Practical Motion Planning in Unknown and
Unpredictable Environments

Rayomand Vatcha and Jing Xiao

Abstract:

Motion planners for robots in unknown and dynamic environments often assume
known obstacle geometry and use that to predict unknown motions of obstacles
through tracking, but such an assumption may not be realistic. In [1], we introduced
a collision-free perceiver (CFP) that can detect guaranteed collision-free trajectory
segments in the unknown configuration-time (CT) space of a robot without assum-
ing known obstacle geometry or motion. However, such a guarantee by the CFP is
at the expense of a finite period for perception and processing of each collision-free
CT point. In this paper, we address how to incorporate the CFP, taking into account
its finite processing time, into real-time motion planning to enable a robot of high
degree of freedom to plan and move at the same time in an unknown and unpre-
dictable environment while minimizing unsafe stops when the robot may collide
with an obstacle. The approach was implemented and tested in experiments with
a real 7-DOF robot arm and a stereo-vision sensor, indicating the potential of the
approach.

1 Introduction

Motion planning for a robot moving in an uncertain, dynamic environment is gain-
ing more attention in the robotics research community. One common assumption
about the available information for such planning is known obstacle geometry. An
additional assumption is certain knowledge of obstacle motion [2,3]. If the motion of
an obstacle is unknown, a common approach is to predict the future motion by track-
ing the past obstacle motion (e.g. [4-9]). Thus, detecting if a robot at a configuration
q and a future time ¢ will be in collision or not is converted to checking whether the

Department of Computer Science, University of North Carolina - Charlotte
{rvatcha, xiao}@uncc.edu

2 Rayomand Vatcha and Jing Xiao

robot volume at the configuration-time (CT) point (q,¢) intersects with every obsta-
cle volume at time ¢ . Many fast collision-checking algorithms [10-12] can be used
to solve the problem efficiently for a limited number of obstacles. There are motion
planners based on prediction for mobile robot motion planning (e.g., [13—15]) and
for mobile manipulator motion planning [16].

However, tracking-based prediction requires either known obstacle geometry or
accurate and fast segmentation of objects, which can be very challenging in clut-
tered and dynamic environments. In addition, prediction can only be sufficiently
accurate for a short period, i.e., immediately after the time when the prediction is
made. To compensate for that requires frequently repeated prediction and computa-
tion for collision-checking. Moreover, the planned robot motion is still not guaran-
teed collision-free due to the possibility of wrong predictions.

Assuming known obstacle geometry by a motion planner is in fact assuming very
fast and accurate object recognition via sensing in an unknown and dynamic envi-
ronment. There is progress in detecting and recognizing obstacles in some city road
settings or off-road settings (e.g. [17, 18]), such as vegetation (e.g., [19]), peo-
ple (e.g., [20]), etc. However, in very crowded environments with many unknown
changes, recognizing all obstacles can be too slow, inaccurate, and also unnecessary.
For example, imagine a crowded buffet restaurant, where a service robot carrying
drinks has to maneuver through moving customers holding plates of food, people
sitting at tables, moved chairs, etc. It can be very difficult to recognize every single
obstacle on the robot’s way; on the other hand, the robot does not need to recognize
all the obstacles if it just wants to get the drinks to a particular table while avoiding
collisions. Thus, it is desirable to study how to enable motion planning for robots
without the need of recognizing unknown obstacles that may also move in unknown
ways.

In [1] the authors introduced two novel concepts that do not assume obstacle
geometries and do not predict obstacle motions: (a) atomic obstacles to represent
an unknown environment directly from low-level sensor data at any sensing time 7,
and (b) dynamic envelope to detect if a robot configuration-time (CT) point (q,t),
will be guaranteed collision-free or not, by observing over sensing interval [z,7).
Only a simple assumption is made that obstacles move with any speed in [0, Vyyax].
The authors next introduced an efficient algorithm [21] to check for intersections
between a dynamic envelope and atomic obstacles and also a strategy [22] to check
if a trajectory is continuously collision-free by checking if a special set of discrete
CT points are guaranteed collision-free. When a robot moves along such a collision-
free trajectory, it surely will not be hit by any obstacle.

The above approach, which we call a collision-free perceiver (CFP), enables a
planner to detect online if a trajectory is continuously collision-free or not in real
world environments that are mostly unknown and dynamic. However, the detection
of a collision-free CT point is often based on observation during a finite sensing
interval rather than at a sensing instant. Thus, collision-checking cannot be instant
even assuming unlimited computation power, let alone limited computation power.
A trajectory may not be found in time by the CFP for the robot to move along,
forcing the robot to stop and wait. During such a forced stop, the robot may be hit

Practical Motion Planning 3

by obstacles. If the robot has the risk of being hit during the interval of a forced stop,
the stop is unsafe. Therefore, an important practical issue is how to minimize unsafe
stops by taking into account the finite time that CFP has to detect a collision-free
trajectory. We address this issue by applying CFP to a real-time adaptive motion
planner (RAMP) [16] and extending RAMP to incorporate the time constraints of
CFP, which we call E-RAMP, for an extended RAMP.

The rest of the paper is outlined as the following. In section 2, we will further
review CFP and RAMP in more details. In section 3, we will describe P-RAMP. In
sections 4 and 5, we present experimental validation of our approach with perfor-
mance analysis. We conclude the paper in section 6.

2 Review of CFP and RAMP

We first review CFP based on the concepts of atomic obstacles and dynamic enve-
lope and then describe RAMP and how RAMP can incorporate CFP.

2.1 Notations

The following notation describes a robot model in the Cartesian space (i.e., the
physical space):
R(q): the region occupied by a robot R in R? at configuration q.

We also use the following different temporal notations in the description of a
robot’s operation:

e T:time of sensing
e 1:time of action

We denote an upper bound on all obstacle speeds in an environment as ;4.

2.2 Atomic Obstacles

Atomic obstacles represent sensed obstacles in a sensing instant with low-level sen-
sor data directly without elaborate sensor information processing. Given an image
I(7) from a line-of-sight sensor, such as a laser range finder, sonar, stereo vision,
etc., each pixel (i, j) maps to a point (x,y,z) on a physical object, and d;; is the dis-
tance from (x,y,z) to the origin {S} of the sensor frame. Let W;; be the intersection
of the viewing volume of the square pixel (i, j) (as defined by the pixel’s four corner
rays originated from {S}) and the sphere centered at {S} with radius d;;. An atomic
obstacle O;; is formed by W;; and the infinite volume of points it occludes in the
physical space (see Figure 1).

4 Rayomand Vatcha and Jing Xiao

Fig. 1 The geometry of an atomic obstacle O;; from a line-of-sight sensor

The union of all atomic obstacles at a sensing moment T can be considered as
forming the sensed obstacle space O,(7) at just 7. We do not relate the atomic ob-
stacles of one sensing moment to those of the next.

2.3 Dynamic Envelope

At some sensing instant 7, we aim to discover if a future CT-point y = (q,¢), with
t > T, is guaranteed collision-free. This entails observing a changing environment,
during the time interval [1p,], how obstacles move w.r.t. R(q) to discover either (a)
X is collision-free at T < ¢, i.e., before time ¢, or (b) ¥ is not discovered collision-free
at T =¢. This is the insight of the novel concept dynamic envelope:

A dynamic envelope E(),T), as a function of sensing time T <1, is a closed surface en-
closing the region R(q) in the physical space R (or R? for 2-D planar space) such that the
minimum distance between any point on E(y,7) and R(q) is

d(t,T) = Vinax(t — T) €))

Thatis, E(x,7) = R(q) ®B(t,7), where B(t, T) is a ball centered at the origin with diameter
d(t,7).

A dynamic envelope E (), 7) has the following properties:

1. Tt shrinks monotonically over sensing time with speed vy, i-€., E(X, Ti+1) C
E(x,7), where i >0, 7; < 741 <t. E(),7) shrinks to R(q) at 7.

2. An actual obstacle not on or inside E (), 7;) will never be on or inside E (), Ti+1)-

3. An actual obstacle either on or inside E(y, 7;) can be outside E(y, ;) for some
T; € (7;,1], if not moving fowards R(q) in maximum speed Vyuqy.

At any sensing instant 7;, since the union of all atomic obstacles contains the actual
obstacles, thus, if no atomic obstacle is on or inside the dynamic envelope E(x, 7;),
there is no actual obstacle on or inside E(y,t;), and then, based on property 2)
above, ¥ is guaranteed collision-free.

Practical Motion Planning 5

2.4 Collision-Free Perceiver (CFP)

The CFP discovers if a CT point ¥ = (q,7) is collision-free or not by checking
intersections between the dynamic envelope E (), T) and atomic obstacles for each
sensing instant starting from 7y until either the point is discovered collision-free
(causing return from the algorithm), or maximum observing/computing time t — Ty
is met, as monitored by a system clock variable #.;,.x, as shown in Algorithm 1. 7.,k
updates itself independently outside the CFP algorithm. The interval between two
adjacent sensing instants is 67, i.e., the sensing frequency is 1/07. Note that each
iteration in the while loop usually takes longer than §7. Thus, after each iteration,
there is always the updated sensing data for the next iteration.

Algorithm 1 Collision-Free Perceiver (CFP)

1: input CT point x¥ = (q,?), T = T0, 87T, teiock =0
2: get dynamic envelope E (X, T)

3: while 7 <t and t. ook <t — Tp dO

4: if E(y,) does not intersect atomic obstacles at T then
5: E(y,7) expires

6: return Y is guaranteed collision-free

7: else

8: T = T+ &7 (for next sensor data)

9: endif

0: end while

1

—_—

: return)} may not be collision-free

In general, for a robot consisting of multiple links, each link can be approximated
by a set of simpler well-defined geometrical objects, such as an oriented-bounding-
box (OBB), a sphere, a capsule, etc. Now, a dynamic envelope can be created for
each link. Since the dynamic envelope for an entire robot is the union of the dynamic
envelopes of links, we only need to focus on how to check the intersection between
the (simpler) dynamic envelope of a link and atomic obstacles. In order to be effi-
cient, we use a strategy, called extraction, to identify atomic obstacles that are likely
to intersect with a link dynamic envelope, i.e., the atomic obstacles whose indices
(i,) are on the projection P(E) of the dynamic envelope on the image plane.

In [21], we described an Intersection-checking between Dynamic Envelope and
Atomic ObstacleS (IDEAOS) algorithm, which is a more efficient implementation
of the if statement in the CFP.

2.5 Real-time Adaptive Motion Planner (RAMP)

The RAMP paradigm [16] is motivated by the need of real-time motion planning
of high-DOF robots, such as (mobile) manipulators, in dynamic environments of
unknown obstacle motions. A well known fact about motion planning for high-

6 Rayomand Vatcha and Jing Xiao

DOF robots is that no complete algorithm is feasible even for known and static
environment due to the formidable challenge of constructing high-dimensional C-
obstacles. Thus, sampling-based planners, notably PRM [23] and RRT [24] planners
and variants, are widely used.

RAMP is also sampling-based, but it is especially effective in planning high-
DOF robot motion in dynamically unknown environments because of the following
characteristics:

e real-time simultaneous planning and execution of high-DOF robot path/trajectory
based on sensing;

e anytime and parallel planning with optimization, as inspired by evolutionary
computation [25], through maintaining and repeatedly updating/improving a
set of trajectory candidates for a robot from its current configuration to a goal
configuration;

e great structural flexibility to allow for both on-line adaptation to different envi-
ronmental scenarios and off-line extension to robots of very different nature.

All major components of the RAMP algorithm can be customized. The strength of
RAMP lies in both its generality and its flexibility for adaptation and extension.
Indeed, it has recently been extended to real-time continuum manipulator motion
planning [26].

RAMP always maintains a set of diverse trajectories in the CT-space of the robot,
called a population. The initial population of trajectories can be formed randomly.
Each trajectory starts from the robot’s current configuration and ends at the goal
configuration and may be only partially feasible — defined as both collision-free and
singularity free. A partially feasible trajectory is one that has a beginning feasible
segment followed by an infeasible segment. The quality of a trajectory, in terms
of feasibility and optimality, is evaluated through a fitness evaluation function that
combines optimization criteria, such as shortest overall time, maximum time of the
feasible segment, and so on.

As soon as a trajectory has a feasible segment starting from the robot’s current
configuration, RAMP allows the robot to move along it while planning for subse-
quent feasible trajectory segments simultaneously so that the robot can switch to the
best subsequent feasible trajectory segment as it finishes the current feasible one.
Three repeated cycles of processes are run simultaneously in the classical RAMP:

Sensory data are updated in each sensing cycle.

e Trajectory modification and evaluation (or re-evaluation) based on sensing data
is conducted in each planning cycle.

e The robot switches to a better trajectory from the currently executed one in each
control or adaptation cycle.

Key to RAMP is efficient on-line detection of feasible trajectory segments of
candidate trajectories. The original RAMP assumes known obstacle geometry and
conducts collision checking based on predicting obstacle motions. It was also only
implemented in simulation.

Practical Motion Planning 7

3 Technical Approach

By using CFP in RAMP for feasibility checking of a trajectory segment (through
detecting collision-free CT points on it), we can eliminate the unrealistic assump-
tion of known obstacle geometry and the drawback of feasibility checking based on
prediction of obstacle motions. Since a feasible trajectory segment found by CFP is
guaranteed collision-free, once the robot is moving along such a trajectory segment,
say, I, it is safe, while the RAMP planner searches for subsequent feasible trajec-
tories. Once the robot finishes I, if a subsequent feasible trajectory segment I is
found, then the robot can continue moving along I seamlessly, and again, safely.

However, the CFP takes a finite time to detect a collision-free trajectory seg-
ment through detecting collision-free CT points. The actual time for CFP to detect
a collision-free CT point y = (q,#) depends on two factors:

1. the size of the dynamic envelope E(}, T), which is decided by vy, (f — 7) and
shrinks as 7 increases, and
2. the processing power of the computer and sensors.

Factor (1) is usually the dominating factor. Let 7y be the time to start observing
and checking if (q,?) is collision-free. If E(),) is free of atomic obstacles by time
71 < t, then CFP takes at least the time duration 7; — 7y to detect that ¥ is collision-
free, even if the computation cost of detection, i.e., factor (2), is omitted.

Hence, the combined time of CFP and RAMP to decide a subsequent feasible
trajectory segment can be longer than the time period of the feasible trajectory seg-
ment that the robot executes. Therefore, a subsequent feasible trajectory segment
may not be found when the robot finishes executing the current segment, resulting
in a forced stop of the robot. During such a forced stop, the robot may be hit by
obstacles and thus unsafe.

Therefore, it is important that we extend the motion planner RAMP to minimize
forced stops. The parallelism and flexibility of RAMP enables us to do so in the
following ways:

e We add to the evaluation function of RAMP, as an additional optimization cri-
terion, maximizing the safe time 5tmf€ for the robot to pause at the end CT
point (q,,?.) of a collision-free trajectory segment without being hit. With this
added optimization criterion, RAMP is able to select a feasible trajectory seg-
ment (among all feasible trajectory segments found) that maximizes the total
time Aty e = Alpmove + Otsafe, Where Aty is the time period of the segment.
Note that &7y, at CT point X, = (q,,%.) cannot be known precisely before the
robot reaches ., but it can be (under)estimated as dyin (Qe, T) /Vinax — (f — T) for
T < t,, where d,nin(qe, T) is the sensed minimum distance at T between the robot
and the atomic obstacles. Note also that since 8y, is meant for a collision-free
CT point, 7 is greater than the time 7, when the CT point %, is found collision-
free. We developed a method to obtain d,,;,(q.,T) among atomic obstacles near
the robot at y,.

e We separate collision-checking using CFP from evaluation of the fitness of a
trajectory, rather than embedding collision-checking into the fitness evaluation.

8 Rayomand Vatcha and Jing Xiao

Collision-checking is ran constantly in the background and provides the RAMP
information of the collision-free segment of a trajectory, while fitness evaluation
simply uses the information to compute the value of the fitness function, which
is much faster and almost instant.

We call the extended RAMP algorithm, the E-RAMP, as illustrated in Algo-
rithm 2.

Algorithm 2 E-RAMP
m «— # of sensing cycles in a planning cycle
n < # of planning cycles in an adaptation cycle
Atyin <+ small constant time
qe < starting configuration of the robot
t, < current time T {7 is the clock time of the system that automatically updates}
initialize a set S of trajectories connecting the start configuration to the goal configuration of the
robot
Atpove < 0
Sty fe < 0

while the robot has not reached the goal do
simultaneously sense, collision check, plan and adapt, and move:
sense: repeat sensing cycles

plan at every m-th sensing cycle or when robot stops
if 7, < 7 then

At — max (Atyove + Otsafe, Atmin)

t, = T+ min (mndt,Ar)

Set starting time of all trajectories in S to 7,
end if
modify S

adapt: when T =1, or at every mn-th sensing cycle
evaluate trajectories in S
I}ess < best trajectory
qe < last configuration on the first collision-free trajectory segment of I
Atmove < the time taken by the robot to move to configuration qe
te — T+ Atoye + (Slxafe
if Atyove + Otsqpe = 0 then
flag “unsafe” (robot is at risk of collision)
end if

collision check: call Algorithm 3

move: move the robot along I}, the time period At,ye
end while

In Algorithm 2, there are four simultaneous treads for sense, collision check,
plan and adapt, and move respectively. The main while loop describes adaptation
cycles. Each adaptation cycle consists of multiple planning cycles. Each sensing

Practical Motion Planning 9

Algorithm 3 collision-checking

1: input trajectory segments of N trajectories in S, where each trajectory segment i, 0 <i <N, is
a sequence of CT points x!, x%, ... with time duration of m x n x 87

2: C « a sequence of CT-points in order ¥}, 7, ... XN, X3, X3, - X2, ---

: run CFP (Algorithm 1) for every CT point in C until § is updated

4: report collision-free CT points found in each trajectory; compute and report 8z, . for the end
collision-free CT point in each trajectory.

(98]

cycle lasts 87, determined by the planner, such that sufficient new information can
be obtained in each sensing cycle for the CFP(Algorithm 1) to use, which is called
by the collision-checking algorithm (Algorithm 3).

In each adaptation cycle, the robot simultaneously moves along the feasible seg-
ment of I}, and plans for its next subsequent feasible segment, which starts from
the end CT point }, = (qe,%) of the feasible segment of I}.. If, when the robot
reaches ¥., no subsequent collision-free segment is found (i.e., not a single new CT
free point is found), then the robot will stop its motion while continuing simulta-
neous collision-checking and planning until it finds a collision-free segment. If the
time period that the robot stops is less than 6t ., it means that the robot stopped
safely at ¥, to continue planning for a while; otherwise the robot is forced to stop
longer at J, at the risk of being hit by an obstacle.

The constants m and 7 are decided based on v,,,, of obstacles and the size of the
environment.

The following subroutines are used in Algorithm 2, in addition to Algorithm 3
for collision check:

e initialize a set of trajectories as in [16], through randomly creating intermediate
knot configurations between the start and the goal configurations.

o evaluate the fitness function value for each trajectory, which is a cost function
to both maximize the time of the feasible trajectory segment and minimize the
total time of the trajectory.

e modify arandomly picked trajectory in S to change its shape via adding/deleting
or changing coordinates of knot configurations or CT points, evaluate the new
trajectory, and use it to replace a non-best trajectory in S.

4 Implementation and Experiments

We applied the E-RAMP to plan motions of a real 7-DOF Robai’s Cyton arm (see
Figure 2(a)), using an indoor Point Grey’s Digiclops stereo vision camera for over-
head sensing and a DELL Precision T5400 computer with four cores and 4 GB
RAM. Each robot link is approximated by an oriented bounding box. Each revo-
lute joint has a maximum speed of 90 (deg/s) in both directions. To eliminate noise
in sensing data, the image pixels were classified as (a) pixels of the robot and its
accessories (i.e., robot circuit board, battery, etc.), identified by the colors, and (b)

10 Rayomand Vatcha and Jing Xiao

obstacle pixels, by checking if they are in robot workspace. The software was built
using the latest .NET 4.0 framework, and the program was done in C#. We con-

(a) A 7-DOF Cyton arm (b) The robot at g, in an envi- (c) The robot at g,
ronment

Fig. 2 An experimental environment with the stereo-vision sensor providing a top view.

Table 1 Planner and Task Parameters

[SI| Vinax |Atmin qs. g Sensor Resolution| 07
5 [Tem/s| 0.5s [{—45°, —45°,—45°,0°, —45°, —45°, —45°}| 320 x 240 _ |0.05s
{45°,45°,45°,45° 45° 45° 45°}

Table 2 Experiments

Experiment # 1 2 3,4 5,6
Obstacle moved |Blue block|Half-filled water bottle| Toy soccer ball |Plastic cover

ducted six experiments with the robot in an environment consisting of a number
of random obstacles such as football, blocks, table, plastic covers, half-filled wa-
ter bottles, as well as a person moving those objects. The objects (except for the
table) are moved by the person to create arbitrary motions unknown to the robot.
Figures 2(b) and 2(c) show the starting configuration s and the goal configuration
qg of the robot, which values are shown in Table 4. Note that in order to reach qg
from qg, the robot end-effector cannot follow the straight-line path in the workspace
because of the joint limitations. Table 4 shows the common parameter values used in
those experiments. Except for v,,,4x, which characterized the environment, the other
parameter values were determined empirically based on the processing speed of the
planner.

In these six experiments, different obstacles were moved by a person in more or
less the same way during the robot’s motion from the common gs to qg, as shown in

Practical Motion Planning 11

| i &
(a) 7, =0.0s (b) 1, =2.8s (c) T, =4.6s

(&) T =225 (h) 7 =35.9s (i) 7 =42.1s

Fig. 3 Snapshots of experiment #1

Table 2. These six experiments used three different sets of m and n values. Each set
of m and n values were shared by a pair of experiments, as shown in Table 3, which
we will discuss later.

We now describe one experiment for each set of m and n values.

In experiment #1 (see Figure 3), the person moved the blue block to approach the
robot (see snapshots 3(a)-3(c)). Then the robot tried to avoid it and other obstacles
while moving towards the goal as the person moved the block closer to the robot
(shown in snapshots 3(d)-3(i)) and finally reached the goal (see 3(i)).

In experiment #3 (See Figure 4),initially the robot encountered the soccer moved
by the person and performed a motion by bending half of the arm and then moved
away from both obstacles (see snapshots 4(a)—4(c)). As the person moved the soccer
towards the robot (similar to experiment #1), the robot started moving away from it
(see snapshots 4(d)—4(i)) and successfully reached the goal as shown in Figure 4(i).

In experiment #5 (See Figure 5),initially the robot encountered the plastic cover
moved by the person and performed a motion by bending half of the arm to stay
away from the plastic cover (see snapshots 5(a)-5(c)). Later, as the plastic cover
moved closer to the robot, the robot moved away from the table and near the plastic
bag while staying away from the person’s leg (see snapshots 5(d)-5(f)). While the
plastic cover kept approaching the robot; the robot was able to find a motion to reach
the goal successfully (see snapshots 5(f)-5(i)).

12 Rayomand Vatcha and Jing Xiao

r — =

(©) T = 39.65 () 7 = 44.25

(2) T =49.8s (h) 7; = 65.6s (i) 7, =82.3s

Fig. 4 Snapshots of experiment #3

S Results and Main Experimental Insights

The results for the six experiments performed are shown in Table 3. As it shows,
there are unsafe stops in all cases. However, the data show that by increasing #, i.e.,
increasing the number of planning cycles per adaptation cycle, both the number of
unsafe stops and the average duration of an unsafe stop decreased. Having multiple
planning cycles within an adaptation cycle (i.e. n > 1) leads to finding on average a
longer feasible path segment of I}, . Note that since we assign a constant speed for
the robot, the time duration Af,,,. of a feasible segment is proportional to its path
length.

It can be seen that the # adaptation cycles during which the robot moved was
smaller than the minimum total # adaptation cycles (which is the total # planning
cycles divided by n), and in some cases far smaller. This shows that there were
more stops than the total # unsafe stops, meaning that there were safe stops and in
some cases a lot of them, as in experiments 2, 3, and 5. Note that the # of 8¢, fe
computations show the number of end points of collision-free trajectory segments,
that is, the number of collision-free segments. This number is smaller for cases with
longer average path length of feasible segments.

As shown in Table 3, the time needed to do one iteration in CFP for finding a
collision-free CT point (i.e., CT-free point) on average ranged from 3 to 15 sensing
cycles. Since many CT-free points in the experiments require two iterations to be

Practical Motion Planning 13

(g) 1, =65.3s

Fig. 5 Snapshots of experiment #5

found (i.e., based on sensing data of two different sensing instants), the total time
for finding a CT-free point is even longer. In spite of this high cost of CFP, the
Algorithm 2 was able to lead the robot to its goal in those experiments successfully.
However, for a greater v,,,,, one iteration in CFP will take even more time be-
cause the dynamic envelope is larger. Thus, faster computation for the intersection
check in CFP is necessary, which remains one of our on-going research topics.

6 Conclusions

This paper introduced an approach enabling a high-DOF robot to plan in real-time
and move along a collision-free trajectory in an environment of unknown and unpre-
dictable obstacles, while minimizing unsafe stops, in spite of a considerable cost for
detecting collision-free configuration-time points. The approach was implemented
and tested in a few experiments involving a real 7 degree-of-freedom manipulator
and a fixed stereo-vision sensor. These experiments show the potential of this ap-
proach but also reveal issues that require further research, including (a) a faster algo-
rithm for CFP, preferably with parallel implementation and GPU computation, (b)
better handling of sensing and modeling uncertainty to increase robustness, and (c)

14

Table 3 Experimental Results

Rayomand Vatcha and Jing Xiao

Parameters m=20,n=1 |m=10,n=3| m=20,n=2
Experiment 1 2 3 4 5 6
Total time (s) 42.09 | 83.99 |82.29(137.99| 99.09 | 86.49
Total # planning cycles 21 42 12 128 20 8
adaptation cycles that the robot moved| 20 22 3 9 5 3
Total # unsafe stops 7 9 2 5 3 2
Duration of Avg. 0.69 0.48 0.1 [033 | 0.16 0.1
an usafe stop (s) Min. 0.1 0.1 0.1 0.1 0.1 0.1
Max. 1.3 1.3 0.1 0.4 0.2 0.1
Path length of Avg. 34.01 | 26.45 [119.05|47.62 | 79.37 |119.05
feasible seg. of Min. 13.22 | 13.22 |66.14 | 13.22 | 26.45 | 66.14
Tpese (deg) Max. 145.51| 79.37 |171.97|92.60 | 171.97 {171.97
Total # CT-free points found 97 618 64 521 200 98
Time for one Avg. 712.22 | 637.08 |156.51|184.66| 137.89 (142.49
iteration in CFP Min. 109.375| 15.62 |109.37|46.87 | 15.62 | 93.75
that found a CT-free pt. (ms)| Max. 11625 | 5109.37 | 343.7 |859.37| 406.25 |343.75
Total # of 01,7, computations 83 196 51 452 100 31
Time for Avg. 681.48 [1850.153]|173.99(178.47| 281.40 (192.02
computing one Min. 31.25 | 140.62 [109.37| 15.62 | 109.37 | 125
Otsqpe (MS) Max. |2656.25|13828.13(281.25|718.75|1671.87| 312.5

a mechanism to enable and utilize changing sensor views to provide greater range

of perception.

References

1. R. Vatcha and J. Xiao, “Perceived CT-space for motion planning in unknown and un-

predictable environments,” in Intl. Workshop on the Algorithmic Foundations of Robotics
(WAFR), Dec 2008.

. P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,”

in Intl. J. of Robotics Research, 1998, pp. 760-772.

. F. Large, S. Sckhavat, Z. Shiller, and C. Laugier, “Using non-linear velocity obstacles to plan

motions in a dynamic environment.” in IEEE Intl. Conf. on Control, Automation, Robotics and
Vision (ICARCV), 2002, pp. 734-739.

. A. Elnagar and K. Gupta, “Motion prediction of moving objects based on autoregressive

model,” IEEE Trans. on Systems, Man, and Cybernetics (Systems and Humans), vol. 28, no. 6,
pp- 803-810, November 1998.

. C. C. Chang and K.-T. Song, “Environment prediction for a mobile robot in a dynamic envi-

ronment,” [EEE Trans. on Robotics and Automation, vol. 13, no. 6, pp. 862-872, Dec 1997.

. G. Gallagher, S. S. Srinivasa, J. A. Bagnell, and D. Ferguson, “Gatmo: a generalized approach

to tracking movable objects,” in I[EEE Intl. Conf. on Robotics and Automation, May 2009, pp.
2043-2048.

A. Ess, B. Leibe, K. Schindler, and L. V. Gool, “Moving obstacle detection in highly dynamic
scenes,” in IEEE Intl. Conf. on Robotics and Automation, May 2009, pp. 56-63.

. A. Elnagar and A. Hussein, “An adaptive motion prediction model for trajectory planner sys-

tems,” in Intl. Conf. on Robotics and Automation, September 2003, pp. 2442-2447.

Practical Motion Planning 15

9.

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

V. Govea, D. Alejandro, F. Large, T. Fraichard, and C. Laugier, “Moving obstacles’ motion
prediction for autonomous navigation,” in Int. Conf. on Control, Automation, Robotics and
Vision, December 2004.

J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, “I-collide: An interactive and exact
collision detection system for large-scale environments,” in In Proc. of ACM Interactive 3D
Graphics Conf., 1995, pp. 189-196.

P. Jimnez, F. Thomas, and C. Torras, “3D collision detection: A survey,” Computers and
Graphics, vol. 25, pp. 269-285, 2000.

M. C. Lin and S. Gottschalk, “Collision detection between geometric models: A survey,” in In
Proc. of IMA Conf. on Mathematics of Surfaces, 1998, pp. 37-56.

A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient planning in dynamic
environments,” in /EEE Intl. Conf. on Robotics and Automation, May 2009, pp. 1662—1668.

. V. Govea, D. Alejandro, F. Large, T. Fraichard, and C. Laugier, “High-speed autonomous

navigation with motion prediction for unknown moving obstacles,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, October 2004, pp. 82-87.

J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning and replanning in dy-
namic environments,” in /[EEE Intl. Conf. on Robotics and Automation, May 2006, pp. 2366—
2371.

J. Vannoy and J. Xiao, “Real-time Adaptive Motion Planning (RAMP) of mobile manipulators
in dynamic environments with unforeseen changes,” in IEEE Trans. on Robotics, vol. 24(5),
Oct. 2008, pp. 1199-1212.

A. Murarka, M. Sridharan, and B. Kuipers, “Detecting obstacles and drop-offs using stereo
and motion cues for safe local motion,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2008, pp. 702-708.

C. Caraffi, S. Cattani, and P. Grisleri, “Off-road path and obstacle detection using decision
networks and stereo vision,” IEEE Trans. on Intelligent Transportation Systems, vol. 8, no. 4,
pp. 607-618, 2007.

D. Bradley, R. Unnikrishnan, and J. A. Bagnell, “Vegetation detection for driving in complex
environments,” in /EEE Intl. Conf. on Robotics and Automation, April 2007.

N. Bellotto and H. Hu, “Multisensor-based human detection and tracking for mobile service
robots,” IEEE Trans. on Systems, Man, and Cybernetics — Part B, vol. 39, no. 1, pp. 167-181,
2009.

R. Vatcha and J. Xiao, “An efficient algorithm for on-line determination of collision-free
configuration-time points directly from sensor data,” in I[EEE Intl. Conf. on Robotics and Au-
tomation, May 2010.

——, “Discovering guaranteed continuously collision-free robot trajectories in an unknown
and unpredictable environment,” in /[EEE/RSJ Intl. Conf. on Intelligent Robots and Systems,
October 2009.

L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces,” in IEEE Trans. on Robotics and Automation,
1996, pp. 566-580.

S. M. LaValle, Planning Algorithms. Cambridge University Press, May 2006.

P. P. Bonissone, R. Subbu, N. Eklund, and T. R. Kiehl, “Evolutionary algorithms + domain
knowledge = real-world evolutionary computation,” [EEE Trans. Evolutionary Computation,
vol. 10, no. 3, pp. 256-280, 2006.

J. Xiao and R. Vatcha, “Real-time adaptive motion planning for a continuum manipulator,” in
1EEE/RSJ Intl. Conf. on Intelligent Robots and Systems, October 2010.

