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Abstract - Contact detection based on computing minimum
distance is a fundamental issue important to many applications. A
largely unsolved problem is how to detect multiple contacts that are
formed simultaneously between non-convex and non-polyhedral
general objects both accurately and in real-time. This paper presents
an effective solution to the problem. Our approach first locates the
pairs of closest components by fast intersection checking based on
hybrid bounding volume hierarchies of surface components. For
each pair of such components, it then finds the pairs of closest points
and corresponding pairs of closest parametric features by combining
collision detection or minimum distance query between polygonal
meshes of those components and exact distance computation between
the parametric features. Implementation results show that this
approach can compute multiple simultaneous contacts between
general objects both very accurately and efficiently in the order of
several milliseconds regardless of the numbers of features on the
objects.

Index Terms - multiple contact detection, curved objects,
minimum distance computation, collision detection, real time

I. INTRODUCTION

The information of contact states between two objects is
essential to many robotics and haptics applications, such as
robot motion planning [1], virtual assembly prototyping [2],
maintenance verification [3], virtual manipulation [4], haptic
rendering and dynamic simulation, etc. Often it is not enough
to know just whether two objects are in contact or not, but to
obtain information such as the exact contact points is also
needed in real time. Because of the stringent requirements on
both accuracy and time efficiency, which are often conflicting
requirements, the problem is largely unsolved for interacting
non-convex and non-polyhedral objects where multiple
contact regions can occur simultaneously.

Related existing literature can be classified into the
following categories:

* Collision detection based on intersection checking
The main approach in this category represents objects in

certain bounding volume hierarchies to facilitate fast
intersection checking. Many types of bounding volumes are
introduced in the literature, such as spheres [5], oriented
bounding boxes (OBBs) [6], axis-aligned bounding boxes
(AABBs) [7], discrete orientation polytopes (k-dops) [8], and
octagonal bounding volumes [9]. Methods in this category can
be fast but with limited accuracy because they cannot provide
exact contact points which are important to many applications.
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* Distance computation based on polygonal models
There is considerable research on calculating the

minimum distance between two objects based on polygonal
surface models which is surveyed in [10] and in [11]. More
recent methods such as PQP [14] and SOLID [15] combine
convex bounding volume hierarchies and efficient distance
computation to deal with concave objects. Reference [15] and
reference [16] can only provide a penetration depth for single
intersection but cannot deal with multiple intersections. All the
above methods cannot handle multiple contacts.

Moreover, because methods in this category use polygonal
approximations of objects, it is quite possible that the distance
between the polygonal approximations of two curved objects
is not equal to zero when two convex surfaces of the actual
objects already penetrate each other. For these methods, a
trade-off has to be made between the accuracy of the
approximation and the efficiency of the overall computation.

* Distance computation based on exact analytic descriptions
of curved objects
The methods based on exact analytic descriptions of

curved objects avoid the approximation problem of the
methods based on polygonal models but also have their own
various limitations. Most of the current work mainly focuses
on convex curved objects, and real-time computation is
seldom achieved. Generally, the problem is treated as root-
finding of some equations that describe conditions for
minimum distance. The minimum distance query between
curved objects is also treated as a problem of solving
univariate polynomial equations [17], or a dynamical control
problem [18]. Analytic and iterative numerical methods are
often used to solve for solution(s). The analytic approach
guarantees to find all extrema of the distance function but
cannot deal with complex objects, especially when the objects
are in motion. Local numerical optimization methods also
need adequate starting points in order to converge to good
solutions. References [19][20][21][22] are quite efficient but
at the cost of accuracy.

Multiple occurrences of minimum distance or multiple
contacts between different pairs of features are handled in [23]
with great accuracy. However, the overall performance of the
approach depends on the total number of feature pairs tracked.

* Hybrid methods
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There are approaches trying to combine the methods
based on polygonal models and those based on analytic
models of objects [24] [25] [26]. In [24], once an intersection
between two objects in polygonal models are detected, the two
objects are pulled back to a contact state based on computation
of penetration distance between parametric surfaces with local
numerical techniques. This method does not seem to consider
the inter-dependence among multiple contact regions and may
not always find the correct contact state. In [25], polyhedra are
used to approximate curved objects with convex surfaces, but
for concave surfaces, computation is done directly on the
algebraic surface models based on Gauss-Newton method.
Because it is time consuming to obtain the initial values of the
variables for such computation especially when objects are
complex and are in motion, real-time can hardly be achieved.
Reference [26] improves the process of finding initial values
and used the method in [20] to find the approximate minimum
distance. However, none of the above methods is able to
handle simultaneous, multiple occurrences of multiple
contacts. They cannot provide exact information of such
contact situations with both accuracy and real-time efficiency.

This paper aims to fill the gap by introducing an approach
that can detect multiple contacts between general curved
objects both exactly and in real-time. Our approach extends
the advantages of bounding volume hierarchies, collision
detection and distance computation based on both polygonal
and analytic surface models of objects while avoiding their
respective drawbacks by providing key "bridges" that
integrate, mend, and extend partial solutions obtained from
these existing algorithms.

The rest of this paper is organized as follows: Section II
gives the overview of our approach. Section III presents the
object models used by our approach. Section IV discusses
the scope of our algorithm. We present and discuss the
implementation results in Section V. Section VI concludes the
paper.

II. OVERVIEW OF THE APPROACH

First we define the interaction states between two objects
by taking into account digital errors in the following robust
way: two objects are in contact if the minimum distance d
between them is within a small range:

0< l<d< 2 (1)
if d < o5, then the two objects are in penetration, and if d > ,2,
then the two objects are separated. Our approach to exact
contact detection is to find exact contact points based on the
above definition.

For object models, we establish bounding volume trees
for surface components of general objects and dual
representations for each surface component in terms of both
polygonal meshes and surface features described
parametrically. These representations are built offline during
pre-processing.

Our algorithm consists of at most three stages in one time
step to detect contacts between two moving objects:
* Stage 1: intersection checking between component-based

bounding-volume trees

Unlike existing bounding-volume tree approaches using
primitive polygons as basic building blocks [6] [7], i.e., each
leaf node of a bounding-volume tree contains a polygon, our
approach significantly reduces the size of such a hierarchy by
making a tree of bounding volumes with object surface
components (explained in detail in Section III) as primitive
building blocks, which are much larger entities than simple
polygons. As an object has far fewer number of surface
components than the number of polygons in its surface mesh
model, our component-based bounding volume tree is much
smaller, so that much faster and mesh-size independent
checking of potentially closest surface components can be
done between two general objects.

Once two leaf-level bounding volumes of the two objects
are detected as intersecting, our algorithm enters Stage 2
below.

* Stage 2: collision detection or distance computation based
on polygonal mesh models.
For each pair of intersected leaf-level bounding volumes

of components, take the polygonal mesh models of the
corresponding components C1 and C2. If the two mesh models
of the surfaces do not intersect, but they are close enough in
distance, enter Stage 3. In Stage 2, we currently use an
extended implementation of the GJK algorithm [12] to
calculate the minimum distance and the closest points between
two convex polygonal models.

If at least one concave component is involved in a pair of
closest components, we first offset the mesh of one concave
component by S to obtain a proxy mesh. Next we use a fast
collision detection algorithm to detect all the colliding
triangles between the mesh and proxy mesh of the concave
component and the mesh of the other component (which could
also be concave). Currently we use the OPCODE [28] for this
purpose. Our algorithm further detects if there are colliding
triangles between the two meshes of the two components. If
so, penetration is reported. Otherwise, if the colliding triangles
are only between the proxy mesh of one component and the
mesh of the other component, a contact state occur. The
algorithm then separates the collided triangles into groups, and
each group consists of pairs of colliding triangles that form a
connected collision region. For each group i (i . 1), the
algorithm computes the exact intersection lines between the
intersecting triangles and finds the geometric centre pci of the
area bounded by the intersection lines. Our algorithm enters
Stage 3 at this point.
* Stage 3: exact distance computation between exact

parametric models of surface features
Use the information obtained in Stage 2 to find the pairs

of closest parametric features and the pairs of closest points
between the two features.

Let C1 and C2 denote a pair of contacting components
from Stage 2. If the pair of components C1 and C2 are both
convex, Stage 2 finds the pair of closest points Pi and P2 on the
polygonal meshes of C1 and C2 respectively. In Stage 3, pi and
P2 are used to find the corresponding closest features f and h
on the exact models of C1 and C2 as well as the starting points
s1 and s2 for finding the closest points on f and h. We can
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decide the closest feature f of C1 that Pi corresponds to
according to the pre-constructed data structure for pi .

Next, the starting point s1 on f can be determined by
projecting p1 onf along the normal direction. The starting point
s2on h can be decided similarly from P2. s1 and s2 are then input
to the Newton's optimization routine to find the exact closest
points onf and h.

If C1 (or C2) is a concave component, then Stage 2 passes
to Stage 3 the points p,, (i21). Now p,, is projected to the exact
surface models of both Cl and C2 along their normal directions
to obtain the corresponding closest features f and h, on the
exact models of Cl and C2. The projected points s1and S2ion
features f and h, respectively are next used as the starting
points for the Newton's optimization routine to find the exact
closest points onj and h,.

Our implementation shows that such a pair of points s,
and s2 (or s iand s2 ) found as described above are very good
starting points for further optimization and always result in
quick convergence to the actual pair of closest points between
the closest features.

Note that there are three possible kinds of output results.
If no component bounding volumes or surface meshes are
intersecting, the output is "no contact." If at least one pair of
surface meshes is intersecting, the output is "penetration."
Otherwise, contacts are identified.

III. REPRESENTATIONS OF OBJECTS

The whole surface of a general object consists of surface
patches, curves/lines bounding the surface patches and isolated
points (i.e., the intersection points of curves). These surface
patches, curves/lines and isolated points are the features of a
curved object, calledfaces, edges, and vertices respectively. A
face is convex if, when it is viewed from the outside of the
object toward the outward normal of the face, it is convex.
Otherwise, a face is concave.

We partition the surface of a general object into a
minimum number of surface components. There can be two
types of surface components. A convex component consists of
connected convex faces of the object that does not form any
concavity and is the convex hull of the connected convex faces
which have concave edges. A concave component consists of
concave faces of the object. Thus, if an object is convex, its
whole surface is a single convex surface component. If an
object is not convex, it has more than one surface component.
If an object has concavities formed by convex faces only, it
has only convex components. If an object has concavities
formed by concave faces, it has concave components. A
general object may have both convex and concave
components.

On top of the surface components, a hierarchical
representation of bounding volumes is constructed as a
component-based bounding-volume tree. A leaf node of this
binary tree contains the bounding volume of a single surface
component.

Each component is further represented both in terms of a
polygonal mesh model and parametric descriptions of its
surface features, which we call dual representations. We
explain the component-based bounding volume tree and the

dual representations of components below in detail. Note that
all these representations are constructed in pre-processing.

A. Component-based tree of hybrid bounding volumes
We build a binary tree of bounding volumes for an object

in the following way: the root of the tree is a bounding volume
of the entire object surface; the surface is then partitioned into
two unions of surface components, and the bounding volume
of each union is a child node of the root; next the union of
components of each child node of the root is again partitioned
into two smaller unions of components, whose bounding
volumes define the two children of the node, and so on. A leaf
node of this binary tree contains the bounding volume of a
single surface component.

There is a trade off between the evenness of fit and the
time cost of intersection checking between a pair of bounding
volumes. Octagonal bounding volumes [9] significantly
improve the evenness of fit by cutting off the corners and thus
improve the culling rate at the cost of slightly more expensive
intersection checking. In our current implementation, we
combine the advantages of both OBBs and octagonal
bounding volumes by using OBBs in the non-leaf nodes and
octagonal bounding volumes in the leaf nodes of our binary
tree. The results are quite satisfactory as shown in Section V.
Of course, our choice of bounding volumes is not exclusive.
Other bounding volumes (such as k-dops [8]) could also be
used.

Once a bounding volume is constructed, we can magnify
its size to provide some tolerance by a distance 3(see Fig. 1).
S should be larger than the displacement of an object's motion
in a single time step. This is to ensure that when two bounding
volumes are first detected as intersecting from not intersecting
in the previous time step, the actual object components are not
in collision, and they can be close enough to be considered in
contact (by our definition in Section II).

Fig. 1. Octagonal bounding volumes with tolerance are intersecting but there is
no intersection between the two components.

B. Dual representations ofsurface components
We obtain a parametric representation of a surface

component in terms of their parametric features and the
adjacency relations among those features. The parametric
representation of a face involves two independent parameters
u and v, and that of an edge uses one parameter. For a vertex,
no parameter is needed.

In addition to the parametric representation of a surface
component, we also obtain its polygonal approximation as a
mesh of triangles. The initial tessellated polygonal mesh can
also be adaptively subdivided based on surface curvature to
obtain required approximation accuracy.
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For each component, we further establish the
correspondences between each vertex and the triangles it
belongs to as well as the parametric features by a simple
program and store them in a special data structure as the
results of preprocessing.

IV. LIMITATIONS OF THE ALGORITHM

Our algorithm is suitable to detect isolated pairs of contact
points, which happen most commonly between curved objects,
rather than continuous contact regions that happen between
two flat faces (as in the case of polyhedral objects).

This algorithm also operates under a common basic
assumption (that existing distance computation or collision
detection algorithms based on surface representations of
objects often assume): the penetration state where one solid
object is contained completely inside another solid object so
that there is no surface intersection is prevented. This
assumption is reasonable in applications such as haptic
operations and dynamic simulation with solid objects: in those
cases, an object is moved away from penetration by simulating
physics.

V. IMPLEMENTATION, TESTING, AND PERFORMANCE

We have implemented our approach in Visual C++ and
run it on a Pentium Processor of 2.8GHz CPU with 1GB RAM.
Six curved solid objects are used in testing the performance of
the proposed approach: the paperweight ( 3 convex surface
components), the goblet-shaped solid ( 8 surface components),
the bowl (2 surface components), the pencil(3 surface
components), the solid jar (3 surface components), and the
vase(3surface components).

As the first stage of our algorithm, intersection checking is
conducted between component-based bounding-volume trees.
The running times for intersection checking with the
paperweight and the goblet-shaped solid as the two objects are
presented in Table 1. The component-based binary bounding-
volume tree for paperweight has 3 levels and a total of 5
nodes, and that for the goblet-shaped solid has 4 levels and a
total of 15 nodes. Table 1 shows the time of intersection
checking between two entire trees, with respect to different
numbers of intersecting leaf nodes. The data show that the
entire intersecting checking is very fast in the order of
hundreds of microseconds (ys).

TABLE 1
Average time (in millisecond) for intersection checking between two

bounding volume trees

In the following experiments, we test the total running
time including Stage 2 and Stage 3 between two objects. Fig.2
shows the average total running time (i.e., including all the
three stages) with respect to the above object pairs of different
total number of feature pairs: Our approach achieves almost
constant time when only one contact occurs. The average

running time of our algorithm ranges from 1.4 to 1.8
millisecond.

6
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Fig.2. Average total running time vs. number of feature pairs

TABLE 2
Average time (in millisecond) of the Newton method
Point-curve Curve- Curve- Surface-

curve surface surface
Time 0.17 0.32 0.62 0.95

Table 2 shows the average running time for searching the
pair of closest points on the pair of closest exact features of
two objects based on the Newton method, which ranges from
0.1 to 1 millisecond depending on the type of the feature pair.
Clearly, the numerical process sometimes takes a greater part
of the total running time.

Fig. 3 shows the multiple collision regions between the
mesh model of the pencil and the proxy mesh model of (in
grey colour) of the bowl, which means multiple contacts
between the pencil and the bowl. In Fig. 3, the intersecting
triangles are rendered in red, and the black lines are
intersection lines of the intersecting triangles. Fig. 4 shows
two contact states between the pencil and the paperweight, and
Fig.15 shows two contact states between the paperweight and
the goblet-shaped solid. Fig. 6 gives the example of multiple
contacts between two vases involving concave surfaces. Table
3 gives the average running time of the entire algorithm
including all three stages with respect to contact states where
two contacts are detected.

Fig.3 Multiple collisions between the mesh model of pencil and the proxy
mesh model of the inner surface of bowl
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volumes intersect (from Stage 1). In Stage 3, the average
running time is approximately linear to the number of closest
feature pairs (obtained from the results of Stage 2).

TABLE 3
Average total running time (in millisecond)

2 contacts

Pencil -paperweight 2_.68

Paperweight-goblet-shaped solid 3.13

Pencil-bowl 2.95

Vase-vase 4.87

Fig.4. Multiple contacts between the pencil and the paperweight

Fig5. Multiple contacts between the paperweight and the goblet-shaped

solid

Fig. 6. Multiple contacts between two vases

The time complexity of our algorithm is analysed as

follows. In Stage 1 of our algorithm, suppose that the two
binary bounding-volume trees have 2n-1 and 2m-1 nodes
respectively, corresponding to n and m components of two
objects'. Without losing generality, let n=m + k, k * 0, then the
average complexity of intersection checking between the two
trees that results in at most three pairs of intersecting leaf
nodes, which correspond to at most nine simultaneous
contacts can be computed as O(log n).

In Stage 2, the average running time is approximately
linear to the number of component pairs whose bounding

Note that no two bounding volumes share the same component at the same

level of the trees, i.e., there is no overlapping bounding boxes at the same

level of trees.

VI. CONCLUSIONS

We have presented an effective approach to solve a

largely unsolved problem: exact and real-time detection of
contacts between non-convex general curved objects. Our
approach has the following major characteristics:
* It is a unified and general framework for exact contact
determination between general curved objects. It provides
exact contact points and closest feature pairs, which are

important for physically-based applications subject to non-

penetration constraints.
* It is capable of detecting the simultaneous occurrence of
multiple contacts between two objects, including not only
those due to concavities formed by convex surface features but
also those due to concave surface features.
* Its performance both in terms of efficiency and accuracy

is relatively independent of the total number of surface
features of the objects, and therefore the algorithm is robust
and highly scalable.

With these characteristics, our method is particularly
suited for high-fidelity interactive applications, such as those
involving high-fidelity haptic rendering.

An interesting future direction is to extend our approach
to deal with curved objects in NURBS representation since
NURBS is used widely in most CAD systems.
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