
Real-Time Adaptive and Trajectory-Optimized
Manipulator Motion Planning

John Vannoy
Computer Science Department

University of North Carolina – Charlotte
Charlotte, NC 28223, USA

jmvannoy@uncc.edu

Jing Xiao
Computer Science Department

University of North Carolina – Charlotte
Charlotte, NC 28223, USA

xiao@uncc.edu

Abstract— While there has been a large body of literature
addressing offline path planning for manipulators, there is
relatively less study on real-time motion planning that occurs
as a manipulator moves in an environment with unknown
obstacles or unknown changes. This paper introduces a
unified and general motion planning approach based on
evolutionary computation that is suitable for both offline and
real-time adaptive motion planning for manipulators under
various optimization criteria and manipulator constraints in
environments with obstacles or changes not known a priori.
The implementation and testing results demonstrate the
effectiveness and efficiency of the approach.

Keywords― manipulator motion planning, real time, adaptive,
time optimal trajectory, environments with unknown changes

I. INTRODUCTION
Motion planning is a fundamental problem in robotics

[7] concerned with devising a desirable motion for a robot
to reach a goal, and motion planning for articulated robotic
manipulators is usually more challenging than for mobile
robots because of the high-degrees of freedom. A well-
studied sub-problem is offline path planning, where the
task is to find a suitable and often collision-free path
between initial and goal configurations of a robot
manipulator in a known and static physical environment.

Randomized algorithms, such as the PRM method [6]
and the evolutionary approach [5], are found to be very
effective in finding a collision-free path for a manipulator
with high degrees of freedom because such algorithms
avoid the hard (and largely open) problem of building high-
dimensional configuration space explicitly by sampling the
configuration space. The PRM method is particularly
popular and has inspired considerable work on various
improvements. One approach [10] improves the efficiency
of PRM by pre-building a road map for a manipulator in an
obstacle-free Cartesian workspace so that the presence of
obstacles can be accounted for by modifying only the
affected portion of the road map; as the result, path
planning can be done in less than 1 second so that on-line
path re-planning is possible if the environment changes.

More recently a different approach [2] was introduced
for mobile manipulator path planning in real-time. The idea
was to decompose the problem into three-dimensional

workspace planning of collision-free volumes in terms of a
“tunnel” connecting the initial and goal locations of the
robot and to guide the manipulator moving through the
tunnel by potential fields in the joint space for local
obstacle avoidance. This resulted in efficient real-time path
planning.

Unlike path planning, motion planning has to produce
executable trajectories for a robot and not merely a
geometrical path. A common approach is to conduct
trajectory planning on the basis of a path generated by a
path planner. A notable framework is the elastic strip
method [3], which can deform a trajectory locally to avoid
moving obstacles inside a “tunnel” generated from path
planning such as mentioned above. The other approach is
to conduct path and trajectory planning simultaneously.
However, most existing effort in this category is focused
on offline algorithms assuming that the environment is
completely known beforehand, i.e., static objects are
known, and moving objects are known with known
trajectories [4, 9]. Only recently a method was introduced
for dealing with unknown moving obstacles in mobile
robot (vehicle) navigation [7].

This paper addresses the problem of simultaneous path
and trajectory planning of a manipulator in an environment
that can change dynamically in ways not known
beforehand. For a manipulator to work in such an
environment safely and efficiently, it needs to be able to
plan feasible motion in real-time (to adjust to sensed
changes). We introduce a unique manipulator motion
planning approach based on evolutionary computation,
which is able to produce not only collision-free but
optimized trajectories in real-time because of the following
characteristics:

 Different optimization criteria can be accommodated
flexibly and easily in a seamless fashion. Optimization
is done directly in the original, continuous space rather
than being confined to a certain limited graph or
roadmap. Trajectories and paths are optimized at the
same time rather than making trajectory planning
conditional to the results of path planning. Thus
trajectories found are more optimized and adaptive to
globally changing environments and situations.

 Sampling of collision-free configurations and search
of feasible and optimized trajectories are done
opportunistically through heuristic operators and
steered by the optimization criteria rather than being
done blindly. Thus search is very efficient.

 Whole paths/trajectories are represented at once and
constantly evolved/improved during planning or
simultaneous planning and execution, unlike
algorithms that build a path/trajectory sequentially so
that a whole path/trajectory can become available only
at the end of the planning process. Our planner can
provide a valid trajectory quickly and continues to
produce better trajectories at any later time – which we
may call anytime planner to suit the need of real-time
planning.

 Our planner is intrinsically parallel with multiple valid
and diverse trajectories present all the time to allow
instant and, if necessary, drastic adjustment to adapt to
newly sensed changes in the environment. This is
different from planners capable of only local trajectory
adjustment based on a set of homotopic paths [3]. It is
also different from sequential planners such as anytime
A* search [11], which speeds up A* search by
loosening bound on solution optimality based on
available search time. The latter also requires building
a grid-like state space for search, which is a limitation
that our planner does not have. Our planner works in
the original continuous environment directly.

 Trajectory evolution (i.e., search) and evaluation (of its
optimality) are constantly adaptive to changes but built
upon the results of previous search (i.e., knowledge
accumulated) to be efficient for real-time processing.

Note that, with the above characteristics, our real-time
motion planner guides a manipulator to follow a feasible
trajectory leading to the goal all the time (according to the
knowledge up to the time). In other words, real-time global
planning is provided. An approach similar in spirit was
introduced in [15] but only for low-dimensional mobile
robots and only for path planning rather than trajectory
planning. The problem addressed in this paper, on the other
hand, is more difficult and less studied.

 The rest of the paper is organized as follows. Section
II provides an overview of our planning algorithm and its
components as well as optimization criteria for trajectory
evaluation and the strategies for evaluation. Section III
introduces the simulation environment for testing the
planner applied to a PUMA 560 robot. Section IV presents
some experimental results and discussions. Section V
concludes the paper.

II.

A.

B.

C.

PLANNING APPROACH
One basic premise of our approach is that the planning

process and the manipulator control process are
interweaving to enable simultaneous robot motion planning
and execution. This is achieved through our planning
algorithm based on evolutionary computation and
customized with effective use of heuristic knowledge.

Basic Planning Algorithm
Our planning algorithm has the following overall

structure of evolutionary computation [12]: A population of
chromosomes is initialized such that each chromosome
represents a potential solution of the problem, which is a
trajectory in our case. The fitness of each chromosome is
evaluated through an evaluation function coding the
optimization criteria. This population is then evolved to be
a fitter population through iterations of improvements,
called generations. In each such generation, certain
chromosomes are selected and altered by certain genetic
operators to form offspring. If an offspring is better than
the worst chromosome in the population, it is used to
replace the worst chromosome and therefore improves
overall fitness of the population. The fittest chromosome in
a population represents the best trajectory up to that
moment. After a number of generations, the fittest
chromosome in the population gives the near-optimal
trajectory.

Trajectory Representation and Initialization
To facilitate real-time simultaneous planning and

execution, a chromosome in our planner is defined as a
trajectory from the manipulator’s current configuration
(with certain velocity and acceleration) to its goal
configuration. It is represented in an ordered list of
successive trajectory segments, where the intersection
configuration of two adjacent segments defines an
intermediate knot point. A chromosome may consist of an
arbitrary number of knot points. The data structure for each
segment contains the bounding knot points of the segment,
the feasibilities of these knot points (i.e., whether they are
collision-free), the fitness information of the segment itself,
and the desired velocities and accelerations at the bounding
knot points if the segment is collision-free, all of which are
obtained through fitness evaluation of the chromosome
based on some optimization criteria (see next section).

Each chromosome in the initial population is generated
as follows. First, the initial manipulator configuration is
used as the first knot point, and the goal manipulator
configuration is used as the last knot point. Next, a random
number of intermediate knot points are decided, and each
intermediate knot point is a randomly sampled
configuration. Now these knot points define a sequence of
path segments. The rest of the information about the
corresponding trajectory segment in the segment data
structure is determined through fitness evaluation of the
chromosome.

Optimization Criteria and Fitness Evaluation
One of the main strengths of the evolutionary technique

is the use of explicit fitness evaluation functions that
enables flexible applications of different optimization
criteria and combination and aggregation of multiple
optimization criteria.

For our manipulator motion planning problem, the hard
optimization constraints are collision and singularity
avoidance. A chromosome is feasible if the trajectory is
collision-free and singularity-free. Note that a path segment
is obtained from linear interpolation (in joint space) of
configurations between the two bounding knot points. The
corresponding trajectory segment is based on the trajectory
of linear interpolation with parabolic blends in joint space

and denoted by a sequence of configurations as a function
of time: Θ(t), t1 ≤t ≤t2. The trajectory segment is collision-
free and singularity-free if every interpolated configuration
is singularity-free and is collision-free at its time step. If all
trajectory segments are collision-free and singularity-free,
the chromosome is called feasible. Otherwise, it is called
infeasible.

We use two different evaluation functions for feasible
and infeasible chromosomes. In each case, the evaluation
function is a cost function to measure the fitness of a
trajectory. The higher the value of the evaluation function,
the worse or less fit a trajectory is. However, a feasible
trajectory is always considered to have better fitness than
an infeasible one. Note that by defining fitness for not only
feasible trajectories but also infeasible ones and by
including both types of chromosomes in the evolution
process for trajectory improvement rather than discarding
infeasible ones, our algorithm does not overlook any useful
information represented in infeasible chromosomes and
thus maximizes the efficiency and effectiveness of
generating near-optimal feasible trajectories.

The evaluation function for a feasible chromosome
combines two optimization criteria: time-optimal trajectory
and manipulability. To measure the former, we use the
minimum time needed for the manipulator to move through
all path segments, taking into account constraints on joint
speed and acceleration of the manipulator. First, the
minimum execution time Tij of each joint i for each path
segment j is calculated based on the trajectory of linear
interpolation with parabolic blends in joint space under the
maximum acceleration and maximum speed constraints of
joint i. Next, the maximum of Tij among all joints, Tmax, j, is
considered the minimum time to complete the path
segment j and is used as the fitness value of the trajectory
segment j. The sum ∑jTmax, j of all trajectory segments is
considered the minimum time needed to complete the
whole path in linear trajectory with parabolic blends. Note
that to find the true minimum time, more sophisticated
methods taking into account dynamics and torque
constraints [1, 13] can be used to determine trajectories.

To evaluate the manipulability associated with a
feasible trajectory, we take the manipulability measure at
each configuration [16] on each path segment, which, for a
square manipulator Jacobian, is simplified as the
determinant of the Jacobian. The inverse of this value will
grow in proportion to the proximity to a singularity, and
can therefore give a measure of cost. The average of such
values along the whole path is aggregated with the
minimum time cost of the trajectory to form a single fitness
value for the trajectory.

If a trajectory is infeasible, the corresponding
evaluation function is defined as the number of collision
configurations (at their respective time steps of the time-
optimal trajectory as computed above) and singularity
configurations found along the path. This number is the
sum of the number of collision configurations and
singularity configurations on each trajectory segment.

It is worth emphasizing that whether a trajectory is
collision-free is evaluated against not only sensed static

obstacles but dynamic obstacles with unknown trajectories.
We track the velocity of each sensed moving obstacle
continuously in each sensing cycle and use the information
to predict the trajectory of the obstacle in order to check if
the obstacle will collide with the robot at the same time on
a particular trajectory of the manipulator. To be safe our
prediction is conservative in that we do not assume that the
obstacle will suddenly reduce its velocity or stop. This
enables our planner to make judgment just as humans do:
when we humans see an obstacle moving towards us, we
try to avoid it under the assumption that it won’t stop or
reduce its speed or change directions until we sense the
changes. Of course, this does not guarantee that our robot
will surely avoid colliding with any moving obstacle, but
without knowing the actual trajectory of such an obstacle
beforehand and by relying on only real-time sensing, that is
the best one can do. If the trajectory or velocity bound of a
moving obstacle is known, then a guaranteed collision-free
trajectory for the manipulator can be determined if one
exists.

It should be noted that in addition to the above criteria,
other criteria could be used and aggregated into the
evaluation function for either feasible chromosomes or
infeasible chromosomes, requiring changes only in the
evaluation procedure, and not to the overall algorithm. We
could choose to optimize feasible chromosomes based on
any number of criteria, including, for example, the sum
total degrees of joint rotation or the amount of energy
consumed. For non-holonomic mobile manipulators, the
non-holonomic constraints could be added as additional
hard constraints for evaluating the feasibility of a trajectory
and incorporated in the evaluation function for infeasible
trajectories.

Note also that regardless of whether a trajectory is
feasible or infeasible, the corresponding evaluation
function is computed as the sum of the costs for individual
trajectory segments. This property greatly facilitates
efficient evaluation of trajectories in each generation of the
planning algorithm since only the altered or affected
trajectory segments need to be re-evaluated, especially in
real-time (see the following two subsections).

D. Genetic Operations
Recall that in each generation s of the planning

algorithm, certain genetic operations are performed on
certain chromosomes to generate hopefully fitter offspring.
There are many ways to design and select genetic
operations and the chromosomes to be operated on in the
literature of evolutionary computation [12, 15]. In our
current implementation, we simply randomly choose one of
the following genetic operations, each of which is designed
heuristically to change the shape of a path:

Insert – a new, random knot point is inserted between
two randomly chosen adjacent knot points of a path.

Delete – a randomly selected knot point is deleted from
the path.

Mutate – a randomly selected knot point is replaced
with a new, randomly generated knot point.

Swap – two randomly selected adjacent knot points

from a single path are swapped.

Crossover – the knot point lists of two parent paths are
divided randomly into two parts respectively and
recombined: the first part of the first path with the second
part of the second path, and the first part of the second path
with the second part of the first path.

Note that the first four operations above are unary
transformations that produce an offspring by changing a
single parent chromosome, which can all be called
mutation operations. The crossover is a reproduction
operation that generates two offspring from two parent
chromosomes.

Depending on if the selected operation is of mutation or
crossover, one or two chromosomes from the current
population P(s) are selected at random. One or two new
chromosomes are generated by applying the selected
genetic operation to the selected chromosome(s) and are
then evaluated. The evaluation of such a new chromosome
can be very fast since the genetic operation only alters
certain path segments, and only the altered segments needs
to be re-evaluated. The fitter offspring is put back into the
population to “squeeze out” the worst chromosome so that
the new population for the next generation P(s+1) is fitter.
Note that P(s) and P(s+1) are of the same size and differ in
one chromosome. This selection procedure is quite
effective for our purpose of improving population fitness
while maintaining diversity at the same time, but it is by no
means the only way: other alternatives may also work.

E. Real-time Improvement and Adaptiveness
The control process of a manipulator normally consists

of a sequence of control cycles for the controller to issue
motion commands to operate the manipulator, with a
known frequency. Conversely, our planning algorithm
based on evolutionary computation plans motions
iteratively through generations. We shall call each such
generation the planning cycle. As we shall see, the
frequency of the control cycle is much lower than the
frequency of the planning cycle, which affords us the
opportunity to perform motion planning and execution
simultaneously.

The process of simultaneous manipulator motion
generation and execution begins once the planner generates
at least one feasible trajectory chromosome relative to the
known information of the environment from the initial
configuration to the goal configuration; this usually takes
20—50 generations. Now the manipulator controller can
start the first control cycle by commanding the manipulator
to follow the time-optimal trajectory of the best feasible
chromosome. During the control cycle, as the manipulator
moves, the planner continues to run with more planning
cycles and continues to improve the fitness of the
chromosome population. The number of planning cycles
executed within each control cycle is limited by the amount
of time that elapses in a control cycle. As we will see later,
one measure of the planning algorithm’s efficiency is the
number of planning cycles that can be executed within a
control cycle.

At the end of the first control cycle, all trajectories in
the population are updated so that their initial configuration

becomes the manipulator’s current configuration (see
Section II.B). At this moment a better feasible trajectory
may emerge as the result of continued planning. If so, the
manipulator will readily change course to execute this
(current) best trajectory instead, and a new control cycle
begins. When a change in the environment is sensed (from
a sensing cycle), the constantly running planner will adapt
the chromosome population to the change in real time in
that trajectories are re-checked for feasibility and fitness
values against the part of the environment that has
changed.

Such control/sensing/planning loop continues to move
the manipulator towards the goal configuration while
improving the trajectories it follows if there is no change in
the environment or both adapting and improving the
trajectories if there is a sensed change.

In general, by either only re-evaluating selected
trajectory segments if there is no change in the
environment or only checking against selected obstacles if
there is a change, the result is a very efficient evaluation
process.

Fig. 1 illustrates the relationship between planning,
control and sensing cycles. Sensory information is assumed
to be up-to-date at every control cycle, but this is not
mandatory. The sensing cycle may be more or less
frequent than the control cycle, but the precision of
detecting environmental changes is obviously limited by
the resolution of the sensing cycle, up to a maximum
resolution of once per control cycle.

Figure 1.

III.

Relationship among planning, control and sensing cycles

It is worth noting that during the simultaneous planning
and motion execution, when the manipulator changes
course from one trajectory to another, the new trajectory is
indeed more time-optimal even after taking into account
the cost of change (i.e., the possible acceleration or
deceleration time needed for the change) as ensured by the
fitness evaluation function (Section II. C) so that the
change is smooth and stable, and the actual trajectory
executed by the robot is the best possible result.

PUMA 560 AND ENVIRONMENT SIMULATOR
In order to test the introduced motion planner, we build

a manipulator simulator for PUMA 560 equipped with
forward and inverse kinematics, manipulator Jacobian,
trajectory generation and control/execution, as well as an
interactive three-dimensional graphic display. Inverse
kinematics is needed to allow the user to interactively
move the manipulator to feasible initial and goal

configurations, shown on the screen in Cartesian space.

The interactive, three-dimensional graphic display
employs the mouse and keyboard for user input and
features the following user interface functionality: (1)
trackball-style rotation of the environment about two axes;
(2) straight-line movement of the wrist position along all
three axes; (3) control of the wrist rotation angles, about all
three axes; (4) real-time display of the path population and
trajectory execution.

Figure 2 shows three views of the simulator. The line
segments shown are to illustrate the chromosome
population (total 20), indicating the wrist position at each
knot point in each path starting from the position where the
gripper is at to the goal position. Note that the lines
themselves are meant to show the order in which the knot
points are visited in each path and certainly not the actual
paths. The heavy line in each view is to indicate the path
with the highest fitness for its trajectory.

Figure 2.

IV.

Illustration of object and path population (line segments)

Both the PUMA and the objects in the environment are
modeled as polygonal meshes1 to be general. Real-time
collision detection is achieved by the software package
[14]. To simulate environment dynamics, objects are
allowed to move during the trajectory execution; however,
the planning algorithm has no a priori knowledge of these
movements. As explained earlier, the planning algorithm
adapts to the environment dynamics in real time.

EXPERIMENTAL RESULTS AND DISCUSSION
Given the control cycle frequency and the acceleration

and velocity constraints of the PUMA, we are able to apply
our planner and simulate the simultaneous motion planning
and execution of the PUMA realistically. In our
experiments, the frequency of the control cycle is 50Hz,
which is similar to that of an actual manipulator, and the
maximum joint velocity and acceleration for the PUMA are
set to be 120 deg/sec and 60 deg/sec2, respectively. The
control cycle of the manipulator is therefore quite slow, as
compared to the clock cycle of the computer. The result of
this is a surplus of computer clock cycles that are useful for
motion planning, as the computer in effect “waits” for the
manipulator to move. This is exactly as it would be using a
real manipulator, in place of our simulator, since the speeds
of the actuators are very slow as compared to the speed of a
modern computer processor. One measure of the time
efficiency of our algorithm can therefore be in terms of
how many planning cycles can be executed during each
control cycle when the motion is executed. Another
measure is the total number of planning cycles during the

motion that leads the manipulator from the initial
configuration to the goal configuration.

Given the initial and goal configurations in an
environment, the overall performance of the algorithm
depends on the environment complexity:

 static complexity as determined by the number, size
and arrangement of objects;

 dynamic complexity as determined by the number of
moving objects and their (often unknown) trajectories.

Higher complexity results in a longer planning cycle, and
thus fewer planning cycles executed between control
cycles.

 Figure 3 illustrates the working of the motion planner in
a sample test environment that contains one static obstacle
(floor) and two moving obstacles. The goal is to move the

Figure 3. A sample environment

end-effector to the top of the white pedestal without
collision. First, the rectangular solid moves down during
the robot motion to close the open space between it and the
floor. The robot trajectory initially passes through the open
space, but as the rectangular solid moves down, closing up
the opening, the planner adapts the robot trajectory to avoid
collisions while still achieving the goal. Second, the bunny
moves through the goal location of the end-effector directly
from left to right during the robot motion, but since the
planner tracks the obstacle’s trajectory and plans the
robot’s trajectory accordingly, it enables the robot to reach
the goal without colliding with the moving bunny. Note
that the path population looks different in different
snapshots, which shows the constant adaptation over time.

Table 1 summarizes the performance of the sample task
on a 2.6GHz personal computer. The total elapsed time

1 Thanks to Diego Ruspini for the PUMA mesh code.

indicates the time used by the manipulator to complete the
motion under its joint velocity and acceleration constraints.
If the environment has no obstacle, the execution time of
the motion from the initial to the goal configuration in
linear trajectory with parabolic blends takes 3.8 seconds.

TABLE I. PERFORMANCE DATA OF THE SAMPLE ENVIRONMENT

Total
Elapsed
(s)

Time per
Planning
cycle (ms)

Plan Cycles
Per Control
Cycle

Total
Planning
Cycles

4.96 4.3 4.65 1156

 We have tested our algorithm in different environments
of different static and dynamic complexities. Figure 4
shows a setting with 5 bunnies. With different spatial
arrangements of these bunnies and by allowing different
bunnies to be either static or dynamic, we created different
environments for the same task – the same start and goal
configurations of the manipulator. The environments can
be roughly characterized by the number of static and
dynamic obstacles. Among the 5 obstacles, we change the
dynamic nature of the environments from allowing only
one object to move (i.e., free-fly) to allowing all objects to
move in different directions. Table 2 shows the
performance data measured over these different
environments of varying complexity with the same
computer. Note that ENV Type classifies the 5 different
environments by the number of static (S) and dynamic (D)
obstacles. The last row shows the average performance of
all these environments. As the results show, the planning
cycle of our planner for the entire population of
trajectories, i.e., the planner update rate, has the average
frequency of about 200Hz.

Figure 4.

V.

A setting with five bunnies

CONCLUSIONS
This paper addresses the problem of real-time adaptive

and trajectory-optimized planning of manipulator motion in
an environment with changes that are not known
beforehand. A general approach based on evolutionary
computation is introduced, which achieves simultaneous
planning and execution of not only collision-free but also
optimized motion, taking into account manipulator
constraints. The method is tested on a PUMA 560 robot in
simulated task environments of different static and
dynamic complexity with promising results. Future work
includes further testing and improving the algorithm for

more complex robots and tasks and incorporating realistic
sensing scenarios and constraints. Testing on a real robot is
also necessary.

TABLE II. AVERAGE PERFORMANCE DATA OVER 50 EXECUTIONS
FOR EACH OF THE 5 ENVIRONMENTS

ENV
Type
S, D

Total
Elapsed
Time (s)

Time per
Planning
cycle (ms)

Plan Cycles
Per Control
Cycle

4,1 4.62 4.27 4.68
3,2 4.80 4.61 4.34
2,3 5.65 5.14 3.89
1,4 6.24 5.49 3.64
0,5 6.49 5.97 3.35
Average 5.56 5.10 3.98

REFERENCES

[1] J. E. Bobrow, S. Dubowski, and J. S. Gibson, “On the Optimal
Control of Robotic Manipulators with Actuator Constraints,” Proc.
Amer. Control Conf., June 1983.

[2] O. Brock and L. E. Kavraki, “Decomposition-based Motion
Planning: A Framework for Real-time Motion Planning in High-
dimensional Configuration Spaces,” Proc. IEEE Int. Conf.
Robotics & Automation, April 2001.

[3] O. Brock and O. Khatib, “Elastic Strips: A Framework for Motion
Generation in Human Environments,” International Journal of
Robotics Research (IJRR), 21(12):1031-1052, 2002.

[4] P. Fiorini and Z. Shiller, “Time Optimal Trajectory Planning in
Dynamic Environments,” Proc. IEEE Int. Conf. Robotics &
Automation, 2:1553-1558, 1996.

[5] C. Hocaoglu and A.C. Sanderson, “Evolutionary Path Planning
Using Multiresolution Path Representation,” Proc. IEEE Int. Conf.
Robotics & Automation, May 1998.

[6] L. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars,
“Probabilistic Roadmaps for Path Planning in High-dimensional
Configuration Space," IEEE Trans. Robotics & Automation,
12(4):566--580, 1996.

[7] F. Large, D-A. Vasquez-Govea, Th. Fraichard, and C. Laugier,
“Hihg-speed Navigation among Unkonwn Moving Obstacles,”
Proc. IEEE Intell. Vehicles Symposium, 2004.

[8] J.C. Latombe, Robot Motion Planning, Kluwer Academic
Publishers, Norwell, MA, 1991.

[9] S. M. LaValle, J. J. Kuffner, “Randomized Kinodynamic
Planning,” IJRR, 20(5):378-400, May 2001.

[10] P. Leven, and S. Hutchinson, “Toward Real-time Path Planning in
Changing Environments,” Proc. Workshop Algorithmic
Foundations Robotics, pp. 363-376, 2000.

[11] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
Provable Bounds on Sub-Optimality,” Proc. Conf. Neural Info.
Processing Sys., MIT Press, 2003.

[12] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, 3rd Edition, Springer-Verlag, New York, 1996.

[13] K. G. Shin and N. D. Mckay, “Minimum-Time Control of Robotic
Manipulators with Geometric Path Constraints,” IEEE Trans.
Automatic Control, 30(6):531-541, 1985.

[14] P. Terdiman, http://www.codercorner.com/Opcode.htm.
[15] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski, “Adaptive

Evolutionary Planner/Navigator for Mobile Robots,” IEEE Trans.
Evolutionary Computation, 1(1):18-28, April 1997.

[16] T. Yoshikawa, “Manipulability of Robotic Mechanisms,” IJRR,
4(2):3-9, April 1985.

http://www.codercorner.com/Opcode.htm

	Introduction
	Planning Approach
	Basic Planning Algorithm
	Trajectory Representation and Initialization
	Optimization Criteria and Fitness Evaluation
	Genetic Operations
	Real-time Improvement and Adaptiveness

	PUMA 560 and Environment Simulator
	Experimental Results and Discussion
	Conclusions
	
	
	
	References

