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~ Abstract— Information of high-level, topological contact states of contact states. Each PC is associated with a single tangen
is useful and even necessary for a wide range of applications, plane of contact, thanks to the fact that every surface featu

including many rpbotic application§. A contact state between of a polyhedral object, i.e., every face, edge, or vertexa is
two polyhedral objects can be effectively represented as a ctact ;
well-defined, convex feature.

formation in terms of a set of principal contacts between faces, A .
edges, and vertices of the two objects. However, little is done However, how to describe and represent a high-level contact

to characterize and represent contact states between curved state properly between non-polyhedral, curved objects, i.
objects. In order to facilitate the representation of contact sates objects whose boundary is composed by non-planar piecewise
between such objects, we introduce a novel approach to segnten smooth surfaces, remains an open problem even though such

the boundary of curved objects based on monotonic changes of biect in th | Id. Wi K to add
curvatures, which we call the curvature monotonic segmentation ODJECLS aré nore common In e realworid. ¥we SEEK L0 address

We specifically apply this approach to curved 2D and 3D objects this problem in this paper. Our approach is to decompose
with boundary curves or surfaces represented by algebraic a curved object in such a way that it yields meaningful
polynomials of degrees up to 2. The segmentation yields curvature syrface features with desirable properties analogousetdlah
monotonic faces and edges (or pseudo edges), and vertices (0g, face features of a polyhedral object. Next, principatacts
pseudo vertices). With these faces, (pseudo) edges, and (u between two curved objects can be defined in terms of those
vertices, we effectively extend the concept of contact formain to :
curved Objects to represent high_|eve|, top0|ogica| contact stas Surface features SO that a contact state can be deSCI‘Ibed as a
between such objects with the same desirable characteristics asset of principal contacts.
the contact formations between polyhedral objects. In this paper we consider three dimensional objects with
boundaries represented by algebraic polynomials of degrnee
to 2, i.e., by planes and quadrics, and two dimensional tbjec
Proper characterization and representation of contacts kéth boundaries described by algebraic polynomials of eegr
tween physical objects, including robots, is essential &myn at most 2, i.e., lines and conics. Quadrics and conics jkst li
applications, from real-world robotic tasks involving complanes and lines are common boundary primitives, espgciall
pliant motion to dynamic simulation and haptic interactiofor primitive components in a hierarchical representatidn
in a virtual world. While contacts between two objects cacomplex objects, such as in a constructive solid geometry
be described by the relative contact configurations betwe@@SG) tree [5], [6], [7], [8], [9]. For example, mechanical
them, a higher-level representation of contacts in terms pérts and tools often use cylinders and rectangular parts as
certain discrete “contact states” is often more descept¥ primitives, ellipsoids are often used in human body modg|li
the common topological and physical contact charactesistispheres are extremely popular in molecular modelling, and s
shared by a set of contact configurations and is thus qude.
useful and even necessary for many tasks. A previous approach to object decomposition is [10] in
For contacting polyhedral objects, it is rather natural anghich the problem of representing 3D free form objects for
common to describe a contact state as a set of primitiebject recognition is addressed, and shape-based déscript
contacts, each of which is defined by a pair of contactingf objects is introduced. It is based on the concept of maxi-
surface features in terms of faces, edges, and verticdser&it mal surface patches having similar shape index. They define
contact state representations essentially differ only éw h different classes for surfaces dividing the range of thepsha
primitive contacts are defined. One common representatimalex into nine levels. [11] proposes a natural decompmsiti
[1], [2] defines primitive contacts as point contacts in ternof 3D surfaces into a graph very similar to the polyhedral
of vertex-edge contacts for 2D polygons, and vertex-faak arepresentation of piecewise linear surfaces which is define
edge-edge contacts for 3D polyhedra. Another representateven for objects whose topology is arbitrarily complicated
[3] defines primitive contacts in terms of any pair of surfac@his representation is called the extremal mesh of the ceirfa
features in contact. The highest-level definition of prineit However, none of these approaches of surface decomposition
contacts was introduced by [4] in the notion of principatan serve our purpose of representing contact states betwee
contacts, which best enables the distinction between ome curved objects readily.
contact state and another and facilitates robust idertidita  In this paper, we present our approach of decomposing or

I. INTRODUCTION



segmenting the surface of a curved object based on monotonic f—e f=v e — e — Cross
change of curvatures. The rest of the paper is organized as c—f

f-1 73

follows. In Section Il we will review the notions of principa

contacts and contact formation for polyhedral objects and g ‘ ‘ [ ‘ Lj
(a)

describe how to extend this formalism to curved objects.

In Sections lll, IV, and V, we introduce our approach to

decompose 2D curved objects and to extend the notions of PC

and contact formation to describe contact states betwesdn su e—_e—_touch €—v v —v
objects. In Sections VI, VII, and VIII, we extend our apprbac

v—e€
to 3D curved objects and surfaces. Section IX concludes the
paper. a——

(b)

[1. PRINCIPAL CONTACTS AND CONTACT FORMATIONS

FOR CURVED OBJECTS

L . Fig. 1. (@) Principal contacts.if) Degenerate principal contacts.
A. Principal contacts and contact formations between poly- 9 @ P 1 Deg princip

hedral objects

The notionprincipal contacts(PC) has been introduced in he | _ h h fth .
[4] to characterize the contact states between two arbitri?ave the interesting property that when two of them are in

polyhedral objects. PCs are contact primitives defined Fr?n,taCt atan |nter|o_r po!nt, the contact region consistsriy
terms of contacting boundary elements of objects. Bounddt ingle contact point, independently of the type of contact

elements are faces, edges, and vertices. The boundary df4 No matter if the contact is between two convex segments
face consists of the edges and vertices bounding it, and fﬁ etween etl)convex and acoEcave segment. As aconsequence
boundary of an edge consists of the vertices bounding it. the contact between two such curvature monotonic segments

Formally, a PC denotes a contact between a pair of bound& be described in a way analogous to a single .PC betwgen
elements that do not bound other contacting boundary ef@o flat surface or edge elem(.enf[s of polyhedral ObJ_ECtS’h\_'h'C
ments. This ensures that PCs are the highest level cont3iet be further used as the bundmg_ blocks to describe arpitr
primitives to describe a contact state most concisely. FepNtact states between curved ObjeCtS'_ _

example, a face-face contact between two polyhedral cbjeCtThus’ we de(_:ompose 3D_ curved objects_ Into smooth_ sur
is described just as a single face-face PC rather than insteridc® Patches with monotonic curvature. This decomposition
of a set of vertex-face, edge-face, or edge-edge contaath pwhich we callcurvature monotonic segmentatiais done by

PC defines a single contact region of a point, a straight-li@@!yzing the differential geometric properties of thefaces
segment, or a plane segment, associated with a single d:onf’aﬂ:,d introducing additional features such as special cuaes
tangent plane, called eontact plane There are four types of pom_ts on them w_he_re at least one of the curvat_ures has a local
PCs between two arbitrary polygons and ten PCs between ffjgximum or a minimum. As the result, the notion of PCs for

arbitrary polyhedra, as shown in Fig. 1. An arbitrary Comagolyhedral objects can be extended here for curved objects i

state between two polyhedral solids can be described insterfgMs ©f relationships between curvature monotonic patche
or curve segments. Finally, the notion of CFs can again be

of a set of PCs, called eontact formation(CF) [4]. ) X
Although PCs were first introduced for polyhedral objectg,ef'ned as a §et of PCs to describe a contact state between
they can be extended to non-polyhedral objects after a stf© curved objects.

able decomposition of the boundaries of such objects are/Ve first describe how PCs and CFs can be defined for
performed, as explained in the next section. 2D curved objects and then extend our method to 3D curved

objects.

B. Principal contacts and contact formations between cdrve
objects IIl. GENERAL PROPERTIES OF PLANAR ALGEBRAIC

Our approach is to decompose a curved object in such a CURVES

way that it yields useful curved surface features with ddde We assume that the reader is familiar with the basic concepts
properties for the description of a contact analogous tegharelated to planar algebraic curves such as smoothness, regu
of the flat boundary elements of a polyhedral object. larity, singularity, as well as with the notion of local canxity

In this paper we consider three dimensional objects definadd local concavity [12, Chap. 1]. Two notions of particular
by algebraic surfaces of degree at most 2, that is planes amigrest here are inflection points and extreme points.dtidle
quadrics, and two dimensional objects defined by algebragioints are stationary points of the curvature, i.e., pouits
curves of degree at most 2, that is lines and conics. which the first derivative of the curvature vanishes and

We observe that by decomposing an arbitrary quadric stine sign of curvature changes. If curvatureof C' has local
face (or an arbitrary conic curve in 2D) into segments havirgaximum or minimum value gb, p is anextreme point
monotonic curvature (i.e., surface patches in 3D or curge se Such information is important for understanding how to
ments in 2D with monotonic curvature), the resulting segmersubdivide the curves that define the boundaries of planar
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Fig. 2. Different contacts between the same pair of boundkmyents of ef U3

two planar curved objects. ) ) ) )
Fig. 3. Stationary points of the curvature function along tloundary of the

two objects of Fig. 2 used for their curvature monotonic deowsitpn. For
example, the curvature of the boundaryJaf has a maximum i and a
. . . . minimum invd?,
objects into segments along which the curvature function is
monotonic. As will be described below, monotonic segmen-
tation of general curves requires adding inflection poimd a

extreme points as extra vertices V. CONTACT FORMATIONS BETWEEN PLANAR CURVED

OBJECTS
IV. CURVATURE MONOTONIC SEGMENTATION OF PLANAR In a way analogous to the description of PCs between
CURVED OBJECTS polygons on a plane, we give the following definition of PCs

between planar curved objects. First, we extend the notion o
Bbundary elements to planar curved objects as the edges and
(pseudo) vertices of the objects.

O Definition 5.1 (Principal contacts)A PC between two pla-

nar curved objects is defined by the contact between a pair
of boundary elements (edges, vertices, pseudo-verticas) a
corresponds to a single contact region at which the tangent

Consider the situation represented in Fig. 2. A conta
between the boundary curve’ of object S and the curve
eM of object M can take place at one point or at tw
different points. These two different contact situatioravén
different geometrical and physical properties, eld.js more
constrained in the situation of Fig. 2.b than in that of Fig. 2
Unfortunately both contacts take place between the saiffs is uniquely defined.

boundary elements af/ and .S so that we cannot distinguish 5 general contact between two planar curved objects can

these contact cases by means of a high level topological ggs, he described again bycantact formationdefined as the
scription. Therefore, we need to perform a finer segmemtatiQ.; ot pcs formed.

of the boundaries of curved objects and use inflection pointSg;ce in a planar curved object there are pseudo-vertias an
and extreme points in addition to vertices for segmentationy i, convex and concave edges, there are more types of PCs
For planar curved objects, we define edges and verticesiggeen planar curved objects than between polygons (where
follows. there are only vertex-vertex, vertex-edge and edge-edugsty
Definition 4.1 (Vertices): Verticesare the intersection of PCs). Thus, we can classify the types of PCs between planar
points between two curves that form the boundary of a plan@irved objects considering all the possible combinatiohs o

curved object. boundary elements. For instance, after the introductiothef
Definition 4.2 (Pseudo-vertices): Pseudo-verticase in- pseudo-vertices, the contact in Fig. 2.b can be regarded as a
flection points and extreme points on a planar curve. 2-PC CF{ef —eM e5 — M},
Definition 4.3 (Edges): Edgeare the curve between any Now we need to show that at each PC, just as in the case
two neighboring vertices or pseudo-vertices. of polygons, there is a single contact region, and the contac
In other words, we use all the stationary points of theangent line is uniquely defined.
curvature function along the curve, i.e., points at whithk= 0. If a contact takes place between an edge and vertex

Segments of curve along which the curvature is constant gFeg. 4.1) or pseudo-vertex, we always have a PC with a single
considered as one single edge. It is easy to see that affentact point and the tangent line is uniquely defined. If a
the segmentation, an edge either has constant curvaturecartact takes place between one convex (pseudo) vertex and
strictly monotonically increasing or decreasing curvattfFor one concave (pseudo) vertex (Fig. 4.2), it can be regarded as
example, the objects represented in Fig. 3 have boundareSF with two (pseudo) vertex-edge PCs in which the convex
defined by conic curves. The vertices®farevs, v5 andvg, (pseudo) vertex is in contact with two edges one on each side
whereas)M has no vertices. They don’t have inflection pointssf the concave (pseudo) vertex. The two tangent lines at the
The extreme points of as pseudo-vertices ar€’, v7, and PCs are uniquely defined.
those of M arev}M, v3f, v} andv}!. In Fig. 4.3.a a PC between two convex edges is shown. It
It is well known that any smooth closed curve other thais easy to see that in this case the contact region can only be
a circle has at least 4 pseudo-vertices. A circle, which hasaga single internal point with a single tangent line.
constant curvature, is considered as one single edge withouNow consider one convex edge and one concave edge in
any pseudo-vertex. contact. Depending on the relative dimensions of the two



edges, several cases are possible.

In the case of Fig. 4.3.b. Two vertex-edge PCs are formed, M M
and the contact state can be described by a CF formed by the g
two PCs. Each PC consists of a single contact point along S
with a unique contact tangent line. (1) (2)

If a convex edge contacts a concave edge, there can be two
cases depending on whether the curvatures of the two edges

are monotonically increasing in the same direction as shown & &
in 4.3.c or in opposite directions as shown in 4.3.d. %
S S

The following theorem ensures that in both cases a conte... S
between the interiors of the two edges defines a PC.

Theorem 5.1:Consider two planar curved objecid and (3.a) (3.b) (3.¢)
S whose boundaries are segmented by curvature monotonic M

segmentation. Between the interiors of a concave edg€ of M

and a convex edge af/, there can only be a single contact & Q

point with a unique tangent line. 5 S
S

Proof: Lete® ande be the two edges in contact and let
p denote a contact point between the interiorsdfand e . (3.d) (3.¢) (4)
If both ¢* and ™ are of constant curvatures (i'e" circles of Fig. 4. Different contact formations between two planar edrobjects.
different radii), therp is the only contact point between them.
Otherwise, lete; andel be the segments af ande? on
one side ofp. If both ¢ ande have strictly monotonically
changing curvature and if the curvatureedf decreases more A- Surfaces in Monge form

rapidly or increases more slowly than the curvaturesbtioes, In Monge form which can be regarded as a special kind of

in addition to the poinp they can meet at another pointDue  parametrization, a surface has the following equation
to the strictly monotonic nature of the curvatures;an only

be a boundary vertex of eithef ande}?, or the two segments
interpenetrate, which cannot happen at a valid contace.stat
Thereforep is the only contact point between the interiors of 1
the edges. A similar proof can be conducted for the situation 6
where one of the edges has a constant curvature and the other i(COZA + derady + 6eary? + deszy® + cayt)+
has a strictly monotonic curvature. [ | 24

It is easy to see that between two concave edges of

Fig. 4.3.e, two vertex-concave edge PCs always form, and o
they give rise to a CF containing two PCs. in which k; andky are the principal curvatures and the axes

A PC can also occur between two (pseudo) verticédldy are the principal directions, as above. As longas#
(Fig. 4.4). ko these directions are well defined. We assume that xo.

For an implementation of monotonic segmentation of plangince the signs of the curvatures geplend on the direction of
curves based on resultants and root isolation see [13]. € normal. We assume that> 5#12°+ 3 py”+- - IS inside

In the following sections the representation of CFs betwedfe Object. In this waysi, x> > 0 means thatV/ is locally
3D curved objects will be described. convexnearp, and if k1, k2 < 0 M is locally concave

The Gaussianand themeancurvatures ofM are defined
V1. GENERAL PROPERTIES OFSURFACES asK = kiky and H = % respectively. If theK” > 0 at

In this section the general properties of a surface relevahtit is said to beelliptic, whereas ifK' < 0, p is said to be
to its curvature monotonic segmentation are describedeMdtyperbolic If K =0 atp, it is calledparabolic
details can be found in [14]. Other comprehensive reference The pointp is called anumbilic when k; = k3. Unless
about properties of surfaces are [15], [12], [16], [17]. k1 = ko = 0 the Gaussian curvatut is necessarily positive
If p is a point on a smooth surfad¥ it is convenient to atan umbilic. This means that non-flat umbilics only occur in
study the local properties ¥/ at p using a reference frame elliptic regions of a surface. The points at whieh= xy = 0
whose origin isp and the planez = 0 coincides with the are calledplanar pointsof M.
tangent plane td/ at p. M has a local equation of the form So, if k1 > k2 > 0, the pointp is aelliptic convex poinof
z = %x? + bry + Sy* + - --. Rotating around the axis itis M, if k1 > 0 > ky it is anhyperbolic pointand if0 > r; >
possible to eliminate the coefficiehtin this equation which 2, it is anelliptic concave point
takes the formz = %xQ + §y2 + ---. Now the coefficients: When K = 0 andx; > ko = 0, p is said to be aed
andc are theprincipal curvaturesof M atp, and the directions parabolic point whereas i) = x; > ko, it is ablue parabolic
of the axesr andy are theprincipal directions point of M. The terms blue and red are used in the literature

1 1
z=f(z,y) = §f€1$€2 + §fizy2+

(boa® + 3b122y + 3baxy® + bay®)+ @)



to indicate something special happening with the curvature
k1 and kg, respectively.

B. Parabolic curves on a surface

For any surface: = f(z,y), not necessarily described in

Monge form, the set of parabolic points is given by, f,, —
3y = 0. For a generic surface they are smooth curves called

parabolic curveswhich breaks up into disjoint red parabolic
curves and blue parabolic curves.

A blue parabolic curveds a curve along whichk; = 0 and
ared parabolic curveis a curve along whiclks = 0.

Red parabolic curves separag#iptic convex regionsand
hyperbolic regionf M, i.e., regions for whichc; > ko > 0

and regions for whichk; > 0 > k. Blue parabOIIC curves Fig. 5. The dotted curve on this surface is an elliptic blagei along which

separate hyperbolic regions aetliptic concave regionsi.e., ine jargest principal curvature has a maximum. The dashed @nvehis

regions for whichx10 > ko and regions for whicl) > x; > surface is a hyperbolic red ridge along which the smallergipii curvature
has a maximum.

Ka.
Parabolic curves are of interest for curvature monotonic
decomposition of surfaces because they are the analogpus fo
surfaces of the inflection points for planar curves. Indé¢eely The curve of intersection betweel and the sphere has
are also calleaturves of inflectiorof a surface. the following expression
Special Points on Parabolic Curvedlthough they are
smooth curves, parabolic curves have special points. Atla re g(z,y) =2*(1 — rr1) + y>(1 — rr2)
parabolic pointp sincerx; > ko = 0, if bs # 0, the Monge _ z(boa:B 4 30122y + 3bozy? + b3y®)  (2)
form becomes 3

T R1 o K2 9.9

k1 bo o, b by 2 — —=(coz* + )+ (=22 + =y?)
fayy) =5 (w4 g oo+ g may + gy 4o ) +.1.2' 2 2

b_‘s( 4. )3

6 4 Ridge points of a smooth surface are points at which one of

and has arordinary cusp If b; = 0, it becomes the spheres of curvature has a more degenerate contact with
the surface than the usual contact [14, Sect. 6.4]. A ridge

flz,y) :ﬂ(l_ + ﬂﬁ + b_lly + b_2y2 +)2 point is elliptic if locally the intersection between the surface

2 6ry 2k 2K1 and its sphere of curvature is an isolated point hyplerbolic

(kicy — 303yt + - - otherwise.
24, If by = 0 and3b? + (k1 — K2)(co —3k3) < 0, p is said to be

As long asb? # 3k1c4, there are points special points called blue elliptic ridge poinfif by = 0 and3b7 + (k1 — x2)(co —
cusps of Gaussvhich can be divided into 4 groups. More3x}) > 0, p is said to be dlue hyperbolic ridge pointf by =
specifically, if iy = by = 0,k1 > 0,k1cq — 362 > 0, pis 0and3b3+(ka—r1)(ca—3r3) < 0, pis said to be aed elliptic
said to be aed elliptic cusp of Gauss, ifis = by = 0,5, > ridge point and ifby = 0 and3b7 + (k2 — k1) (ca — 3K3) > 0,
0,k1c4 — 303 < 0, p is said to be aed hyperboliccusp of p is said to be aed hyperbolic ridge point
Gauss, ifk; = by = 0, k2 < 0, K2co — 3b% > 0, p is said to Since the term blue and red always refers to the larger and
be ablue elliptic cusp of Gauss, and i, = by = 0,k, < the smaller principal curvatures respectively, the coonst for
0, koco — 3b7 < 0, p is said to be ablue hyperboliccusp p to be a blue ridge are obtained from (2), assuming# r,
of Gauss. This terminology comes from the fact that red aséttingr = %1 Similarly the conditions fop to be a red ridge
blue cusps of Gauss lie on red and blue parabolic curvesg obtained by setting = %2 Ridge points form curves on
respectively. a surface are calledurves of ridge point®r simply ridges

The importance of cusps of Gauss for the curvature mono-Ridges are of interest to the curvature monotonic segmen-
tonic segmentation of surfaces will be described in the netdtion of surfaces because at a blue elliptic ridge peinthas

section. a maximum along the blue line of curvature. Similarly, at a
) blue hyperbolic ridge pointg; has a minimum along its line
C. Ridges on a surface of curvature. At a red elliptic ridge poink, has a minimum

Ridge points can be characterized by means of contact withd at a red hyperbolic ridge point; has a maximum in each
spheres. For this characterization one uses spheres egtier case along the corresponding line of curvature.
(0,0,r) and passing through the poipt hence tangent to the It is easy to see that ridges are for surfaces the analogous
surfaceM at p. of the points of a planar curve at which the curvature has a



maximum or a minimum and together with inflection points,
form the set of pseudo-vertices of a planar curve.

Ridges of opposite colors in general may cross each other
transversally. Their points of intersection are callegrple —4
pointsof the surface. It is easy to see that they do not have a 1¢
counterpart on planar curves. 0.5

Cusps of Gauss are points of interest for the curvature
monotonic segmentation of surfaces because they are the
points at which parabolic curves cross ridges of the sam.col=0 -5t
A cusp of Gauss is elliptic if and only if the ridge is elliptic -l

Although ridge points have been defined as those points on
a surface in which the corresponding sphere of curvature has
a degenerate contact with the surface, in practice ridgessur

on surfaces can be computed by determining the extrema of
the principal curvatures [11]. Fig. 6. Curvature monotonic segmentation of an ellipsoid. &lipsoid has
three ridges the major and minor sections of symmetry (dotteddastied
- curves, respectively) and the intermediate section of synym{etmntinuous
D. Umbilics on a surfaces curve) which contains four umbilical points. The ridges thgb the umbilics

. L change color at each one.
We said before that the principal curvatures are equal ard

an umbilic point. An umbilic is callecelliptic if x; has a

local minimum a_md@ has a local maximum. An ur_n_blllc 'S on that the curvature monotonic decomposition can be furthe
calledhyperbolicif there are curves through the umbilic Wheretarried out on the surface patches and edges

FL =k and@ — k. Atan (_e|||pt|c umbilic, there are thrge r_|dge The points of a generic surface can be subdivided into three
curves passing through it All of them are hyperbolic rIdgef)pen sets: the elliptic convex points, hyperbolic pointsl an

Furthermore, the colgr of any ridge curve through the umblllelliptic concave points, and there are two types of paraboli
changes at the umbilic from a blue minimumy, (has a local

Célrves, the red and the blue, that separate them.

mi”if““m along the corresponfjing lines of curvature) to a r'®A\oreover, there are four types of ridges on them, red and
maximum ¢ has a local maximum along the correspondmlue’ elliptic and hyperbolic, and ridges also have special

lines of curvature). Other types of umbilics are the soezhll points such as cusps of Gauss and umbilic points. These

hyperbolic starsand hyperbolic lemonsin both cases there is elements of a surface coincide with extrema of at least one

one hyperbolic ridge curve passing through_ th_e umbilic Wh'cof the principal curvatures of the surface and thereforé lveil
changes color at the umbilic, but the principal curvatures o : . . :

. sed to create a partition of a surface into regions in which
do not have local extrema at hyperbolic star and hyperbolic

lemon umbilics. Since onlv at elliptic umbilics the brinal oth the principal curvatures are monotonic. Note that the
' y puc. € PNNAIP o scribed decomposition does not apply to edges with non-
curvatures have extrema, only this kind of umbilics will be

. . X ero torsion (i.e., space curves). How to decompose space
;a:;zgtsmto account for the monotonic segmentation of 3cﬁurves is still under investigation.

Definition 7.3 (Pseudo-vertexPurple points, cusps of
Gauss, elliptic umbilics of a surface, and the interseqpioints
between ridge and parabolic curves and edge curves are calle
pseudo-vertices

It has been shown in Section IV that the boundary of a Definition 7.4 (Pseudo-edgesYhe portion of a ridge or of
planar curved object whose boundary is described by coricparabolic curve comprised between two pseudo-vertices or
curves can be decomposed into curvature monotonic pieegr pseudo-vertex and one vertex of a surface is cpeddo-
using stationary points of the curvature. The goal of thisdge
section is to generalize this decomposition to 3D curved Definition 7.5 (Face):Each portion of a surface patch

VIl. CURVATURE MONOTONIC SEGMENTATION OF 3D
CURVED OBJECTS

objects. bounded by edges and pseudo-edges is callfietea
First, we define the boundary elements of a 3D curved A general 3D curved object can be decomposed as follows:
object. first, a general curved object is decomposed into piecewise

Definition 7.1 (Vertices).The intersection points of three orsmooth surface patches bounded by edges that represent the
more surface patches that bound a 3D curved object are calle@rsection of at least two of them. Each edge is bounded
vertices by two vertices that are the intersection points of at least

Definition 7.2 (Edges)The intersection curves betweerthree surfaces. Then each smooth surface patch is corgsidere
two surface patches that define the boundary of a 3D curveeparately and its points are classified into elliptic canve
object are callectdges elliptic concave, hyperbolic and parabolic. Then pseudiges

The boundary of a 3D curved object is decomposed intoaae found and used to decompose each surface patch into
set of smooth surfaces bounded by edges and vertices, bdaeds. The adjacency relationship between these elemgnts i



represented by a graph. A spherical surface patch will beat if the boundary curve of a 2D planar curved object is a
considered as one face. conic and the boundary surface of a 3D curved object is a
guadric the curvature monotonic decompositions givestdse
curve segments and surface patches that permit a high level
topological description of contact states in a manner sinmd
Now we can extend the concept of PCs to 3D curved objectke case of polyhedral objects. This restriction of our apph
in terms of faces, (pseudo) edges, and (pseudo) vertices. to algebraic curves and surfaces of order less that 2 should
It is easy to see that in this case the number of possibiet be regarded as a limitation. We plan to continue this
types of PCs is higher than in the polyhedral case, and we idsearch by developing strategies for segmentation andaton

VIIl. CONTACT FORMATIONS BETWEEN 3D CURVED
OBJECTS

not enumerate them for brevity. state representation of curves and surfaces of higher elegre
Lemma 8.1:Each planar section of a quadric surface is laearing in mind that due to the great variety of shape of highe
conic curve. order curves and surfaces a decomposition based only on the

Proof: The proof can be easily obtained by solving theurvature probably will not be sufficient.
set composed by the general equations of a quadric surface
and of a plane. [ |

We now show that PCs defined for 3D curved objects shareThe authors would like to thank Jeffrey Chen for initial

the same characteristic as PCs for polyhedral objects by ffigcussion of the idea. This work has been funded by the Na-
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