section IV-

A) and then adjusting its corresponding helper trajectory

accordingly, the leader-oriented planner also introduces a

new randomized modification operator perturbHelper to

modify a base trajectory of the helper only. Therefore, if

a leader trajectory is a good and feasible one, but the helper

trajectory is not feasible (see section IV-B), by allowing the

base trajectory of the helper to change, the helper trajectory

may become feasible without disturbing the leader trajectory

or the end-effector trajectory of the helper. The redundancy

of the mobile manipulator can be effectively exploited.

D. Fitness evaluation

We use two different cost functions to evaluate the fitness

of feasible and infeasible trajectories respectively. The higher

the cost, the less fit a trajectory is. For each feasible trajec-

tory we compute its fitness value through a cost function that

combines three optimization criteria: minimizing energy and

time, and maximizing manipulability [26][29].

For each infeasible trajectory, we compute its cost as the

sum of two terms. The first term is the cost as if it were

feasible, and the second term is a large penalty function

value that is inversely proportional to the time before the

first infeasible configuration on the trajectory is encountered:

the shorter time, the bigger cost.

With these cost functions, a feasible trajectory is always

fitter than an infeasible trajectory.

The above functions apply to both leader and helper

trajectories. To evaluate a team trajectory, we simply use

the sum of the costs of the leader and helper trajectories in

the team. Note that for a feasible team trajectory, we can

also just use the cost of the leader trajectory alone since the

helper trajectory is closely related to the leader trajectory.

V. THE COORDINATOR AND REAL-TIME ADAPTIVENESS

Recall that each robot in a two-robot team runs its

own instance of the leader-oriented planner from its own

perspective, i.e., itself is considered the leader robot and the

other team member is viewed as the helper robot. Which

robot’s leader-helper motion plan is actually executed by the

team is decided by a small coordinator algorithm.

The coordinator algorithm can actually reside on the

processor of one of the robots but it treats both robots

impartially. It compares the best team trajectory generated

by robot 1’s leader-oriented planner with the best team

trajectory generated by the robot 2’s leader-oriented planner,

based on their fitness evaluation function values. If robot 1’s

2516

team trajectory is better, the coordinator will let the two-

robot team execute that trajectory and make robot 1 the

actual leader. If robot 2 is the current leader, executing robot

1’s team trajectory means a switch of roles between robot 1

and robot 2.
One basic premise of our approach is that planning,

sensing, and the execution of motion are interweaving to

enable simultaneous planning and execution of robot mo-

tions. After some initial planning cycles, the coordinator

can make an initial leader-helper assignment based on the

planning outputs of the leader-oriented planners of both

robots. The robot team can then start executing the chosen

team trajectory from the planner of the leader robot in the

first control cycle. As the robot team moves, each robot’s

planner continues to improve its set of team trajectories until

the next control cycle1, when the robot team can switch to

a better team trajectory (recall that the set of trajectories

always start from the current configurations and velocities of

the robot team). One of two kinds of switching can happen:

(1) the coordinator can make the robot team switch to a

team trajectory from the planner of the current helper robot,

i.e., make the robots switch roles, or (2) the robot team

can switch to a better team trajectory from the planner of

the leader robot, and the current leader robot continues to

lead. In both cases, the new team trajectory is indeed better

even after taking into account the cost of change (i.e., the

possible acceleration or deceleration needed for the change)

as ensured by the fitness evaluation functions so that the

change is smooth and stable.
Note that the best team trajectory does not have to be

feasible; if no feasible trajectory is available, the robot team

will move along the fittest infeasible trajectory while con-

tinuing planning to search for a fitter and hopefully feasible

team trajectory before the team come within a distance

threshold D of the first predicted infeasible configuration on

the executed trajectory. In the event D is reached but no fitter

team trajectory is available, the two robots will stop their

motions but continue planning for a fitter team trajectory

and resume their motions once a better team trajectory is

found. Such stops of motion are called forced stops.
Changes in a dynamic environment are sensed and fed

to the planner in each sensing cycle, which lead to updated

fitness values for certain team trajectories in the subsequent

planning cycles of either robot’s planner. Unknown motions

of moving obstacles are predicted in fitness evaluation of

trajectories. Our planner predicts the future trajectory of

each moving obstacle body from its current sensed state

(i.e., configuration, velocity, and acceleration) and previously

sensed trajectory and checks each robot’s trajectory against

this predicted or projected trajectory of each obstacle to see

if there will be a collision. Our prediction only has to be

good enough for a short period before the next sensing cycle

(which may be longer or shorter than a control cycle) since

it will be corrected constantly with newly added sensory

1A control cycle in this sense is longer than a planning cycle to use the
planning results as feedback. It is not necessarily the lowest-level servo
cycle.

information.
Note that when evaluating a trajectory of a helper robot,

the leader robot (its base and links) and the common payload

should be considered dynamic obstacles.
The presence of a diverse set of ever-improving trajecto-

ries enables the robot team to quickly adapt to changes in the

environment by following the fittest team trajectory under

each circumstance: when the current trajectory executed by

the team becomes worse, the robots often do not need to

stop and replan from scratch; rather they merely need to

switch to a better team trajectory in the set swiftly in a

seamless fashion. The chosen team trajectory can be very

different from the previous one (with even a change of

the leader robot) to deal with drastic and large changes.

With both robots running their own planners in parallel, the

pool of team trajectories (though from different perspectives)

doubles in size, and so does the planning cycle frequency,

to facilitate highly efficient and effective task performance.

VI. IMPLEMENTATION, RESULTS, AND DISCUSSION

In this section we present our implementation results and

discuss the performance of our approach.

A. Implementation
In order to test the introduced motion planner, we build

a mobile manipulator simulator for a PUMA 560 mounted

to a holonomic mobile base. We use several such mobile

manipulators in our experiments. Both the mobile manip-

ulators and the objects in the environment are modeled as

polygonal meshes for generality. We use the software pack-

age OPCODE [30] to perform real-time collision detection

for feasibility evaluation of a robot trajectory.
Each mobile manipulator is equipped with its own in-

stance of the leader-oriented planning algorithm, which has

no a priori knowledge of the movements of other mobile

manipulators and moving obstacles outside the team. Each

mobile manipulator views another mobile manipulator as

consisting of 7 or 8 moving bodies (as obstacles) due

to the number of links (including load) of each mobile

manipulator, with the number of bodies depending on if the

other mobile manipulator holds a target object or not. We

implemented the planning approach (including the leader-

oriented planning algorithm and the coordinator) in C# and

C++, and have simulated task environments with 1–2 pairs

of mobile manipulators. Each task simulation is run on a

four-core Xeon PC with each core operating at 3.0 GHz.
In our experiments, we set the following parameter values.

The weight of the manipulator arm and the base are set to be

35 kg and 20 kg respectively. The maximum joint velocity

and acceleration for the PUMA are set to be 120 deg/sec and

60 deg/sec2 respectively. The maximum base velocity and

acceleration are set to be 2 m/sec and 1 m/sec2 respectively.

The work environment is a square of flat area with the side

length 100 meters. The frequency of the control cycle for

a mobile manipulator is set to be 60Hz. The control cycle

is therefore quite slow, as compared to the planning cycle,

which has a frequency many times that of the control cycle,

depending on the task environment.

2517

B. Performance Evaluation

Figure 4 shows a task environment we use for perfor-

mance evaluation of our real-time motion planner for tight

coordination. In that task environment, there are four boxes

on the floor, and two pairs of mobile manipulators are to

transport four boxes from their original locations to desig-

nated goal locations. Each box has to be carried by a pair

of mobile manipulators. The environment is arranged such

that two teams of robots must cross paths and therefore must

avoid each other in their movement. This is the case both

when the robot teams are transporting boxes, and also when

the robots are moving individually on their way to reach

a box. Note that in the case multiple mobile manipulators

have to move individually to reach boxes, each robot uses

the basic RAMP algorithm for a single mobile manipulator

to plan and execute its motion in real-time while avoiding

other robots and obstacles [29].

We compare the effect of dynamic role switching to that

of static role assignment for both teams of robots. A team’s

performance is measured first with static roles (i.e. the leader

and helper roles are pre-decided and static), and again with

dynamic role switching. The results are summarized in table

I.

Fig. 4. Task environment

TABLE I

TASK EXECUTION WITH AND WITHOUT DYNAMIC ROLE SWITCHING

(AVERAGE OF 25 EXECUTIONS)

(a) Team 1

Role # Role Total # Planning Plan per # Forced
Switching Switches Time(s) Cycles Control Stops

with 181 116.7 15,709 2.24 4
without n/a 128.8 17,907 2.32 5

(b) Team 2

Role # Role Total # Planning Plan per # Forced
Switching Switches Time(s) Cycles Control Stops

with 153 106.4 12,961 2.03 2
without n/a 121.0 15,842 2.18 4

For both teams, with dynamic role switching, we see

a reduction (9.4% and 12.1%) in total execution time re-

spectively, and also a reduction in the number of times a

team is forced to stop motion to avoid a collision during

the execution. The execution time is measured from the

time when a pair of robots lift a box to the time when

the team puts the box down at a destination. In the cases

without dynamic role switching, only the leader performs

motion planning and therefore the values shown under “#

Planning Cycles” and “Plan per Control” (i.e., planning

cycles per control cycle) are solely the leader’s. In the cases

with dynamic role switching, both the leader and helper

contribute to the motion planning, and those values are the

average of the two robots. Because of the small overhead

cost of the coordinator algorithm to switch roles, these

values are slightly lower than those of the static-role cases.

Nevertheless, each team’s performance is improved with

dynamic role switching due to having two different robots

perform planning actively from two different perspectives.

Allowing both members of a robot team to perform

planning is advantageous for two reasons. First, it virtually

doubles the effective planning cycle frequency, and also

doubles the effective size of the trajectory pool, since both

robots are planning toward the same goal state. Second, it

permits planning from the different perspectives of the two

team members. This is important because the arrangement

or motion of obstacles in the environment might make one

planning perspective more advantageous than another.

Note that the number of forced stops is fairly low in all

cases, indicating that our approach is able to provide good

motion plans in real time most of the time.

The accompanying video shows task executions in two

task environments. In the first environment, two robot teams

perform the payload transport task described above while

avoiding each other and other obstacles. In the second

environment, one robot team transports and reorients a flat

table, while avoiding an obstacle of unknown movement; the

dynamic role switches during the process are also indicated

in the second environment, which is deliberately kept simple

to show the fine maneuvering clearly.

C. Scalability

The above approach is not limited to a team of two mobile

manipulators. When two or more helpers are involved, the

leader-oriented planner just needs to generate two or more

helper robots’ motion instead of one, and each robot, again

has its own instance of the planner. By having all robots

running their respective leader-oriented planners in parallel,

planning efficiency is n times of that running a single leader-

oriented planner, if n is the number of robots in a team.

This balances the fact each leader-oriented planner needs

to generate n − 1 number of helper trajectories instead of

one (of a two-robot team). Moreover, n different planning

perspectives are provided by the n team members.

2518

VII. CONCLUSIONS

This paper has introduced a novel approach to real-time,

distributed motion planning for a team of mobile manipu-

lators in tight-coordination to transport a common payload

in unknown dynamic environments (i.e., environments with

obstacles of unknown motion). It effectively extends an

efficient real-time adaptive motion planning approach for

single mobile manipulators in such an environment.

The approach allows all team members to participate in

planning the team motions in parallel from their respective

perspectives. Each team member is equipped with its own

instance of the same leader-oriented motion planner to plan

the team motion from its own perspective, i.e., viewing itself

as the leader and other team members as helpers. All the

instances of the leader-oriented motion planner are run in

parallel as the team moves. Planning and execution of motion

are done simultaneously. A simple coordinator algorithm

always makes the team following the best plan so far and the

robot whose plan is being executed is the current leader. This

means dynamic, merit-based switch of leaders according to

circumstances.

With parallel, multi-perspective planning guided by op-

timization criteria, our approach is able to achieve both

high motion quality and real-time planning efficiency for

high-dimensional robots in tight-coordination motion amid

moving obstacles of unknown trajectories. Future work in-

cludes further testing and improving the algorithm for more

complex robots and tasks and incorporating realistic sensing

scenarios and control constraints. Testing on real robots will

also be necessary.

REFERENCES

[1] Y. F. Zheng and J. Y. S. Luh, “Joint torques for control of two
coordinated moving robots,” in Proceedings of IEEE International
Conference on Robotics and Automation, April 1986, pp. 1375–1380.

[2] S. Hayati, “Hybrid position/force control of multi-arm cooperating
robots,” in Proceedings of IEEE International Conference on Robotics
and Automation, April 1986, pp. 82–89.

[3] T.-J. Tarn, A. K. Bejczy, and X. Yun, “Design of dynamic control of
two cooperating robot arms: Closed chain formulation,” in Proceed-
ings of IEEE International Conference on Robotics and Automation,
April 1987, pp. 7–13.

[4] M. Uchiyama and P. Dauchez, “A symmetric hybrid position/force
control scheme for the coordination of two robots,” in Proceedings
of IEEE International Conference on Robotics and Automation, April
1988, pp. 350–356.

[5] O. Khatib, “Object manipulation in a multi-effector robot system,” in
Robotics Research, R. Bolles and B. Roth, Eds. MIT Press, 1988,
vol. 4, pp. 137–144.

[6] D. Williams and O. Khatib, “The virtual linkage: A model for
internal forces in multi-grasp manipulation,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 1, May
1993, pp. 1025–1030.

[7] J. Adams, R. Bajcsy, J. Kosecka, V. Kumar, R. Mandelbaum,
M. Mintz, R. Paul, C. Wang, Y. Yamamoto, , and X. Yun, “Cooperative
material handling by human and robotic agents: Module development
and system synthesis,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 1995, pp. 200–205.

[8] K.-S. Chang, R. Holmberg, and O. Khatib, “The augmented object
model: Cooperative manipulation and parallel mechanism dynamics,”
in Proceedings of IEEE International Conference on Robotics and
Automation, April 2000, pp. 470–475.

[9] D. Sun and J. K. Mills, “Adaptive synchronized control for coordina-
tion of two robot manipulators,” in Proceedings of IEEE International
Conference on Robotics and Automation, vol. 1, May 2002, pp. 976–
981.

[10] Y. Hirata, Y. Kume, T. Sawada, Z.-D. Wang, and K. Kosuge, “Han-
dling of an object by multiple mobile manipulators in coordination
based on caster-like dynamics,” in Proceedings of IEEE International
Conference on Robotics and Automation, vol. 1, 2004, pp. 807–812.

[11] A. Stroupe, T. Huntsberger, A. Okon, H. Aghazarian, and M. Robin-
son, “Behavior-based multi-robot collaboration for autonomous con-
struction tasks,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, August 2005, pp. 1495–1500.

[12] C. S. Tzafestas, P. Prokopiou, and S. G. Tzafestas, “Path planning
and control of a cooperative three-robot system manipulating large
objects,” Journal of Intelligent and Robotic Systems, vol. 22, pp. 99–
116, 1998.

[13] J. P. Desai and V. Kumar, “Nonholonomic motion planning for
multiple mobile manipulators,” in Proceedings of IEEE International
Conference on Robotics and Automation, April 1997.

[14] T. Sugar and V. Kumar, “Control of cooperating mobile manipulators,”
IEEE Trans. Robotics and Automation, vol. 18, no. 1, pp. 94–103,
August 2002.

[15] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580,
1996.

[16] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[17] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized
kinodynamic motion planning with moving obstacles,” International
Journal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

[18] J. van den Berg and M. Overmars, “Roadmap-based motion planning
in dynamic environments,” IEEE Trans. Robotics, vol. 21, no. 5, pp.
885–897, October 2005.

[19] O. Brock, O. Khatib, and S. Viji, “Task-consistent obstacle avoidance
and motion behavior for mobile manipulation,” in Proceedings of
IEEE International Conference on Robotics and Automation, vol. 1,
May 2002, pp. 388–393.

[20] P. Ögren, N. Egerstedt, and X. Hu, “Reactive mobile manipulation
using dynamic trajectory tracking,” in Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, vol. 4, April 2000,
pp. 3473–3478.

[21] J. Tan and N. Xi, “Unified model approach for planning and control
of mobile manipulators,” in Proceedings of IEEE International Con-
ference on Robotics and Automation, vol. 3, 2001, pp. 3145–3152.

[22] J. Mbede, S. Ma, Y. Toure, V. Graefe, and L. Zhang, “Robust neuro-
fuzzy navigation of mobile manipulator among dynamic obstacles,”
in Proceedings of IEEE International Conference on Robotics and
Automation, vol. 5, May 2004, pp. 5051–5057.

[23] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation in dynamic environ-
ments,” in Proceedings of Robotics: Science and Systems, Philadel-
phia, PA, USA, August 2006.

[24] J. Vannoy and J. Xiao, “Real-time adaptive and trajectory-optimized
manipulator motion planning,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 1, September 2004, pp. 497–
502.

[25] ——, “Real-time adaptive mobile manipulator motion planning,” in
Video Proceedings of IROS, October 2006.

[26] ——, “Real-time planning of mobile manipulation in dynamic envi-
ronments of unknown changes,” in Proceedings of RSS 2006 Work-
shop: Manipulation for Human Environments, August 2006.

[27] P. P. Bonissone, R. Subbu, N. Eklund, and T. R. Kiehl, “Evolutionary
algorithms + domain knowledge = real-world evolutionary compu-
tation,” IEEE Trans. Evolutionary Computation, vol. 10, no. 3, pp.
256–280, April 2006.

[28] J. Denavit and R. Hartenberg, “A kinematic notation for lower-pair
mechanisms based on matrices,” Trans ASME J. Appl. Mech, vol. 23,
pp. 215–221, 1955.

[29] J. Vannoy and J. Xiao, “Real-time motion planning of multiple
mobile manipulators with a common task objective in shared work
environments,” in Proceedings of IEEE International Conference on
Robotics and Automation, April 2007.

[30] P. Terdiman, “http://www.codercorner.com/opcode.htm.”

2519

