
Intelligent Pursuit & Evasion in an Unknown
Environment

Jonathan Annas
Department of Computer Science

University of North Carolina at Charlotte
Charlotte, North Carolina 28223–0001

Email: jdannas@uncc.edu

Jing Xiao
Department of Computer Science

University of North Carolina at Charlotte
Charlotte, North Carolina 28223–0001

Email: xiao@uncc.edu

Abstract—This paper introduces a novel and flexible simulation
platform for studying pursuit and evasion in unknown 2-D
environments of arbitrary obstacles, in an effort to expand the
practical application of pursuit-evasion research. The platform
provides realistic simulation of the sensing capability of each
robotic agent (either a pursuer or an evader). Each agent
uses real-time local sensing to collect information from the
environment while it simultaneously plans and executes its motion
to best satisfy one or more objectives. The evader’s objectives
are to reach a specific goal location as quickly as possible and
to avoid being caught by the pursuer. The pursuer’s objectives
are to locate and capture the evader whose motion is unknown,
and when the evader is not seen, explore the environment and
predict where the evader may be. Under a common real-time
planning paradigm, each agent’s planner dynamically adapts
its goals and objectives to the agent’s changing circumstances
so that the agent can always choose the best course of action.
Simulation results have shown that the introduced approach is an
effective means to study sophisticated pursuit-evasion scenarios
and accomplish objectives for both the pursuer and the evader in
an unknown environment. The platform can be easily expanded
to accommodate multiple agents in more complex pursuit-evasion
tasks.

I. INTRODUCTION

Pursuit and Evasion is a category of robotics and intelligent
systems that encompasses a broad scope of problem formula-
tions. The base context of these problems is that one or more
agents must ‘catch’ another agent. The term catch has been
defined as to chase, acquire visibility, maintain visibility, or
to actually make contact with one or more opposing agents.
Existing research in pursuit and evasion has been motivated
by real life applications but often only addresses a highly
constrained version of problem models. As a relatively young
field, much of the work done has reduced agents to a point
robot and environments are often represented as a connected
graph or grid. The theory derived from even these simplified
models has advanced security systems [6], military robotics
simulations [9], emergency response simulations, and other
important areas. This field has been gaining more attention
in recent years with papers showing up in many major
conferences. Research recently published in the category of
pursuit-evasion has considered pursuit-evasion in an arena (the
lion and the man game) where a point agent captures another
using only bearing information [5]. Other research that has
been applied to security makes use of sensor networks for

tracking [7] and multiple robots to aid in surveillance [6]. The
contributions of these methods have spanned from grounding
theory through proofs in their respective environments in order
to guarantee expected outcomes, to providing comparisons of
specific approaches such as random search over exhaustive
search in pursuit-evasion [4].

This paper introduces a novel and flexible simulation
platform for studying pursuit and evasion in unknown 2-D
environments of arbitrary obstacles. The platform provides
realistic simulation of the sensing capability of each robotic
agent (either a pursuer or an evader). It also provides a sensing-
based real-time planning paradigm that can accommodate the
navigation objectives of either agent based on circumstances
during pursuit and evasion. In Section II, we give an overview
of the motion planning paradigm in our approach. In Section
III, we introduce the simulation of the physical robot agents
equipped with sensors. In Section IV, we discuss the behaviors
of the pursuer, including how the pursuer focuses on intelligent
prediction of the evader’s motion based on online sensing. In
Section V, we discuss the behaviors of the evader and how they
contribute to successful evasion. In Section VI, we explain
the design of experiments using the simulation platform. In
section VII, we present and discuss experimental results of
our simulations. Finally, Section VIII concludes the paper and
suggests possible future work.

II. PLANNING PARADIGM

For both an evader and a pursuer to navigate in an un-
known environment, each must be capable of real-time motion
planning that is adaptive to sensory discoveries. Our planning
paradigm is inspired by the past work of Xiao and Vannoy
[10][8] addressing real-time adaptation in planning a robot’s
motion. Both borrowed the general anytime and parallel
planning idea of evolutionary computation [1] by maintaining
and repeatedly updating a set of solution candidates for the
robot, i.e., paths [10] or trajectories [8], in iterations, called
planning cycles. Planning is done in the continuous space
of the robot’s environment rather than on a discretized grid
or graph1. A path is represented as a sequence of robot

1This becomes a clear advantage over traditional complete algorithms such
as A* even in a known environment, see Figure 1.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4899

configurations, called path nodes, from the robot’s current
configuration to a goal configuration. An evaluation function
is used to code certain optimization criteria to evaluate how
good a solution candidate is, and a number of simple mutation
operators are used to modify the solution candidates. An initial
set of solution candidates can be generated randomly, and
in subsequent planning cycles, the solution candidates are
repeatedly modified and evaluated to find the best one. As
the planner runs, the robot simultaneously executes the best
feasible solution at any time. As the robot moves, the starting
configuration of the solution candidates are updated to the
robot’s current configuration. Since evaluation is based on the
updated information of the environment from sensing, the best
solution candidate found also changes as the circumstance
changes. By following (or essentially switching to) the current
best solution, the robot adapts its movement to the changing
scenes.

Our planning paradigm, in the context of pursuit and
evasion, extends the above significantly by enabling more
dynamic adaptation to deal with changing goals and objectives
of the agents. For the evader, even though it has a fixed goal
configuration, it may often need to change its goal temporarily
in order to flee the pursuer during navigation. The pursuer has
an even greater challenge. It may not even be able to see the
evader, and when it can see the evader, it does not know how
the evader will move. Therefore, the pursuer has to update its
goal constantly by prediction.

Our planning paradigm enables dynamically changing an
agent’s goal and adapting its evaluation function based on the
sensed circumstances to promote the most suitable behaviors.
For example, when the evader has to flee the pursuer, its eval-
uation function changes to favor paths that allow the evader
to turn. With such flexibility, the same planning paradigm,
outlined in Algorithm 1, is able to be used for both the
evader and the pursuer. Figure 2 shows the relationship among
planning, sensing, and control (i.e., adaptation) cycles.

The same basic evaluation function is used by both agents,
and they adapt it to their different needs at different times only
by adjusting the weights of function. We use the following
composite evaluation function F for both agents to evaluate a
path, which consists of a sequence of path nodes:

F =
∑

SegLengths+ (C ∗Cw) + (
∑

ArcLengths ∗Aw)

•
∑

SegLengths is the summation of the individual segment
lengths along the path.

• C is the number of collisions along the path. The Cw

weight is set high and the
∑

SegLengths is set to 0 for any
path that has collisions. This effectively separates feasible
from infeasible paths and allows for the adaptation of
each with less likelihood of an agent being biased towards
one infeasible path over another due to path length and
therefore being stuck in local minima.

• Cw is a weight that determines the importance of colli-
sions.

•
∑

ArcLengths is the summation of the individual arc
lengths from one path node to the next. An arc length

Fig. 1. A* results on a 600x600 grid with the red arrow highlighting a
clearly non-optimal section of an optimal A* result due to the limited number
of motion directions from one cell to a neighboring cell in a grid.

captures the distance caused by an agent’s rotation to
change its orientation. By rotating the agent about its
center from one orientation (at one path node) to the next,
the distance traveled by the apex of the agent is the arc
length.

• Aw is a weight that determines the importance of the
ArcLength. This weight can be increased when an agent
considers sharp turns to be more important than the length
of a path. This is crucial for the concept of evasion.

How each agent changes its goals or objectives is described
in detail in Sections IV and V respectively.

Our planner also introduces a new concept of progressive
modification of paths to deal with gradually discovered ob-
stacles. Assume a path is currently infeasible because it is in
collision with an obstacle and a repair operator has failed to
adjust the path to be feasible in the current planning cycle due
to incomplete knowledge of the colliding obstacle. That failed
attempt and its associated information is accumulated to guide
repairs in later planning cycles as the obstacle becomes more
visible. In this fashion, a collided path may spiral outward off
of an obstacle gradually.

III. AGENT AND SENSOR MODELS

We focus this paper on pursuit and evasion in an unknown,
planar environment. We use two robotic agents, one as the
pursuer and the other as the target or evader. Each agent has
the shape of a triangle with three degrees of freedom (x, y,
and θ). It is driven by two back motors, and its apex points to
the forward moving direction (see Figure 3). We simulate the
environment as consisting of an arbitrary number of obstacles
of arbitrary size and shape, which are unknown to the robotic
agents. Each agent senses the environment by virtual vision,
which uses color to detect obstacles and convert those to a

4900

Algorithm 1 Planning Paradigm
Initialize a set S of agent paths with randomly generated
intermediate nodes connecting the agent’s current configu-
ration to a (current) goal configuration.
Evaluate all paths in S. Pbest ← best path.

while Goal is not reached do
Simultaneously do Move and Plan:

Move along Pbest unless forced to stop to avoid
collision.

Plan:
Modify paths in S.

if end of current control cycle then
Update starting configuration of paths in S.
Evaluate S and update Pbest.

end if

if new sensing cycle then
Update own view of world (i.e., map).
Update goal and adjust evaluation function to suit
the current agent objective.
Evaluate S and update Pbest.

end if
end while

Fig. 2. Planning, Sensing, and Control Cycle Relationship

local representation in the agent’s memory. Each agent is also
equipped with virtual collision detectors. The details of these
simulated sensors are explained below.

A. Vision Scanning

Each robotic agent is equipped with a virtual vision scanner
that detects obstacles and agents. The vision scanner shoots out
a ray from the robot in a circular fashion at each interval of ω
degrees until it completes a 360 degree scan. At each interval,
the ray is traced from the agent’s location outward until a
change of color occurs that indicates collision with an obstacle

Fig. 3. Agent & Sensors

or agent. This point is then discretized into an obstacle pixel
and mapped into a two dimensional array which represents
the agent’s memory. The mapped point is expanded in size to
allow for sensor noise (line rasterization rounding error). We
found the ideal sensor mapping to be one point in real space
to a 4x4 grid of points in the discretized agent memory space.
The entire process of finding all visible obstacle pixels can be
done at 25Hz using less than 2% of one core of the available
CPU, and is therefore very efficient.

B. Obstacle Avoidance

Each agent also has a sensor array of three ”’whisker”’
sensors for avoiding collisions. Figure 3 shows the location of
two sensors angled at 27 degrees outward from the center of
the robot, and one sensor facing directly ahead. These sensors
are each a single ray traced in the same way as the vision
scanner rays described in the section III-A. Each angled sensor
is connected to the motor at the same side and can override
that motor’s current force when an obstacle is sensed. If an
obstacle is detected, that sensor will cause it’s motor to speed
up proportionally with the distance to the detected obstacle
to force the agent to turn away. As an object gets closer, the
agent will turn faster. Similarly, the middle sensor controls
both motors and will slow them both according to the distance
to an obstacle detected. This local reactive control allows for
correction in the event of any poor estimate made in the
discretization of the map by the vision scanner due to the
scan resolution. The local sensing may be in conflict with the
motion planner’s current path. To resolve this we allow the
reactive local sensing to subsume or override the deliberative
planned path as the agent approaches obstacles [2]. We use
Algorithm 2.

IV. THE PURSUER

The pursuer’s main objective is to catch the evader. We
define catch in this paper as the act of the pursuer physically
touching the evader. To achieve this the pursuer must first gain
knowledge of the environment by exploring areas in its mental
map (acquired from sensing) in order to determine where the

4901

Algorithm 2 ObstacleAvoidance
Let Rctr, Rright, Rleft be the max sensor ranges.

dctr = distance from sensor Scenter to an obstacle O
dright = distance from sensor Sright to an obstacle O
dleft = distance from sensor Sleft to an obstacle O

if (dctr < Rctr) and (dctr > 0) then
Set right and left motor speeds to 0.

end if

turnRight = (Rright / dright) * 2 degrees
turnLeft = (Rleft / dleft) * 2 degrees

if (turnRight > turnLeft) then
Increase right motor speed to turn agent by turnRight
degrees.

else
Increase left motor speed to turn agent by turnLeft
degrees.

end if

evader is most likely to be spotted. After the evader is visible,
the pursuer must maintain visibility by predicting where the
evader will move next and setting its goal to that location. The
following subsections explain these core ideas in depth.

A. Intelligent Exploration

If the pursuer has no line of sight or knowledge of where
the evader is (or last was), he must begin the search by
exploring its map. As feedback comes in from his sensors,
the pursuer determines which area of the map he is most
likely to spot the evader from and begins moving towards
that area. This area is defined as a maximum visibility area,
and the maximum visibility is computed by estimating the
total amount of the map that is visible from that location
(i.e., discretized integration). Keep in mind that the pursuer
only knows about the map from sensor data. This means that
the computation of the maximum visibility area takes place
inside his own world view and is an estimate based on current
knowledge. The maximum visibility area is likely to change
as the pursuer begins to reach that location or as sensor data
unveils new obstacles. At this time, a new maximum visibility
location is determined. This allows the pursuer to explore the
environment if he cannot spot the evader because an area that
the pursuer has no knowledge of will always be viewed as
more visible since obstacles can only be added to the map as
he discovers them.

The process for finding the maximum visibility area is
outlined in Algorithm 3. The agent uniformly places n seed
configurations over his mental model (i.e., map) of the envi-
ronment. He then traces rays from each seed (max visibility
candidate) until an obstacle is hit. This information is used
to estimate the total area visible from that location. The seed
with the most area visible to it is then chosen. If the pursuer
already has sensor data of a past location where the evader is
known to have recently been, the algorithm is changed slightly.

Algorithm 3 MAXVISIBILITY

1: uniformly place n seeds in agent’s current map knowledge

2: for each seed do
3: perform visibility scan
4: visibility ←

∑
ray lengths

5: end for

6: return Max(seeds)

Now the uniform seed distribution is done in a tight pattern
over the last known location of the evader. This translates to
the situation where the pursuer has lost sight of the evader but
knows he is close by. The pursuer then uses his accumulated
knowledge of the map to decide which area close by would
be most likely for him to spot the evader again. We call this
Smart Seeding.

B. Intelligent Motion Prediction

Since the evader’s motion is unknown to the pursuer, the
pursuer must make predictions based on the history of sensed
evader motion. Algorithm 4 shows this process. The previous
locations of the evader sensed by the pursuer’s vision scanner
were recorded and also time stamped. The motion prediction
system uses these time stamps to create a time indexed list of
estimated velocities along with the locations. Next it processes
the list into different motion patterns of the evader based on the
information from the most recent time ti all the way back to ti
- ∆t. Currently, the system identifies three motion patterns of
the evader: left and right turns, left and right circular motions
(concurrent small turns), and linear movement. These patterns
are used to predict the evader’s motion and where the evader
is likely to be in the near future.

Algorithm 4 PredictMotion
1: Sensors provide new points of timestamped evader posi-

tions.
2: Determine the direction and speed changes at each point.
3: Plot points on internal environment model.
4: Match point pattern to either a line, sharp turn, or circular

turn.
5: Assume that the evader will continue moving along that

shape.
6: Set goal to a location on that shape at a distance dprediction

in front of the evader based on the current estimated evader
velocity and pursuer’s current distance from the evader.

A prediction is made along the pattern shape at a distance:

dprediction = max(
1
2
devader, dprediction min)

where devader is the pursuer’s distance to the last point the
evader was sensed at and dprediction min is a small number
based on the perceived evader speed. It is necessary that there

4902

be a minimum distance because we assume that the evader is
always moving. Therefore if the prediction distance was zero,
the pursuer would never catch the evader because he would
always set his goal to the last known location and the evader
would be long gone by the time that point was reached. When
the evader is further away, the prediction point is further along
the predicted pattern because the evader will continue moving
during the time it takes to reach the prediction point.

V. THE EVADER

The evader begins its motion with the knowledge of his
fixed goal location. His primary objective is to reach this goal
as quickly as possible while navigating through the unknown
environment. However, if the evader’s sensor data relays that
he is within the pursuer’s range of sight and the pursuer is
closer than the goal, his primary objective changes to avoid
the pursuer. The evader uses the following behaviors to avoid
the pursuer:

• Flee - Upon first seeing the pursuer, the evader must
assume the pursuer has also seen him. The evader begins
to flee in a panic. We define fleeing as the optimization of
paths that provide for immediate turns with the purpose
being to break line of sight from the pursuer. This is
easily accomplished by adapting the path evaluation
function through increasing the weight/importance of
the direction change at each knot configuration in each
path. Recall from Section II that the direction change is
measured by the ArcLength change between two knot
configurations.

• Evade - After the evader has successfully fled from
the pursuer (broken direct line of sight), he attempts
to further evade the pursuer by navigating towards a
point in the environment which is likely to be the least
visible. First, the evader calculates the min visibility
location based on his current knowledge of the map.
This is accomplished using the same Algorithm 3 that
the pursuer uses except the minimum area location is
chosen instead of the maximum area. After this location
is found, it is temporarily sent to the planner as the new
goal location. The original goal will resume after the
evader has successfully prevented line of sight to the
evader for some fixed amount of time (e.g., 5 seconds).

• Random Walk - This is the same method that the pursuer
uses to help escape local minima by allowing reactive
control based on local sensing to override deliberate path
planning [2].

Therefore the evader’s strategy uses the same algorithms
as the pursuer, but utilizes different objective functions. One
difference to note is that the evader never has the explicit
objective to explore the environment, but still uses all of his
sensor feedback from t0 to tcurrent in order to effectively flee
from and evade the pursuer.

VI. SIMULATION APPROACH

We created our simulation platform from scratch in C++
using OpenGL for graphics. While other flexible simulation
platforms exist such as Player/Stage [3], our platform is specif-
ically designed to handle high computational requirements and
parallel algorithms, such as evolutionary algorithms, running
for multiple agents. Recall from Section III that the only pre-
existing knowledge each agent needs is the color (or color
range) of obstacles and other agents. This approach effectively
allows the agents to navigate a picture as opposed to navigating
the geometric representation of a map. After inputing the
required color ranges of obstacles and agents our agents can
navigate any environment that is (or can be abstracted to) a
2-D picture. This includes blueprints of a building, a Google
map, or even your desktop background picture.

While our method of sensing and map representation allow
for flexibility in where the agents act, it is equally important
to allow for flexibility in how the agents act. In our platform,
we employ the evolutionary algorithm explained in Section II.
This permits the easy addition of new future behaviors for any
agent simply by adding a variable the evaluation function and
deciding which environment changes/sensor input should be
linked to the weight of that variable.

This flexible nature of our platform allows for a multitude
of different experimental environments and configurations. We
first analyze which characteristics of the environment will have
the greatest impact on our agents’ behaviors and attempt to set
up an experiment to maximize these characteristics.

First, consider the layout of the environment’s obstacles.
Our vision scanning system allows us to model an environ-
ment that contains many complicated obstacles that would be
difficult to represent geometrically. One characteristic of the
environment is the density ratio of obstacles to free space. A
higher density limits visibility and therefore is more complex
to online pursuit-evasion. Next, we identify the presence of
a trap by the following: 1. an obstacle whose concavity is
larger than the largest dimension of a robot, 2. two or more of
convex obstacles together such that the gap between them is
smaller than the smallest dimension of a robot. The difficulty
in navigating amongst these types of obstacles which are
initially unknown is that the robot must often explore the
complete obstacle before realizing that it is impassible. This
is why so much previous work has excluded this case in order
to maintain theoretical limits on time or space complexity in
finding optimal paths. We believe the presence of traps to be a
key component in determining how robust a model for pursuit
and evasion is and therefore the environment in our experiment
contains many traps.

Now that the environment characteristics are decided, we
must consider the starting agent configurations. We found the
relative speed of the agents to be of paramount importance.
We run our simulation on the same complex environment with
three variations of relative speed: 1. both agents have the same
speed 2. the pursuer is 10% faster than the evader, and 3. the
pursuer is 20% faster than the evader. Coincidently, the starting

4903

Fig. 4. Simulation map containing many obstacles and traps.

location and visibility of each agent is equally important. In
the context of pursuit and evasion, however, it makes little
sense to consider simulations in which the agents are unlikely
to ever see each other, and therfore pursuit and evasion could
never take place. In response to this, we simulate only the
situation in which the agents begin in two different corners
with no visilibity of each other, but are likely to see each
other in the center because the evader’s goal is in his opposing
corner. Figure 4 shows our environemnt, the agent and goal
starting locations, and each agent’s internal representations of
the environment shortly after a simulation has started. The
evader is likely to cross the center of the environment on his
way to his known goal, and the pursuer is likely to cross the
center of the map in his exploration done through visibility
seeding explained in Section IV-A.

VII. RESULTS

The three scenarios of the pursuer having equal speed, 10%
greater speed, and 20% greater speed than the evader discussed
in Section VI were simulated 50 times each and the average
results from each scenario were recorded. We define a pursuer
win to be the puruser physically touching the evader before

TABLE I
AVERAGE RESULTS OF 3 SCENARIOS WHICH WERE SIMULATED 50 TIMES

EACH.

Scen # Pursuer
Speed
Advantage

Evader
Wins

Pusuer
Wins

Avg Time (s) Evader
Distance To
Goal (in)

Pusuer
Distance To
Evader (in)

1 0% 33 17 23.548 207.764 151.894
2 10% 29 21 32.779 218.489 192.051
3 20% 32 18 29.542 174.968 179.980

the evader reaches his goal. We define an evader win as the
evader reaching his goal location without being touched by
the pursuer. A visual summary of the actual paths traveled by
each agent in the 50 simulations from scenario 3 is shown
in Figure 5. The blue dashed lines represent the actual paths
traveled by the pursuer with a blue X to show his end location
for that simulation. The red dashed lines show the actual paths
for the evader with a red X at its end location. We have labled
the following areas in the image to help the reader interpret
it.

• Start - The labels for Pursuer Start and Evader Start
specify the beginning location of each agent in the bottom
left and bottom right corners respectively. The evader’s
goal is static and in the top left corner.

• Initial Confrontation - This shows where the agents often
saw each other for the first time. At first sight, the evader
would go into flee mode and the pursuer would begin
using his prediction algorithm and/or smart seeding.

• Evader Trap - This concave region which we call a trap
causes the evader to get temporarily stuck several times
as shown by the amount of path lines drawn there.

• Close Calls - These are particularly interesting because
the pursuer’s ending location was very close to the
evader’s goal at the end of the simulation. This typically
means that the pursuer was in ”‘hot pursuit”’ at the time
of the evader’s success.

• Pursuer Success - Areas that contain red X’s that are
not in the top left goal location show that the pursuer
successfully caught the evader at that point.

• Evader Success - This is the static goal location that the
evader reached without being caught by the pursuer.

We divide our results into two categories. The first, shown
in Table I, are the average outcomes of each simulation with
respect to wins/losses. The distance of each agent to his
respective goal at the end of a simulation is reported to indicate
to what degree an agent won or lost. Finally, the average time
in seconds of each simulation is also reported. The second
category, depicted in Figure 6, is the breakdown of each
agent’s time allocated to each behavior over the course of the
simulations. A sample video with excerpts from some of the
simulations is provided with this paper.

Given the initial setup as discussed previously, we expected
the outcome to be fairly balanced. For instance, if the pursuer
and evader often meet in the center of the map, it may be
equally likely that the pursuer successfully catches the evader
using his prediction algorithm and smart seeding compared

4904

Fig. 5. Overlay of actual paths traveled by each agent over 50 simulations
of scenario #3.

Fig. 6. Breakdown by percentage of time each agent spends acting under
their respective behaviors.

to the evader properly utilizing his flee and evade objectives.
The results indicate that even when the pursuer has up to a
20% speed advantage over the evader, the evader still wins a
significantly higher number of simulations. This makes sense
when we consider the pursuit and evasion of humans and that
it is faster to act than react. On the other hand, even when the
pursuer has the same speed as the evader, ie. lacking speed
advantage (scenario 1), the pursuer can still win a significant
amount of times. This is due to the efficiency of the pursuer’s
prediction algorithm and also to the presence of traps.

We can also reason about the behavior distribution over
time. Notice from Figure 6 that there is a positive correlation
between how often the pursuer is making an intelligent guess
on where the evader might be (smart seeding) and how often
the evader is immediately fleeing the pursuer. This makes
sense because both agents must modify their behaviors after
one agent has acquired visibility of the other. The pursuer
spends a majority of the time exploring (path to seed) while
the evader spends a majority of the time on a deliberate path to
his goal according to his planning algorithm. It is interesting
to see that even though the evader spends time on a deliberate
path to a known goal, the pursuer still manages to catch the
evader about 31% of the time. This shows the effectiveness
of the pursuer’s method of exploration based on estimation of
high visibility.

VIII. CONCLUSION & FUTURE WORK

The presented experimental results in Section VII shows that
we have created a robust platform for testing different behav-
iors of agents and determining how effective those behaviors
are in the context of pursuit and evasion. We have utilized
an adaptive planning paradigm to accommodate the changing
objectives of both the evader and the pursuer in an unknown
environment. The agents created a mental representation of the
environment as real-time sensing data were made available to
them and often navigated intelligently.

While our approach does provide a new robust framework
for research in the area of pursuit and evasion with impressive
results, there is much future work to be done. The existing
strategies and behaviors can be improved and extended (e.g.
adding more patterns for prediction). In addition, more realistic
sensing that takes into account uncertainty could be modeled.
A greater variety of simulations can be experimented, includ-
ing real-world environments abstracted to 2-D pictures/maps.
More future work may include the addition of multiple agents
in cooperation and competition using team communication to
pool map knowledge and make more accurate predictions of
the location of the evader(s). Other extensions could include
adding additional intelligent behaviors to the agents. Beyond
these multiple uses of the existing architecture presented, a
complete shift into a three dimensional simulation environment
is the next step in advancing the practical applications of this
pursuit and evasion research. Finally, a vast area for future
work is to take into account realistic vehicle dynamics (with
realistic accelerations) to plan true trajectories rather than
paths. With trajectories being planned, they could also take

4905

into account dynamic objects in the environment, where not
only is the environment unknown. All of these extensions are
fertile ground for new research.

ACKNOWLEDGMENT

The first author gratefully acknowledges the support of the
GAANN Fellowship from the U.S. Department of Education.

REFERENCES

[1] P. Bonissone, R. Subbu, N. Eklund, and T. Kiehl, “Evolutionary algo-
rithms + domain knowledge = real-world evolutionary computation,”
Evolutionary Computation, IEEE Transactions on, vol. 10, no. 3, pp.
256–280, June 2006.

[2] R. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
Mar 1986.

[3] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in In Proceedings
of the 11th International Conference on Advanced Robotics, June 2003,
pp. 317–323.

[4] V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion in a
polygonal environment,” Robotics, IEEE Transactions on, vol. 21, no. 5,
pp. 875–885, Oct 2005.

[5] N. Karnad and V. Isler, “Bearing-only pursuit,” in Robotics and Automa-
tion, 2008. ICRA 2008. IEEE International Conference on, May 2008,
pp. 2665–2670.

[6] A. Kolling and S. Carpin, “The graph-clear problem: definition, theo-
retical properties and its connections to multirobot aided surveillance,”
in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on, Oct 2007, pp. 1003–1008.

[7] S. Oh, L. Schenato, C. P., and S. Sastry, “Tracking and coordination of
multiple agents using sensor networks: System design, algorithms and
experiments,” in Proceedings of the IEEE, Jan 2007, pp. 234–254.

[8] J. Vannoy and J. Xiao, “Real-time adaptive motion planning (ramp)
of mobile manipulators in dynamic environments with unforeseen
changes,” Robotics, IEEE Transactions on, vol. 24, no. 5, pp. 1199–
1212, Oct 2008.

[9] R. Vidal, O. Shakernia, H. Kim, D. Shim, and S. Sastry, “Probabilistic
pursuit-evasion games: theory, implementation, and experimental evalu-
ation,” Robotics and Automation, IEEE Transactions on, vol. 18, no. 5,
pp. 662–669, Oct 2002.

[10] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski, “Adaptive
evolutionary planner/navigator for mobile robots,” Evolutionary Com-
putation, IEEE Transactions on, vol. 1, no. 1, pp. 18–28, April 1997.

4906

