
Real-time Adaptive Motion Planning for a Continuum Manipulator

Jing Xiao and Rayomand Vatcha

Abstract— Continuum manipulators, featuring “continuous
backbone structures”, are promising for deft manipulation
of a wide range of objects under uncertain conditions in
less-structured and cluttered environments. A multi-section
trunk/tentacle robot is such a continuum manipulator. With
a continuum robot, manipulation means a continuous whole-
arm motion, often without a clear distinction between transport
and grasping. In this paper, we address the novel problem of
real-time motion planning for such a robot under uncertain
conditions. We present an algorithm for on-line planning the
motion of a planar continuum robot for grasping a target
object amid an environment of other objects with uncertain
movements. Our algorithm substantially extends the RAMP
paradigm [19] for real-time adaptive motion planning to this
new form of whole-arm manipulation. Simulation results are
promising, demonstrating the effectiveness of our approach.

I. INTRODUCTION

Unlike the skeletal design of traditional rigid-link robot
manipulators, continuum manipulators [17] are usually de-
fined to be those featuring continuous backbone structures,
inspired by invertebrate structures found in nature, such as
octopus arms [13] and elephant trunks [6]. Instead of bending
only at discrete joints, continuum manipulators can deform
anywhere along their structure in theory.

There is no divide between the “arm” and “hand/gripper”
for a continuum manipulator to manipulate objects. While
it is common to define a grasping end-effector configuration
based only on the relation of the hand and the object for a
conventional manipulator, for a continuum robot, there is no
such “end-effector configuration” – the shape and pose of the
whole arm is affected by not only how an object is grasped,
but also the size and the shape of the object, and the presence
of nearby obstacles. Thus, it is not suitable to pre-define
“gripper” configurations without regarding the environment.

For a conventional robot manipulator, i.e., in the form of
an articulated arm with a gripper, gross motion planning
assumes a given goal configuration (where grasping can
start) and is concerned with finding a collision free path for
the manipulator or mobile manipulator connecting an initial
configuration to the goal configuration. Planning is often
done off-line, assuming a static environment or dynamic en-
vironment with known obstacles and their motions. To avoid
the formidable challenge of constructing high-dimensional
C-obstacles, sampling-based planners, notably the PRM [9]
and the RRT [10] planners and variants, are widely used.
Some methods take into account small-scale changes in the
manipulator’s environment due to new obstacles (e.g., [11]

J. Xiao is with the faculty of Computer Science, University of North
Carolina at Charlotte, USA. xiao@uncc.edu

R. Vatcha is a PhD student in Computer Science,University of North
Carolina at Charlotte, USA. rvatcha@uncc.edu

[22]). The RAMP approach [19] is effective in planning
mobile manipulator motions in real-time in a dynamic en-
vironment where obstacle motions are unknown. Recently
a co-evolutionary approach was introduced [1] combining
gross motion planning of a conventional mobile manipulator
with finding optimal goal configurations for grasping in a
static environment.

There exists work on path planning for hyper redundant
robots [4], characterized by vast number of joints connecting
very short rigid links/structures to be flexible. Here the
path planning problem is more challenging than that of
conventional manipulators with far fewer degrees of freedom.
There are approaches avoiding static known obstacles [3] [7]
[12] and sensor-based approaches tackling unknown static
obstacles for snake robots [16] [5]. However, there is little
study on manipulation motion planning for active contin-
uum manipulators, which are deformable anywhere and do
not have discrete joints, although there exists considerable
research on modeling and planning for manipulating passive
deformable linear objects (such as wires or cables) [14] [18]
[21]. It is an even greater challenge to plan motions of an
active continuum robot in a dynamic environment having
unknown obstacle motions, in real-time.

In this paper, we introduce an approach to motion planning
of a multi-section continuum manipulator [8] in uncertain
and changeable environments in real-time. Our planner ex-
tends the RAMP paradigm [19] for real-time adaptive motion
planning of conventional manipulators to this new form of
whole-arm manipulation in the following ways: (1) instead
of assuming goal configuration(s) as given, generate and
plan goal configurations of the whole arm for picking up
an object together with the paths/trajectories leading to the
goal configurations in a progressive fashion on-line and
based on the specific target object, (2) introduce optimiza-
tion functions for goal configurations and paths/trajectories
taking into account the specific characteristics of continuum
whole-arm manipulation, and (3) introduce path/trajectory
modification operations exploiting the structure of a contin-
uum manipulator. Our algorithm also employs the unique
concept of dynamic envelope [20] for collision-checking of
robot trajectories based on sensing, which does not require
prediction of unknown motions of obstacles.

II. OCTARM MANIPULATOR: CONFIGURATION, PATH,
AND TRAJECTORY

While a continuum robot can in fact have an infinite
number of degrees of freedom because it is deformable, there
are only a finite number of controllable degrees of freedom
when the robot is not in contact. These are the degrees of

freedom that can be directly changed by the actuators. The
OctArm manipulator designed at Clemson University has
three sections. According to [8], each section i, i = 1, 2, 3, is
a part of a circle with two end points: a base point pi−1 and
a tip point pi. The base of the robot is set at p0 with z0 axis
tangent to section 1’s curve. The section i’s frame is formed
at pi−1 with the z axis tangent to the section curve at pi−1.
The base of section i is the tip of section i−1. Each section
has three controllable variables: curvature κi (which can be
either negative or positive), length si, and rotation angle φ
from axes yi−1 to yi about zi−1. Note that the circle center
of section i, pic, always lies on the xi axis.

A configuration C of the OctArm manipulator
can be expressed by the controllable variables as
[κ1, s1, φ1, κ2, s2, φ2, κ3, s3, φ3]T . Thus, we can treat
this (κ, s, φ) space the configuration space of the OctArm
robot. Given the position of the base point pi−1, and the
κi, si, and φi values, the position of the tip point pi of the
section can be computed [8].

If φi=0 for all the sections, the OctArm is planar. Figure 1
shows a planar three OctArm and an example section. In this
paper, we only focus on a planar OctArm.

Fig. 1. A planar OctArm manipulator: (a) one section and its frame; (b)
three-section arm

A path for an elephant trunk robot from its cur-
rent configuration Cc to some goal configuration Cg can
be described as a sequence of discrete configurations
Cc,C1,C2, ...Cm,Cg , and those intermediate configura-
tions Ci (i = 1, ...,m) are called knot configurations or
knots. Between two knot configurations, the straight-line path
segment in the (κ, s, φ) space is further discretized as a
sequence of configurations. Thus, an entire path is discretized
and represented by a sequence of configurations.

A trajectory adds a dimension of time to a path and is
subject to the actuation and control constraints of the robot.
By adding a time dimension to the (κ, s, φ) space of the
OctArm robot, we have a configuration-time space of the
robot, where a point χ = (C, t) is a configuration time point
(CT-point).

III. OVERVIEW OF PLANNING ALGORITHM

The RAMP paradigm [19] is motivated by the need of
real-time motion planning of high-DOF robots, such as
(mobile) manipulators, in dynamic environments of unknown
obstacle motions. It has the following general characteristics:

(1) real-time simultaneous planning and execution of high-
DOF robot path/trajectory based on sensing; (2) anytime and
parallel planning with optimization, as inspired by evolu-
tionary computation [2], through maintaining and repeatedly
updating/improving a set of trajectory candidates for a robot
from its current configuration to a goal configuration; (3)
great structual flexibility to allow for both on-line adaptation
to different environmental scenarios and off-line extension
to robots of very different nature. Specifically for (3), all
major components of the RAMP algorithm can be cus-
tomized, including initialization of paths/trajectories, opti-
mization criteria and evaluation, and modification operations
of paths/trajectories. The strength of RAMP lies in both its
generality and its flexibility for adaptation and extension.

A. Extending RAMP to continuum robots

While the RAMP algorithm presented in [19] is directly
applicable to a wide class of conventional manipulators
featuring rigid links and discrete joints, planning motions of
continuum manipulators with deformable sections requires
further extension and customizaton of RAMP. As introduced
in section I, goal configurations cannot be assumed given
as in the case of conventional manipulators because they
are determined by the target object and the environment
and affect the whole form of the manipulator. Thus the
planner has to plan the goal configurations jointly with
paths/trajectories. Note that a goal configuration in this paper
refers to a manipulator configuration from which “grasping”
can start by compliantly wrapping the object1.

In addition, a continuum robot is considerably more
complex in kinematics than a conventional articulated
arm/manipulator. The configuration variables for a de-
formable section, such as κ, s, and φ of the OctArm robot,
are highly coupled in expressing the pose of a section in the
physical space; whereas for a conventional manipulator, the
pose of a link i is commonly determined by just one joint
variable (relative to the link i-1). This makes it nontrivial
to determine effective distance metric for path/trajectory
optimization, i.e., requires new evaluation functions for opti-
mization. It also requires that a path/trajectory be represented
with more built-in flexibility in initialization.

Moreover, the planner should exploit the deformable shape
and volume of a continuum manipulator in avoiding obstacles
– an advantage that a conventional articulated arm does not
have.

B. Real-time continuum planner

Our planner is outlined in Algorithm 1, interweaving
parallel processes performed in the following three cycles
as in RAMP:
• Sensing cycle: In each cycle new information about the

environment, such as new poses of obstacles, is obtained
from the sensor.

• Planning cycle: In each cycle, a trajectory from a set
S of trajectories along with its goal configuration is

1We do not consider the compliant wrapping motion in this paper, which
is the next research topic (see section V).

modified to adapt to changes in the environment and
for optimization.

• Adaptation cycle: At the start of each cycle, the robot
can switch to the newly found better trajectory.

As soon as the planner finds an immediate segment of a
trajectory collision-free, call it Lf , the robot starts moving
along Lf while continuing the planning cycles simultane-
ously to (1) find subsequent collision-free segments and (2)
further optimize collision-free segments. Thus, at each new
adaptation cycle, the robot can switch to a better trajectory2,
and in order to do that, the start CT-point of every trajectory
in S is updated accordingly.

In the following sections, we describe in detail the compo-
nents, i.e., initialize, evaluate, and modify of Algorithm 1,
with extensions to RAMP as summarized in section III.A.

Algorithm 1 Real-time Continuum Planner
Initialize a set S of trajectories connecting the start
configuration to one of the generated goal configurations
Evaluate all in S. Γbest ← best trajectory.

while a goal is not reached do
Simultaneously sense, plan, and move:
Sense:
if new sensing cycle then

Check and record collisions of trajectories in S.
end if

Plan:
Modify a trajectory in S.
if new adaptation cycle then

Evaluate trajectories in S.
Update Γbest.
χe = (Ce, te)← last CT point on the collision-
free segment Lf of Γbest within the adaptation
cycle or before a forced stop.
Update starting CT point of all in S to χe (i.e.,
when the next adaptation cycle starts).

end if

Move along Γbest unless forced to stop to avoid
collision.

end while

IV. PATH/TRAJECTORY AND GOAL INITIALIZATION

The initial set of paths is a mixture of randomly and
deliberately generated ones, ending at a variety of goal con-
figurations determined based on the rough information of the
target object known so far. We include straight-line paths in
the configuration space from the robot’s current configuration
to all goal configurations as deliberately generated paths.
Each randomly generated path has a random number of ran-
domly generated intermediate knot configurations. Between
two randomly generated adjacent knot configurations, if the
straight-line path segment is longer than a threshold D, more

2Hence, an adaptation cycle is greater than a planning cycle.

knot configurations are inserted along the segment to ensure
that the straight-line segment between any two adjacent knots
is sufficiently short. This provides the needed flexibility for
a path to change shape via changing the knots later. Given
a path, the corresponding trajectory is obtained as a time-
minimum trajectory.

Our algorithm determines goal configurations automati-
cally for a planar OctArm robot. Multiple goal configurations
facilitate placing the robot for grasping among static or
moving obstacles, which will also adapt during planning.
Figure 2 shows a target object with a circular bounding box
of radius r. centered at pc with position vector pc in the
robot’s base frame, and rc = ‖pc‖.

Fig. 2. A target object with a bounding circle centered at Pc w.r.t. the
base frame and two types of goal configurations

To generate a goal configuration, our algorithm first
randomly puts the robot tip in a thin belt of width ∆r
surrounding the bounding circle of the target object and then
generates the tip positions of the other segments under the
kinematic and geometric constraints of the OctArm robot.
For a planar OctArm robot, the positions of the section tips
p1, p2, and p3 in the robot’s base frame have to satisfy the
constraints of the two triangles shown in Figure 3, where
ri, i = 1, 2 is the distance of pi+1 to the robot base frame,
and li ∈ [li,min, li,max] (i = 1, 2, 3) is the length of the chord
of section i, such that

li,min =
2

κi,max
sin(

si,minκi,max
2

)

and
li,max =

2
κi,min

sin(
si,maxκi,min

2
).

κi,min and κi,max are the bounds on the curvature κi; si,min
and si,max are the bounds on the section arc length si. Note
that for the target object to be within the reach of the robot
arm, it is necessary that rc + r + ∆r << Σ3

i=1li,max.
Algorithm 2 describes how the tip positions p3, p2, and

p1 are generated in turn randomly for a goal configuration
that satisfies the triangle constraints in Figure 3. p3 and
p2 are generated within the thin belt ∆r surrounding the
target object so that section 3 of the robot curves around the
target object circle. Next, from the generated base and tip
positions of pi−1 and pi for section i, the curvature κi and
length si can be computed [15]. If the robot at the generated
configuration is not colliding with the target object, the

Fig. 3. Geometric constraints on the section tips p1, p2, and p3 of the
planar OctArm robot

configuration is considered a valid goal configuration. Two
homotopic groups of goal configurations can be generated,
as shown in Figure 2.

Algorithm 2 Goal Generation
Input information of target object: pc, rc, r,∆r.
Pick point p along pc with ‖p− pc‖ ∈ [r, r + ∆r].
Obtain p3 by rotating p about pc a random angle.
Randomly pick α ∈ [s3,min

r+∆r ,
s3,max

r+∆r].
Obtain p2 by rotating p3 about pc either α or −α.
if r1 > l1,max + l2,max then

return “Object too far”.
end if
x2 ← x coordinate of p2.
repeat

if x2 > 0 then
randomly pick ϕ in [0,min(π4 ,

π
2 − θ)],

else
randomly pick ϕ in [−min(π4 , θ −

π
2), 0].

end if
Randomly pick l1 ∈ [l1,min, l1,max].
l2 =

√
r2
1 + l21 − 2r1l1 cosϕ.

until l2 ∈ [l2,min, l2,max] or a time limit is reached.
if l2 is outside [l2,min, l2,max] then

return “Failure”.
end if
Generate p1 with coordinates (l1 cos(θ+ϕ), l1 sin(θ+ϕ)).
Return p1, p2, and p3.

To generate a random knot configuration, we use forward
kinematics: for i = 1 to 3, randomly generate κi and
si within their bounds respectively, and then compute the
corresponding tip point pi [8].

The objective of initialization is to create a diverse set
of trajectories with diverse goal configurations, which form
a foundation for further improvements during subsequent
planning cycles.

V. TRAJECTORY AND GOAL EVALUATION

We evaluate the quality of a path/trajectory, which takes
into account the quality of the goal configuration that the
path ends, by different cost evaluation functions based on

Fig. 4. A dynamic envelope surrounding the planar three-section OctArm
robot

different circumstances. The objective is to make the robot
select a trajectory that can lead it to a goal most efficiently
and also avoid obstacles. In any case, a trajectory is better
if it has a lower cost. We consider collision-free trajectories
always better than trajectories that are not collision-free.

As shown in Algorithm 1, evaluation of trajectories in S
happens after initialization and before an adaptation cycle
starts for the planner to select the best trajectory for execu-
tion. After a trajectory is modified to be a new one, it is also
evaluated to compare to the trajectories in S to replace the
worst trajectory in S (if the modified one is better than the
worst) depending on need (see Section VI).

We first explain collision checking and then explain eval-
uation functions for trajectory selection.

A. Collision detection

Collision detection is performed by employing the concept
of dynamic envelope [20] based on sensing, which does not
require prediction of unknown motions of obstacles. This
approach checks for the intersection between the dynamic
envelope that surrounds the robot at configuration-time point
(C, t) and obstacles to see if the robot will be surely
collision-free or not at (C, t) based on sensing at current
time τ < t. The size of the envelope is determined by
d = vmax(t − τ), where vmax is an upper-bound on
obstacle speeds. Figure 4 shows a dynamic envelope of the
planar three-section OctArm robot. The shape of the dynamic
envelope is the result of connecting the fan-shape envelope
for each section and a circle at the tip point of the robot. We
developed an efficient method to check intersections between
such a dynamic envelope for the OctArm robot and polygonal
obstacles. A collision-free trajectory segment found by the
above collision-detection method is guaranteed collision-free
[20] regardless how obstacles move in the future. Hence,
a collision-free trajectory connecting the robot’s current
configuration to a goal configuration, once found, will remain
collision-free so that the robot can execute it without the
worry of collision again.

In a static environment, i.e., vmax = 0, the dynamic
envelope is reduced to the robot itself, and collision checking
at current time τ is between the robot at (C, t) and the (static)
obstacles.

B. Evaluation functions

To evaluate a trajectory, we consider the path length, the
goal quality, and the quality of the immediate collision-free
trajectory segment Lf (of a trajectory that is not collision-
free).

Length: the sum of the distances between two consecutive
configurations along the discretized trajectory. We use two
distance measures to compute the distance between two
consecutive configurations Cj and Cj+1 on a trajectory,
dksφ(Cj ,Cj+1) and dw(Cj ,Cj+1):

dκsφ(Cj ,Cj+1) = ‖Cj+1 −Cj‖
dw(Cj ,Cj+1) = Σ3

i=1ui(‖p
j+1
ic − pjic‖)

where pjic and pj+1
ic are the center positions of the circle

of section i at configurations Cj and Cj+1 respectively,
and ui is the weight for section i. Larger weights are
placed on sections closer to the robot base. dw captures well
the difference between the two poses of the robot in the
workspace.

Figure 5 shows two examples, where dκsφ(Cj ,Cj+1) is
the same in both cases, but the distance dw(Cj ,Cj+1) in
case (b) is much greater than that in case (a). We use dw
to compute the length of a path when the robot is far from
the goal configuration. Only when the robot is very close
to the goal configuration so that a straight-line path (in the
(κ, s, φ) space) is likely collision-free, we switch to use
dκsφ to compute length, which favors the straight-line path
towards the goal.

(a) (b)

Fig. 5. Two examples to show the difference between dκsφ(Cj ,Cj+1)
and dw(Cj ,Cj+1): dκsφ has the same value for both (a) and (b), but dw
in case (b) is much greater than that in case (a).

GoalCost: measures the quality of a goal configuration Cg

by the difference between it and a configuration where the
robot fully surrounds the target object. Let p3c be the center
position of the circle of section 3 of the robot, and let ρ3 =
1/κ3 be the radius of section 3. GoalCost can be computed
as:

GoalCost = b1(|r − ρ3|+ ‖pc − p3c‖) + b2(2πr − s3)

where b1 and b2 are weights.

SegCost: measures the quality of the immediate collision-
free trajectory segment Lf of a trajectory that is not collision-
free. Let (Cf , tf) be the last CT point on Lf . SegCost is a
weighted combination of (a) a cost negatively proportional to

the number of collision-free configurations in Lf , (b) the dw
distance between Cf and the goal configuration of the path,
and (c) a cost negatively proportional to the time available at
Cf once the robot reaches it before a collision may happen.
w3, w4, and w5 are the respective weights.

Algorithm 3 decides the proper evaluation function to
choose the best trajectory to execute in a new adaptation
cycle. If there exist collision-free trajectories or trajectories
with sufficiently long Lf , the evaluation function combines
path Length and GoalCost for optimization; otherwise,
SegCost is used to favor a trajectory with better obstacle
avoidance.

Algorithm 3 Selection of the best trajectory
Input robot’s current (collision-free) configuration Cc

Input the current time τ .
Sf = {Γ|Γ is completely collision-free and Γ ∈ S}
if Sf is not empty then

Return the best Γ ∈ Sf based on:

eval1(Γ) = w1Length+ w2GoalCost (1)

else
if CT-point (Cc, τ + δt) is collision free then

return the best Γ ∈ S based on Eq. (1)
else

return the best Γ ∈ S based on:

eval2(Γ) = SegCost (2)

end if
end if

VI. TRAJECTORY AND GOAL MODIFICATIONS

Initial trajectories in S are evolved into better ones during
cycles of modifications in Algorithm 1. In each planning
cycle, a trajectory is randomly selected to undergo one of
the stochastic modification operations below:
• Modify: a randomly selected knot configuration is

changed to a randomly generated configuration.
• Insert: a new knot configuration is randomly generated

and inserted to the path.
• Delete: a randomly selected knot configuration is

deleted.
• Repair: a new knot configuration is created out of a

collided configuration to reduce collision.
• Curl-up:a new knot configuration is created to make the

robot curl-up to reduce collision.
• Shrink: a new knot configuration is created out of a

collided configuration by shrinking the robot size to
reduce collision.

In addition, the goal configuration of the trajectory, if in
collision with an obstacle, is also modified. A modified
trajectory is used to either replace the worst one in S, if
it is better than the worst, based on Eq. (1) in Algorithm 3,
or replace a random non-best trajectory, with a probability.
However, when the robot is forced to stop its motion, the

planner will use the modified trajectory to replace a random
non-best trajectory in S to increase the chance of finding a
trajectory with a collision-free segment for the robot to move
along again.

While the first three operations are generic RAMP op-
erations, the last three, Repair, Curl-up, and Shrink, are
designed to exploit the structure of a continuum robot, as
detailed below. Given a trajectory, Repair, Curl-up, and
Shrink all identify the earliest configuration Cc on the
trajectory that is not collision-free and create a less colliding
configuration Cnew based on it. Each of these operators then
uses Cnew to replace Cc as a new knot configuration in the
path.

To create Cnew, Repair does the following. Starting from
Cc, it first shortens the lengths of the sections from the base
to the colliding section k closest to the base and changes
the curvatures of these sections in the direction to “pull
them back” (see Figure 6(a)), all in random amounts; next it
maximally shortens the lengths of the sections from section k
to the tip section and changes the curvatures of these sections
in the direction to “push them forward” in random amounts
(see Figure 6(a)). The resulting Cnew reduces the original
collision at Cc. Repeated repairing could change a colliding
trajectory to a collision-free one.

(a) repair (b) curl-up

Fig. 6. The effects of Repair and Curl-up operations

Curl-up takes advantage of the deformable body of the
continuum robot to reduce collisions. From the colliding
section k closest to the base at the colliding configuration
Cc, it changes the curvatures of the sections from section k
to the tip to “curl up” those sections in one direction and
also maximally shortens the lengths of these sections. The
resulting configuration Cnew reduces the original collision
at Cc and could eliminate it (see Figure 6(b)). If there are
more colliding configurations ahead of Cc on the considered
path/trajectory, repeated use of Curl-up could change the
path/trajectory to a collision-free one.

Shrink tries to contract the robot body as much as possible.
To do so, it starts from the colliding configuration Cc, change
the curvatures of all sections to the average curvature (so
that they all have the same curvature), and then shrink all
sections to their respective minimum lengths. The resulting
configuration is Cnew, which is then used to replace Cc as
a new knot configuration.

Our planner selects the modification operators by proba-
bility. It selects all operators randomly, except for Modify,
which is given a higher probability of selection to increase
diversity of paths. If Repair is selected to modify a path,
it is applied two times consecutively so that two new knot
configurations are created out of the first collided configura-
tion of the original path and that of the once repaired path
respectively.

Our planner also adapts the goal configurations generated
during initialization to be better ones and free of obstacles
in an uncertain environment. In each planning cycle, the
goal configuration Cg of a trajectory Γ, if in collision, is
modified through mutations in one of the stochastic steps of
Algorithm 2: mutate p3, mutate α, re-select ϕ, and re-select
l1. Note that “mutate” means small change of values, but
“re-select” can result in large change of values. With such
modifications, the basic shape of Cg is just mutated and not
changed too much. The resulting new configuration, if better
than Cg (i.e., collision-free and has lower GoalCost), is
used to replace Cg for not only trajectory Γ but also all the
trajectories that end at Cg in the set S.

While the set of goal configurations can be improved from
its initial set, the above modifications still maintain the basic
diversity of the initial set because a goal configuration is only
replaced by an improved version through small changes in
p3 and α. The two homotopic groups of goal configurations,
as depicted in Figure 2, will be maintained. Our planner
further takes advantage of such diversity to avoid goal-related
local optima: it allows the goal configuration of a path to be
changed to one from a different homotopic group with some
probability.

VII. SIMULATION

We have tested our algorithm on a planar OctArm robot
in simulation environments. Each environment consists of
randomly generated polygonal obstacles of arbitrary shapes
and sizes. It also includes a randomly generated target object
for the robot, also in arbitrary shape and size (in the wide
range that the robot can “grasp” it). The obstacles can be
either static or move randomly. The simulated robot has the
same value ranges on (κ, s) for each section as the actual
robot at Clemson University. It can have either a static base
or a base that translates horizontally. The simulation was
conducted on a Dell Precision T5400.

A. Assumptions

In the simulation environment, we assume that the poses of
both the target object and the obstacles are sensed in sensing
cycles, with a frequency of 20 Hz. Even though the obstacles
may move randomly, they will not run over a stopped robot.
This essentially assumes that the obstacles, which can be
either moved by people or are other robots, are not malicious.
Our robot is capable of avoiding others during its motion,
but when it is static, others are not assumed to harm it.

We assume the robot can move with a constant speed
with instant acceleration/deceleration to simplify trajectory

generation. We also ignore the width of the OctArm robot
for simplicity.

B. Implementation and results

In our implementation, the key parameters of the planner
have values as shown in Table I. The first row gives the
number of trajectories in S, number of goal configurations
generated, and the maximum dκsφ distance D between two
adjacent knot configurations. The rest of the rows provide
weight values for the evaluation functions. A new adaptation
cycle starts either after every 3 planning cycles or when the
robot finishes executing the collision-free trajectory segment
Lf .

We applied our real-time planner to different simulation
environments of randomly generated obstacles. In the graph-
ical display, 1 unit=15 cm in real world. The upper bound
on the obstacle speed is vmax = 1 unit/s. The robot speed
is greater than 1 unit/s.

The attached video shows three examples of running our
planner: one is a fixed-base robot in a static environment,
and the other two are a robot with a horizontally moving
base in two dynamic environments with unknown obstacle
motions: exp. 1 (with three dynamic obstacles) and exp. 2
(with three static and six dynamic obstacles), which are also
shown in Figure 7. In each case the target object is indicated
by the bounding circle, and Figure 7 also shows the goal
configurations automatically generated. In all cases, the robot
is initially in the vertical configuration stretched (i.e., with
zero curvature for all sections).

(a) Exp. 1 (with 3 dynamic obstacles) (b) Exp. 2 (with 3 static and 6 dynamic
obstacles)

Fig. 7. Snapshots from two experiments, where the robot is in dark
green, possible goal configurations are in light green, static obstacles are in
burgundy, and dynamic obstacles are in red.

Table II shows the results averaged over 20 runs for exp.
1 and exp. 2 respectively. The results show that there are
just a few forced stops in both cases (when the robot did
not find a collision-free segment to follow), which is also
confirmed by the high percentage of replacing the worst in
S with a modified trajectory in each planning cycle. Recall
that during forced stops, the planner uses a modified trajec-
tory to replace a randomly chosen non-best one in S (see
section VI). The percentage of adaptation based on eval1 of
Algorithm 3 is quite high for the relatively simpler exp. 1,
but it is significantly lower for the more challenging exp. 2,

showing that the robot spent more time avoiding obstacles
by adaptation based on eval2. Note that the %adaptation by
eval2 (not shown in Table II) is 1−%adaptation by eval1
(shown in Table II), which is about 51% for exp. 2. For both
experiments, however, the robot always successfully reached
a goal configuration.

Table III shows the performance of the stochastic mod-
ification operators for exp. 1 and exp. 2, averaged over
20 runs. For every time an operator is applied to a path,
if the modification results in a better path, the operator
is considered successful. The %Success indicates the ratio
between number of successful times and total number of
times an operator is used. The result shows that all operators
were quite useful, but the operators specifically designed
for the continuum robot: repair, curl-up, and shrink were
more effective than the generic operators insert and modify.
In fact, when we ran exp. 2 without using repair, curl-up,
and shrink, the robot could not successfully reach a goal
configuration, showing that these operators were critical.
The delete operator is the only operator that reduces the
number of knot configurations. Its high %success for both
experiments shows that it was highly effective in shortening
lengths of trajectories.

TABLE I
PARAMETER VALUES OF THE PLANNER

|S| 5 # goals 5 D 5
w1−5 6 2 1 2 2
u1−3 0.6 0.25 0.15
b1−2 3 1

TABLE II
AVERAGE RESULTS OF 20 RUNS OF EACH EXPERIMENT

exp. total #stops # plan % replace % adaptation
time(s) cycles worst based on eval1

1 28.74 3.05 186.15 59.66% 76.78%
2 55.41 2.35 369.35 77.87% 49.12%

TABLE III
%SUCCESS OF MODIFICATION OPERATORS AVERAGED OVER 20 RUNS

OF EACH EXPERIMENT

exp. repair curl-up shrink insert modify delete
1 71% 79.45% 65.27% 59.51% 61.44% 76.67%
2 76.18% 79.19% 77.78% 70.40% 73.60% 77.83%

VIII. CONCLUSIONS & FUTURE WORK

We have introduced a real-time adaptive motion planner
for a planar continuum manipulator to grasp an object
amid an environment of arbitrary obstacles with uncertain
movements. Our planner plans goal configurations of the
whole arm together with the paths/trajectories leading to
goal configurations in real-time to tackle changes in the
environment, simultaneously as the manipulator moves. It
extends the general RAMP paradigm [19] by exploiting the
specific characteristics of the continuum manipulator to be

effective. It also introduces an efficient real-time collision-
checking algorithm based on the unique concept of dynamic
envelopes [20] so that a found collision-free trajectory is
guaranteed collision-free no matter how obstacles move.

As the next step, we will extend the planner in two
directions: (1) extending it to handle compliant wrapping
and picking up a target object starting from the goal con-
figurations considered in this paper, and (2) extending it
to a spatial continuum manipulator with non-zero φ’s. The
flexible nature of our planner facilitates both extensions. We
will also test our planner on the real OctArm at Clemson
University with real sensors, collaborating with Professor Ian
Walker’s group.

ACKNOWLEDGMENT

This work is supported by the US National Science
Foundation grant IIS-0904093. The authors also thank Ian
Walker and Bryan Jones for helpful discussions regarding
the Clemson OctArm manipulator.

REFERENCES

[1] D. Berenson, J. Kuffner, and H. Choset, “An Optimization Approach to
Planning for Mobile Manipulation,” Proc. of IEEE Int. Conf. Robotics
and Automation(ICRA), pp. 1187-1192, May 2008.

[2] P.P. Bonissone, R. Subbu, N. Eklund, and T.R. Kiehl, “Evolutionary al-
gorithms + domain knowledge = real-world evolutionary computation,”
IEEE Trans. Evolutionary Computation, 10(3):256-280, April 2006.

[3] G.S. Chirikjian and J.W. Burdick, “An Obstacle Avoidance Algorithm
for Hyper-Redundant Manipulators,” ICRA, May 1990.

[4] G.S. Chirikjian and J.W. Burdick, “A Hyper-Redundant Manipulator,”
IEEE Robot. and Automat. Magazine, pp. 22-29, Dec. 1994.

[5] H. Choset and W. Henning, “A follow-the-leader approach to serpentine
robot motion planning,” ASCE J. Areospace Engin., 12(2):65-73, April
1999.

[6] R. Cieslak and A. Morecki, “Elephant trunk type elastic manipulator a
tool for bulk and liquid type materials transportation,” Robotica, 17:11-
16, 1999.

[7] B. Dasgupta, A. Gupta, and E. Singla, “A variational approach to
path planning for hyper-redundant manipulators,” J. Robotics and
Autonomous Sys., 57(2):194-201, Feb. 2009.

[8] B.A. Jones and I.D. Walker, “Kinematics for multisection continuum
robots,” IEEE Trans. Robot., 22(1):43-55, Feb. 2006.

[9] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Automat., 12(4):566-580, 1996.

[10] S.M. LaValle and J.J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res.(IJRR), 20(5):378-400, May 2001.

[11] P. Leven and S. Hutchinson, “A framework for real-time path planning
in changing environments,” IJRR, 21:999–1030, 2002.

[12] S. Ma and M. Konno, “An obstacle avoidance scheme for hyper-
redundant manipulators-global motion planning in posture space,”
ICRA, pp. 161-166, April 1997.

[13] W. McMahan, B.A. Jones, I.D. Walker, V. Chitrakaran, A. Seshadri,
and D. Dawson, “Robotic manipulators inspired by cephalopod limbs,”
Proc. of the CDEN Design Conf., Montreal, Canada, pp. 1-10, July
2004.

[14] M. Moll and L.E. Kavraki, “Path Planning for Deformable Linear
Objects,” IEEE Trans. on Robotics, 22(4):625636, August 2006.

[15] S. Neppalli, M.A. Csencsits, B.A. Jones, and I.D. Walker, “Closed-
form Inverse Kinematics for Continuum Manipulators,” Advanced
Robotics, 23:2077-2091, 2009.

[16] D. Reznik and V. Lumelsky, “Motion planning with uncertainty for
highly redundant kinematic structures I. “Free Snake” Motion,” ICRA,
pp. 1747-1752, July 1992.

[17] G. Robinson and J.B.C. Davies, “Continuum Robots - A State of the
Art,” ICRA, pp. 2849-2854, May 1999.

[18] M. Saha and P. Isto, “Motion Planning for Robotic Manipulation of
Deformable Linear Objects,” ICRA, pp. 2478-2484, May 2006.

[19] J. Vannoy and J. Xiao, “Real-time Adaptive Motion Planning (RAMP)
of Mobile Manipulators in Dynamic Environments with Unforeseen
Changes,” IEEE Trans. Robotics, 24(5):1199-1212, Oct. 2008.

[20] R. Vatcha and J. Xiao, “Perceived CT-space for motion planning
in unknown and unpredictable environments,” 8th Int. Workshop Alg.
Foundations of Robotics, Guanajuato, Mexico, Dec. 2008.

[21] H. Wakamatsu, E. Arai, S. Hirai, “Knotting/unknotting Manipulation
of Deformable Linear Objects,” IJRR, 25(4):371-395, April 2006.

[22] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation in dynamic environments,”
Robotics Sci. & Sys. II, The MIT Press, pp. 279-286, 2006.

