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Abstract— Information of high-level, topological contact states
is useful and even necessary for a wide range of applications,
including many robotic applications. A contact state between
two polyhedral objects can be effectively represented as a contact
formation in terms of a set of principal contacts between faces,
edges, and vertices of the two objects. However, little is done
to characterize and represent contact states between curved
objects. In order to facilitate the representation of contact states
between such objects, we introduce a novel approach to segment
the boundary of curved objects based on monotonic changes of
curvatures, which we call the curvature monotonic segmentation.
We specifically apply this approach to curved 2D and 3D objects
with boundary curves or surfaces represented by algebraic
polynomials of degrees up to 2. The segmentation yields curvature
monotonic faces and edges (or pseudo edges), and vertices (or
pseudo vertices). With these faces, (pseudo) edges, and (pseudo)
vertices, we effectively extend the concept of contact formation to
curved objects to represent high-level, topological contact states
between such objects with the same desirable characteristics as
the contact formations between polyhedral objects.

I. I NTRODUCTION

Proper characterization and representation of contacts be-
tween physical objects, including robots, is essential to many
applications, from real-world robotic tasks involving com-
pliant motion to dynamic simulation and haptic interaction
in a virtual world. While contacts between two objects can
be described by the relative contact configurations between
them, a higher-level representation of contacts in terms of
certain discrete “contact states” is often more descriptive of
the common topological and physical contact characteristics
shared by a set of contact configurations and is thus quite
useful and even necessary for many tasks.

For contacting polyhedral objects, it is rather natural and
common to describe a contact state as a set of primitive
contacts, each of which is defined by a pair of contacting
surface features in terms of faces, edges, and vertices. Different
contact state representations essentially differ only in how
primitive contacts are defined. One common representation
[1], [2] defines primitive contacts as point contacts in terms
of vertex-edge contacts for 2D polygons, and vertex-face and
edge-edge contacts for 3D polyhedra. Another representation
[3] defines primitive contacts in terms of any pair of surface
features in contact. The highest-level definition of primitive
contacts was introduced by [4] in the notion of principal
contacts, which best enables the distinction between one
contact state and another and facilitates robust identification

of contact states. Each PC is associated with a single tangent
plane of contact, thanks to the fact that every surface feature
of a polyhedral object, i.e., every face, edge, or vertex, isa
well-defined, convex feature.

However, how to describe and represent a high-level contact
state properly between non-polyhedral, curved objects, i.e.,
objects whose boundary is composed by non-planar piecewise
smooth surfaces, remains an open problem even though such
objects are more common in the real world. We seek to address
this problem in this paper. Our approach is to decompose
a curved object in such a way that it yields meaningful
surface features with desirable properties analogous to the flat
surface features of a polyhedral object. Next, principal contacts
between two curved objects can be defined in terms of those
surface features so that a contact state can be described as a
set of principal contacts.

In this paper we consider three dimensional objects with
boundaries represented by algebraic polynomials of degrees up
to 2, i.e., by planes and quadrics, and two dimensional objects
with boundaries described by algebraic polynomials of degrees
at most 2, i.e., lines and conics. Quadrics and conics just like
planes and lines are common boundary primitives, especially
for primitive components in a hierarchical representationof
complex objects, such as in a constructive solid geometry
(CSG) tree [5], [6], [7], [8], [9]. For example, mechanical
parts and tools often use cylinders and rectangular parts as
primitives, ellipsoids are often used in human body modelling,
spheres are extremely popular in molecular modelling, and so
on.

A previous approach to object decomposition is [10] in
which the problem of representing 3D free form objects for
object recognition is addressed, and shape-based description
of objects is introduced. It is based on the concept of maxi-
mal surface patches having similar shape index. They define
different classes for surfaces dividing the range of the shape
index into nine levels. [11] proposes a natural decomposition
of 3D surfaces into a graph very similar to the polyhedral
representation of piecewise linear surfaces which is defined
even for objects whose topology is arbitrarily complicated.
This representation is called the extremal mesh of the surface.
However, none of these approaches of surface decomposition
can serve our purpose of representing contact states between
two curved objects readily.

In this paper, we present our approach of decomposing or



segmenting the surface of a curved object based on monotonic
change of curvatures. The rest of the paper is organized as
follows. In Section II we will review the notions of principal
contacts and contact formation for polyhedral objects and
describe how to extend this formalism to curved objects.
In Sections III, IV, and V, we introduce our approach to
decompose 2D curved objects and to extend the notions of PC
and contact formation to describe contact states between such
objects. In Sections VI, VII, and VIII, we extend our approach
to 3D curved objects and surfaces. Section IX concludes the
paper.

II. PRINCIPAL CONTACTS AND CONTACT FORMATIONS

FOR CURVED OBJECTS

A. Principal contacts and contact formations between poly-
hedral objects

The notionprincipal contacts(PC) has been introduced in
[4] to characterize the contact states between two arbitrary
polyhedral objects. PCs are contact primitives defined in
terms of contacting boundary elements of objects. Boundary
elements are faces, edges, and vertices. The boundary of a
face consists of the edges and vertices bounding it, and the
boundary of an edge consists of the vertices bounding it.

Formally, a PC denotes a contact between a pair of boundary
elements that do not bound other contacting boundary ele-
ments. This ensures that PCs are the highest level contact
primitives to describe a contact state most concisely. For
example, a face-face contact between two polyhedral objects
is described just as a single face-face PC rather than in terms
of a set of vertex-face, edge-face, or edge-edge contacts. Each
PC defines a single contact region of a point, a straight-line
segment, or a plane segment, associated with a single contact
tangent plane, called acontact plane. There are four types of
PCs between two arbitrary polygons and ten PCs between two
arbitrary polyhedra, as shown in Fig. 1. An arbitrary contact
state between two polyhedral solids can be described in terms
of a set of PCs, called acontact formation(CF) [4].

Although PCs were first introduced for polyhedral objects,
they can be extended to non-polyhedral objects after a suit-
able decomposition of the boundaries of such objects are
performed, as explained in the next section.

B. Principal contacts and contact formations between curved
objects

Our approach is to decompose a curved object in such a
way that it yields useful curved surface features with desirable
properties for the description of a contact analogous to those
of the flat boundary elements of a polyhedral object.

In this paper we consider three dimensional objects defined
by algebraic surfaces of degree at most 2, that is planes and
quadrics, and two dimensional objects defined by algebraic
curves of degree at most 2, that is lines and conics.

We observe that by decomposing an arbitrary quadric sur-
face (or an arbitrary conic curve in 2D) into segments having
monotonic curvature (i.e., surface patches in 3D or curve seg-
ments in 2D with monotonic curvature), the resulting segments
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Fig. 1. (a) Principal contacts. (b) Degenerate principal contacts.

have the interesting property that when two of them are in
contact at an interior point, the contact region consists ofonly
a single contact point, independently of the type of contact,
i.e., no matter if the contact is between two convex segments
or between a convex and a concave segment. As a consequence
the contact between two such curvature monotonic segments
can be described in a way analogous to a single PC between
two flat surface or edge elements of polyhedral objects, which
can be further used as the building blocks to describe arbitrary
contact states between curved objects.

Thus, we decompose 3D curved objects into smooth sur-
face patches with monotonic curvature. This decomposition,
which we callcurvature monotonic segmentation, is done by
analyzing the differential geometric properties of the surfaces
and introducing additional features such as special curvesand
points on them where at least one of the curvatures has a local
maximum or a minimum. As the result, the notion of PCs for
polyhedral objects can be extended here for curved objects in
terms of relationships between curvature monotonic patches
or curve segments. Finally, the notion of CFs can again be
defined as a set of PCs to describe a contact state between
two curved objects.

We first describe how PCs and CFs can be defined for
2D curved objects and then extend our method to 3D curved
objects.

III. G ENERAL PROPERTIES OF PLANAR ALGEBRAIC

CURVES

We assume that the reader is familiar with the basic concepts
related to planar algebraic curves such as smoothness, regu-
larity, singularity, as well as with the notion of local convexity
and local concavity [12, Chap. 1]. Two notions of particular
interest here are inflection points and extreme points. Inflection
points are stationary points of the curvature, i.e., pointsat
which the first derivative of the curvatureκ vanishes and
the sign of curvature changes. If curvatureκ of C has local
maximum or minimum value atp, p is anextreme point.

Such information is important for understanding how to
subdivide the curves that define the boundaries of planar
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Fig. 2. Different contacts between the same pair of boundary elements of
two planar curved objects.

objects into segments along which the curvature function is
monotonic. As will be described below, monotonic segmen-
tation of general curves requires adding inflection points and
extreme points as extra vertices.

IV. CURVATURE MONOTONIC SEGMENTATION OF PLANAR

CURVED OBJECTS

Consider the situation represented in Fig. 2. A contact
between the boundary curveeS

1 of object S and the curve
eM of object M can take place at one point or at two
different points. These two different contact situations have
different geometrical and physical properties, e.g.,M is more
constrained in the situation of Fig. 2.b than in that of Fig. 2.a.
Unfortunately both contacts take place between the same
boundary elements ofM andS so that we cannot distinguish
these contact cases by means of a high level topological de-
scription. Therefore, we need to perform a finer segmentation
of the boundaries of curved objects and use inflection points
and extreme points in addition to vertices for segmentation.

For planar curved objects, we define edges and vertices as
follows.

Definition 4.1 (Vertices): Vertices are the intersection
points between two curves that form the boundary of a planar
curved object.

Definition 4.2 (Pseudo-vertices): Pseudo-verticesare in-
flection points and extreme points on a planar curve.

Definition 4.3 (Edges): Edgesare the curve between any
two neighboring vertices or pseudo-vertices.

In other words, we use all the stationary points of the
curvature function along the curve, i.e., points at whichκ′ = 0.
Segments of curve along which the curvature is constant are
considered as one single edge. It is easy to see that after
the segmentation, an edge either has constant curvature or
strictly monotonically increasing or decreasing curvature. For
example, the objects represented in Fig. 3 have boundaries
defined by conic curves. The vertices ofS arevS

2 , vS
3 andvS

5 ,
whereasM has no vertices. They don’t have inflection points.
The extreme points ofS as pseudo-vertices arevS

1 , vS
4 , and

those ofM arevM
1 , vM

2 , vM
3 andvM

4 .
It is well known that any smooth closed curve other than

a circle has at least 4 pseudo-vertices. A circle, which has a
constant curvature, is considered as one single edge without
any pseudo-vertex.
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Fig. 3. Stationary points of the curvature function along the boundary of the
two objects of Fig. 2 used for their curvature monotonic decomposition. For
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V. CONTACT FORMATIONS BETWEEN PLANAR CURVED

OBJECTS

In a way analogous to the description of PCs between
polygons on a plane, we give the following definition of PCs
between planar curved objects. First, we extend the notion of
boundary elements to planar curved objects as the edges and
(pseudo) vertices of the objects.

Definition 5.1 (Principal contacts):A PC between two pla-
nar curved objects is defined by the contact between a pair
of boundary elements (edges, vertices, pseudo-vertices) and
corresponds to a single contact region at which the tangent
line is uniquely defined.

A general contact between two planar curved objects can
then be described again by acontact formationdefined as the
set of PCs formed.

Since in a planar curved object there are pseudo-vertices and
both convex and concave edges, there are more types of PCs
between planar curved objects than between polygons (where
there are only vertex-vertex, vertex-edge and edge-edge types
of PCs). Thus, we can classify the types of PCs between planar
curved objects considering all the possible combinations of
boundary elements. For instance, after the introduction ofthe
pseudo-vertices, the contact in Fig. 2.b can be regarded as a
2-PC CF{eS

1 − eM
4 , eS

2 − eM
1 }.

Now we need to show that at each PC, just as in the case
of polygons, there is a single contact region, and the contact
tangent line is uniquely defined.

If a contact takes place between an edge and vertex
(Fig. 4.1) or pseudo-vertex, we always have a PC with a single
contact point and the tangent line is uniquely defined. If a
contact takes place between one convex (pseudo) vertex and
one concave (pseudo) vertex (Fig. 4.2), it can be regarded as
a CF with two (pseudo) vertex-edge PCs in which the convex
(pseudo) vertex is in contact with two edges one on each side
of the concave (pseudo) vertex. The two tangent lines at the
PCs are uniquely defined.

In Fig. 4.3.a a PC between two convex edges is shown. It
is easy to see that in this case the contact region can only be
at a single internal point with a single tangent line.

Now consider one convex edge and one concave edge in
contact. Depending on the relative dimensions of the two



edges, several cases are possible.
In the case of Fig. 4.3.b. Two vertex-edge PCs are formed,

and the contact state can be described by a CF formed by the
two PCs. Each PC consists of a single contact point along
with a unique contact tangent line.

If a convex edge contacts a concave edge, there can be two
cases depending on whether the curvatures of the two edges
are monotonically increasing in the same direction as shown
in 4.3.c or in opposite directions as shown in 4.3.d.

The following theorem ensures that in both cases a contact
between the interiors of the two edges defines a PC.

Theorem 5.1:Consider two planar curved objectsM and
S whose boundaries are segmented by curvature monotonic
segmentation. Between the interiors of a concave edge ofS

and a convex edge ofM , there can only be a single contact
point with a unique tangent line.

Proof: Let eS andeM be the two edges in contact and let
p denote a contact point between the interiors ofeS andeM .
If both eS and eM are of constant curvatures (i.e., circles of
different radii), thenp is the only contact point between them.
Otherwise, leteS

1 and eM
1 be the segments ofeS and eM on

one side ofp. If both eS
1 andeM

1 have strictly monotonically
changing curvature and if the curvature ofeM

1 decreases more
rapidly or increases more slowly than the curvature ofeS

1 does,
in addition to the pointp they can meet at another pointq. Due
to the strictly monotonic nature of the curvatures,q can only
be a boundary vertex of eithereS

1 andeM
1 , or the two segments

interpenetrate, which cannot happen at a valid contact state.
Therefore,p is the only contact point between the interiors of
the edges. A similar proof can be conducted for the situation
where one of the edges has a constant curvature and the other
has a strictly monotonic curvature.

It is easy to see that between two concave edges of
Fig. 4.3.e, two vertex-concave edge PCs always form, and
they give rise to a CF containing two PCs.

A PC can also occur between two (pseudo) vertices
(Fig. 4.4).

For an implementation of monotonic segmentation of planar
curves based on resultants and root isolation see [13].

In the following sections the representation of CFs between
3D curved objects will be described.

VI. GENERAL PROPERTIES OFSURFACES

In this section the general properties of a surface relevant
to its curvature monotonic segmentation are described. More
details can be found in [14]. Other comprehensive references
about properties of surfaces are [15], [12], [16], [17].

If p is a point on a smooth surfaceM it is convenient to
study the local properties ofM at p using a reference frame
whose origin isp and the planez = 0 coincides with the
tangent plane toM at p. M has a local equation of the form
z = a

2
x2 + bxy + c

2
y2 + · · · . Rotating around thez axis it is

possible to eliminate the coefficientb in this equation which
takes the formz = a

2
x2 + c

2
y2 + · · · . Now the coefficientsa

andc are theprincipal curvaturesof M atp, and the directions
of the axesx andy are theprincipal directions.

M
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Fig. 4. Different contact formations between two planar curved objects.

A. Surfaces in Monge form

In Monge form, which can be regarded as a special kind of
parametrization, a surface has the following equation

z =f(x, y) =
1

2
κ1x

2 +
1

2
κ2y

2+

1

6
(b0x

3 + 3b1x
2y + 3b2xy2 + b3y

3)+ (1)

1

24
(c0x

4 + 4c1x
3y + 6c2x

2y2 + 4c3xy3 + c4y
4)+

· · ·

in which κ1 andκ2 are the principal curvatures and the axesx

andy are the principal directions, as above. As long asκ1 6=
κ2 these directions are well defined. We assume thatκ1 > κ2.
Since the signs of the curvatures depend on the direction of
the normal. We assume thatz > 1

2
κ1x

2+ 1

2
κ2y

2+· · · is inside
the object. In this wayκ1, κ2 > 0 means thatM is locally
convexnearp, and if κ1, κ2 < 0 M is locally concave.

The Gaussianand themeancurvatures ofM are defined
asK = κ1κ2 andH = κ1+κ2

2
, respectively. If theK > 0 at

p, it is said to beelliptic, whereas ifK < 0, p is said to be
hyperbolic. If K = 0 at p, it is calledparabolic.

The point p is called anumbilic when κ1 = κ2. Unless
κ1 = κ2 = 0 the Gaussian curvatureK is necessarily positive
at an umbilic. This means that non-flat umbilics only occur in
elliptic regions of a surface. The points at whichκ1 = κ2 = 0
are calledplanar pointsof M .

So, if κ1 ≥ κ2 > 0, the pointp is a elliptic convex pointof
M , if κ1 > 0 > κ2 it is an hyperbolic point, and if 0 > κ1 ≥
κ2, it is an elliptic concave point.

When K = 0 and κ1 > κ2 = 0, p is said to be ared
parabolic point, whereas if0 = κ1 > κ2, it is ablue parabolic
point of M . The terms blue and red are used in the literature



to indicate something special happening with the curvatures
κ1 andκ2, respectively.

B. Parabolic curves on a surface

For any surfacez = f(x, y), not necessarily described in
Monge form, the set of parabolic points is given byfxxfyy −
f2

xy = 0. For a generic surface they are smooth curves called
parabolic curveswhich breaks up into disjoint red parabolic
curves and blue parabolic curves.

A blue parabolic curveis a curve along whichκ1 = 0 and
a red parabolic curveis a curve along whichκ2 = 0.

Red parabolic curves separateelliptic convex regionsand
hyperbolic regionsof M , i.e., regions for whichκ1 > κ2 > 0
and regions for whichκ1 > 0 > κ2. Blue parabolic curves
separate hyperbolic regions andelliptic concave regions, i.e.,
regions for whichκ10 > κ2 and regions for which0 > κ1 >

κ2.
Parabolic curves are of interest for curvature monotonic

decomposition of surfaces because they are the analogous for
surfaces of the inflection points for planar curves. Indeed,they
are also calledcurves of inflectionof a surface.

Special Points on Parabolic Curves:Although they are
smooth curves, parabolic curves have special points. At a red
parabolic pointp sinceκ1 > κ2 = 0, if b3 6= 0, the Monge
form becomes

f(x, y) =
κ1

2
(x +

b0

6κ1

x2 +
b1

2κ1

xy +
b2

2κ1

y2 + · · · )2+

b3

6
(y + · · · )3

and has anordinary cusp. If b3 = 0, it becomes

f(x, y) =
κ1

2
(x +

b0

6κ1

x2 +
b1

2κ1

xy +
b2

2κ1

y2 + · · · )2+

1

24κ1

(κ1c4 − 3b2
2)y

4 + · · ·

As long asb2
2 6= 3κ1c4, there are points special points called

cusps of Gausswhich can be divided into 4 groups. More
specifically, if κ2 = b3 = 0, κ1 > 0, κ1c4 − 3b2

2 > 0, p is
said to be ared elliptic cusp of Gauss, ifκ2 = b3 = 0, κ1 >

0, κ1c4 − 3b2
2 < 0, p is said to be ared hyperboliccusp of

Gauss, ifκ1 = b0 = 0, κ2 < 0, κ2c0 − 3b2
1 > 0, p is said to

be ablue elliptic cusp of Gauss, and ifκ1 = b0 = 0, κ2 <

0, κ2c0 − 3b2
1 < 0, p is said to be ablue hyperboliccusp

of Gauss. This terminology comes from the fact that red and
blue cusps of Gauss lie on red and blue parabolic curves,
respectively.

The importance of cusps of Gauss for the curvature mono-
tonic segmentation of surfaces will be described in the next
section.

C. Ridges on a surface

Ridge points can be characterized by means of contact with
spheres. For this characterization one uses spheres centered at
(0, 0, r) and passing through the pointp, hence tangent to the
surfaceM at p.
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Fig. 5. The dotted curve on this surface is an elliptic blue ridge along which
the largest principal curvature has a maximum. The dashed curveon this
surface is a hyperbolic red ridge along which the smaller principal curvature
has a maximum.

The curve of intersection betweenM and the sphere has
the following expression

g(x, y) =x2(1 − rκ1) + y2(1 − rκ2)

−
r

3
(b0x

3 + 3b1x
2y + 3b2xy2 + b3y

3) (2)

−
r

12
(c0x

4 + · · · ) + (
κ1

2
x2 +

κ2

2
y2)2

+ · · ·

Ridge points of a smooth surface are points at which one of
the spheres of curvature has a more degenerate contact with
the surface than the usual contact [14, Sect. 6.4]. A ridge
point is elliptic if locally the intersection between the surface
and its sphere of curvature is an isolated point andhyperbolic
otherwise.

If b0 = 0 and3b2
1 +(κ1−κ2)(c0−3κ3

1) < 0, p is said to be
a blue elliptic ridge point, if b0 = 0 and3b2

1 +(κ1 −κ2)(c0 −
3κ3

1) > 0, p is said to be ablue hyperbolic ridge point, if b0 =
0 and3b2

2+(κ2−κ1)(c4−3κ3
2) < 0, p is said to be ared elliptic

ridge point, and if b0 = 0 and3b2
1 +(κ2 −κ1)(c4 − 3κ3

2) > 0,
p is said to be ared hyperbolic ridge point.

Since the term blue and red always refers to the larger and
the smaller principal curvatures respectively, the conditions for
p to be a blue ridge are obtained from (2), assumingκ1 6= κ2,
settingr = 1

κ1

. Similarly the conditions forp to be a red ridge
are obtained by settingr = 1

κ2

. Ridge points form curves on
a surface are calledcurves of ridge pointsor simply ridges.

Ridges are of interest to the curvature monotonic segmen-
tation of surfaces because at a blue elliptic ridge point,κ1 has
a maximum along the blue line of curvature. Similarly, at a
blue hyperbolic ridge point,κ1 has a minimum along its line
of curvature. At a red elliptic ridge point,κ2 has a minimum
and at a red hyperbolic ridge point,κ2 has a maximum in each
case along the corresponding line of curvature.

It is easy to see that ridges are for surfaces the analogous
of the points of a planar curve at which the curvature has a



maximum or a minimum and together with inflection points,
form the set of pseudo-vertices of a planar curve.

Ridges of opposite colors in general may cross each other
transversally. Their points of intersection are calledpurple
pointsof the surface. It is easy to see that they do not have a
counterpart on planar curves.

Cusps of Gauss are points of interest for the curvature
monotonic segmentation of surfaces because they are the
points at which parabolic curves cross ridges of the same color.
A cusp of Gauss is elliptic if and only if the ridge is elliptic.

Although ridge points have been defined as those points on
a surface in which the corresponding sphere of curvature has
a degenerate contact with the surface, in practice ridge curves
on surfaces can be computed by determining the extrema of
the principal curvatures [11].

D. Umbilics on a surfaces

We said before that the principal curvatures are equal at
an umbilic point. An umbilic is calledelliptic if κ1 has a
local minimum andκ2 has a local maximum. An umbilic is
calledhyperbolicif there are curves through the umbilic where
κ1 = k andκ2 = k. At an elliptic umbilic, there are three ridge
curves passing through it. All of them are hyperbolic ridges.
Furthermore, the color of any ridge curve through the umbilic
changes at the umbilic from a blue minimum (κ1 has a local
minimum along the corresponding lines of curvature) to a red
maximum (κ2 has a local maximum along the corresponding
lines of curvature). Other types of umbilics are the so-called
hyperbolic starsandhyperbolic lemons. In both cases there is
one hyperbolic ridge curve passing through the umbilic which
changes color at the umbilic, but the principal curvatures
do not have local extrema at hyperbolic star and hyperbolic
lemon umbilics. Since only at elliptic umbilics the principal
curvatures have extrema, only this kind of umbilics will be
taken into account for the monotonic segmentation of 3D
objects.

VII. C URVATURE MONOTONIC SEGMENTATION OF 3D
CURVED OBJECTS

It has been shown in Section IV that the boundary of a
planar curved object whose boundary is described by conic
curves can be decomposed into curvature monotonic pieces
using stationary points of the curvature. The goal of this
section is to generalize this decomposition to 3D curved
objects.

First, we define the boundary elements of a 3D curved
object.

Definition 7.1 (Vertices):The intersection points of three or
more surface patches that bound a 3D curved object are called
vertices.

Definition 7.2 (Edges):The intersection curves between
two surface patches that define the boundary of a 3D curved
object are callededges.

The boundary of a 3D curved object is decomposed into a
set of smooth surfaces bounded by edges and vertices, based

-2
-1

0
1

2

-4

-2

0

4

-1

-0.5

0

0.5

1

2

Fig. 6. Curvature monotonic segmentation of an ellipsoid. Theellipsoid has
three ridges the major and minor sections of symmetry (dotted anddashed
curves, respectively) and the intermediate section of symmetry (continuous
curve) which contains four umbilical points. The ridges through the umbilics
change color at each one.

on that the curvature monotonic decomposition can be further
carried out on the surface patches and edges.

The points of a generic surface can be subdivided into three
open sets: the elliptic convex points, hyperbolic points and
elliptic concave points, and there are two types of parabolic
curves, the red and the blue, that separate them.

Moreover, there are four types of ridges on them, red and
blue, elliptic and hyperbolic, and ridges also have special
points such as cusps of Gauss and umbilic points. These
elements of a surface coincide with extrema of at least one
of the principal curvatures of the surface and therefore will be
used to create a partition of a surface into regions in which
both the principal curvatures are monotonic. Note that the
described decomposition does not apply to edges with non-
zero torsion (i.e., space curves). How to decompose space
curves is still under investigation.

Definition 7.3 (Pseudo-vertex):Purple points, cusps of
Gauss, elliptic umbilics of a surface, and the intersectionpoints
between ridge and parabolic curves and edge curves are called
pseudo-vertices.

Definition 7.4 (Pseudo-edges):The portion of a ridge or of
a parabolic curve comprised between two pseudo-vertices or
one pseudo-vertex and one vertex of a surface is calledpseudo-
edge.

Definition 7.5 (Face):Each portion of a surface patch
bounded by edges and pseudo-edges is called aface.

A general 3D curved object can be decomposed as follows:
first, a general curved object is decomposed into piecewise
smooth surface patches bounded by edges that represent the
intersection of at least two of them. Each edge is bounded
by two vertices that are the intersection points of at least
three surfaces. Then each smooth surface patch is considered
separately and its points are classified into elliptic convex,
elliptic concave, hyperbolic and parabolic. Then pseudo-edges
are found and used to decompose each surface patch into
faces. The adjacency relationship between these elements is



represented by a graph. A spherical surface patch will be
considered as one face.

VIII. C ONTACT FORMATIONS BETWEEN 3D CURVED

OBJECTS

Now we can extend the concept of PCs to 3D curved objects
in terms of faces, (pseudo) edges, and (pseudo) vertices.

It is easy to see that in this case the number of possible
types of PCs is higher than in the polyhedral case, and we do
not enumerate them for brevity.

Lemma 8.1:Each planar section of a quadric surface is a
conic curve.

Proof: The proof can be easily obtained by solving the
set composed by the general equations of a quadric surface
and of a plane.

We now show that PCs defined for 3D curved objects share
the same characteristic as PCs for polyhedral objects by the
following theorem.

Theorem 8.1:A PC between a pair of faces has only one
tangent plane of contact.

Proof: Consider a pair of faces of two 3D objects having
non-zero principal curvatures (i.e. convex or concave faces)
that are in contact at a pointp and an arbitrary planeTp

throughp that intersects both faces. Lemma 8.1 ensures that
intersection ofTp and each face is a segment of conic curve
and since each face is a curvature monotonic patch, this curve
will have monotonic curvature. The two resulting segments of
planar curves are in contact at the pointp. Theorem 5.1 ensures
that each pair of different curvature monotonic segments of
planar curves do not have more than one contact at an interior
point. Therefore the tangent line is uniquely defined. Since
the planeTp has been arbitrarily chosen, we can say that it
will be the same for two faces. If at least one of the two
faces have one zero principle curvature, it is easy to see that
the contact region can be a point or a straight line segment
(e.g., a contact between two cylinders). In this case, thereis
still a single tangent plane of contact. If both faces have two
zero principle curvatures, they are flat planes, and the contact
between them still uniquely defines a single tangent plane.

The above theorem can be extended to the other types of
PCs as well except for certain PCs involving a concave edge.
Unlike in the case of polyhedral objects, where straight-line
edges can only cross at one point, two curves in 3D space
may cross at either one or two points, even if both curves are
monotonic in curvature. These kinds of special cases are under
investigation.

IX. CONCLUSION

In order to characterize and represent contact states between
2D and 3D curved objects we have introduced a novel ap-
proach to curve and surface segmentation based on mono-
tonicity of the curvature, which we call curvature monotonic
segmentation. We have described the properties of general
planar curves and surfaces with respect to the curvature and
how to perform the curvature segmentation. We have proven

that if the boundary curve of a 2D planar curved object is a
conic and the boundary surface of a 3D curved object is a
quadric the curvature monotonic decompositions gives riseto
curve segments and surface patches that permit a high level
topological description of contact states in a manner similar to
the case of polyhedral objects. This restriction of our approach
to algebraic curves and surfaces of order less that 2 should
not be regarded as a limitation. We plan to continue this
research by developing strategies for segmentation and contact
state representation of curves and surfaces of higher degree
bearing in mind that due to the great variety of shape of higher
order curves and surfaces a decomposition based only on the
curvature probably will not be sufficient.
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