
Automatic Generation of High-level Contact State Space
between Planar Curved Objects ∗

Peng Tang
IMI Lab, Dept. of Computer Science

University of North Carolina - Charlotte
Charlotte, NC 28223, USA

ptang@uncc.edu

Jing Xiao
IMI Lab, Dept. of Computer Science

University of North Carolina - Charlotte
Charlotte, NC 28223, USA

xiao@uncc.edu

Abstract— Information of high-level, topological contact
states is useful and even necessary for a wide range of
applications, including many robotics applications. While
there is considerable research related to topological contact
states between two polyhedral objects, little is studied about
how to characterize, represent, and automatically generate
topological contact states between curved objects. In this
paper we extend the representation of topological contact
states between polyhedral objects to general planar curved
objects in terms of contacting curve elements, obtained from
curvature monotonic segmentation [6]. We further introduce
an approach to generate automatically graphs of such contact
states between two planar curved objects, which represent not
only valid contact states but also adjacency relations among
those contact states. Implementation results of the related
algorithms demonstrate the effectiveness of our approach. The
approach can be naturally extended to generation of contact
states between 3-D curved objects.

Index Terms— contact states, planar curved objects, auto-
matic generation, compliant motion

I. INTRODUCTION

When a contact occurs between two objects, it is often
desirable to know not only the precise contact configuration
but also the high-level, discrete contact state that is more
descriptive of the topological and physical contact char-
acteristics. Information of such high-level contact states is
useful and even necessary for a wide range of applications,
from real-world robotic tasks involving compliant motion
[4], [8], to dynamic simulation [9] and haptic interaction
in a virtual world [7].

For contacting polyhedral objects, it is common to
describe a contact state as a set of contact primitives.
Each contact primitive defines a single connected region
of contact and can be naturally characterized by a pair
of contacting surface elements in terms of faces, edges,
and vertices, because such surface elements are convex for
polyhedral objects and there can only be one connected
region of contact between two such elements. Different
contact state representations essentially differ only in how
contact primitives are determined with those surface ele-
ments; some define a contact primitive as a point contact in
terms of a vertex and a face in contact [5], [2], while others

∗This work is supported by the U.S. National Science Foundation under
grant IIS-#0328782.

allow a contact primitive to be a line or planar contact
region as well [1], [10].

In order to describe contact states between two non-
polyhedral objects in a way analogous to that between
polyhedral objects, however, it is necessary to further
partition the boundary of each non-polyhedral object to
obtain surface elements of useful properties in addition
to the partition by the natural edges and vertices that
indicate derivative discontinuous points [6]. Specifically,
given a general curved object, its boundary consists of
smooth surfaces (which includes flat surfaces as a special
case), smooth curves (which includes straight-line segments
as a special case), and vertices, which are first-derivative
discontinuous points separating two smooth curves. Since
a smooth surface or curve can be non-convex generally, a
contact between two such surfaces or curves may consist
of more than one disjoint region of contact. Thus, such
smooth surfaces and curves cannot be used directly to
define contact primitives. In [6], it shows that by doing
a curvature monotonic segmentation to the boundary of a
curved object, useful topological surface elements can be
obtained, which are in terms of smooth surface patches or
curve segments with monotonically changing or constant
curvatures, separated by curvature extremal points or inflec-
tion points of a surface, in addition to vertices. A contact
primitive can again be defined as a contact between two
such elements, which forms a single connected region of
contact. A topological contact state between two curved
objects can thus be represented again as a set of contact
primitives.

In this paper we extend the representation of topological
contact states between polyhedral objects to general planar
curved objects in terms of contacting curve elements, which
are obtained from curvature monotonic segmentation [6].
We further introduce an approach to generate automatically
graphs of such contact states between two planar curved
objects, which represent not only valid contact states but
also adjacency relations among those contact states. In
Section II, we review the notions of principal contacts
as contact primitives [10], [6] to define contact states for
planar curved objects and to characterize the neighboring
relations between contact states. In Section III, we describe
our approach and algorithms to generate contact state
graphs automatically, and in Section IV, we present some

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE.	 3612

implementation results. We conclude the paper in Section
V.

II. CONTACT STATES BETWEEN PLANAR CURVED

OBJECTS

A. Topological Curve Elements

Given a planar curved object, its boundary consists
of smooth curves and vertices, which are first-derivative
discontinuous points separating two smooth curves. By
performing a curvature monotonic segmentation [6], each
smooth curve can be further partitioned into curve segments
of monotonic curvature, which we call edges, by inflection
or extreme points on the smooth curve, which we call
pseudo-vertices. Clearly an edge is between either vertices
or pseudo-vertices or one vertex and one pseudo-vertex.
We call these edges, vertices, and pseudo-vertices the
topological curve elements of a planar curved object.

We further define the following element containment
relation among those elements: for a planar curved object,
a pseudo-vertex contains the edges that are adjacent to it,
an edge contains the vertices that are adjacent to it.

Note that the above containment relation is similar to
that defined among surface elements, i.e., faces, edges, and
vertices, of a polyhedral object [11]: a face contains its
bounding edges, and an edge contains its bounding vertices.
The usefulness of the containment relation will be evident
in the following subsections.

B. Principal Contacts and Contact Formations for Planar
Curved Objects

A principal contact (PC) between two contacting poly-
hedra is defined as the contact between a pair of contacting
surface elements (i.e., faces, edges, and vertices) that are
not contained by other contacting surface elements [10],
[11]. This ensures that PCs are the highest-level contact
primitives to describe a contact state most concisely [11].
For planar curved objects, we can extend the notion of
PCs in terms of the topological curve elements introduced
above: a PC between two planar curved objects is the
contact between a pair of topological curve elements that
are not contained by other contacting topological curve
elements of the two objects. Denote a PC between two
planar curved objects A and B as aA-bB , where aA is the
contacting curve element of A, and bB is the contacting
curve element of B. Let v, pv, and e denote a vertex, a
pseudo vertex, and an edge respectively. Figure 1 shows the
different types of PCs between two planar curved objects.

Now a general contact state between two planar curved
objects can be defined as a set of PCs formed, called a con-
tact formation (CF), similar to that defined for polyhedral
objects. The cardinality of a CF, denoted as card(CF), is
the number of PCs in the CF.

The geometrical representation of a PC denotes the set of
(relative) contact configurations between the two contacting
objects that satisfy the topological definition of the PC.
The geometrical representation of a CF denotes the set of
contact configurations that satisfy the contact conditions of
all the PCs in the CF.

pv-pv pv-v/v-pv v-v

pv-e/e-pv v-e/e-v e-e

Fig. 1. Different types of principal contacts between two planar curved
objects

C. Contact States and Connectivity

With the concepts of PCs and CFs extended to planar
curved objects, we can now define contact state space
between such objects in a way similar to that between
polyhedral objects [11].

Generally, the set of contact configurations in the geo-
metrical representation of a contact formation may consist
of one or more connected regions of contact configurations,
called CF-connected regions. Within a CF-connected re-
gion, there exists a motion constrained by the CF from any
contact configuration to any other one, called CF-compliant
motion. In other words, there is no need to change the CF
in moving from one configuration to another within a CF-
connected region. Thus, we can define a contact state be-
tween two curved objects as a single CF-connected region,
represented by the CF and a representative configuration
in the region, denoted as a pair <CF,C>.

In this paper, we only focus on cases where the geo-
metrical representation of a CF is a single CF-connected
region.

Now we consider connectivity between contact states of
different CFs. If from the state <CFi, Ci>, there exists a
CFi-compliant motion succeeded by a transition to a con-
figuration Cj of CFj , then <CFi, Ci> and <CFj , Cj>
are generally-defined neighboring contact states, and CFi

and CFj are called generally-defined neighboring con-
tact formations. The above compliant motion making the
transition from <CFi, Ci> to <CFj , Cj> is called a
neighboring transition motion.

The above configuration-based definition of neighboring
CFs can be mapped to necessary topological conditions in
terms of the containment relations of PCs. Given two dif-
ferent PCs between A and B: PCi =iA-iB and PCj =jA-

3613

jB , we say PCi contains PCj if and only if one of the
following conditions holds:

1) iA contains jA, and iB contains jB;
2) iA is jA, and iB contains jB;
3) iB is jB , and iA contains jA.

Neighboring PCs can now be defined. Two PCs are neigh-
boring PCs if one contains another.

Note that based on the above definition, a PC is con-
tained by a more constrained neighboring PC, where the
contacting objects have fewer degrees of freedom. Recall
that we define that a pseudo-vertex contains the adjacent
edges in the element containment relation in Section II.A,
because a PC involving a pseudo-vertex is more constrained
than a neighboring PC that does not involve a pseudo-
vertex.

Next we can define the necessary conditions for two
kinds of neighboring relations among CFs. Given two
generally-defined neighboring CFs, CFi and CFj , CFj is
a locally-defined neighbor (LN) of CFi if

1) card(CFj) ≤ card(CFi), and
2) one of the following two conditions holds (not both):

• For every PC in CFj , it either belongs to CFi

or is contained by a unique PC in CFi, and no
two PCs in CFj are contained by the same PC
in CFi.

• For every PC in CFj , it either belongs to CFi

or contains a unique PC in CFi.

Moreover, if card(CFj) > card(CFi), then CFj is a
globally-defined neighbor (GN) of CFi.

The reason that we differentiate neighboring CFs into
LNs and GNs is that given a CF, the topological informa-
tion of its LNs can be derived directly from its topological
definition, that is, from the PCs in the CF, one can obtain
the possible PCs of the LNs of the CF. This is a very
useful property for automatic generation of contact states
(see next section). Figure 2 shows an example, where a’s
and b’s label the pseudo or real vertices of objects A and
B respectively, and an edge is labeled by its two pseudo or
real vertices. CF1 is a LN of CF2, and its topological rep-
resentation can be obtained from CF2; however, one cannot
obtain the topological representation of CF2, which is a
GN of CF1, directly from the topological representation of
CF1. This is because CF2 involves a PC not described by
the neighboring elements of the contacting curve elements
of CF1.

Given two generally-defined neighboring contact states,
<CFj , Cj> and <CFi, Ci>, if CFj is a LN of CFi, then
<CFj , Cj> is a locally-defined neighboring contact state
or LN contact state of <CFi, Ci>. If CFj is a GN of CFi,
then <CFj , Cj> is a globally-defined neighboring contact
state or GN contact state of <CFi, Ci>.

The contact state space (of the contacting objects) can be
defined as a contact state graph G, where each node denotes
a valid contact state <CF,C>, and each link connects two
neighboring contact states.

CF : a a -b b1 0 1 0 1{()} CF : a -b b , a a -b b2 0 0 1 2 3 1 2{() ()}

b0

a0

a1
a3

b1

b2b0

b1

b2

a1

a0

a2

a2

a3

Fig. 2. An example of LN and GN CFs

III. GENERATION OF CONTACT STATE GRAPHS

Our approach to generate the contact state graph between
two planar curved objects is to generate special subgraphs
of the contact state graph G automatically and merge such
subgraphs automatically to form G.

Each special subgraph we generate is an undirected
graph consisting of a seed contact state <CFs, Cs>, its
LN contact states, their subsequent LN contact states, and
so on, which we call a LN graph of <CFs, Cs>. Starting
from the seed contact state <CFs, Cs>, the LN graph can
be grown by repeatedly obtaining LN contact states until all
the LN contact states have been generated in a breadth-first
search as follows:

1) Initialize the LN graph LNG with a single node
containing <CFs, Cs>. Initialize the queue NEW
with a single node <CFs, Cs>.

2) Remove the front node <CFi, Ci> from the queue
NEW.

3) Hypothesize topologically all possible LN CFs of
CFi.

4) For each possible LN CF, CFj , of CFi, do:

• If LNG has a node of <CFj , Cj> and there is
no link between <CFj , Cj> and <CFi, Ci>,
then if there exists a feasible neighboring transi-
tion motion from Ci in CFi to Cj in CFj , then
build a link between the node of <CFj , Cj>
and the node of <CFi, Ci> in LNG.

• If LNG does not have a node of <CFj , Cj>,
then if there exists a feasible neighboring tran-
sition motion from Ci in CFi to a configuration
Cj in CFj , then create a node for <CFj , Cj>,
link it to the node of <CFi, Ci> in LNG, and
append it to the end of queue NEW.

5) If the queue NEW is not empty, go to step 2.
6) Output LNG.

Clearly we prefer that a seed CF, CFs, of a LN graph has
a maximized cardinality (i.e. the number of PCs) so that
the LN graph can be maximized. Among all neighboring
CFs between two objects, those with cardinalities being
local maxima could be chosen as seed CFs. There are very
few such CFs in many practical situations, and they can be
singled out relatively easily to be used as seed CFs.

3614

After all LN graphs are generated, they can be merged
automatically by taking the union of the nodes in all the LN
graphs and their neighboring links (connections). The same
merge algorithm used in [3] can be used here. For nodes
in different LN graphs but sharing the same CF, they are
collapsed into one node with a single contact configuration
kept, and corresponding redundant links connecting two
neighboring states are also collapsed into one.

In the following subsections, we explain our algorithm
in more detail.

A. Hypothesizing Locally-defined Neighboring Contact
Formations

Given a valid CF = {PCi}N
i=1, where N ≥ 1, its possible

LN CFs can be hypothesized according to the definitions in
Section II by applying one of the following sets of actions:

• Action set 1: for each PCi, either remove PCi, or keep
PCi, or change PCi to a PC it contains.

• Action set 2: for each PCi, either remove PCi, or keep
PCi, or change PCi to a PC that contains it.

Note that the two sets of actions enforce that only one type
of change can be applied simultaneously to more than one
PC in the CF. Note also that in both set of actions, no
remove nor keep can be applied simultaneously to all PCs
in the CF to result in an empty set or the CF itself1.

B. Neighboring Transition Motions

There are three possible types of a neighboring transition
motion between two neighboring contact states of two
smoothly curved objects A and B: slidingA, slidingB, or
a combination of slidingA and slidingB. None of these
motions are of pure translation or rotation. Figure 3 shows
examples of these different types of motions of a planar
curved object A with respect to a fixed planar curved
object B: note that during slidingA the contact point of
A does not change but the contact point of B changes,
whereas during slidingB, the contact point of A changes
but the contact point of B does not change, and during a
combination motion, the contact points of A and B both
change; note that if the contact points of A and B change in
equal displacements, the motion is in fact a rolling motion;
otherwise, the motion is a combined sliding and rolling
motion.

Of course, for two general planar curved objects that
also have non-smooth elements, such as vertices, or certain
“polygonal” elements, such as straight-line edges, pure
rotation and pure translation are possible as neighboring
transition motions involving those elements, just as in
the case of polygonal objects [3]. Here we focus only
on the three types of motions – slidingA, slidingB, and
combination of slidingA and slidingB, which are unique
to curved objects.

Each type of motion can be generally viewed as an
integral of instantaneous pure (normally 2-D) translation
ds combined with an instantaneous pure (1-D) rotation dθ,

1This obviously implies that for a single-PC CF, only change can be
applied.

p
B

p
A

q
B

q
A

p
B

p
A

q
B

q
A

AB

p
B

p
A

q
B

q
A

p
B

p
A

q
B

q
A

A
B

B

B

A

A

sli
dingA

slidingB

combination

of slidingA
and

slidingB

Fig. 3. Three types of neighboring transition motions

and the results can be implemented by a summation of
small motions, and each small motion is implemented as a
small translation combined with a small rotation ∆s+∆θ.

Specifically, considering A and B initially in contact at
points pA of A and pB of B, a small slidingA, slidingB, or
combination of slidingA and slidingB can be implemented
as follows:

• Small slidingA of A to reach a nearby point pB
1 of

B: ∆s is the distance from pB to pB
1 , ∆θ is the angle

between the tangent of A at pA and the tangent of B
at pB

1 , and the rotation is about pA.
• Small slidingB of A to change the contact point of A

to a nearby point pA
1 of A: ∆s is the distance from

pA to pA
1 , ∆θ is the angle between the tangent of A

at pA
1 and the tangent of B at pB , and the rotation is

about pB .
• Small combination motion of A so that a nearby pA

1

of A contacts a nearby pB
1 of B: a slidingA of A to

reach pB
1 of B followed by a slidingB of A to change

the contact point of A to pA
1 with the contact point of

B being pB
1 .

C. Checking the feasibility of Neighboring Transition Mo-
tions

Given a valid CF CFi and a hypothesized possible LN
CF CFj of CFi between two planar curved objects A
and B, to check whether CFj is a valid LN CF of CFi

or not means to determine whether there exists a feasible
neighboring transition motion from CFi to CFj . There are
just a finite number of possible compliant motions of A to
achieve the neighboring transition starting from a contact
configuration Ci in CFi to reach certain contact config-
uration Cj in CFj . Moreover, as mentioned in Section
III.A, any neighboring transition may involve three types
of actions or their combinations: remove, keep, or change
one or more PCs of CFi. Specifically, it is easy to see that

• if a neighboring transition involves change actions, it
may or may not involve keep and/or remove actions;

3615

• a neighboring transition may involve both keep and
remove actions without change actions.

We now can present the following general strategy to
construct a neighboring transition motion from CFi to CFj

and check if it is feasible, i.e., to check if the compliant
motion is implementable as a CFi compliant motion fol-
lowed by a CFj compliant motion without causing other
collisions along the way:

1. If the neighboring transition needs to change (at least)
one PC, then construct a compliant motion of A in small
steps (see Section III.B) to realize the change action. If
the motion is possible in all small steps without causing
additional collisions and is able to keep or remove some
other PCs that the transition may also require, the motion
is considered feasible, and the hypothesized CFj is con-
sidered subsequently a valid LN CF of CFi.

2. Otherwise, if the neighboring transition does not need
to change any PC but needs to keep (at least) one PC,
then construct a compliant motion of A in small steps
to maintain the PC. If the motion is possible in all small
steps without causing additional collisions and is able to
remove some other PC(s) that the transition also require,
the motion is considered feasible, and the hypothesized
CFj is considered subsequently a valid LN CF of CFi.

If no possible motion is feasible in any case, CFj is
discarded as invalid.

The types of possible compliant motions to change a
PC, PCi, to a neighboring PC, PCj , depends on the
types of PCi and PCj . Since the change of PCi to
PCj means the change of a contacting curve element (of
either A or B) to an adjacent contacting curve element
(of that object), the direction of motion is determined
by the relative placement of the new contacting element
with respect to the original contacting element as either
clockwise or counter-clockwise. Moreover,

• if PCi =iA-iB and PCj =jA-iB , i.e., from PCi to
PCj , the contacting curve element of A changes to an
adjacent element, and the contacting curve element of
B does not change, then a slidingB of A is needed;

• if PCi =iA-iB and PCj =iA-jB , i.e., from PCi to
PCj , the contacting curve element of B changes to
an adjacent element, and the contacting curve element
of A does not change, then a slidingA of A is needed;

• if PCi =iA-iB and PCj =jA-jB , i.e., from PCi

to PCj , both contacting curve elements of A and
B change to respective adjacent elements, then a
combination motion of A is needed.

The type of possible compliant motions to keep a PC
also depends on the type of the PC:

• to keep a v-v, pv-v, or v-pv type of PC, the only
motion is a pure rotation of A2;

• to keep a v-e type of PC, the motion can be either a
slidingA of A or a pure rotation of A about v;

2Note that to keep a pv-pv type of PC, no motion is allowed.

• to keep a pv-e type of PC, the only motion is a
slidingA of A;

• to keep an e-v type of PC, the motion can be either
a slidingB of A or a pure rotation of A about v;

• to keep an e-pv type of PC, the only motion is a
slidingB of A;

• to keep an e-e type of PC, the motion can be one of
the three types of motions of A: slidingA, slidingB,
or a combination.

The above motions can be in either direction (i.e., either
clockwise or counter-clockwise).

IV. IMPLEMENTATION

We have implemented the general algorithms as de-
scribed in Section III for automatic generation of a LN
graph of a seed contact state on a Pentium 4, 2.8 GHz
machine with 1024 MB RAM. The algorithm can handle
arbitrary planar curved objects A and B. Figure 4 shows an
example that our algorithm applied, where A is an ellipse
and B is an object with a parabolic curve. a’s and b’s label
the pseudo vertices of A and the pseudo and real vertices
on B’s parabolic curve. An edge of A or B is labeled by
its two pseudo or real vertices. A seed contact state CSs

is shown in Figure 4b in the CF of type {pv-e, e-e}.
From CSs, our algorithm has generated its LN graph

consisting of 37 valid nodes automatically3 in about 2
seconds. The number of valid nodes shows that not all
hypothesized LN contact states are valid. Figure 5 displays
the valid LN contact states of CSs generated as well as
several subsequent LN contact states. Note that one of
the hypothesized LN CF of CFs, CF0 = {(a0-b̂0b1), (a2-
b̂1b2)}, of type {pv-e, pv-e}, is detected by the algorithm as
not a valid LN CF since there is no feasible neighboring
transition motion from CFs to CF0. Our algorithm for
feasibility checking is able to detect such a case even
though it may not seem obvious intuitively. Indeed, the
computation of intersections between an ellipse and a
parabolic curve confirms that this result is correct. Figure 6
shows more examples of hypothesized contact states that
are not valid.

On the other hand, there is still a considerable number
of nodes in the LN graph of CSs, reflecting the fact that
contact states are different if their CFs involve contacting
curve elements of different labels. This is a general treat-
ment suitable for contact states between arbitrary planar
curved objects, although for the example shown, because
of the symmetry of the particular A and B, several contact
states look alike.

V. CONCLUSIONS

We have introduced a systematic approach to generate
automatically the contact state graphs between two arbi-
trary planar curved objects based on a general represen-
tation of contact states between such objects that extends

3Note that in this example we only considered the parabolic curve of
object B rather than the whole boundary of B, which, if considered, will
result in more valid nodes.

3616

x

y

Object A

a0 a2

a3

a1

b0
b2

b1

Object B

(a)

a0

b0
y

x
a1 a2

a3

b1

b2

{() ()}CS = a -b b , a a -b bs 0 0 1 2 3 1 2

(b)

Fig. 4. An implemented example

CS
s

Fig. 5. Some LN contact states generated

(a) (b)

Fig. 6. Some invalid contact states

the notions of principal contacts and contact formations
originally introduced for polyhedral objects. The approach
is implemented, and the execution of our algorithm shows
that automatic generation of contact state graphs between
two planar curved objects is even more desirable than that
in the case of polyhedral objects not only because of the
large number of valid contact states but also because that
it is often not obvious to the naked eyes whether a contact
state is actually possible or not.

We plan to continue this research by improving and
testing the algorithm on more sophisticated cases, including
cases where a CF may have multiple connected regions of
contact points, and by extending the approach significantly
to handle contact states between 3-D curved objects.

ACKNOWLEDGEMENT

The authors would like to thank Qi Luo for his help.

REFERENCES

[1] R. Desai and J. Xiao and R. Volz, “Contact Formations and Design
Constraints: A New Basis for the Automatic Generation of Robot
Programs,” NATO Advanced Research Workshop: CAD Based Pro-
gramming for Sensor Based Robots, B. Ravani, Ed., pp. 361-395,
July 1988.

[2] B. Donald, “On Motion Planning with Six Degrees of Freedoms:
Solving the Intersection Problems in Configuration Space,” IEEE Int.
Conf. Robotics & Automation (ICRA), 1985.

[3] X. Ji and J. Xiao, “Automatic Generation of High-Level Contact State
Space,” ICRA, pp. 238-244, May 1999.

[4] T. Lefebvre, “Contact Modeling, Parameter Identification and Task
Planning for Autonomous Compliant Motion Using Elementary
Contacts,” Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven,
Belgium, May 2003.

[5] T. Lozano-Pérez, “Spatial Planning: A Configuration Space Ap-
proach,” IEEE Trans. Comput., C-32(2):108-120, 1983.

[6] Q. Luo, E. Staffetti, J. Xiao, “Representation of Contact States
between Free-Form Objects,” ICRA, pp. 3589-3595, April 2004.

[7] Q. Luo and J. Xiao, “Physically Accurate Haptic Rendering with Dy-
namic Effects,” IEEE Computer Graphics and Applications, Special
Issue - Touch-Enabled Interfaces, Nov/Dec. 2004.

[8] F. Pan, J.M. Schimmels, “Efficient Contact State Graph Generation
for Assembly Applications,” ICRA, pp. 2591-2598, Sept. 2003.

[9] D. Ruspini, O. Khatib, “Collision/Contact Models for Dynamic
Simulation and Haptic Interaction,” Proc. 9th Int. Symp. Robotics
Research, pp. 185-194, Oct. 1999.

[10] J. Xiao, “Automatic Determination of Topological Contacts in the
Presence of Sensing Uncertainties,” ICRA, pp. 65-70, May 1993.

[11] J. Xiao and X. Ji, “On Automatic Generation of High-level Contact
State Space,” Int. Journal of Robotics Res., 20(7):584-606, July 2001.

3617

	MAIN MENU

