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Abstract—Unlike a conventional articulated manipulator,
where only the gripper manipulates objects, a continuum manip-
ulator, such as a multi-section trunk/tentacle robot, is promising
for deft manipulation of a wide range of objects of different
shapes and sizes. Given an object, a continuum manipulator tries
to grasp it by wrapping around and squeezing it. A main open
problem is how to determine if the object can be grasped and if
so, the whole-arm wrapping around configurations of the robot
to grasp it, which we call grasping configurations.

In this paper, we provide a general and complete analysis
of grasping configurations of a spatial continuum manipulator
consisting of three constant-curvature sections, for any given
3-D object. We formulate conditions for existence of solutions
and describe how to determine valid grasping configurations.
Our method can extend to general continuum manipulators of n
constant-curvature sections (where n ≥ 3).

I. INTRODUCTION

Continuum manipulators are usually defined to be those

featuring continuous back bone structures, inspired by in-

vertebrate structures found in nature, such as octopus arms

[9] and elephant trunks [2]. The OctArm manipulator is

such a continuum manipulator (Fig. 1). While a conventional

manipulator has an articulated arm with a gripper, there is no

divide between the “arm” and “hand/gripper” for a continuum

manipulator. A “grasping” configuration for a continuum ma-

nipulator affects the whole arm as it wraps around an object.

So far there is no systematic study on the existence and forms

of grasping configurations for a continuum manipulator in

the literature: coiling for grasping was studied in [4], some

empirical [10] and heuristic [18] methods were proposed,

and there was also a study on human controlled operations

[13]. In related work, shape optimization and control for

hyperredundant robots were studied [1], [12]. Caging was

studied for grasping with conventional manipulators [3], [8].

Virtually all continuum robots feature constant-curvature

sections (modulo external loading due to gravity or payload)

[17] because of actuating the (theoretically infinite) degrees

of freedom of the continuously bendable backbone with finite

actuators. This means that, whether with pneumatics like

the OctArms or via tendons, forces are applied at a finite

number of locations, and between those locations, the internal

backbone forces “even out”, making the backbone shape tend

to constant curvature, i.e., circular, sections. The OctArm, with

constant-curvature sections, is representative of the general

class of continuum robots developed by researchers [16], [17].
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Fig. 1. An OctArm manipulator (by the courtesy of Ian Walker)

Thus the work presented in this paper can easily apply or

extend to other continuum robots.

In this paper, we address the open problem of how to

find configurations of a spatial OctArm manipulator to grasp

(i.e., wrap tightly around) a 3-D object. We first describe

object models for such kind of grasping, then present the

conditions of grasping configurations, and next introduce a

systematic and efficient method to find all types of valid

grasping configurations.

II. MANIPULATOR MODEL

The OctArm consists of three constant-curvature sections

(see Fig. 1). Each section is like a cylinder bended into a

circular shape (when not in contact), with its central axis

bended into a circular curve. All section cylinders have ap-

proximately the same width (i.e., the cylinder diameter) w.

We can represent each section i, i = 1, 2, 3, in terms of its

central circular axis with two end points: a base point pi−1

and a tip point pi. We call the circle that section i’s central

axis curves along the section i’s circle. When we refer section

i, we mean the curve of its central axis except for situations

where the section width has to be considered (to be explained

in Section III below).

The base frame of the robot is set at p0 with z0 axis tangent

to section 1’s circle. The section i’s frame is formed at pi−1

with the zi axis tangent to the section circle at pi−1. The base

of section i is the tip of section i-1. Two adjacent sections

i-1 and i are connected tangentially at the connection point

pi−1, i.e., the two sections share the same tangent at pi−1.

For clarity, we consistently use black, red, and green colors

to draw section 1, section 2, and section 3 of the OctArm in

this paper.

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-456-5/11/$26.00 ©2011 IEEE 4207



Fig. 2 illustrates the three sections of the OctArm and their

respective frames. Because of the mechanical structure, section

i of the OctArm can bend either along the +zi axis or the −zi
axis but not both.

Fig. 2. OctArm manipulator frames. Note that section 1 can bend along
either (a) +z1 axis (with different orientations) or (b) −z1 axis (with different
orientations), but not both directions of z1.

Note that the circle center of section i, ci, always lies on

the xi axis, with ∓1/κi being the x coordinate in the i-th
frame, where κi is the curvature. Note also that ci lies on the

positive xi axis if κi < 0 (see Fig. 3) and on the negative

xi axis if κi > 0. When κi = 0, section i is a straight-line

segment starting from the origin pi−1 and along the zi axis.

Although each section can bend passively anywhere, it has

a finite number of degrees of freedom that can be directly

changed by the OctArm actuators [6], which are controllable

variables: curvature κi, length si, and orientation angle φi
from the plane of section i-1 to that of section i about zi axis,

i.e., the angle from yi−1 axis to yi axis about zi axis. Fig. 3

showed one example section i, its frame, and controllable

variables.

Fig. 3. Section i, its frame, and its variables κi, length si, and φi

A configuration of the OctArm can be expressed by the con-

trollable variables as [κ1, s1, φ1, κ2, s2, φ2, κ3, s3, φ3]
T . Thus,

we can treat this (κ, s, φ) space the configuration space of the

OctArm robot. Given the position of the base point pi−1, and

κi, si, and φi values, the position of the tip point pi of the

section can be computed [6].

The values of κi, si and φi are within finite ranges:

[κi,−max, κi,max], including κi=0, [si,min, si,max], and

[φi,min, φi,max] respectively. Specifically, for the OctArm, the

range of φi is [−π, π] for all sections, and the ranges of κi
and si are:

• κ1 ∈ [−0.0189, 0.0228] (1/cm), s1 ∈ [28, 42] (cm),

• κ2 ∈ [0.0327, 0.0379] (1/cm), s2 ∈ [26.5, 44] (cm),

• κ3 ∈ [−0.045, 0.0808] (1/cm), s3 ∈ [32.5, 53.5] (cm).

III. OBJECT GRASPING MODELS

For a given 3D object, we define three grasping models for

the object:

• Grasping Model 1: section 3 of the robot wraps around

the object, and other sections of the robot may wrap

around the object but not along section 3’s circle. See

Fig. 4.

• Grasping Model 2: both section 2 and section 3 of the

robot wrap around the object along the same circle. See

Fig. 5.

• Grasping Model 3: all sections of the robot wrap around

the object along the same circle.

(a) Only section 3 wraps around
the object.

(b) Section 2 also wraps around
the object along a different circle.

Fig. 4. Two examples of Grasping Model 1

Fig. 5. Grasping Model 2 where section 2 (red) and section 3 (green) are
on the same circle

To realize these grasping models, we need to first obtain

bounding circles of the object, and then choose feasible bound-

ing circles such that either the section 3 of the robot, or the

combined sections 2 and 3 of the robot, or all sections of the

robot can wrap around the object, i.e., make sure that the value

ranges of the section curvature and length of the robot allow

one of the grasping models to happen. Once a suitable object

bounding circle for a grasping model is obtained, we can
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further determine (in subsequent sections of the paper) suitable

configurations of the entire robot that realize the corresponding

grasping model, which we call, grasping configurations.

Different bounding circles of an object can be obtained from

different cross sections of the object. A bounding circle ciro
can be obtained automatically with the following steps:

• Select a plane through the center of mass of the object1.

• Intersect the plane with the object to create a cross-

section, which can be expressed as a polygon.

• Find the minimum bounding circle ciro of the cross

section polygon [7].

Next, we need to check if the bounding circle ciro is of

suitable size for the robot to grasp. Let ro be the radius of ciro.

We grow ciro by w/2− δ to take into acount the width w of

the actual robot (see Section II). Note that δ is a small value to

ensure tight wrap, taking advantage of the inherent compliance

and small deformation of the OctArm. For convenience, we

call such a grown circle ciro the object circle. If one of the

following conditions is satisfied, ciro has a suitable size:

s3,min ≤ aπro ≤ s3,max (1)

s3,min + s2,min ≤ aπro ≤ s3,max + s2,max (2)

s3,min+ s2,min+ s1,min ≤ aπro ≤ s3,max+ s2,max+ s1,max

(3)

where a ∈ (0, 2] is a coefficient determining how much the

object bounding circle has to be wrapped. Its value depends on

the shape, size, and material characteristics of the target object,

as well as on the task of manipulation. For example, the task of

pulling an object could require a smaller a than that of picking

up the object. Conditions (1), (2),or (3) determine suitable

ciro for the Grasping Model 1, 2, or 3 respectively, where the

respective (central axes of) robot section(s) can curve along.

Note that a configuration of an OctArm is in terms of only

controllable variables of its sections (as defined in Section

II). However, the OctArm can bend anywhere passively (i.e.,

with infinite passive degrees of freedom). The smooth and

compliant nature of such a continuum structure allows it to

gently interact with the object by adapting its shape to the

object it wraps. Therefore, for any of the grasping models,

once a corresponding configuration of the OctArm is found,

the inherent compliance of the arm will allow a tight wrap

with as much continuum contact as possible (hence as much

friction as possible) to make the grasp robust [11].

We now consider how to find grasping configurations for

each grasping model. Grasping Model 3 presents the trivial

case: by setting the circle center and radius of each section

of the robot as the same as the center and radius of the given

object circle respectively, a unique grasping configuration can

be found – the length of each section can be set to its

maximum. We focus on the cases for Grasping Model 1 and

Grasping Model 2 respectively in the rest of the paper.

1Or of the preferred grasping part, such as a handle, depending on the
object.

IV. FINDING CONFIGURATIONS FOR GRASPING MODEL 1

For Grasping Model 1, the object circle (described in

Section III) is the desired section 3’s circle for grasping. Now,

given this section 3’s circle, i.e., its center position c3, radius

r3 (or curvature |κ3|), and the circle plane normal, which can

be expressed as y3 – the unit vector of the y axis of the section

3’s frame, we need to solve for values of the other OctArm

configuration variables: κ1 (or r1), φ1, s1, κ2 (or r2), φ2, and

s2.

There are two situations of configurations for Grasping

Model 1, where the section 3’s circle is given and not shared

by section 2:

• general situation: section 1 and section 2 do not share

the same circle;

• special situation: section 1 and section 2 share the same

circle.

We focus on finding grasping configurations of the general

situation in this section. We will first specify constraints

relating sections of the OctArm for the Grasping Model 1

and then use those constraints to solve for the unknowns to

obtain grasping configurations.

The special situation can be handled in a way similar to that

for determining grasping configurations for Grasping Model 2,

which is described in Section V.

A. Inter-section Constraints

For Grasping Model 1, in the general situation where no

two sections of the OctArm share the same circle, the section

circles have to satisfy the following:

• the section 1’s circle is tangent to the section 2’s circle

at point p1, which is also the end point of section 1, and

• the section 2’s circle is tangent to the section 3’s circle

at point p2, which is also the end point of section 2.

p1 and p2 are both on section 2’s circle. Let l12 and l23 be the

tangent lines going through p1 and p2 respectively, as shown

in Fig. 6. They must satisfy the following two constraints:

• Constraint 1: the tangent lines l12 and l23 must be

coplanar.

• Constraint 2: the tangent lines l12 and l23 must be on

the same circle.

Define two vectors along l12 and l23 respectively as the

following:

l12 = y1 × (p1 − c1) (4)

and

l23 = y3 × (p2 − c3) (5)

where y1 and y3 are the unit vectors of the y axes of section 1

and section 3 respectively, which also represent plane normals

of the two sections respectively; c1 and c3 are the position

vectors of the centers of section 1’s and section 3’s circles

respectively; p1 and p2 are the position vectors of p1 and p2
respectively, all in the robot’s base frame. y1 can be further

expressed in terms of φ1 as:

y1 = R(z1, φ1)y0 (6)
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where R(z1, φ1) is the rotation matrix of the rotation about

the z1 axis with angle φ1, and y0 is the (fixed) y axis of the

base frame of the robot.

c1 can be expressed in terms of φ1 and κ1 as:

c1 = R(z1, φ1)[−
1

κ1
, 0, 0]T (7)

where [− 1

κ1

, 0, 0]T is the center position of section 1 expressed

in section 1’s frame.

Now, for the case that l12 and l23 are not parallel, Con-

straint 1 can be expressed as:

(p2 − p1) · (l12 × l23) = 0 (8)

Let α1 be the angle between p2 − p1 and l12 and α2 be

the angle between p2 − p1 and l23, as shown in Fig. 7, such

that2

sin(α1) =
‖l12 × (p2 − p1)‖

‖l12‖‖p2 − p1‖
(9)

and

sin(α2) =
‖l23 × (p2 − p1)‖

‖l23‖‖p2 − p1‖
(10)

Then, to satisfy Constraint 2, α1 and α2 must be either

equal or complementary (see Fig. 7), depending on the direc-

tions of l12 and l23; that is, the following equation must be

satisfied:

sin(α1) = sin(α2) (11)

For the case that l12 and l23 are parallel, then Constraint

1 is satisfied since

l12 × l23 = 0 (12)

and Constraint 2 can be expressed as:

(p2 − p1) · l12 = 0. (13)

Fig. 6. Two tangent lines l12 and l23 pass p1 and p2 respectively.

Since p1 and p2 are on section 1’s circle and section 3’s

circle respectively, each can be expressed in terms of a scalar

angle as derived below. Define a local coordinate system for

section i’s circle, as illustrated in Fig. 8, such that its origin is

at the circle center ci, and two unit vectors ui and vi form the

2by the definition of cross product.

Fig. 7. The tangent lines l12 and l23, normal lines l1 and l2, and section
2’s circle are on the same plane; α1 and α2 are complementary.

orthogonal axes on the circle plane. ui and vi are functions

of yi; Denote ri =
1

|κi|
as the radius of the circle for section

i.

Fig. 8. The local coordinate system of section i’s circle

Thus, since p1 is on the section 1’s circle, its position vector

(in the robot base frame) must satisfy:

p1 = c1 + r1cos(θ1)u1 + r1sin(θ1)v1 (14)

where θ1 is the angle from the vector u1 to p1 − c1.

Similarly, since p2 is on the section 3’s circle, its position

vector must satisfy:

p2 = c3 + r3cos(θ3)u3 + r3sin(θ3)v3 (15)

where θ3 is the angle from the vector u3 to p2 − c3.

B. Finding solutions

From the above, the inter-section constraint equations for

the case where the two tangent lines l12 and l23 are not parallel

are (8) and (11). The constraint equations for the case where

l12 and l23 are parallel are equations (12) and (13).

With equations (4) to (11), we can re-write the inter-section

constraint equations in terms of four variables: κ1, φ1, θ1,

and θ3. With two equations and four variables in either case,

we can solve for two variables with the other two variables

assuming any values within their value ranges. If we assign

values to κ1 and φ1, i.e., specify the section 1’s circle, we

can solve for θ1 and θ3. Once θ1 and θ3 are solved, we can

further solve for section 2’s circle and then the corresponding

grasping configuration.

We describe the process in turn below.
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1) Solving for θ1 and θ3: Now we describe how to solve

for θ1 and θ3 for a given pair of κ1 and φ1 values within

their respective ranges. Since the constraint equations (in either

the non-parallel or the parallel case) written in terms of θ1
and θ3 are high-order, non-linear trigonometric equations of

those two variables, we can only obtain numerical solutions

(by Newton’s method), which require good initial guesses.

In order to be efficient, we narrow down the range of search

for initial guesses to be those that satisfy the length ranges of

the continuum manipulator. We first discretize both θ1 and θ3,

ranging from 0 to 2π, into small intervals. For each pair of θ1
and θ3 values, we then use equations (14) and (15) to compute

the corresponding p1 and p2.

If p1 and p2 do not satisfy the following length constraints,

s2,max ≥ ||p2 − p1|| ≥ s2,min (16)

and

s1,max ≥ ||p1|| ≥ s1,min (17)

we discard the corresponding θ1 and θ3.

From those pairs of θ1 and θ3 that satisfy inequalities (16)

and (17), we search for pairs that approximately satisfy the

constraint equations as initial guesses of θ1 and θ3.

With the initial guesses, for the case where l12 and l23 are

not parallel and the case where l12 and l23 are parallel, the

corresponding inter-section constraints in terms of θ1 and θ3
are then solved numerically.

2) Determining grasping configurations: Once θ1 and θ3
are solved, the corresponding p1 and p2 can be solved from

equations (14) and (15), and l12 and l23 can be obtained from

equations (4) and (5) respectively. Next we need to solve for

the plane, center, and radius of section 2’s circle.

In the case where two tangent lines l12 and l23 are parallel,

the center c2 of section 2’s circle is on the same line as p1
and p2, and thus, its position satisfies:

c2 =
(p1 + p2)

2
(18)

In the case where l12 and l23 are not parallel, l12 and l23
determines the plane of the section 2. Line l1 through p1,

perpendicular to l12, and on the plane of section 2 can be

determined, and similarly line l2 through p2, perpendicular to

l23, and on the plane of section 2 can be determined as shown

in Fig. 7. Then the intersection point of l1 and l2 is the center

c2 of section 2’s circle.

In both cases, The radius of section 2’s circle is:

r2 = ‖p1 − c2‖ (19)

From section 1’s circle (for the specified values of κ1 and

φ1) and section 2’s circle, as well as p1 and p2, which are

end-points of section 1 and section 2 respectively, the unknown

configuration parameters of section 1 and section 2: s1, κ2, s2,

and φ2 can be found easily [14]. They are valid if their values

are within their respective ranges. The length s3 of section

3 can be set to its maximum value to maximize wrapping

along the section 3’s circle (which is given). Now a grasping

configuration of the entire OctArm is found for Grasping

Model 1.

V. FINDING CONFIGURATIONS FOR GRASPING MODEL 2

For Grasping Model 2, the given object circle (described in

Section III) is shared by both section 2 and section 3, i.e., the

section 3’s circle and section 2’s circle are the same, with

the following known parameters: the circle center position

c3 = c2, the radius r3 = r2, the unit normal vector of the

circle plane y2, and φ3 = 0 or π. We only need to find the

configuration parameters of section 1 that satisfy the Grasping

Model 2.

Section 1’s circle and section 2’s circle must be tangent at

point p1, sharing the same tangent line l12 through p1. Now,

axis z1 is also tangent to the section 1’s circle and is the same

as the z0 axis of the robot base frame, with unit vector z1.

Thus, l12 must satisfy the following two constraints:

• Constraint A: l12 and axis z1 must be coplanar.

• Constraint B: l12 and z1 must be on the same circle.

Define a vector along l12 as:

l12 = y2 × (p1 − c2) (20)

For the case of non-parallel l12 and z1, Constraint A can

be expressed as:

p1 · (l12 × z1) = 0 (21)

The expression of Constraint B can be obtained similarly to

Constraint 2 in Section IV.A as:

‖l12 × p1‖

‖l12‖
=

‖z1 × p1‖

‖z1‖
(22)

For the case of parallel l12 and z1, the above two constraints

become

(l12 × z1) = 0 (23)

and

p1 · z1 = 0 (24)

Since p1 is on section 2’s circle, it satisfies:

p1 = c2 + r2cos(θ2)u2 + r2sin(θ2)v2 (25)

where u2 and v2 are functions of the given y2. By substituting

equation (20) for l12 and then equation (25) for p1 in the

constraint equations above, we can re-write the two constraint

equations in each case in terms of a single variable θ2.

Solving the equations numerically, in a fashinon similar to

that described in Seciton IV.B.1), yields at most two solutions

of θ2 (in either the non-parallel or parallel case).

Next p1 and l12 can be solved via equations (25) and (20),

from which and z1, the section 1’s circle and configuration

variables φ1, κ1, and s1 can be solved in a similar fashion as

described in Section IV.B.2. There are at most two grasping

configurations to realize a given Grasping Model 2.

Note that with analysis and derivation similar to the above,

we can find at most two grasping configurations of the special

situation where section 1 and section 2 share the same circle

for a given Grasping Model 1 (see the beginning of Section

IV).
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VI. IMPLEMENTATION AND DISCUSSION

Algorithm 1 implements the method introduced above for

finding grasping configurations for Grasping Models 1 and

2. For Grasping Model 1, since there are fewer constraint

equations than the variables in the general situation, solutions

of grasping configurations (section IV) depend on values of

κ1 and φ1, which are input to the algorithm.

Algorithm 1 also include checking for penetrations of the

robot into the target object for a found grasping configuration.

Specifically, it checks if section 2 or section 1 of the robot

penetrates into the object. See Fig. 9 for an example. If

so, the grasping configuration is not valid and should be

discarded. However, if section 2 or section 1 almost touch the

object, the grasping configuration is even preferred because

it means a tighter wrap, as shown in Fig. 4(b), recalling that

the object circle is made deliberately smaller (by δ) to allow

tight wrap with compliance (see Section III). The collision-

checking method is similar to that in [18]. Other efficient

collision-checking methods can also be applied [5].

Fig. 9. A grasping configuration in collision with the object

Algorithm 1 Finding grasping configurations

input object circle with known c3, y3, and r3
if Grasping Model 1 then

input κ1 and φ1
choose suitable initial guesses θ1guess, θ3guess;

solve for θ1 and θ3;

else

if Grasping Model 2 then

c2 = c3, y2 = y3, and r2 = r3;

choose suitable initial guesses θ2guess;

solve for θ2;

end if

end if

compute the corresponding grasping configurations

(κ1, φ1, s1, κ2, φ2, s2, κ3, φ3, s3);
for each grasping configuration do

if the configuration passes penetration check then

record this grasping configuration;

end if

end for

return all recorded grasping configurations.

Given a Grasping Model 1, for one given pair of values

κ1=a and φ1=ψ, if there are corresponding grasping config-

urations found by Algorithm 1, then because κ1 and φ1 can

change values continuously, for each found grasping configu-

ration C(a, ψ), there exists a small continuous neighborhood

B(C) of configurations corresponding to a small continuous

neighborhood:

D(a, ψ) = {κ1, φ1|δκ1 > |κ1 − a|, δφ1 > |φ1 − ψ|}

where δκ1 and δφ1 are small positive values. All config-

urations in B(C) have very similar shapes to the found

configuration C(a, ψ). However, for κ1 and φ1 values outside

D(a, ψ), their corresponding grasping configurations can be

disconnected from B(C) and belong to another continuous

neighborhood of configurations, as illustrated in Fig. 10. Note

that for the same pair of κ1 and φ1 values, there can be

multiple solutions of grasping configurations, and each belongs

to a different continuous neighborhood. This is also illustrated

in Fig. 10, where there exists points in D(a1, ψ1), each of

which corresponds to two grasping configurations in B(C1)
and B(C2) respectively.

There are a finite number of such neighborhoods of grasping

configurations for a Grasping Model 1.

Fig. 10. Grasping configurations vs. κ1 and φ1. For (κ1, φ1) = (ai, ψi),
i = 1, 2, the corresponding configurations are Cj(ai, ψi) in neighborhood
B(Cj), j = 1, 2, 3, which corresponds to neighborhood D(ai, ψi). B(C1)
and B(C2) both correspond to D(a1, ψ1).

By discretizing the value ranges of κ1 and φ1 with a

proper resolution, we can solve for grasping configurations

representing all the neighborhoods for the case of Grasping

Model 1. Based on the value ranges of κ1 and φ1 (for the

OctArm – see section II), we find it reasonable to set the

discretization interval to be 3% of each range. For each given

Grasping Model 1, by running Algorithm 1 for each pair of

κ1 and φ1 from the discretization, at least one representative

configuration in each neighborhood of grasping configurations

can be found. Note that for a given object circle, the actual

value ranges of κ1 and φ1 that can possibly lead to grasping

configurations can be smaller than the respective maximum

value ranges for those parameters.

VII. RESULTS

We present three examples here. We first describe types

of grasping configurations and then provide representative

grasping configurations found for those examples.
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We can classify the OctArm grasping configurations based

on the orientations φ2 (i.e., the angle between planes of section

1 and section 2) and φ3 into the following four types:

(1) φ2 is negative and φ3 is positive.

(2) φ2 is positive and φ3 is negative.

(3) φ2 and φ3 are both positive.

(4) φ2 and φ3 are both negative.

Table I shows the descriptions of three object circles, two of

them are of Grasping Model 1, in terms of circles for section

3 (see Fig. 11), and the other one is of Grasping Model 2, in

terms of a circle that both section 3 and section 2 share.

Fig. 11. Grasping Model 1: a section 3’s circle bounding an object

For the object circle specified in row 1 of Table I, four valid

solutions are obtained by Algorithm 1 as illustrated in Fig. 12,

where solutions 1 and 2 belong to the type (1), and solutions 3

and 4 belong to the type (2), and corresponding configurations

are shown in Table II.

(a) sol.1 belongs to type (1) (b) sol.2 belongs to type (1)

(c) sol.3 belongs to type (2) (d) sol.4 belongs to type (2)

Fig. 12. Representative solutions for the object circle in row 1 of Table I.

Note that solutions 1 and 2 belong to the same neigh-

borhood where φ1 changes continuously from 0.4 to 0.6

when κ1 = 0.0228. Note also that solutions 2 and 3 are

of different types but share the same pair of κ1 and φ1
values. This is one example to show that there can be multiple

solutions for the same κ1 and φ1, which belong to separate

(continuous) neighborhoods (see Fig. 10 for an illustration).

For this particular case, there are at most three neighborhoods

of grasping configurations.

For the object circle specified in row 2 of Table I, two

solutions found by Algorithm 1 are illustrated in Fig. 13,

where solution 1 belongs to type (3) and solution 2 belongs

to type (4). Therefore, in this case, there are only two sepa-

rate neighborhoods of grasping configurations. Corresponding

configurations are also shown in Table II.

For the object circle of Grasping Model 2 in row 3 of

Table I, there is a unique solution, and the solution is shown in

Fig. 14, where the grasping configuration is shown in Table II.

(a) sol.1 belongs to type (3)

(b) sol.2 belongs to type (4)

Fig. 13. Representative solutions for the object circle in row 2 of Table I.

Fig. 14. The unique solution for the object circle of Grasping Model 2 in
row 3 of Table I.

For the example object circles of Grasping Model 1 in

Table I, the average time to run Algorithm 1 for finding

grasping configurations corresponding to one pair of κ1 and

φ1 is 0.05s. The total time to find representative grasping

configurations of all neighborhoods of configurations is 4s to

7s per example. This shows that our method is suitable for on-

line determination of grasping configurations for the OctArm

for a given object.
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TABLE I
EXAMPLE OBJECT CIRCLES

Grasping Model Circle Center Radius Normal

1 [45.0cm, 37.5cm, 60cm]T 22.5cm [−0.55cm, 0cm, 0.83cm]T

1 [45.0cm, 37.5cm, 60cm]T 22.5cm [−0.84cm, 0.24cm, 0.48cm]T

2 [6.0cm, 34.5cm, 24.75cm]T 30.83cm [−0.76cm, 0.013cm, 0.64cm]T

TABLE II
GRASPING CONFIGURATIONS IN FIGURES 12– 14

Grasping Model 1 Fig.&Sol. Section 1 Section 2 Section 3
(κ1(1/cm), s1(cm), φ1(rad)) (κ2(1/cm), s2(cm), φ2(rad)) (κ3(1/cm), s3(cm), φ3(rad))

Type (1) Fig. 12 Sol. 1 [0.0228, 34.0, 0.4]T [0.0324, 41.6,−1.85]T [0.0443, 53.5, 0.23]T

Type (1) Fig. 12 Sol. 2 [0.0228, 37.1, 0.6]T [0.0284, 38.2,−2.01]T [0.0441, 53.5, 0.20]T

Type (2) Fig. 12 Sol. 3 [0.0228, 37.1, 0.6]T [0.0143, 41.2, 1.57]T [0.0442, 53.5,−0.37]T

Type (2) Fig. 12 Sol. 4 [0.0213, 39.1, 0.4]T [0.0056, 43.7, 2.16]T [0.0443, 53.5,−0.82]T

Type (3) Fig. 13 Sol. 1 [0.0228, 39.9, 0.4]T [0.0085, 41.7, 0.23]T [0.0444, 53.5, 0.77]T

Type (4) Fig. 13 Sol. 2 [0.0228, 33.2, 0.2]T [0.0373, 43.1,−2.00]T [0.0444, 53.5,−0.18]T

Grasping Model 2 Fig. 14 [0.0228, 34.1, 0.4]T [0.0324, 41.6,−1.85]T [0.0324, 53.5, 0.0]T

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents a general analysis and method to

determine grasping configurations for a given 3D object by

a spatial continuum manipulator consisting of three constant-

curvature sections and with a fixed base. The curvature, length,

and the angle of each section of the manipulator are con-

tinuous variables that can be changed. Thus, a configuration

of the three-section manipulator is a 9-dimensional vector of

those variables. Our approach first defines grasping models

for a given object to facilitate grasping by the continuum

manipulator. It then uses inter-section constraints to analyze

and solve for possible grasping configurations of the robot

manipulator. We have completely characterized all possible

grasping configurations for a given object grasping model

and implemented the approach to determine valid grasping

configurations. Our formulation of inter-section constraints

and method of finding solutions apply to general continuum

manipulators of n constant-curvature sections (where n ≥ 3).

Our next step includes testing our results on object grasp-

ing with the real OctArm manipulator and integrating this

approach of determining valid grasping configurations into on-

line motion planning for continuum manipulation.
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