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Abstract—In this paper a novel formalism to characterize
contact states between an articulated polyhedral object and
a polyhedral environment for the generation of the graph
of feasible contact states between them is presented. This
formalism is based upon a particular representation of the
stratification of the configuration space of the articulated
object by means of oriented matroid theory. A stratification
is a decomposition of a set into a collection of manifolds
which in our case correspond to the different contact states
between the articulated object and the environment. In the
representation of the stratification of the configuration space
using oriented matroid theory the topological properties of
the different strata are represented at a purely combinatorial
level. An algorithm to enumerate the existing strata and to
find the adjacency relationships among them is proposed.
It will be shown that the symbolic computation based on
oriented matroids simplifies and in some cases even replaces
the computation with coordinates.
Index Terms—Articulated objects, graph of contact states,

motion planning, oriented matroid theory, stratification of the
configuration space.

I. INTRODUCTION

Information about contact states is important for many
robotics tasks involving contact with the physical envi-
ronment such as grasp planning, dexterous manipulation
planning, assembly planning involving articulated parts,
motion planning of articulated robots like snake robots,
whose motion relies on contact with the environment, and
accurate haptic rendering involving articulated objects.
While there is considerable study on how to repre-

sent and analyze contact states between non-articulated
polyhedral objects [1], there is no systematic study on
general representation of discrete contact states involving
articulated objects. This paper represents a first study of
the characteristics of contact states involving articulated
objects to construct the contact state graph between an
articulated polyhedral object and a polyhedral environment,
i.e., the exhaustive list of the feasible contact states between
them and their adjacency relationships. Specifically, we
focus on contact states between an articulated object M
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with polyhedral links and a polyhedral environment S.
We suppose that the joints of the articulated objects are
revolute, prismatic or spherical, that the objects are rigid,
and the contacts between them are frictionless. The extra
degrees of freedom introduced by the joints of M make it
insufficient to characterize a contact state between M and
S in terms of only the surface features of M that are in
contact with S, as in the case of a contact state between
two non-articulated polyhedral bodies. Therefore, in this
paper we propose to represent such contact states using a
novel concept called topological configuration, which not
only characterizes the contacting links of M but also the
configuration of the links of M that are not in contact with
S. It will be shown that this information is required to check
the existence of a certain contact state and the feasibility
of the transition between two of them.
Consider the simple planar situation represented in Fig. 1

in which a moveable object M , formed by only one edge
eM
1 , is in different contact states with another static object

S, which is composed by two edges eS
1 and eS

2 . Suppose
that we are interested in determining the feasible contact
states betweenM and S and in finding their adjacency rela-
tionships. We use elementary contacts (ECs) to describe the
contact states between M and S. ECs are the vertex-face
(v-f) and the edge-edge (e-e) contacts between polyhedra
in the 3D space and the vertex-edge (v-e) contacts between
polygons in the 2D plane [2, Chapter 3]. If another edge
eM
2 is rigidly attached to eM

1 as in Fig. 2, then the number
of possible ECs between eM

1 and eS
1 reduces. If eM

2 is
connected to eS

1 through a revolute joint, as represented in
Fig. 3, the ECs that eM

1 can make with eS
1 depends on the

configuration of eM
2 with respect to eM

1 . In addition, some
transitions between contact states eM

1 and eS
1 are possible

only if M is in certain configurations. For example, the
transition between the configurations of Fig. 3.d and Fig. 3.e
is possible if and only if eM

2 is placed above the line that
supports the edge eS

1 . However, as long as this condition is
satisfied, the actual configuration of eM

2 does not matter.
Therefore, to study feasibility of contact states and their

adjacency, it is necessary to group configurations of the
articulated objectM into certain equivalence sets such that,
at every configuration inside each of them, surface features
of M and S have the same relationships of incidence
and relative position. Since incidence and relative position
are topological relationships, we call such equivalence sets
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Fig. 1. Some of the possible contact states between two rigid objects
M and S. M is formed by one edge eM

1 whereas S is composed by two
edges eS

1 and eS
2 .
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Fig. 2. If another edge is rigidly attached to eM
1 the number of ECs it

can make with eS
1 reduces with respect to the case of Fig 1.
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Fig. 3. If another edge is connected to eM
1 through a revolute joint, the

number of ECs it can make with eS
1 does not reduce with respect to the

case of Fig 1 if the topological configuration of the articulated body M
is suitably modified.

topological configurations. The adjacency between contact
states depends on the topological configuration of the
articulated object M , that is, some contact states and some
transitions between contact states are possible if and only
only if M is in some topological configuration indepen-
dently of the actual configuration. The simple example of
Fig. 3 also shows that the topological configuration of the
articulated object M alone is not enough. It is necessary to
take into account the topological configuration of M with
respect to a set of locally relevant features of S.
From the above considerations it should be clear that the

concept of topological configuration is crucial to character-
ize the nature of the problem but it needs a mathematical
formalism to be represented. Additionally, this mathemat-
ical formalism should also incorporate some mathematical
tool to facilitate geometric reasoning in the enumeration
process (e.g., inclusion and adjacency between contact
states).
Oriented matroid theory fulfills all these requirements. It

is a broad setting in which the combinatorial properties of
geometrical configurations can be described and analyzed.
It provides a common generalization of a large number
of different mathematical objects such as arrangements of
points and vectors, arrangements of hyperplanes, convex
polytopes and directed graphs. Consider the vertices of
the polyhedra that form the links of the articulated object
M . Whereas the matrix that represents these points in
homogeneous coordinates is coordinate dependent, a set
of signs of determinants that encode the relative position
of the elements of M and S, which, as will be shown in

this paper, corresponds to the notion of oriented matroid, is
a coordinate free representation that is also a topological
invariant, that is, an invariant under homeomorphisms.
Roughly speaking, this means that the oriented matroid
that represents the geometrical objects M and S only
changes when a vertex of one link of the articulated
object M crosses one of the planes passing through three
vertices of another link of the articulated object or one
of the planes passing through three vertices of the static
environment. This abstract representation permits a deeper
understanding of geometric problems and in some cases
the symbolic computation based on it can even replace the
computation with coordinates. In the abstraction process
from the vertices of M and S to the oriented matroid,
metric information is lost but the structural properties of
their configuration are represented at a purely combinatorial
level.

Exhaustive enumeration of the existing contact states
between M and S entails an iterative hypothesize-and-test
procedure in which contact states between the articulated
object and the environment are hypothesized by expressing
a set topological constraints between features of the links of
M and features of S and tested by checking the existence
of at least one configuration that satisfies the constraints. In
this paper this is done by expressing the topological con-
straints using oriented matroids and testing their feasibility
in the workspace.

The use of oriented matroids to study the motion plan-
ning problem for a non-articulated polyhedral object in a
polyhedral environment has been introduced in [3]. Ori-
ented matroids can also be regarded as a qualitative rep-
resentation of spatial relationships. For another framework
for qualitative representation and reasoning about spatial
relationships with applications to compliant motion plan-
ning of articulated objects see [4] in which the importance
of a topological representation of the configuration the
objects is implicitly recognized through the concept of
“qualitative reasoning” but the development is carried out
without the underpinning of a mathematical formalism for
its representation.

Recent works [5], [6] propose motion planning methods
for articulated objects that rely on the concept of stratified
configuration space. A stratification is a decomposition
of a set into a collection of manifolds which in this
case correspond to the different contact states between the
articulated object and the environment. In particular in [7]
the motion planning problem on non-smooth manifolds
is considered. This problem arises, for instance, when
planning the motion of a legged robot on a non-smooth
terrain or in manipulation planning for non-smooth objects.
This work shows that the knowledge of the topological
structure of the stratification of the configuration space is
essential for planning and, since polyhedra are particular
non-smooth objects, this confirms the relevance of the study
of the topological properties of the stratification of the
configuration space described in the following sections, in
which the stratification of the configuration space of the
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articulated objectM is characterized using oriented matroid
theory.
The paper is organized as follows. In Section II the

basic notions of oriented matroid theory are introduced. In
Section III it is explained how topological configurations
of M can be represented using oriented matroids and
how this representation generates a stratification of the
configuration space of M . In Section IV the algorithm for
the enumeration of the contact states between M and S is
described together with the advantages introduced by the
oriented matroid structure. Finally, Section V contains the
conclusions.

II. ORIENTED MATROIDS

Oriented matroids can be introduced over several models
such as arrangement of vectors, arrangements of hyper-
planes and arrangements of pseudolines which are usually
treated at the level of usual coordinates [8], [9], [10], [11].
In this section oriented bases of arrangement of vectors will
be used to define them.
Definition 2.1 (Arrangement of points): An arrange-

ment of points is a set of points P = {p1, p2, . . . , pn}
of �3. The matrix P = (p1, p2, . . . , pn) of (�3)n that
contains them as column vectors is assumed to have full
rank 3.
Definition 2.2 (Associated arrangement of vectors):

The arrangement of vectors X associated to an
arrangement of points is the set of vectors obtained
from the arrangement of points by representing them in
homogeneous coordinates, i.e., setting xi =

(
pi

1

)
.

This corresponds to the embedding of the space �3 into
the linear vector space �4. Let X be the matrix of (�4)n

that contains the set of vectors as column vectors.

A. Chirotope of an arrangement of vectors

Consider an arrangement of vectors X in �4

Definition 2.3 (Chirotope): The chirotope of X is the
map

χX : {1, 2, . . . , n}4 → {+, 0, −}
(i, j, k, l) �→ sign ([xi, xj , xk, xl])

that assigns to each 4-tuple (xi, xj , xk, xl) of vectors of
the finite configurationX with i < j < k < l a sign + or −
depending on whether it forms a positively oriented basis
of �4 or a basis with negative orientation. This function
assigns the value 0 to those 4-tuples that do not constitute
a basis of �4.

B. Set of cocircuits of an arrangement of vectors

Definition 2.4 (Set of cocircuits): The set of cocircuits
of an arrangement of vectors X is the set

C∗(X) =

{(sign(aT x1), sign(aT x2), . . . , sign(aT xn)) ∈ {+, −, 0}n :
a ∈ �4 a is orthogonal to a plane spanned by vectors in

X}.

p1

p2

p3 p4

p5
p6

Fig. 4. Planar arrangement of points

This means that the set of cocircuits of X is the set of all
partitions generated by special planes: those spanned by the
vectors of the configuration X .

C. Oriented matroids

Other data structures can be defined to encode the
combinatorial properties of a vector configurations [11,
Chapter 3]. The following theorem gives an important result
that relates chirotopes and sets of cocircuits. It states that
Theorem 2.1: The sets of data χX and C∗(X) are equiv-

alent. Whenever one of them is given it is possible to
reconstruct the other.

Proof: See [11, Chapter 3]
A similar result exists to relate all the data structures that

can be used to describe an arrangement of vectors.
Definition 2.5 (Oriented matroid): These combinatorial

structures, equivalent in the sense of the previous theorem,
are referred to as oriented matroids.
Example 2.1: Consider the arrangement of vectors X

represented in Fig. 4. The homogeneous coordinates of the
points in X are listed in Table I which is the arrangement
of vectors X that corresponds to the arrangement of points
of Fig. 4.

p1 = (0, 3, 1) p2 = (−3, 1, 1) p3 = (−2,−2, 1)
p4 = (2,−2, 1) p5 = (3, 1, 1) p6 = (0, 0, 1)

TABLE I

ARRANGEMENT OF VECTORS THAT CORRESPONDS TO THE PLANAR

ARRANGEMENT OF POINTS REPRESENTED IN FIG. 4

The chirotope χX of this arrangement of vectors is given
by the following orientations The element χ(1, 2, 3) = +

χ(1, 2, 3) = + χ(1, 2, 4) = + χ(1, 2, 5) = + χ(1, 2, 6) = +
χ(1, 3, 4) = + χ(1, 3, 5) = + χ(1, 3, 6) = + χ(1, 4, 5) = +
χ(1, 4, 6) = − χ(1, 5, 6) = − χ(2, 3, 4) = + χ(2, 3, 5) = +
χ(2, 3, 6) = + χ(2, 4, 5) = + χ(2, 4, 6) = + χ(2, 5, 6) = −
χ(3, 4, 5) = + χ(3, 4, 6) = + χ(3, 5, 6) = + χ(4, 5, 6) = +

TABLE II

CHIROTOPE OF THE PLANAR ARRANGEMENT OF POINTS REPRESENTED

IN FIG. 4

indicates that the basis formed by the vectors p1, p2, and
p3 has positive orientation. Geometrically, this is equivalent
to say that in the triangle formed by p1, p2, and p3 these
points are counterclockwise ordered.
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Half of the cocircuits of the arrangement of points X
represented in Fig. 4 are listed in Table III. The other half
can be obtained by negating the data. In this case, the set

(0, 0, +, +, +, +) (0,−, 0, +, +, +) (0,−,−, 0, +,−)
(0,−,−,−, 0,−) (0,−,−, +, +, 0) (+, 0, 0, +, +, +)
(+, 0,−, 0, +, +) (+, 0,−,−, 0,−) (+, 0,−,−, +, 0)
(+, +, 0, 0, +, +) (+, +, 0,−, 0, +) (+, +, 0,−,−, 0)
(+, +, +, 0, 0, +) (−, +, +, 0,−, 0) (−,−, +, +, 0, 0)

TABLE III

HALF OF THE COCIRCUITS OF THE PLANAR ARRANGEMENT OF POINTS

REPRESENTED IN FIG. 4

of cocircuits of X is the set of all partitions generated by
lines passing through two points of the configuration X .
For example, (0, 0, +, +, +, +) means that the points p3,
p4, p5, and p6 lie on the half plane determined by the line
through the points p1 and p2. Changing the sign that denotes
that half planes we obtain an equivalent combinatorial
description of the planar arrangement of points.

III. TOPOLOGICAL CONFIGURATIONS OF POLYHEDRAL
ARTICULATED OBJECTS AND ORIENTED MATROIDS

Let M be an articulated polyhedral object with l links
M1, M2, . . . , Ml and m vertices. Suppose that each link
moves in a static polyhedral environment S composed by
one or more polyhedra with n vertices. Let {x1, . . . , xm}
be the set of vertices of M and {xm+1, . . . , xm+n} be
the set vertices of S, and consider the arrangement of
vectors X formed by the vertices of M and S which are
represented in homogeneous coordinates as column vectors
of the matrix X = (x1, x2, . . . , xm+n) of (�4)m+n. The
union of the sets of vertices of M and S is called the
underlying point arrangement of M and S. We can give a
more intuitive interpretation to the concept of oriented bases
of arrangement of vectors using the elementary geometric
concept of simplex. We call simplex each ordered 4-tuple
(i, j, k, l) of indices of the vertices of the underlying point
arrangement with i, j, k, l ∈ {1, 2, . . . , m + n} and i <
j < k < l. The determinant f = [xi xj xk xl] is called
the oriented volume of the simplex (i, j, k, l). Since the
orientation of a basis corresponds to the sign of the oriented
volume of the simplex formed by the vectors of the basis,
the map χX that assigns to each simplex (i, j, k, l) the
sign of the corresponding oriented volume is called the
orientation of the simplex.

A. Topological Configurations

Suppose that only the links Mi, Mi+1, . . .Ml of the
articulated object M move with respect to the links
M1, M2, . . . , Mi−1 and with respect to the static environ-
ment S. There is a sign change in the chirotope when one
of the vertices of the moving links touches or crosses one of
the planes passing through at least three vertices of the static
objects (i.e., the links of M that are not moving and S) and
vice versa. Similarly, any EC between Mi, Mi+1, . . .Ml

and M1, M2, . . . , Mi−1 and S corresponds to a zero entry
in the chirotope (see Fig. 5). Therefore there is a sign
change in the chirotope when there is a change in the

Mi

Mj

S
S

(a) (b)

Fig. 5. Elementary contacts between the polyhedra can be characterized
by means of oriented volumes of simplices (shaded regions). (a) e-e
contact. (b) v-f contact.

topological relationships of incidence or relative location
between vertices and planes passing through at least three
vertices of the underlying point arrangement, i.e., when
there is a change in the topology of the configuration ofM .
Therefore we can assert that oriented matroids characterize
the topology of the configuration of M . Thus it make sense
to give the following definition.
Definition 3.1 (Topological configuration): We define

topological configuration of an articulated object M with
respect to a static environment S the oriented matroid
associated to the underlying point arrangement.
In particular, we call topological contact configurations

those topological configuration at which at there is an EC
between M and S.
Since both the moving object and the polyhedral environ-

ment are supposed to be rigid bodies, we are particularly
interested in those simplices that contain at least one of
the vertices of M because, actually, only their orientations
depend on the relative location of M and S.
Example 3.1: The chirotope that characterizes the con-

tact configuration of Fig. 6.a is listed in Table IV. In this
case it is the sign vector (+ + − + + − · · · + 0−) having
35 elements.
Remark 3.1: In the following sections the topological

configurations of the articulated polyhedral object M will
be represented by means of the data structure of chirotope.

B. Stratification of the configuration space of the articu-
lated object

Oriented volumes of simplices can be expressed as
polynomials in the configuration variables of M . It will
be shown and these polynomials can be used to generate a
stratification of the configuration space of M .
Definition 3.2 (Stratification of a set): A stratification

of a set S is a partition of S into a finite number of disjoint
subsets Si called strata such that each Si is a manifold.
There are several ways to construct regular stratifications

[12], [13] one of which makes use of the preimage of a
transversal map [14, Chap. 3].
Definition 3.3 (Transversal map): Let F : X → Y be

a smooth map between two manifolds X and Y and let
D ⊆ Y be a smooth submanifold of Y . The map F is
said to be transversal to D if for every y ∈ D and every
x ∈ F−1(y), dFx(TXx) + TDy = TYy, i.e., the basis
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M

S

(a) (b) (c)

x1 = vM
1

x2 = vM
2 x3 = vM

3

x4 = vM
4

x5 = vS
1

x6 = vS
2

x7 = vS
3

eM
1

eM
2

eM
3

eS
1

eS
2

Fig. 6. (a) A contact configuration between an articulated object M
and a static environment S whose topological configuration is repre-
sented by the chirotope of Table IV. In particular at this configuration
χ(4, 6, 7) = 0. This means that this configuration lies on the contact
manifold χ(4, 6, 7) = 0 which corresponds to the v-e contact between
x4 and eS

2 . (b) At this configuration the v-e contact between x4 and eS
2

is broken. This change in the topological configuration is reflected by a
change in the chirotope. Now χ(4, 6, 7) = +. (c) The line that supports
the edge eM

3 crossed the vertex x7, i.e. the configuration ofM crossed the
manifold χ(3, 4, 7) = 0. At this topological configuration χ(3, 4, 7) = −.

vectors of the image of the tangent space to X at x under
the derivative together with the basis vectors of the tangent
space to D at y = F (x) span the tangent space to Y at y.
If the map F : X → Y is transversal to a regular

stratification of a subset D ⊆ Y , then the preimage of the
regular stratification of D is a regular stratification.
Let fi, i = 1, . . . , p be the collection of polynomials

obtained by considering all the oriented volumes of the p
simplices that contain at least one vertex of M . If �q is the
space in which the configuration space of M is embedded
[2, Chapter 2], they define a map F = (f1, f2, . . . , fn) :
�q → �p. Given a p-dimensional sign vector, i.e. a p-tuple
of signs and zeros, σ, i.e., an element of {+, 0,−}p, the
sets F−1(σ) are called sign invariant sets of F .
Definition 3.4 (Semi-algebraic set): A semi-algebraic

set, is a set described by means of first order logic
sentences whose predicates are = �= > < ≥ ≤ ,
whose variables are real numbers, and whose terms are
multivariate polynomials with rational coefficients.
Then, a semi-algebraic set can be viewed as a finite union

of sign-invariant sets for some polynomial map F . It is well
known [2, Chapter 3] that, if the objects M and S can be
represented as semi-algebraic sets, the C-obstacle, i.e., the
set that represent configurations at which M collides with
or intersects S, can be represented as semi-algebraic sets
of �q, the space in which the configuration space of M
is represented. But also the set of configurations at which
M and S have a given set of topological relationships
expressed in terms of incidence, and relative position, can
be described as a semi-algebraic set of �q .
From the above considerations it follows that any parti-

tion of �p induced by all the p-dimensional sign vectors
is a regular stratification of �p. Since the map F =
(f1, f2, . . . , fp) : �q → �p is transversal to the set
{+, 0,−}p [12], [13], the preimage of the above regular

χ(1, 2, 3) = + χ(1, 2, 4) = + χ(1, 2, 5) = − χ(1, 2, 6) = +
χ(1, 2, 7) = + χ(1, 3, 4) = − χ(1, 3, 5) = − χ(1, 3, 6) = −
χ(1, 3, 7) = − χ(1, 4, 5) = − χ(1, 4, 6) = + χ(1, 4, 7) = −
χ(1, 5, 6) = + χ(1, 5, 7) = + χ(1, 6, 7) = − χ(2, 3, 4) = +
χ(2, 3, 5) = 0 χ(2, 3, 6) = 0 χ(2, 3, 7) = + χ(2, 4, 5) = −
χ(2, 4, 6) = + χ(2, 4, 7) = − χ(2, 5, 6) = 0 χ(2, 5, 7) = +
χ(2, 6, 7) = − χ(3, 4, 5) = + χ(3, 4, 6) = + χ(3, 4, 7) = +
χ(3, 5, 6) = 0 χ(3, 5, 7) = + χ(3, 6, 7) = + χ(4, 5, 6) = −
χ(4, 5, 7) = + χ(4, 6, 7) = 0 χ(5, 6, 7) = −

TABLE IV

CHIROTOPE THAT CHARACTERIZES THE TOPOLOGICAL

CONFIGURATION OF M REPRESENTED IN FIG. 6.A.

stratification of �p is a regular stratification of �q and, as
a consequence, a regular stratification of the configuration
space of M .
Let S0 denote the configuration manifold ofM . It is easy

to see that the i-th elementary contact ECi between M and
S corresponds to one codimension 1 stratum of Si ⊂ S0.
Note that the opposite is not true. For example, the value
zero of an oriented volume of a simplex formed by a vertex
ofM and three vertices of S that do not lie on the same face
does not correspond to a EC between M and S. Similarly,
the value zero of an oriented volume of a simplex formed
by a vertex of M and three vertices of S occurring at a
configuration where the vertex of M is in contact with the
plane supporting the face of S, and not with the face itself,
does not correspond to an EC between M and S.
In other words, our stratification of the configuration

space is composed by three types of strata. The first
one corresponds to ECs between M and S, which there-
fore characterize the topological relationship of incidence
between vertices of M and faces of S and vice versa
and between edges of M and S. These strata represent
constraints on the motion of M . The second type of strata
is represented by those that characterize the relationship of
incidence between vertices and planes that do not support
faces or between lines that do not support edges. Finally the
third type of strata characterizes incidence between vertices
of M and planes that support faces of S and vice versa
(i.e., in which the contacts take place in the regions of
the planes outside the faces) or between edges of M and
lines that support edges of S and vice versa (i.e., in which
the contacts take place in the part of the lines outside the
edges). It is easy to see that these two types of strata do not
constrain the motion of M . Together these different types
of strata characterize the topological configuration of M .
When M makes two ECs with S, say ECi and ECj ,

the configuration of M lies on a codimension 2 stratum
Si,j = Si ∩ Sj ⊂ S0 formed by the intersection of Si and
Sj and so forth.
The key point of the formalism presented in this paper

is that each stratum represents the set of configuration hav-
ing equivalent topological properties and the stratification
can be represented by oriented matroids and the oriented
matroid representation of the stratum is its topological in-
variant, i.e., all the configuration inside the same stratum are
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topologically characterized by the same oriented matroid.
Note that oriented matroids cannot distinguish among

different connected components of the same stratum of the
configuration space, i.e., components characterized by the
same sign vector for which it is impossible to move to each
other without changing any sign.
In the next section an algorithm to determine the feasible

contact states betweenM and S and the adjacencies among
them which takes advantage of the characterization of
the stratification of the configuration space by means of
oriented matroids will be presented.

IV. GENERATION OF THE GRAPH OF TOPOLOGICAL
CONTACT STATES

Generating the graph of topological contact states en-
tails enumerating the existing strata that represent feasible
contact topological configurations of M with respect to
S and determining their adjacency relationships. Feasible
topological contact configurations will be represented by
means of oriented matroids and the adjacency between them
will be represented by means of a graph G, which we
suppose to be a connected graph.
To do that an algorithm that is based on the oriented

matroid representation of the strata will be presented. It is
an extension of the reverse search algorithm [15] which
has been successfully applied to a several enumeration
problems such as vertex enumeration in polyhedra and
enumeration of cells in arrangements of hyperplanes.
With the oriented matroid representation of the stratifica-

tion it is straightforward to characterize inclusion between
strata
Definition 4.1 (Inclusion between strata): Let S′ and

S′′ be strata of the configuration space of an articulated
object M . The stratum S′ is said to be included in S′′ if in
the chirotope that represents S′ there is at least one 0 that
corresponds to a + or a − in the chirotope that represents
S′′.
Using the notion of dimension of a stratum we can

compare the mobility of M [16, Chapter 13] at different
topological contact configurations. However we are inter-
ested in characterizing the mobility of M in each stratum
included in a given stratum. It is clear that the inclusion
between strata ensures that the dimension of the including
strata will be higher than that of the included strata,
i.e., including strata will correspond to less constrained
strata for M and vice versa. Thus, we give the following
definition.
Definition 4.2 (Less and more constrained strata): Let

S′ and S′′ be strata of the configuration space of an
articulated object M that correspond to a contact state
between M and S and let S′ be included in S′′. Then
S′′ it is called a less constrained stratum with respect to
S′ that includes S′. On the contrary, S′ is called a more
constrained stratum with respect to S′′ included in S′′.
According to the above definition, for instance, the

stratum represented by the chirotope (+00+) is a more
constrained stratum with respect to (+0 − +) included in
it.

A. Hypothesis generation

For technical reasons that will be clear soon, to system-
atically generate p-dimensional sign vectors that represent
strata is needed an objective function to be maximized
over the set of p-dimensional sign vectors, {+, 0,−}p. This
phase, which can be thought of as a hypothesis generation
for the nodes of G, will be followed by a feasibility check
as described in the next section.
The set of nodes of G is unknown at this stage of

the algorithm but, since each feasible and not feasible
topological configuration, and, in particular, each feasible
and not feasible topological contact configuration can be
characterized by a chirotope, i.e., by a p-dimensional sign
vector, an objective function can be defined based on these
p-dimensional sign vectors regardless the existence of the
corresponding stratum. It is important to point out that
the choice of this objective function is crucial for the
efficiency of the enumeration because the order in which
the strata are hypothesized depends on this function. Since,
given an existing stratum, checking the existence of a less
constrained stratum in which it is included is easier than
checking the existence of a more constrained stratum that it
includes, this objective function should be chosen in such
a way that it induces the generation of a less constrained
stratum that includes one of the existing strata. An ob-
jective function that fulfills these requirement is obtained
by interpreting the three symbols of the chirotope that
represent each stratum as the symbols of a ternary numeric
representation in which the symbols +,−, and 0 correspond
to the numerical decimal values 2, 1, and 0, respectively.
For instance, the value of the objective function for the
stratum (−−0+) is 1×33+1×32+0×31+2×30 = 38.
Consider Fig. 7.a in which the stratification generated by
four curves in the plane is represented. Each stratum of
this stratification of the plane is thus described by a 4-
dimensional signs vector. In Fig. 7.b the numerical values of
such an objective function are represented for each stratum
represented in Fig. 7.a.

B. Feasibility check

The enumeration procedure starts from an existing stra-
tum that corresponds to a feasible topological contact
configuration. Then, a sequence of less constrained strata
in which it is included are hypothesized and their existence
tested. The key point of the enumeration algorithm is that,
using the objective function previously described, the less
constrained strata that include this stratum are characterized
by those p-dimensional sign vectors for which the objec-
tive function is greater. Thus, another component of our
enumeration algorithm is a finite deterministic procedure
to establish, given an existing stratum, the existence of
strata in which it is included i.e., for which the value of
the objective function in greater until there exists no better
strata with respect to the value of the objective function.
For consistency with [15] we call it local search algo-

rithm on G. A node without a better neighboring node is
called local optimum and corresponds to a codimension 0
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stratum i.e., a stratum without contacts between M and
S. Once a node corresponding to a local optimum of
the objective function has been reached, another existing
stratum has to be determined (see Section IV-B.5) and the
above procedure repeated.
As shown in Fig. 7.a, in general there are several local

optima of the objective function. As a consequence, the lo-
cal search algorithm generates several trees T1, T2, . . . , Tl.
Note that some of them can be single-node trees as the node
(− −−−). Suppose that T1 is the tree having the stratum
(+ + −+) as root and that it is the only existing local
optimum of the objective function. T1 is composed by the
strata (++−+), (+0−+), (++−0), and (+0−0). Thus if
we visit T1 from (++−+) systematically, say by depth-first
search, we can enumerate all the existing strata. The strata
whose corresponding nodes are neighbors in Ti will be
adjacent in Gi and, as will be explained in Section IV-B.5,
some other adjacency relationships result from the reverse
search algorithm. The oriented matroid representation of
the existing strata simplifies the exhaustive enumeration
of the adjacencies between strata of Ti. Therefore, given
Ti, is rather simple to generate a graph Gi in which arcs
are added to connect adjacent nodes of the tree Ti. The
graphs Gi are then merged together form the graph G.
The characterization of each existing node with oriented
matroids makes the merging process of the graphs Gi

straightforward.
It is easy to see that many topological configurations

can corresponds to the same topological contact config-
uration, as in the case represented in Fig. 6. To give a
more compact representation in G, the different topological
configuration associated to with each feasible topological
contact configuration will be grouped together. The oriented
matroid characterization makes this process very simple.
Indeed the three topological configurations of Fig. 6 can be
characterized by the chirotope of one of them, e.g, that of
Fig. 6.a represented in Table IV, together with the signs to
be changed to represent the other two, i.e. χ(4, 6, 7) for that
of Fig. 6.b, χ(4, 6, 7) and χ(3, 4, 7) for the configuration
represented in Fig. 6.c.
Feasibility or existence of hypothesized strata can be

checked in several steps. Most of them can be based on
topological consideration and therefore fully exploit the
oriented matroid structure used to represent the stratification
of the configuration space of M .

1) Checking the sign consistency: Not all the possible
combinations of signs and zeros in the p-dimensional sign
vectors that characterize the stratification of the configu-
ration space are admissible. Indeed they must fulfill the
Grassmann-Plücker relations [11, Chapter 3]. Only the sign
vectors that fulfill these relations represent a chirotope.
However, there exist strategies to generate consistent p-
dimensional sign vectors [17]. This fact greatly simplifies
the feasibility check.
2) Checking the redundancy: Redundancy in the strat-

ification of the configuration space occurs when two or
more strata are equivalent because correspond to the same
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Fig. 7. (a) A simple stratification of the plane generated by four curves
together with the oriented matroid representation of each stratum. (b) Trees
generated by the local search algorithm. Tracking each edge against its
orientation and merging the results leads to the enumeration of the existing
strata. In correspondence with each stratum the value of the objective
function used in enumeration procedure is reported.

constraint. Eliminating redundant contact constraints of the
configuration space can be solved in the workspace using
simple geometric considerations [18].
3) Checking the intersection: A chirotope does not cor-

respond to any feasible contact topological configuration
if the corresponding topological configuration gives rise to
intersection between M and S or to a self intersection of
M . Since the intersection between an edge and a face is a
topological relationship, it can be detected using topological
information that can be read off from the oriented matroid
representation of the stratification of the configuration space
of M . It is easy to see that there is an intersection between
M and S if at least one edge of M intersects at least one
face of S or vice versa. Consider Fig. 8 in which an edge
of M and a non-convex face of S are represented. Let Π be
an arbitrary plane containing the face fS and let Γ be an
arbitrary plane containing the edge eM . Consider the half
plane Γ′ determined by the line that supports eM . There
is an intersection between eM and fS if the endpoints of
eM lie in different half spaces with respect to Π and the
number of intersections between the edges that bound fS

and Γ′ is odd [3] It is easy to see that these intersection
conditions can be implemented comparing signs of the
oriented matroid representation of M and S. Moreover
this simple method does not require decomposition of non-
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Fig. 8. Intersection detection between polyhedra can be implemented
comparing the signs of the oriented matroid representation of the config-
uration of M without decomposing of non-convex polyhedra in convex
parts.

convex polyhedra in convex parts.
If a topological configuration is consistent, non-

redundant, and does not give rise to intersections, its
feasibility is checked in the workspace using geometric
methods. This corresponds to checking the existence of the
corresponding stratum.
4) Checking the existence of a less constrained stratum

that includes a given stratum: Given a certain stratum
of the configuration space of M one has to establish the
existence of another stratum described by a consistent,
non-redundant, p-dimensional sign vector that does not
correspond to an intersection between M and S in which
one or more contact constraints have been relaxed. The
problem can be solved in most part using instantaneous
kinematics after modeling each contact between M and S
by means of an instantaneously equivalent kinematic chain
[19]. This entails solving a system of linear equations to
check whether it does exist a solution that corresponds to an
instantaneous velocity in the direction in which the above
contact constraints are relaxed.
5) Checking the existence of a more constrained stratum

included in a given stratum: One has to generate a feasible
topological configuration whenever the objective function
of the reverse search algorithm reaches a local optimum.
However, generating a feasible topological contact state
that fulfills a set of topological and geometrical conditions
expressed by a chirotope “from scratch” is not a simple
issue [8, Chapter IV]. It is possible to overcome this
difficulty using a feasible topological contact configuration,
i.e., starting from a stratum whose existence has already
been determined. Since its less constrained strata in which
it is included have already been enumerated by the reverse
search algorithm we need to hypothesize and test the
existence of more constrained strata included in it. We
study the problem using a motion planning technique to
check whether the configuration ofM can be steered on the
existing stratum to a more constrained stratum included in it
using an approach similar to that described in [1, Section 3]
for non-articulated objects.

V. CONCLUSIONS

In this paper a new formalism to characterize contact
states involving articulated objects has been presented. It
has been shown that to solve the problem of enumerating
the existing contact states between an articulated polyhedral
objectM and a polyhedral environment S it is fundamental
to take into account the topological properties of the config-
uration space of M . Therefore, the concept of topological
configuration has been introduced and its interpretation in
terms of oriented matroid theory has been described. It has
been shown that this representation generates a stratification
of the configuration space of M and that its combinatorial
representation by means of oriented matroids facilitates the
exhaustive enumeration of feasible contact states and the
determination the adjacency relationships among them.
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