
Automatic Verification of Contact States Taking
into Account Manipulator Constraints

Wim Meeussen∗†, Jing Xiao∗, Joris De Schutter†, Herman Bruyninckx† and Ernesto Staffetti∗
∗ Computer Science Department

University of North Carolina, Charlotte, USA
† Department of Mechanical Engineering
Katholieke Universiteit Leuven, Belgium

Abstract— Compliant motion is required or desirable in many
robotic tasks, especially assembly tasks. Both planning and exe-
cution of autonomous compliant motion requires the knowledge
of contact states between parts in contact beforehand. Previous
research has addressed automatic generation of contact states
between rigid objects. However, not all such contact states can
be possibly reached if a rigid object is attached to and moved
by a manipulator due to the manipulator constraints. In this
paper, we study the problem of finding feasible contact states
between a polyhedral part A held by a manipulator with a
fixed base and a fixed polyhedral part B. Given a contact state
graph between an unattached part A and a fixed part B, our
approach then attaches A to the manipulator model and checks
the reachability of each contact state and the connection between
two neighboring contact states by applying a virtual compliant
controller to the manipulator to test possible compliant motions
of A. Implementation results validate the effectiveness of our
method.

I. INTRODUCTION

Many robotic applications cannot avoid the “contact sports”
– compliant motions between a robot or the object held by
a robot and the environment. Compliant motion planning
and control requires the knowledge of contact topology and
geometry, as characterized by certain discrete contact states
and state transitions [6], [7], [10], [11]. Such knowledge is
often manually extracted and fed into a system as input, which
can be extremely tedious, incomplete, and error prone for even
tasks of simple geometry [11] and is practically infeasible for
complex tasks due to the huge number of complex contact
states. To address the problem, Xiao and Ji [14] developed
a systematic approach to generate automatically the contact
state space between two arbitrary polyhedral objects in terms
of a contact state graph. Each node in the graph denotes a
contact state, described by a contact formation (CF) [12] and a
representative configuration of the CF, and an arc between two
nodes indicates feasible neighboring state transitions. More
recently, an alternative method is also reported for generating
a similar contact state graph automatically [8].

However, in many robotic tasks, it is a robotic manipulator
that moves an object and creates contacts between the object
and the environment. Therefore, whether a contact state can
be formed and whether a contact state transition is possible is
subject to the constraints of the manipulator. It is necessary
to take into account such a manipulator in obtaining a contact
state graph so that a compliant motion plan generated based

on such a graph can be actually executed by the manipulator.
In this paper, we study the problem of finding feasible contact
states between a polyhedral part A held by a manipulator and
a fixed polyhedral environment B. Given a contact state graph
between an unattached part A and a fixed environment B as
generated by the method of [14], our approach then attaches
A to a manipulator model and checks the reachability of each
contact state and the connection between two neighboring
contact states by applying a virtual compliant controller to
the manipulator to create possible compliant motions of A.

The rest of the paper is organized as follows. In Section II,
we briefly review the concepts of principal contacts and con-
tact formations to represent contact states and the generation of
such a contact state graph as presented in [14]. In Section III,
we present an overview of our approach to re-examine the
feasibility of contact states and state transitions by taking into
account the manipulator constraints.

In Section IV, we explain the virtual compliant controller
and how we can use it to generate a compliant motion in detail.
In Section V, we explain how the virtual controller is used to
generate the desired compliant relaxation motions. We explain
how we check the feasibility of compliant relaxation motions
in Section VI and conclude the paper in Section VII.

II. REVIEW: CONTACT STATES, STATE GRAPH AND
GENERATION

The notion of Principal Contacts (PCs) was introduced [12]
to describe a contact primitive between two surface elements
of two polyhedral objects in contact, where a surface element
can be a face, an edge, or a vertex. The boundary elements of a
face are the edges and vertices bounding it, and the boundary
elements of an edge are the vertices bounding it. Formally,
a PC denotes the contact between a pair of surface elements
which are not boundary elements of other contacting surface
elements. As an example, each case in figure 1 is described
by a unique, non-degenerate PC. Each non-degenerate PC is
associated with a contact plane, defined by a contacting face or
the two contacting edges at an e-e-cross PC. A general contact
state between two objects can be characterized topologically
by the set of PCs formed, called a contact formation (CF).
A CF is geometrically described by the set of relative contact
configurations that satisfy the contact constraints of all the PCs
in the CF, called CF-compliant configurations. Any motion



formed by a sequence of CF-compliant configurations is called
a CF-compliant motion. A contact state can be defined in terms
of a CF and a CF-compliant configuration. This high-level,
discrete contact state representation is proven to be sufficient
to capture topological, geometrical, and physical properties of
contacts as well as efficient to use [4].

PSfrag replacements

f-f f-e
e-f

f-v
v-f

e-e-cross

e-e-touch
e-v
v-e
v-v

Fig. 1. Non-degenerate Principal Contacts (PCs)

Xiao and Ji developed a divide-and-merge approach [13],
[14] to generate the contact state space between two polyhedral
objects as a contact state graph G. Specifically, the approach
takes advantage of the fact that G can be divided into special
subgraphs called the goal-contact relaxation (GCR) graphs,
where each GCR graph is defined by a locally most con-
strained contact state, called the seed, and its less-constrained
neighboring contact states, which is easier to generate because
of several nice properties. The main properties include:

• Given a valid contact formation, CFi , all of its less
constrained neighboring CFs can be hypothesized topo-
logically from the PCs in CFi.

• A hypothesized less constrained neighboring contact for-
mation, CFj , is valid, if and only if there exists a
compliant motion to relax certain constraints of CFi

to obtain CFj that does not result in any other CF.
Such a compliant motion is called a neighboring contact
relaxation motion.

• Neighboring relaxation can be generally achieved by
a CFi-compliant motion, followed by an instanta-
neous compliant motion for state transition and a CFj -
compliant motion, and most neighboring relaxation can
be achieved by instantaneous compliant transition motion
alone.

The approach was implemented with algorithms to generate
a complete GCR graph automatically and to merge multiple
GCR graphs automatically into a single contact state graph
[14]. It is shown to be both effective and efficient in generating
contact state graphs of hundreds and thousands of different
contact states and their connections within seconds.

III. STATE GRAPH REVISITED UNDER MANIPULATOR
CONSTRAINTS

Given a moveable part A and a fixed environment B, the
contact state graph G generated by the approach in [14]
essentially assumes that A can move by itself. However, in
an actual robotic task, it is usually a robot manipulator that
moves A. Therefore we need to check if a contact state in
G (denoted by a node) and a state transition in G (denoted
by an arc) that are feasible for A are still feasible taking into
account the manipulator constraints.

PSfrag replacements

CFs

Cs
CF1

C1

CF2

C2

CF3

C3

CF4

C4

CF5

C5

CF6

CF7

CF8

C8

Fig. 2. Revised contact state graph. Feasible nodes and arcs in are solid
lines, infeasible nodes and arcs are in dashed lines. The resulting subgraph is
shown in bold.

We combine the model of A and that of a manipulator with
a fixed base to form the model that represents A being held by
the manipulator end-effector. We call the combined model the
held A. The configuration of the held A should be understood
as the joint space configuration of the manipulator holding
A. Now we can define a CF-compliant configuration of the
held A as a (joint space) configuration of the held A where
all links except the single part A are collision-free and the
configuration of the single part A is CF-compliant. Moreover,
a CF-compliant motion of the held A is defined as consisting
of only CF-compliant configurations of the held A. A feasible
state transition motion of the held A between two neighboring
contact formations CFi and CFj in G is defined as consisting
of a CFi-compliant motion and a CFj-compliant motion of
the held A.

First, we need to check, for each contact state in G, whether
a CF-compliant configuration of the held A can be found. Let
s denote a contact state in G with a contact formation CFs

and a CFs-compliant configuration CA
s,0 of the single part A.

If there exists an inverse kinematic solution Cs of CA
s such

that Cs is a CFs-compliant configuration of the held A, then
the state s is re-expressed as <CFs, Cs> and is labeled as
feasible. Otherwise, another CF-compliant configuration CA

s,1

is sampled [3], [4] with its position component within the
working envelope of the manipulator, and inverse kinematics
is performed again. This process can continue until either (1)
a CFs-compliant configuration Cs of the held A is found and
s is labeled feasible, or (2) no CFs-compliant configuration
of the held A can be found after a certain number of samples.
In the latter case, the contact formation CFs is considered
difficult or impossible to reach, and the state s is labeled
infeasible.

Next, we perform a graph traversal of G, verifying if an
arc in G, representing a compliant transition between two
neighboring contact states si and sj in G, is still possible
with the held A, if si and sj are both feasible for the held A.
The graph traversal starts from a feasible contact state s in G

for the held A (see figure 2). The algorithm can be written
using a recursive function Feasibility-Check:



initialize:
state ⇐ s

function: Feasibility-Check (state)
for each arc ai between state and a feasible neighbor statei

do
if ai is not labeled feasible AND there is a feasible state
transition motion of the held A from state to reach statei

then
ai is labeled feasible;
Feasibility-Check (statei);

end if
end for

The result will be a subgraph of G showing feasible contact
states and feasible state transitions for the held A, as shown
in figure 2. The essence of Feasibility-Check is to see if a
neighboring state transition motion between two feasible states
is possible for the held A. The checking is done by a virtual
compliant controller through a compliant relaxation motion
from the more constrained to a less constrained contact state,
as described in the following sections.

IV. VIRTUAL COMPLIANT CONTROLLER

In our approach, we use a virtual controller to generate a
path of feasible configurations for the held A that describes a
compliant relaxation motion. The motion is generated step by
step in small movements for the held A, steering it towards
its goal. This time-step based approach avoids the difficulty of
generating configuration space obstacles [1]. Also, we avoid
the problem of manipulator jumps, i.e. when using inverse
kinematics, two nearby Cartesian configurations of the moved
object A could give two significantly different manipulator
configurations.

A. Local Task Specification

The velocity of the held A is not directly specified in the
joint space of the manipulator, but instead we use multiple
local specifications in the Cartesian space. For this purpose, we
further decompose each PC in a CF into elementary contacts
(ECs): vertex-face, face-vertex and edge-edge contacts, which
are associated with a contact point and a contact normal, as
shown in figure 3.

PSfrag replacements

n
n

p
p

vertex-face / face-vertex edge-edge

Fig. 3. Elementary contacts (ECs) are associated with a contact point p and
a contact normal n

Now we can specify the complex joint space motion of the
held A using simple local specifications at ECs between the

TABLE I
SPRING CONSTANTS (STIFFNESS K AND REST LENGTH x0) FOR

DIFFERENT FUNCTIONS OF ECS

K x0

Constraining EC high zero
Relaxation EC medium medium
Unintended EC medium high
Goal EC low zero

held A and the environment B. At each EC we specify a local
force between the held A and the environment by virtually
attaching a linear spring between the surface elements of the
EC. The spring is positioned along the contact normal of the
EC through the contact point of the EC, as shown in figure 4.
The force applied by the spring on the surface elements
depends on the stiffness of the spring, its rest length and
the distance between the surface elements. The next section
describes how we use the local specifications at ECs to specify
the compliant motion of the held A.

B. Compliant Motion Specification

To specify the complex joint space motion of the held A,
using local specifications at ECs, we distinguish different func-
tions for ECs, such as ensuring compliant motion, avoiding
obstacles or goal attraction. Depending on the function of an
EC we use a different local specification by different virtual
springs. Table I gives an overview of the springs used for each
different function of an EC.

A CF-compliant motion can be realized by maintaining
the ECs that are required in the CF. We call these ECs the
constraining ECs. To maintain a constraining EC, we attach a
spring between the surface elements of the EC, to ensure that
the contacting elements of the EC remain in contact.

An instantaneous relaxation motion from CFi → CFj can
be realized by keeping the constraining ECs of CFj and
breaking the ECs in CFi that are not allowed in CFj . We call
the ECs that need to be broken to realize the relaxation motion
the relaxation ECs. To break a relaxation EC we position a
compressed spring between the contacting surface elements of
the EC, to push them apart.

To perform local obstacle avoidance, we avoid all ECs
between the held A and the environment that are not needed
for the contact formation. We call these ECs the unintended
ECs. To prevent a collision at an unintended EC, we position
a compressed spring between the surface elements of the EC,
to push them apart.

The attraction between the held A and a desired goal
configuration is based on the ECs that are required in the
goal configuration. We call these ECs the goal ECs. At each
goal EC we position a spring that pulls the surface elements
towards the goal configuration.

To avoid a joint from reaching the end of its range, we
position a torsion spring at the joint, to push the joint away
from its end position.

Figure 4 shows a configuration of the held A with three ECs.
At each EC the contact normal ni and the spring between the



surface elements at the contact are shown.

PSfrag replacements
n0

n1

n2

p0

p1

p2

v0

v1

v2

Fig. 4. Contact normals: n0 for local obstacle avoidance, n1 and n2 for
maintaining contact.

C. Velocity of the held A

Now we describe how the instantaneous motion of the
held A, i.e. the motion at each time step, represented by
the joint motion of the manipulator, is obtained from the
given local specifications at the ECs between the held A and
the environment B. The motion specification of the held A

consists of a set of springs at ECs. Using the spring stiffness,
its rest length and the distance at the EC, we obtain the force
applied by the spring on the surface elements of the EC. The
joint space motion of the held A is then obtained by simulating
the dynamics of the serial chain, using the forward dynamics
of a serial chain.

D. Implementation

We have implemented this virtual compliant controller for
an industrial manipulator with six degrees of freedom, the
Kuka 361. Figure 5 shows the manipulator model we use.

Fig. 5. The Kuka 361 industrial manipulator

In each time step of the virtual controller we search all
ECs that exist in the configuration of the held A at that time,
attach virtual springs to the surface elements of each EC,
and simulate the motion of the held A during the time step
caused by the forces of the springs. For finding the ECs we
use the collision detection algorithm by Gilbert et. al [2] to
find the closest features between two polyhedrals, extended
with Zhang’s algorithm [15] to find all PCs between two
polyhedrals. The motion of the held A is simulated based on
an approximation of the single rigid body dynamics of object
A: ∑

i

wi = M · ṫ + D · t (1)

with wi the wrench at the reference frame of A generated
by the force applied by the spring at ECi, M = (m, I) the
mass matrix, D the viscous damping, and t the twist of the
single rigid body A. Given the twist of A at the previous
time step, we then calculate the twist of A at the next time
step using equation 1. This new twist is then converted to the
joint velocities of the held A using the inverse instantaneous
kinematics for a kinematic chain.

V. COMPLIANT RELAXATION MOTION

Given two feasible neighboring contact states <CFi, Ci>

and <CFj , Cj> with CFj a less constrained neighbor of CFi,
we search a compliant relaxation motion from Ci to Cj . This
compliant relaxation motion consists of three separate motions.
First, a CFi-compliant motion from Ci to an intermediate
CFi-compliant configuration Cr

i that contains all ECs that
are required by CFj . We call this intermediate configuration,
which allows an instantaneous relaxation motion to CFj , the
relaxation configuration. Then, an instantaneous relaxation
motion from Cr

i in CFi to Cr
j in CFj , and finally a CFj-

compliant motion from Cr
j to Cj .

A. CFi-compliant motion

The first CFi-compliant motion starts from a given CFi-
compliant configuration Ci, towards a CFi-compliant re-
laxation configuration Cr

i . Using the virtual controller, we
generate this CFi-compliant motion by keeping the ECs that
are required by CFi, making the new ECs that are required
by the less constrained neighbor CFj , and avoiding collisions
at the same time. The new ECs that are required by CFj act
like an attractor towards the relaxation configuration Cr

i .

PSfrag replacements Ci

Cr
i1

Cr
i2

Fig. 6. Possible CF-compliant motions from a configuration Ci to a
relaxation configuration Cr

i
.



Figure 6 shows two possible compliant motions within a
face-face CF, from a start configuration Ci towards one of the
relaxation configurations Cr

i . In this example, the relaxation
configuration Cr

i can be any configuration, within the face-face
CF, that allows an instantaneous relaxation motion towards the
desired edge-face CF. The configuration Ci has four vertex-
face ECs and each valid Cr

i has two edge-edge ECs, as
required by the edge-face CF, and in addition to that Cr

i has
one, two or three vertex-face ECs, as required by the face-face
CF.

Figure 7 shows an example of a feasible CF-compliant
motion, generated by the virtual controller on the Kuka 361.

PSfrag replacements

(a)

(b)

Fig. 7. CF-compliant motion, where the CF has two edge-face PC’s. (a) side
view and (b) front view

B. Instantaneous relaxation motion

The instantaneous relaxation motion is a compliant motion
from a given CFi-compliant configuration Cr

i to a less con-
strained CFj -compliant neighboring configuration Cr

j . This
motion is generated by the virtual controller by keeping all
ECs in CFi that are also present in CFj and breaking all
other ECs.

Figure 8 shows an example of a relaxation motion generated
by the virtual controller.

C. CFj-compliant motion

The CFj -compliant motion starts from the CFj-compliant
configuration Cr

j , towards a given CFj -compliant configura-
tion Cj . Note that for this CFj-compliant motion, the start and
end configurations are given, unlike for the CFi-compliant
motion, where more than one possible end configuration
Cr

i exists. Using the virtual controller we generate a CFj -
compliant motion from Cr

j to Cj by keeping the ECs that are
required by CFj and positioning a torsion spring at each joint

PSfrag replacements

n1 n2n3

n4

n1
n3

Fig. 8. Compliant relaxation motion, with {n1, . . . , n4} the contact normals

to move it towards the position that is required by Cj . Again,
other collisions are avoided during the motion.

VI. FEASIBILITY CHECKING

In this paragraph we describe the method to verify if the
motions generated by the virtual controller define a feasible
compliant relaxation motion.

By using the approach based on a set of local specifications
for each configuration of the held A, we in fact build a
potential field for the held A, with a global minimum at
the goal configuration. Unfortunately, most potential field
constructions suffer from the well documented local minima
problem [5], [9]. A “trap situation” in a local minimum occurs
when, due to a balance between all local specifications, the
held A does not move.

When the held A gets trapped in a local minimum, we use
the following approach. First we shut down the goal attractor.
This disturbs the balance between the local specifications and
makes the held A move away form the local minimum. To
prevent the held A from getting trapped again after the goal
attractor is re-activated, we then apply a random force on the
held A during a random time interval, to help steering it to a
different configuration.

We repeat this process until (1) the held A escapes from the
local minimum and moves again towards the global minimum,
or (2) no way out of the local minimum can be found after a
certain number of attempts. In the former case, we consider
that the generated compliant relaxation motion is so far feasi-
ble for the held A; if the held A reaches a goal configuration,
we say the compliant path is feasible. In the latter case, we
consider the motion infeasible for the held A. Instead of using
a simple goal attractor for the held A, we plan to develop a
full-fledge compliant motion planner for the held A to generate
an optimized compliant path. The emphasis in this paper,
however, is not on finding any optimized compliant path,
but on finding a feasible compliant path to verify that the
compliant relaxation motion between two neighboring contact
states can be achieved.

VII. CONCLUSIONS

This paper addresses how to revise a valid contact state
graph between two polyhedral objects A and B by adding



the constraint that A can only be moved by a manipulator.
An effective approach is introduced to check the reachability
of contact states and the connections between neighboring
states for A held by a manipulator via a virtual compliant
controller. A compliant motion path generated based on the
revised contact state graph can actually be executed by a
manipulator.

Our main short term research goal is to complete and extend
the implementation of the approach for generating the revised
contact state graph. Next we will study compliant motion
planning strategies for the kinematic chain of the object A

held by a manipulator, based on the contact state graph. We
will consider different optimization criteria in planning and
interface the output plan with a low-level controller to execute
the planned motion on a real robot manipulator.

ACKNOWLEDGMENT

All authors gratefully acknowledge the financial support by
the U.S. National Science Foundation under grant IIS-0328782
and K.U.Leuven’s Concerted Research Action GOA/99/04.

REFERENCES

[1] B. Donald. On motion planning with six degrees of freedom: solving
the intersection problems in configuration space. In Proceedings of the
1985 IEEE International conference on Robotics and Automation, pages
536–541, March 1985.

[2] E. Gilbert, D. Johnson, and S. Keerthi. A fast procedure for computing
the distance between complex objects in three-dimensional space. IEEE
Journal of Robotics and Automation, 4(2):193–203, April 1988.

[3] X. Ji and J. Xiao. Planning motions compliant to complex contact
states. The international Journal of Robotics Research, 20(6):446–465,
June 2001.

[4] X. Ji and J. Xiao. Random sampling of contact configurations in two-pc
contact formations. In K. Lynch B.R. Donald and D. Rus, editors, New
Directions in Algorithmic and Computational Robotics, Boston, 2001.
Kluwer.

[5] B. H. Krog. A generalized potential field approach to obstacle avoidance
control. In The next five years and beyond, Bethlehem, PA, USA, August
1984. International Symposium of Robotics Research.

[6] T. Lefebvre, H. Bruyninckx, and J. De Schutter. Polyhedral contact
formation modeling and identification for autonomous compliant motion.
IEEE Transactions on Robotics and Automation, 19(1):26–41, February
2003.

[7] B. J. McCarragher and H. Asada. The discrete event modeling and
trajectory planning of robotic assembly tasks. ASME Journal ofDynamic
Systems, Measurement, and Control, 117(3), 1995.

[8] F. Pan and J. Schimmels. Efficient contact state graph generation for
assembly applications. In IEEE Int. Conf. Robotics and Automation,
pages 2592–2598, Taipei, Taiwan, September 2003.

[9] E. Rimon and D. E. Kodischek. Exact robot navigation using artificial
potential functions. IEEE Transactions on Robotics and Automation,
8(5):501–518, October 1992.

[10] J. Schimmels and M. Peshkin. Admittance matrix design for force
guided assembly. IEEE Transactions on Robotics and Automation,
8(2):213–227, August 1992.

[11] R. H. Sturges and S. Laowattana. Fine motion planning through
constraint network analysis. In IEEE International Symposium on
Assembly and Task Planning, pages 160–170, Pittsburgh, PA, August
1995.

[12] J. Xiao. Automatic determination of topological contacts in the presence
of sensing uncertainties. In Proceedings of the 1993 IEEE Int. Conf.
Robotics and Automation, pages 65–70, Atlanta, GA, USA, May 1993.

[13] J. Xiao and X. Ji. A divide-and-merge approach to automatic generation
of contact states and contact motion planning. In Proceedings of the
2000 IEEE Int. Conf. Robotics and Automation, San Francisco, CA,
USA, April 2000.

[14] J. Xiao and X. Ji. On automatic generation of high-level contact state
space. International Journal of Robotics Research, 20(7):584–606, July
2001.

[15] L. Zhang and J. Xiao. Derivation of Contact States from Geometric
Models of Objects. In Proceedings of the IEEE Int. Conf. Assembly and
Task Planning, pages 375–380, Pittsburgh, PA, August 1995.


