
  

  

 
Abstract—In this paper, a new method to model the global 
deformation between a rigid object and an elastic object with a 
hole is presented. This method extends the idea of beam-
skeletons [10] by introducing curved cantilever beams for 
efficient modeling of global deformation of elastic objects with 
holes. The method is implemented and tested on different 
examples. Results from three examples are given to 
demonstrate the efficiency and effectiveness of the approach. 

I. INTRODUCTION 
   Many applications of haptic interaction involve handling 
of deformable objects, such as virtual training in surgery 
operations, interactive computer games, planning of 
grasping in robotics, tele-robotic operations, etc. Deformable 
objects in contact have been studied for both graphics 
rendering and haptic rendering [1] [2] [3].  
   One major challenge for haptic rendering of contacts 
involving deformable objects is to balance the requirement 
of rendering speed for interactive operations and the realism 
of rendering. To achieve a high rendering rate, existing 
approaches often apply certain simplifications to the 
physically based deformable models used in graphics 
rendering, such as the mass-spring-damper models and 
continuum models, and focus on simple contact cases [4-7]. 
The Radial Elements Method (REM) [8] reduces the number 
of the computed elements to be fast and scalable in 
simulation of deformations. However, the object shapes that 
can be modeled are restricted to star-shaped ones (thus 
without holes). Point-Sampled Thin Shell [9] is an efficient 
method for simulating deformation of thin shells. This 
method supports both elastic and plastic deformations as 
well as fracturing and tearing of the material. 

Recently, Luo and Xiao introduced a novel and efficient 
method for force and deformation modeling between a rigid 
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object and a convex elastic object in interactive 
environments [10]. The approach is characterized by 
modeling nonlinear contact forces based on the Duffing 
equations and simulating global shape deformation by a 
“beam-skeleton” model based on the beam bending theory. 
The method has an update rate of several tens of kHz 
regardless of the object’s concrete geometry, which is 
extremely efficient.  
    However, deformable objects may also have holes and 
thus not convex. In this paper, we model global shape 
deformation (during haptic interaction) of an elastic object 
with a convex outer shape but with a hole inside. We extend 
the beam-skeleton model introduced in [10] to include 
curved cantilever beams for simulating the deformation of 
such elastic objects. Equations about curved beams based on 
the elastic theory can be used to relate contact force and 
deformation nicely.  
   The paper is organized as follows: In Section II, we review 
the beam skeleton model introduced in [10]. In Section III, 
we introduce force analysis based on curved beam theory 
and describe shape deformation modeling. In Section VI, we 
discuss implementation and experimental results, and we 
conclude the paper in Section V. 

II. REVIEW OF THE BEAM-SKELETON MODEL  
In [10], a beam-skeleton model with anchor points was 

introduced to simulate global shape deformation of a convex 
elastic object under contact from a rigid object. An anchor 
point is an extremal point on the original (undeformed) 
surface of the elastic object, capturing the geometric 
characteristics of the surface [10]. When the elastic object is 
under contact, the deformation displacements at these anchor 
points are computed via the beam-skeleton model and then 
interpolated over the entire surface of the elastic object to 
simulate global shape deformation. 

A. Basic Assumptions on Objects and Contacts 
Contacts are considered between a rigid object and an 

elastic object in a virtual environment. Both objects have 
triangle mesh models. The elastic object is convex and has 
smooth surface patches. The interaction between the rigid 
object and the elastic object is sufficiently slow so that 
contact forces are caused by quasi-static collisions, and 
shape deformation of the elastic object only occurs at stable 
equilibrium configurations, where the elastic energy is 
minimized. Each contact region is relatively small 
comparing to the size of the elastic object. There can be 
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multiple contact regions between the rigid object and the 
elastic object at the same time, but multiple contact regions 
are formed one by one. This last assumption is reasonable 
since “simultaneous” contacts can be modeled as contacts 
that occur at instants very close to one another.  

B. Building a Beam-Skeleton 
Once a contact region is formed, a nonlinear model is 

used to simulate contact force exerted to the held rigid object 
by the elastic object from the contact region. Next, a beam-
skeleton is built (see Fig.1), where between the (equivalent) 
contact point and an anchor point, a beam is established. The 
force F applied to the contact or equivalent contact point 
from the rigid object to the elastic object can be obtained as 
opposing the contact force response from the elastic object 
with the same magnitude. It can be viewed as applied to the 
common end of all the beams in the skeleton as the sum of 
the forces Fi applied to each beam at the common end. The 
distribution of F to Fi and the deformation of each beam i 
can then be computed based on the Bernoulli–Euler bending 
beam theory. After the stresses and strains at each beam end 
(i.e., each anchor point) are computed, the corresponding 
deformation displacement can be obtained. The deformation 
displacements over the entire surface are obtained via 
smooth interpolation of the values at anchor points to 
simulate global shape deformation of the elastic object [10]. 

Elastic Object

Rigid 
Object Anchor 

Point

Linear Beam

 
Fig. 1 A beam-skeleton 

C. Multiple Contact Regions 
Since multiple contact regions occur one by one in a 

temporal order, their combined effects on an anchor point 
can be computed accordingly in the same order. As a beam 
skeleton is established for each contact region one by one, 
for any anchor point of the elastic object, we can see 
multiple beams from multiple contact regions occur one by 
one, and each beam is connected to the position of the 
anchor point as the result of accumulated deformations from 
beams established previously. 

As contact regions happen one by one, each intermediate 
shape deformation of the elastic object corresponding to the 
already happened contacts is obtained one by one, and the 
final deformed shape is the result of all contact regions [10].  

III. EXTENDING THE BEAM-SKELETON MODEL  
    The original beam-skeleton model requires that the elastic 
object be convex when undeformed, so that between a 
contact or equivalent contact point and an anchor point, 
there is always a straight-line connection inside or on the 
elastic object. Thus, a straight-line beam can be used.  

If the elastic object has holes and is thus non-convex, 
there may not be a straight-line connecting the contact or 
equivalent contact point and an anchor point. In the latter 
case, a straight-line beam as introduced in [10] cannot work. 

We focus in this paper deformation modeling of elastic 
objects with convex and smooth outer shapes and a hole 
inside by extending the beam-skeleton model to include 
circular cantilever beams. Fig. 2 shows a few such objects.  

 
(a)  Half elliptical shell           (b) Cube object with hole 

 
(c) Parabolic object with hole        (d) Spherical object with hole 

 
Fig. 2 Some elastic objects with holes inside.  

A. Force Analysis based on Curved Beam Theory  
Consider a circular cantilever beam with one end fixed 

and the other end bent. The beam is characterized by the 
following parameters: the angle Θ between the two ends of 
the beam and the inner and outer radii a and b of the beam. 
Establish the beam polar coordinate system as  ܱ െ  ,frame ߠݎ
as shown in Fig. 3. Once the beam is pressed at the end that 
is not fixed, the exerted force effect is generally the 
combination of a radial component F1 and a tangential 
component F2. The total force generated on the beam is the 
vector sum of the radial force and tangential force.  

According to the Curved Beam Theory [11-12], for any 
point with coordinates (r,θ ) on the beam as shown in Fig. 3, 
we can relate F1 to the radial stress ߪ௥ଵ and tangential stress 
  .ఏଵ on that area as followsߪ

௥భߪ ൌ
ଵܨ
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θ
Θ

 
Fig. 3 A circular cantilever beam and the exerted force in polar coordinates 

 
Similarly, we can relate F2 to the radial and tangential 

stresses as follows.  

௥మߪ ൌ
ଶܨ

ܰ ቆെݎ ൅
ܽଶ ൅ ܾଶ

ݎ െ
ܽଶܾଶ

ଷݎ ቇ cosߠ 

σ஘మ ൌ
ଶܨ

ܰ ቆെ3ݎ ൅
ܽଶ ൅ ܾଶ

ݎ ൅
ܽଶܾଶ

ଷݎ ቇ cosߠ 

B. Circular Beam Deformation 
We now describe how to compute the radial strain ߝ௥ and 

the tangential strain ߝఏ from the stresses of a circular beam 
and subsequently compute the deformation of the circular 
beam.  

Define 

௝ܣ ൌ
1

2ܰ  ௝ܨ

௝ܤ ൌ െ
ܽଶܾଶ

2ܰ  ௝ܨ

௝ܦ ൌ െ
ܽଶ ൅ ܾଶ

ܰ  ௝ܨ

                                                         (݆ ൌ 1,2ሻ     (1) 
E is the Young’s modulus, and  ߤ  is Poisson’s ratio.  

For the exerted force F1, the relation between the strain εr1 

at a point and the two stresses ߪ௥ଵand ߪఏଵ can be represented 
using the Hooke Generalized Theorem as: 

௥ଵߝ ൌ
1
ܧ

ሺߪ௥ଵ െ  ఏଵሻߪߤ

       ൌ
sinߠ

ܧ ቈ2ሺ1 െ ଵܣݎሻߤ3 െ
2ሺ1 ൅ ଵܤሻߤ

ଷݎ ൅
ଵܦ

ሺ1ݎ െ  ሻ቉ߤ

The tangential strain ߝఏଵ  can be expressed as: 
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1
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sinߠ
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ሺ1 െ ଵܦሻߤ

ݎ ሿ 
Similarly, for the exerted force F2, the relation between 

the strain  ߝ௥ଶ and ߝఏଶ at a point and the two stresses ߪ௥ଶ and 
  :ఏଶ can be shown as followingߪ
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The relation between the strain [εr, εθ]T and the 
deformation displacement [u, v]T at the point can be 
represented as 

߳ ൌ ቂ
߳௥  
߳ఏ

ቃ ൌ ൦

߲
ݎ߲   0

0    
߲

ߠ߲

൪ ቂݑ
 ቃݒ

The radial displacement [u1, v1] and the tangential 
displacement [u2, v2] of any point on a circular beam, caused 
by F1 and F2, respectively, can be expressed as [13-14]: 
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(5) 
where ܭଵ ,ଶܭ , ଵܮ , ଶܮ  ଵܪ ,  ଶܪ,   are displacement parameters, 
which can be expressed as functions of a, b, Θ , μ, E, Aj, Bj, 
and Dj (j = 1, 2).  

So the new position of a point on the beam (after bending) 
can be obtained from the computed displacement. The total 
deformation at a point of a beam is the vector sum [u1+u2, 
v1+v2]. 

C. Beam Selection Rules 
We consider beams of constant width w=b-a, where w is 

determined as much smaller than the minimum thickness of 
the elastic object between its outer surface and the hole 
surface. 

Given a contact or equivalent contact point P and an 
anchor point A on the surface of the elastic object, we first 
use the plane determined by the two points and the contact 
force F on P to intersect with the elastic object to obtain a 
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cross section of the elastic object1. Note that P and A are on 
the outer boundary of the cross section S; Np and Na are the 
normal vectors on the two points in the cross section 
respectively. Denote the curve between points P and A on 
the cross section S as Γ. Since the elastic object has a convex 
outer surface, Γ is convex (as shown in Fig. 4). Let ρmin be 
the smaller curvature at either point P or point A. We can 
determine the outer radius b of a circular beam connecting P 
and A as b = (1/ |ρmin|) +ε, where ε >0 can be as small as 
desired.  From the outer radius and the two points P and A, 
the center C of the circular beam can be found. Since ε can 
be made arbitrarily small, the circular beam found above can 
be made as close to Γ as possible and inside S.  

Γ

 
        Fig. 4 A circular beam  

 
Fig. 5 shows an example object and its beam-skeleton 

built corresponding to a contact point P. It consists of 
circular cantilever beams connected to different outer and 
inner anchor points of the object surface, and different 
circular beams may have different centers in polar 
coordinates.  

 
Fig. 5 A beam skeleton of circular beams for an elastic half elliptical shell 

 

D. Contact Force Distribution to Circular Beams 
Next we analyze how to distribute the total contact force 

F to each of the circular beams in a beam skeleton. Let Fi be 
the force distributed to the i-th beam. Let  ۴૚

ܑ  and  ۴૛ 
ܑ be the 

radial and the tangential components of  Fi. 
Let  ݀௜ be the distance between the contact point P and the 

center point  ܥ௜ of the i-th circular beam. Represent the total 
deformation depth at the contact point P in the polar 
coordinate system of the i-th beam as  ݑ௣

௜ ൅ ௣ݒ
௜  . According 

                                                           
1 We only consider the case where F is not parallel to the line connecting 

P and A.  

to equations (2)-(5), we can obtain: 
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which we can express  ۴૚
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௜ , which are easy to derive.  
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For n circular beams, we can use the above to obtain the 

distribution of force F to the n beams: 
 

ଵܨ       
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Additionally, the vector sum of all  Fi’s, represented back in 
the world coordinate system, equals to F. 

E. Global Shape Deformation 
With the method described in Section III.A and B, the 

deformation of a point on a circular beam can be computed. 
Now imagine the fixed end of the beam, i.e., at the anchor 
point, is no longer fixed, in which case, the stress will make 
it move to a new position. The position change can be 
considered as the deformation from the stress, which can be 
computed, again, as described in Section III.B. 

With the deformation displacements of all beam ends of 
the elastic object and that of the contact (or equivalent 
contact) point obtained, the globally deformed shape of the 
entire elastic object can be obtained by interpolation, as 
described in [10].  

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
We tested our method in a virtual environment with real-

time haptic rendering involving a virtual rigid body 
connected to a PHANToM Premium 1.5/6-DOF device, 
which moves the virtual rigid body to contact an elastic 
object with a hole. The haptic device is connected to a PC 
with dual Intel Xeon 2.4 GHz Processors and 1 GB system 
RAM. The bottom center of the elastic object is fixed, where 
a world coordinate system is set. We have tested our 
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program by making our rigid object to contact some virtual 
rubber objects of different shapes and with holes. 

Fig. 6 shows the flow chart of our program, where each 
iteration indicates one time-step “update” of contact force 
and resulting shape deformation. The work presented in this 
paper is highlighted in bold.  

 
Fig. 6  Program flowchart 

 
   Within a small neighborhood of each separate contact 
region, the deformation at each point is actually a 
logarithmic function with respect to the distance to the 
contact region [15]. Thus, the global shape deformation (as 
the result of linear interpolation of deformations at anchor 
points) is modified [10] to reflect this non-linear property. 

     
(a)                                        (b) 

  
  (c)                                         (d) 

Fig.7 Shape deformation of an elastic, half elliptical shell  
 
  

Fig. 7 shows the deformation results modeled by our 
method of a half elliptical shell made of rubber, whose 
anchor points are shown in Fig. 5. 

 
 

Fig. 8 Comparing force at different outer anchor points in Fig.7 (c) 
 

Fig. 8 shows the result of comparing forces at each of the 
5 anchor points on the outer boundary of the half elliptical 
shell in Figure 7 (c). Results on the 5 inner anchor points are 
similar. The force at each anchor point starts from zero and 
increases as the rigid object presses harder and the 
deformation deepens. Its magnitude is the result of the 
deformation of the corresponding circular beam under the 
contact force distributed to that beam. Anchor points closer 
to the contact point are under greater forces, which is 
reasonable.  

     
      Fig.9 A rubber ring and the resulted shape deformation 

 
Fig. 9 shows the deformation of a rubber ring object and 

the results of shape deformation modeled by our method. 
For the grasping example shown in Figure 10, we use 

different keys on a keyboard to interactively control 
different fingers or different joints on a finger of a virtual 
hand to achieve a grasp of the virtual elastic object [16]. In 
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the process, our algorithm provides real-time rendering of 
the changing shape of the elastic object and the time series 
of the contact forces. 

 

 
 

Fig. 10 Different grasps of an elastic cylindrical object with hole and the 
resulted shape deformation 

In all of our experiments, modeling and computing haptic 
force per contact region took a constant and almost instant 
frequency in the order of k Hz, which satisfies the 
requirement for real-time simulation of contact force and 
shape deformation in haptics. In all the examples, the 
numbers of triangles in the mesh models of objects range 
from 2000 to 6000. Table 1 lists the parameters used in our 

experiments, where M is the weight of the elastic object, E is 
the Young’s modulus, I is the moment of inertia, and  
 .is Poisson's ratio  ߤ 

 

V. CONCLUSIONS 
This paper extends the beam-skeleton method introduced 

in [10] by introducing circular beams to model the global 
shape deformation of an elastic object with an outer convex 
shape and a hole when a rigid object contacts it. The method 
strikes a good balance between simulation efficiency and 
physical realism. The results show the efficiency and 
effectiveness of the method. Future work includes 

investigating further extension into modeling global 
deformation of more general objects with non-convex outer 
shapes and with holes.  
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TABLE I 
            PARAMETERS OF ELASTIC OBJECT USED IN EXPERIMENTS 

 

Parameter Half ellipse Ring Cylinder

M(kg) 1.0 1.0 1.0 

Mesh 5428 2304 3024 

Thickness (mm) 10 20 10 

εሺ݉݉ሻ 0.5 1 0.5 

 ሺ݇݃/ܿ݉ଶሻ 100 100 100ܫ

ሺܰ/݉ଶሻ 3ܧ · 10଺ 3 · 10଺ 3 · 10଺ 

 0.47 0.47 0.47 ߤ
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