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Abstract

Planning contact motion is important for many
robotic tasks but di�cult in general due to high vari-
ability and geometrical complexity of contact states.
It is desirable to decompose the problem into simpler
subproblems. A promising decomposition treats the
problem as consisting of (1) automatic generation of
a discrete contact state graph, and (2) planning con-
tact transitions between neighboring contact states and
contact motions within the same contact state. This
paper addresses a divide-and-merge approach on solv-
ing the general problem by such a decomposition. It
discusses issues related to solving the two subproblems
and provides examples of automatically generated con-
tact state graphs between two contacting 3-D polyhedra
by the approach, which extend the results for 2-D poly-
gons reported in [11].

1 Introduction

From a classic motion planning point of view, plan-
ning contact motions means planning motions on the
surface of con�guration space obstacles (C-obstacles)
[20]. The key is to know the C-obstacles. However,
most of the work in the literature on computing C-
obstacles from given physical objects/robots are lim-
ited to 3-D C-obstacles (i.e., C-obstacles of 2-D ob-
jects) [2, 3, 22, 23], and only a few approximate C-
obstacles of 3-D objects [8, 15]. Computing 6-D C-
obstacles exactly for general 3-D polyhedra remains
a formidable open problem. However, contact mo-
tions, unlike collision-free motions, require exactness.
Hence, a recent trend is to explore contact motion
planning without explicitly computing C-obstacles [9].
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Moreover, information of high-level, discrete con-
tact states is often most crucial for devicing compli-
ant control strategies to implement contact motions
[4, 24], where each high-level state captures the topo-
logical and physical contact characteristics often com-
mon to two or more contact con�gurations. For in-
stance, the contact state of \a co�ee mug sitting on
a table" means the bottom surface of the mug con-
tacting the top surface of the table, which is shared
by in�nitely many mug con�gurations relative to the
table. Indeed, many �ne motion or assembly planning
systems require the knowledge of high-level, discrete
contact states [1, 5, 6, 7, 16, 21, 22, 25, 26]. How-
ever, such high-level information is di�cult to extract
from low-level contact con�gurations, i.e., C-obstacle
surfaces, only.

Out of the necessity to simplify the problem and
the need to know high-level, discrete contact states,
we decompose the general contact motion planning
problem into two subproblems:

Subproblem 1: automatic generation of a discrete
contact state graph1, and

Subproblem 2: planning contact motions between
two known adjacent contact states.

Subproblem 2 can be further decomposed to (a)
planning an instantaneous contact transition (between
the two adjacent contact states) and (b) planning con-
tact motions within the same known contact state,
which is a lower-dimensional and of smaller-scope mo-
tion planning problem.

We use a divide-and-merge approach to attack the
above subproblems, which is characterized by directly
exploiting both topological and geometrical knowledge
of contacts in the physical space of objects. In Sec-
tion 2, we review the notion of contact formation (CF)

1With such a graph, one can further plan a sequence of con-
tact state transitions by graph search.



in terms of principal contacts (PC) [27] to character-
ize topological contacts and de�ne contact states as
CF-connected regions of contact con�gurations. We
also examine the neighboring relations among contact
states and characterize the contact state space as a
contact state graph. In Section 3, we describe our
divide-and-merge approach towards solving both sub-
problems listed above and discuss related issues. We
present some implementation results for 3-D polyhe-
dra in Section 4 and conclude the paper in Section
5.

2 Contact State Graph

In this section, we �rst review concepts used to
characterize topological contacts and describe their
geometrical interpretations. Then, we discuss connec-
tivity of topological contacts and de�ne contact states
and a contact state graph.

2.1 Principal Contacts and Contact For-
mations

Denoting the boundary elements of a face as the
edges and vertices bounding it, and the boundary el-
ements of an edge as the vertices bounding the edge,
A principal contact (PC) is de�ned as the contact be-
tween a pair of surface elements (i.e., faces, edges, or
vertices) which are not the boundary elements of other
contacting surface elements (if there is more than one
pair in contact) [27]. There are ten types of PCs
between arbitrary polyhedra, as shown in Figure 1.
Each non-degenerate PC is associated with a contact
plane, de�ned by a contacting face or the two contact-
ing edges in an e-e-cross PC. Each degenerate PC is
characterized as between two convex edge or vertex
elements and without being associated with a contact
plane2.

With the notion of PC, an arbitrary contact be-
tween arbitrary polyhedra is described as the set of
PCs formed, called a contact formation (CF).

The geometrical representation of a PC (GeoPC)
denotes the set of contact con�gurations which satisfy
the contact condition described by the PC's topolog-
ical de�nition. The geometrical representation of a
CF (GeoCF) denotes the set of contact con�gurations
which satisfy every contact condition represented by
every PC in the CF. Obviously, GeoCF is the inter-
section of the GeoPC's of the PCs de�ning the CF.

2Note that a contact between a convex edge/vertex and a
concave edge/vertex is regarded not as a single PC but as con-
sisting of a couple non-degenerate PCs.
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Figure 1: Principal Contacts (PCs)

2.2 Connectivity of CFs and Contact
States

Within a contact formation CF , the GeoCF of CF
may constitute either a single connected region or mul-
tiple connected regions of con�gurations. In the latter
case, from a con�guration in one CF-connected region
to that of another, there is no CF-compliant motion,
i.e., a motion constrained by the same CF. On the
other hand, within a CF-connected region, there ex-
ists a CF-compliant motion from one con�guration
to any other con�guration. Thus, we can de�ne a
contact state between two polyhedra as a single CF-
connected region, represented by the CF and a rep-
resentative con�guration in the region, denoted as a
pair <CF;C>.

With the above de�nition, the distinction between
two contact states with the same CF lies in the two
di�erent contact con�gurations representing two dif-
ferent CF -connected regions.

Now we consider connectivity between contact
states of di�erent CFs, <CFi; Ci> and <CFj ; Cj>.
If, from Ci to Cj, there exists a path of only con-
�gurations in <CFi; Ci> succeeded by con�gurations
in <CFj; Cj>, then <CFi; Ci> and <CFj; Cj> are
generally-de�ned neighboring contact states, and CFi
and CFj are called generally-de�ned neighboring con-
tact formations.

As CFs characterize discrete contact states topolog-
ically, it can be shown that the above con�guration-
based de�nition of neighboring CFs can be mapped to
a topological one in terms of how PCs and CFs are
related [11]. PCj a less-constrained neighbor (LCN)
PC of PCi, if and only if PCj is obtained by changing
one contacting element of PCi to one of its bound-
ary elements. Conversely, PCi is the more-constrained
neighbor (MCN) of PCj. For example, in Fig. 1, the
eA-fB PC is the LCN of the fA-fB PC (assuming the



objects are A and B) if eA is a boundary edge of fA.
Subsequently, CFj is an LCN CF of CFi, if and

only if (1) CFj has no more PCs than CFi, and (2)
for every PC in CFj , it either belongs to CFi or is an
LCN PC of a unique PC in CFi, and no two PCs in
CFj are LCN PCs of the same PC in CFi. Conversely,
CFi is the MCN CF of CFj.

A contact state <CFj; Cj> is a LCN (or MCN) of
another contact state <CFi; Ci>, if and only if these
two contact states are generally-de�ned neighboring
contact states and CFj is a LCN (or MCN) CF of
CFi.

The contact state space (of the contacting objects)
can be de�ned as a contact state graph, where each
node denotes a contact state <CF;C>, and each arc
connects two neighboring contact states.

3 Divide-and-Merge Approach

As introduced in Section 1, we decompose the con-
tact motion planning problem into Subproblem 1

and Subproblem 2. The two subproblems are quite
related and can be tackled by a uni�ed divide-and-
merge approach.

3.1 Divide and merge contact state
graphs

We divide the contact state graph into special sub-
graphs, called Goal-Contact Relaxation (GCR) graphs
[30], and further transform the above Subproblem
1 into automatically generating the GCR graphs and
merging the GCR graphs. A GCR graph is de�ned
with respect to a \goal" contact state g and include
all the LCN contact states of g, their subsequent LCN
contact states, and so on; thus, it can be generated
or grown from g (the seed node) through repeatedly
\relaxing" contact constraints to reach LCNs and add
them to the GCR graph until there is no further LCN3.
Such a seed g is a locally most-constrained contact
state and often indicates a goal or an intermediate
goal state of an assembly.

As shown in [11], which addresses the generation
of GCR graphs for contacting polygons, a GCR graph
is much easier to generate automatically than an ar-
bitrary contact state graph because it is easier to de-
termine an LCN contact state from a given contact
state s = CFi;Ci. This is also true for contacting 3-
D polyhedra. First, a possible LCN CF of CFi can be

3This means that a GCR graph is naturally bounded, where
the sink or leaf nodes are the least constrained contact states

hypothesized (unlikeMCN CF) fromCFi based on the
topological de�nition of a LCN CF. Then, the problem
becomes one of checking if there exists a feasible con-
tact motion from s to the hypothesized LCN which
is compliant to no other CF than the two involved.
If so, a valid LCN contact state is found; otherwise,
hypothesize another and check again. This process es-
sentially heads towards solving Subproblem 2 stated
above.

A large contact state graph can be created by merg-
ing GCR graphs. The entire contact state graph is
obtained if all GCR graphs are merged. There are
two ways to combine multiple GCR graphs. One is
to do it sequentially by growing a new GCR graph
to meet an existing graph (which could consist of one
or more GCR graphs) where there are shared states.
Another is to generate each GCR graph independently
and then merge the GCR graphs in a separate phase.
The key issue in automatic merge is to determine if
two nodes from the two graphs respectively represent
the same contact state and should be merged into one
node in the combined graph. Clearly, only the nodes
sharing the same CF can possibly represent the same
contact state. Therefore, the problem becomes: given
two contact states <CFi; C1> and <CFi; C2>, where
C1 6= C2, whether there exists a CFi-compliant mo-
tion connecting C1 and C2. This, again, is part of
what Subproblem 2 addresses.

3.2 Divide and merge contact motions

A contact motion between only two neighboring
contact states can be further divided into two types
of motions:

� CF-compliant recon�guration motion, which is �-
nite and changes contact con�gurations within the
same CF, and

� in�nitesimal transition motion which changes a
con�guration in one CF to one in the neighboring
CF.

Thus, the previously stated Subproblem 2 can be
reduced, again, into planning CF-compliant recon�g-
uration under a known CF and planning in�nitesimal
transition between two neighboring CFs.

Depending on the type and geometry of the CF, ob-
jects constrained by a CF can either be �xed or have
at most 5 degrees of freedom (DOF) for CF-compliant
motion. Usually the more PCs a CF has, the fewer
DOF has the CF-compliant motion4. This compen-
sating nature (i.e, higher DOF with simpler CF, and

4Except for cases with redundant PCs, such as those with
parallel contact planes.



Figure 2: Examples where only in�nitesimal transition
motions are needed

lower DOF with more complex CF) is quite helpful
because it further reduces the complexity of the CF-
compliantmotion planning problem, in addition to the
already reduced DOF and reduced scope of motion be-
cause of the CF constraints. In [12, 13], we described
novel strategies for random sampling of CF-compliant
con�gurations, which can be used by a randomized
planner, such as a planner based on probablistic road
maps [17, 18, 19] or evolutionary computation [10, 28]
to plan CF-compliant motions of high DOF.

In reality, an in�nitesimal transition is more mean-
ingful in breaking a contact rather than making a con-
tact, because it is hard to separate the in�nitesimal
transition from the �nite recon�guration in the latter.
Breaking contacts happen during a motion from one
contact state to its LCN contact state, which we call
a neighboring relaxation motion. Note that planning
neighboring relaxation motion is a main issue in gen-
erating a GCR graph (Section 3.1), and it is also a
further simpli�ed problem of the general Subprob-
lem 2. This is because in many cases, a neighbor-
ing relaxation motion consists of only an in�nitesimal
transition (Fig. 2), and to seach a suitable in�nitesi-
mal transition is an easier problem.

As an in�nitesimal motion is characterized by the
axis of the motion and the direction of velocity, such a

transition motion can often be speci�ed topologically in
terms of the contact elements involved in the change,
either completely or partially [11]. Once the intended
motion is speci�ed, its feasibility can be easily checked.
In [11], we described how to do the feasibility check
based on local CF information, which is applicable to
both contacting polygons and contacting polyhedra.

Once suitable CF-compliant recon�guration mo-
tions and in�nitesimal transition motions are found,
they can be merged to form a suitable motion plan
between neighboring contact states, i.e., to solve the
Subproblem 2. This, in turn, helps solving the Sub-
problem 1 (as described in Section 3.1). Moreover,
once a contact state graph is created, graph search
can be used to yield a suitable sequence of contact
states | a high-level plan. Guided by this sequence,
neighboring contact motions can be concatenated au-
tomatically to form a global contact motion.

3.3 Handling CFs with multiple con-
nected regions

As described in Section 2.2, depending on object
geometry, the geometric representation GeoCF of a
CF may consist of more than one CF-connected re-
gion, and each CF-connected region represents a sep-
arate contact state. Fortunately, except for rare cases
involving degereate CFs, we can avoid dealing with
multiple CF-connected regions during the generation
of a single GCR graph and only encounter the issue
during merge of graphs: we have pointed out in Sec-
tion 3.1 that during the merge of GCR graphs, it is
necessary to check whether two contact states with the
same CF are separate contact states or can be merged
as one contact state. We have also begun to study
how the geometrical characteristics of contacting ob-
jects relate to disconnectedness of a CF in order to
quickly determine if a CF has disjoint contact states,
or in other words, if two states under the same CF
can be merged without going through the search of a
CF-compliant motion connecting the states [14].

3.4 Discussion of complexity

We can capture the topological complexity of two
contacting polyhedra in terms of their numbers of
faces, M and N , but these numbers cannot convey
the geometrical complexity of the objects. Such com-
plexity determines the possible kinds and number of
contact states and thus a�ects contact motion plan-
ning more signi�cantly. The arbitrariness of geometric
shapes, however, makes it di�cult to characterize ge-
ometrical complexity in general. This, in turn, makes



it di�cult to assess the time complexity of our ap-
proach in a near-accurate form. In addition, the com-
plexity also depends on the motion planner used for
CF-compliant motion planning. Nevertheless, both
our reasoning and implementation results (next sec-
tion) demonstrate the feasibility and advantages of the
divide-and-merge approach.

4 Some Implementation Results

We have implemented algorithms for automatic
generation and merging of GCR graphs. We limited
our current attention to generating GCR graphs for
arbitrary CFs with � 3 PCs between arbitrary poly-
hedra5. This is because a CF is fully constrained, i.e.,
with zero DOF, if its PCs can provide 6 independent
constraint equations, which can often be achieved by
a 3-PC CF of the right combination, such as one with
three f-f PCs, three f-e PCs, or, two f-f PCs and one f-v
PCs, and so on, with non-parallel contacting features.
Although theoretically, if all PCs are of f-v or e-e-cross
types, at most 6 PCs are needed to fully constrain a
CF, in many practical cases, a CF with more than 3
PCs often involve redundant PCs and can be found to
be equivalent to a CF with fewer PCs [29].

As our emphasis is on the novel aspects of the
divide-and-merge approach, our current implementa-
tion only employs a simple motion planner which pro-
vides feasible straight-line motions for CF-compliant
recon�gurations.

We also used a display program written by David
Johnston of our group to view the contact state graph
and the contact states between polyhedra. It is based
on openGL, runs both on UNIX and Windows NT,
and allows user interaction to choose what to view
and in what fashion.

Fig. 3 shows one example, where Node 1 (the top
node) indicates the seed contact state. The GCR
graph has 90 nodes, of which some of the contact states
are shown (by clicking the nodes).

Fig. 4 shows the result of merging two GCR graphs.
The two nodes on the top of the window are the seed
nodes of the GCR graphs respectively.

We have run our program on nearly 30 di�erent
examples involving polyhedra pairs of vastly di�erent
shapes. Figure 5 summarizes information on some of
the example GCR graphs generated, run on a SUN Ul-
tra 10 workstation (which is rated at 12.1 SPECint95
and 12.9 SPECfp95).

5This extends the results for only polygons reported in [11].

Figure 3: A GCR graph between two polyhedra

Figure 4: Result of merging two GCR graphs



#PC Seed CF
#nodes
  in
 GCR

time
(s) Seed CF

#nodes
  in
 GCR

time
(s) Seed CF

#nodes
  in
 GCR

time
(s)

1PC

2PC

3PC

81 0.24 63 0.21 54 0.5

134 3.3 163 2.2 86 1.2

107 3.8 136 2.3

124 2.9176 16.6

59 1.2

114 5.3

197 16.5

249 7.5

96 3.5

67 1.6

137 9.3

155 13.3

197 6.6

64 2.7

121 11.2

41 1.8

252 5.1 124 19.1

Figure 5: Several experimented examples

5 Conclusion

To conclude, we have introduced a general divide-
and-merge approach for planning contact constrained
motions. The approach decomposes the hard prob-
lem into manageable subproblems. We have imple-
mented the novel aspects of the approach concern-
ing automatic generation of contact state graphs to
demonstrate its feasibility. We have also conducted
related research on random sampling of contact con-
�gurations constrained by a CF [12, 13] and on analy-
sis of geometric complexity [14]. There are a number
of further research issues, including e�ective selection
of seed contact states for GCR graphs, more powerful
CF-compliant motion planning, and dealing with CFs
with many PCs.
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