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Abstract— While there has been a large body of literature 
addressing offline path planning for manipulators, there is 
relatively less study on real-time motion planning that occurs 
as a manipulator moves in an environment with unknown 
obstacles or unknown changes. This paper introduces a 
unified and general motion planning approach based on 
evolutionary computation that is suitable for both offline and 
real-time adaptive motion planning for manipulators under 
various optimization criteria and manipulator constraints in 
environments with obstacles or changes not known a priori. 
The implementation and testing results demonstrate the 
effectiveness and efficiency of the approach. 

Keywords― manipulator motion planning, real time, adaptive, 
time optimal trajectory, environments with unknown changes 

I. INTRODUCTION 
Motion planning is a fundamental problem in robotics 

[7] concerned with devising a desirable motion for a robot 
to reach a goal, and motion planning for articulated robotic 
manipulators is usually more challenging than for mobile 
robots because of the high-degrees of freedom. A well-
studied sub-problem is offline path planning, where the 
task is to find a suitable and often collision-free path 
between initial and goal configurations of a robot 
manipulator in a known and static physical environment.  

Randomized algorithms, such as the PRM method [6] 
and the evolutionary approach [5], are found to be very 
effective in finding a collision-free path for a manipulator 
with high degrees of freedom because such algorithms 
avoid the hard (and largely open) problem of building high-
dimensional configuration space explicitly by sampling the 
configuration space. The PRM method is particularly 
popular and has inspired considerable work on various 
improvements. One approach [10] improves the efficiency 
of PRM by pre-building a road map for a manipulator in an 
obstacle-free Cartesian workspace so that the presence of 
obstacles can be accounted for by modifying only the 
affected portion of the road map; as the result, path 
planning can be done in less than 1 second so that on-line 
path re-planning is possible if the environment changes.  

More recently a different approach [2] was introduced 
for mobile manipulator path planning in real-time. The idea 
was to decompose the problem into three-dimensional 

workspace planning of collision-free volumes in terms of a 
“tunnel” connecting the initial and goal locations of the 
robot and to guide the manipulator moving through the 
tunnel by potential fields in the joint space for local 
obstacle avoidance. This resulted in efficient real-time path 
planning.  

Unlike path planning, motion planning has to produce 
executable trajectories for a robot and not merely a 
geometrical path. A common approach is to conduct 
trajectory planning on the basis of a path generated by a 
path planner. A notable framework is the elastic strip 
method [3], which can deform a trajectory locally to avoid 
moving obstacles inside a “tunnel” generated from path 
planning such as mentioned above. The other approach is 
to conduct path and trajectory planning simultaneously.  
However, most existing effort in this category is focused 
on offline algorithms assuming that the environment is 
completely known beforehand, i.e., static objects are 
known, and moving objects are known with known 
trajectories [4, 9].  Only recently a method was introduced 
for dealing with unknown moving obstacles in mobile 
robot (vehicle) navigation [7].  

This paper addresses the problem of simultaneous path 
and trajectory planning of a manipulator in an environment 
that can change dynamically in ways not known 
beforehand. For a manipulator to work in such an 
environment safely and efficiently, it needs to be able to 
plan feasible motion in real-time (to adjust to sensed 
changes). We introduce a unique manipulator motion 
planning approach based on evolutionary computation, 
which is able to produce not only collision-free but 
optimized trajectories in real-time because of the following 
characteristics:  

 Different optimization criteria can be accommodated 
flexibly and easily in a seamless fashion. Optimization 
is done directly in the original, continuous space rather 
than being confined to a certain limited graph or 
roadmap.  Trajectories and paths are optimized at the 
same time rather than making trajectory planning 
conditional to the results of path planning. Thus 
trajectories found are more optimized and adaptive to 
globally changing environments and situations. 



 Sampling of collision-free configurations and search 
of feasible and optimized trajectories are done 
opportunistically through heuristic operators and 
steered by the optimization criteria rather than being 
done blindly.  Thus search is very efficient. 

 Whole paths/trajectories are represented at once and 
constantly evolved/improved during planning or 
simultaneous planning and execution, unlike 
algorithms that build a path/trajectory sequentially so 
that a whole path/trajectory can become available only 
at the end of the planning process. Our planner can 
provide a valid trajectory quickly and continues to 
produce better trajectories at any later time – which we 
may call anytime planner to suit the need of real-time 
planning.  

 Our planner is intrinsically parallel with multiple valid 
and diverse trajectories present all the time to allow 
instant and, if necessary, drastic adjustment to adapt to 
newly sensed changes in the environment. This is 
different from planners capable of only local trajectory 
adjustment based on a set of homotopic paths [3]. It is 
also different from sequential planners such as anytime 
A* search [11], which speeds up A* search by 
loosening bound on solution optimality based on 
available search time. The latter also requires building 
a grid-like state space for search, which is a limitation 
that our planner does not have. Our planner works in 
the original continuous environment directly.  

 Trajectory evolution (i.e., search) and evaluation (of its 
optimality) are constantly adaptive to changes but built 
upon the results of previous search (i.e., knowledge 
accumulated) to be efficient for real-time processing.  

Note that, with the above characteristics, our real-time 
motion planner guides a manipulator to follow a feasible 
trajectory leading to the goal all the time (according to the 
knowledge up to the time). In other words, real-time global 
planning is provided. An approach similar in spirit was 
introduced in [15] but only for low-dimensional mobile 
robots and only for path planning rather than trajectory 
planning. The problem addressed in this paper, on the other 
hand, is more difficult and less studied. 

    The rest of the paper is organized as follows. Section 
II provides an overview of our planning algorithm and its 
components as well as optimization criteria for trajectory 
evaluation and the strategies for evaluation.  Section III 
introduces the simulation environment for testing the 
planner applied to a PUMA 560 robot. Section IV presents 
some experimental results and discussions. Section V 
concludes the paper.  

II. 

A. 

B. 

C. 

PLANNING APPROACH 
One basic premise of our approach is that the planning 

process and the manipulator control process are 
interweaving to enable simultaneous robot motion planning 
and execution.  This is achieved through our planning 
algorithm based on evolutionary computation and 
customized with effective use of heuristic knowledge. 

Basic Planning Algorithm 
Our planning algorithm has the following overall 

structure of evolutionary computation [12]: A population of 
chromosomes is initialized such that each chromosome 
represents a potential solution of the problem, which is a 
trajectory in our case. The fitness of each chromosome is 
evaluated through an evaluation function coding the 
optimization criteria. This population is then evolved to be 
a fitter population through iterations of improvements, 
called generations. In each such generation, certain 
chromosomes are selected and altered by certain genetic 
operators to form offspring. If an offspring is better than 
the worst chromosome in the population, it is used to 
replace the worst chromosome and therefore improves 
overall fitness of the population. The fittest chromosome in 
a population represents the best trajectory up to that 
moment. After a number of generations, the fittest 
chromosome in the population gives the near-optimal 
trajectory. 

Trajectory Representation and Initialization 
To facilitate real-time simultaneous planning and 

execution, a chromosome in our planner is defined as a 
trajectory from the manipulator’s current configuration 
(with certain velocity and acceleration) to its goal 
configuration. It is represented in an ordered list of 
successive trajectory segments, where the intersection 
configuration of two adjacent segments defines an 
intermediate knot point. A chromosome may consist of an 
arbitrary number of knot points. The data structure for each 
segment contains the bounding knot points of the segment, 
the feasibilities of these knot points (i.e., whether they are 
collision-free), the fitness information of the segment itself, 
and the desired velocities and accelerations at the bounding 
knot points if the segment is collision-free, all of which are 
obtained through fitness evaluation of the chromosome 
based on some optimization criteria (see next section). 

Each chromosome in the initial population is generated 
as follows. First, the initial manipulator configuration is 
used as the first knot point, and the goal manipulator 
configuration is used as the last knot point.  Next, a random 
number of intermediate knot points are decided, and each 
intermediate knot point is a randomly sampled 
configuration. Now these knot points define a sequence of 
path segments. The rest of the information about the 
corresponding trajectory segment in the segment data 
structure is determined through fitness evaluation of the 
chromosome.  

Optimization Criteria and Fitness Evaluation 
One of the main strengths of the evolutionary technique 

is the use of explicit fitness evaluation functions that 
enables flexible applications of different optimization 
criteria and combination and aggregation of multiple 
optimization criteria.  

For our manipulator motion planning problem, the hard 
optimization constraints are collision and singularity 
avoidance. A chromosome is feasible if the trajectory is 
collision-free and singularity-free. Note that a path segment 
is obtained from linear interpolation (in joint space) of 
configurations between the two bounding knot points. The 
corresponding trajectory segment is based on the trajectory 
of linear interpolation with parabolic blends in joint space 



and denoted by a sequence of configurations as a function 
of time: Θ(t), t1 ≤t ≤t2. The trajectory segment is collision-
free and singularity-free if every interpolated configuration 
is singularity-free and is collision-free at its time step. If all 
trajectory segments are collision-free and singularity-free, 
the chromosome is called feasible. Otherwise, it is called 
infeasible.  

We use two different evaluation functions for feasible 
and infeasible chromosomes. In each case, the evaluation 
function is a cost function to measure the fitness of a 
trajectory. The higher the value of the evaluation function, 
the worse or less fit a trajectory is. However, a feasible 
trajectory is always considered to have better fitness than 
an infeasible one. Note that by defining fitness for not only 
feasible trajectories but also infeasible ones and by 
including both types of chromosomes in the evolution 
process for trajectory improvement rather than discarding 
infeasible ones, our algorithm does not overlook any useful 
information represented in infeasible chromosomes and 
thus maximizes the efficiency and effectiveness of 
generating near-optimal feasible trajectories.  

The evaluation function for a feasible chromosome 
combines two optimization criteria: time-optimal trajectory 
and manipulability. To measure the former, we use the 
minimum time needed for the manipulator to move through 
all path segments, taking into account constraints on joint 
speed and acceleration of the manipulator. First, the 
minimum execution time Tij of each joint i for each path 
segment j is calculated based on the trajectory of linear 
interpolation with parabolic blends in joint space under the 
maximum acceleration and maximum speed constraints of 
joint i. Next, the maximum of Tij among all joints, Tmax, j, is 
considered the minimum time to complete the path 
segment j and is used as the fitness value of the trajectory 
segment j. The sum ∑jTmax, j of all trajectory segments is 
considered the minimum time needed to complete the 
whole path in linear trajectory with parabolic blends. Note 
that to find the true minimum time, more sophisticated 
methods taking into account dynamics and torque 
constraints [1, 13] can be used to determine trajectories.  

To evaluate the manipulability associated with a 
feasible trajectory, we take the manipulability measure at 
each configuration [16] on each path segment, which, for a 
square manipulator Jacobian, is simplified as the 
determinant of the Jacobian. The inverse of this value will 
grow in proportion to the proximity to a singularity, and 
can therefore give a measure of cost. The average of such 
values along the whole path is aggregated with the 
minimum time cost of the trajectory to form a single fitness 
value for the trajectory. 

If a trajectory is infeasible, the corresponding 
evaluation function is defined as the number of collision 
configurations (at their respective time steps of the time-
optimal trajectory as computed above) and singularity 
configurations found along the path. This number is the 
sum of the number of collision configurations and 
singularity configurations on each trajectory segment. 

It is worth emphasizing that whether a trajectory is 
collision-free is evaluated against not only sensed static 

obstacles but dynamic obstacles with unknown trajectories. 
We track the velocity of each sensed moving obstacle 
continuously in each sensing cycle and use the information 
to predict the trajectory of the obstacle in order to check if 
the obstacle will collide with the robot at the same time on 
a particular trajectory of the manipulator. To be safe our 
prediction is conservative in that we do not assume that the 
obstacle will suddenly reduce its velocity or stop. This 
enables our planner to make judgment just as humans do: 
when we humans see an obstacle moving towards us, we 
try to avoid it under the assumption that it won’t stop or 
reduce its speed or change directions until we sense the 
changes. Of course, this does not guarantee that our robot 
will surely avoid colliding with any moving obstacle, but 
without knowing the actual trajectory of such an obstacle 
beforehand and by relying on only real-time sensing, that is 
the best one can do. If the trajectory or velocity bound of a 
moving obstacle is known, then a guaranteed collision-free 
trajectory for the manipulator can be determined if one 
exists.   

It should be noted that in addition to the above criteria, 
other criteria could be used and aggregated into the 
evaluation function for either feasible chromosomes or 
infeasible chromosomes, requiring changes only in the 
evaluation procedure, and not to the overall algorithm. We 
could choose to optimize feasible chromosomes based on 
any number of criteria, including, for example, the sum 
total degrees of joint rotation or the amount of energy 
consumed. For non-holonomic mobile manipulators, the 
non-holonomic constraints could be added as additional 
hard constraints for evaluating the feasibility of a trajectory 
and incorporated in the evaluation function for infeasible 
trajectories.   

Note also that regardless of whether a trajectory is 
feasible or infeasible, the corresponding evaluation 
function is computed as the sum of the costs for individual 
trajectory segments. This property greatly facilitates 
efficient evaluation of trajectories in each generation of the 
planning algorithm since only the altered or affected 
trajectory segments need to be re-evaluated, especially in 
real-time (see the following two subsections).   

D. Genetic Operations 
Recall that in each generation s of the planning 

algorithm, certain genetic operations are performed on 
certain chromosomes to generate hopefully fitter offspring. 
There are many ways to design and select genetic 
operations and the chromosomes to be operated on in the 
literature of evolutionary computation [12, 15]. In our 
current implementation, we simply randomly choose one of 
the following genetic operations, each of which is designed 
heuristically to change the shape of a path: 

Insert – a new, random knot point is inserted between 
two randomly chosen adjacent knot points of a path. 

Delete – a randomly selected knot point is deleted from 
the path. 

Mutate – a randomly selected knot point is replaced 
with a new, randomly generated knot point. 

Swap – two randomly selected adjacent knot points 



from a single path are swapped. 

Crossover – the knot point lists of two parent paths are 
divided randomly into two parts respectively and 
recombined:  the first part of the first path with the second 
part of the second path, and the first part of the second path 
with the second part of the first path. 

Note that the first four operations above are unary 
transformations that produce an offspring by changing a 
single parent chromosome, which can all be called 
mutation operations. The crossover is a reproduction 
operation that generates two offspring from two parent 
chromosomes.  

Depending on if the selected operation is of mutation or 
crossover, one or two chromosomes from the current 
population P(s) are selected at random.  One or two new 
chromosomes are generated by applying the selected 
genetic operation to the selected chromosome(s) and are 
then evaluated. The evaluation of such a new chromosome 
can be very fast since the genetic operation only alters 
certain path segments, and only the altered segments needs 
to be re-evaluated. The fitter offspring is put back into the 
population to “squeeze out” the worst chromosome so that 
the new population for the next generation P(s+1) is fitter. 
Note that P(s) and P(s+1) are of the same size and differ in 
one chromosome. This selection procedure is quite 
effective for our purpose of improving population fitness 
while maintaining diversity at the same time, but it is by no 
means the only way: other alternatives may also work.  

E. Real-time Improvement and Adaptiveness 
The control process of a manipulator normally consists 

of a sequence of control cycles for the controller to issue 
motion commands to operate the manipulator, with a 
known frequency. Conversely, our planning algorithm 
based on evolutionary computation plans motions 
iteratively through generations. We shall call each such 
generation the planning cycle.  As we shall see, the 
frequency of the control cycle is much lower than the 
frequency of the planning cycle, which affords us the 
opportunity to perform motion planning and execution 
simultaneously. 

The process of simultaneous manipulator motion 
generation and execution begins once the planner generates 
at least one feasible trajectory chromosome relative to the 
known information of the environment from the initial 
configuration to the goal configuration; this usually takes 
20—50 generations. Now the manipulator controller can 
start the first control cycle by commanding the manipulator 
to follow the time-optimal trajectory of the best feasible 
chromosome. During the control cycle, as the manipulator 
moves, the planner continues to run with more planning 
cycles and continues to improve the fitness of the 
chromosome population. The number of planning cycles 
executed within each control cycle is limited by the amount 
of time that elapses in a control cycle. As we will see later, 
one measure of the planning algorithm’s efficiency is the 
number of planning cycles that can be executed within a 
control cycle. 

At the end of the first control cycle, all trajectories in 
the population are updated so that their initial configuration 

becomes the manipulator’s current configuration (see 
Section II.B). At this moment a better feasible trajectory 
may emerge as the result of continued planning. If so, the 
manipulator will readily change course to execute this 
(current) best trajectory instead, and a new control cycle 
begins. When a change in the environment is sensed (from 
a sensing cycle), the constantly running planner will adapt 
the chromosome population to the change in real time in 
that trajectories are re-checked for feasibility and fitness 
values against the part of the environment that has 
changed. 

Such control/sensing/planning loop continues to move 
the manipulator towards the goal configuration while 
improving the trajectories it follows if there is no change in 
the environment or both adapting and improving the 
trajectories if there is a sensed change.  

In general, by either only re-evaluating selected 
trajectory segments if there is no change in the 
environment or only checking against selected obstacles if 
there is a change, the result is a very efficient evaluation 
process. 

Fig. 1 illustrates the relationship between planning, 
control and sensing cycles. Sensory information is assumed 
to be up-to-date at every control cycle, but this is not 
mandatory.  The sensing cycle may be more or less 
frequent than the control cycle, but the precision of 
detecting environmental changes is obviously limited by 
the resolution of the sensing cycle, up to a maximum 
resolution of once per control cycle.  

 
Figure 1.  

III. 

Relationship among planning, control and sensing cycles 

It is worth noting that during the simultaneous planning 
and motion execution, when the manipulator changes 
course from one trajectory to another, the new trajectory is 
indeed more time-optimal even after taking into account 
the cost of change (i.e., the possible acceleration or 
deceleration time needed for the change) as ensured by the 
fitness evaluation function (Section II. C) so that the 
change is smooth and stable, and the actual trajectory 
executed by the robot is the best possible result.  

PUMA 560 AND ENVIRONMENT SIMULATOR 
In order to test the introduced motion planner, we build 

a manipulator simulator for PUMA 560 equipped with 
forward and inverse kinematics, manipulator Jacobian, 
trajectory generation and control/execution, as well as an 
interactive three-dimensional graphic display. Inverse 
kinematics is needed to allow the user to interactively 
move the manipulator to feasible initial and goal 



configurations, shown on the screen in Cartesian space.  

The interactive, three-dimensional graphic display 
employs the mouse and keyboard for user input and 
features the following user interface functionality: (1) 
trackball-style rotation of the environment about two axes; 
(2) straight-line movement of the wrist position along all 
three axes; (3) control of the wrist rotation angles, about all 
three axes; (4) real-time display of the path population and 
trajectory execution. 

Figure 2 shows three views of the simulator.  The line 
segments shown are to illustrate the chromosome 
population (total 20), indicating the wrist position at each 
knot point in each path starting from the position where the 
gripper is at to the goal position.  Note that the lines 
themselves are meant to show the order in which the knot 
points are visited in each path and certainly not the actual 
paths.  The heavy line in each view is to indicate the path 
with the highest fitness for its trajectory. 

 
Figure 2.  

IV. 

                                                          

Illustration of object and path population (line segments)  

Both the PUMA and the objects in the environment are 
modeled as polygonal meshes1 to be general. Real-time 
collision detection is achieved by the software package 
[14]. To simulate environment dynamics, objects are 
allowed to move during the trajectory execution; however, 
the planning algorithm has no a priori knowledge of these 
movements. As explained earlier, the planning algorithm 
adapts to the environment dynamics in real time. 

EXPERIMENTAL RESULTS AND DISCUSSION 
Given the control cycle frequency and the acceleration 

and velocity constraints of the PUMA, we are able to apply 
our planner and simulate the simultaneous motion planning 
and execution of the PUMA realistically. In our 
experiments, the frequency of the control cycle is 50Hz, 
which is similar to that of an actual manipulator, and the 
maximum joint velocity and acceleration for the PUMA are 
set to be 120 deg/sec and 60 deg/sec2, respectively.  The 
control cycle of the manipulator is therefore quite slow, as 
compared to the clock cycle of the computer.  The result of 
this is a surplus of computer clock cycles that are useful for 
motion planning, as the computer in effect “waits” for the 
manipulator to move.  This is exactly as it would be using a 
real manipulator, in place of our simulator, since the speeds 
of the actuators are very slow as compared to the speed of a 
modern computer processor. One measure of the time 
efficiency of our algorithm can therefore be in terms of 
how many planning cycles can be executed during each 
control cycle when the motion is executed.  Another 
measure is the total number of planning cycles during the 

motion that leads the manipulator from the initial 
configuration to the goal configuration. 

Given the initial and goal configurations in an 
environment, the overall performance of the algorithm 
depends on the environment complexity: 

 static complexity as determined by the number, size 
and arrangement of objects; 

 dynamic complexity as determined by the number of 
moving objects and their (often unknown) trajectories. 

Higher complexity results in a longer planning cycle, and 
thus fewer planning cycles executed between control 
cycles.   

    Figure 3 illustrates the working of the motion planner in 
a sample test environment that contains one static obstacle 
(floor) and two moving obstacles. The goal is to move the  

 
Figure 3.  A sample environment 

end-effector to the top of the white pedestal without 
collision.  First, the rectangular solid moves down during 
the robot motion to close the open space between it and the 
floor. The robot trajectory initially passes through the open 
space, but as the rectangular solid moves down, closing up 
the opening, the planner adapts the robot trajectory to avoid 
collisions while still achieving the goal. Second, the bunny 
moves through the goal location of the end-effector directly 
from left to right during the robot motion, but since the 
planner tracks the obstacle’s trajectory and plans the 
robot’s trajectory accordingly, it enables the robot to reach 
the goal without colliding with the moving bunny. Note 
that the path population looks different in different 
snapshots, which shows the constant adaptation over time. 

Table 1 summarizes the performance of the sample task 
on a 2.6GHz personal computer.  The total elapsed time  

1 Thanks to Diego Ruspini for the PUMA mesh code.   



indicates the time used by the manipulator to complete the 
motion under its joint velocity and acceleration constraints. 
If the environment has no obstacle, the execution time of 
the motion from the initial to the goal configuration in 
linear trajectory with parabolic blends takes 3.8 seconds.  

TABLE I.  PERFORMANCE DATA OF THE SAMPLE ENVIRONMENT 

Total 
Elapsed 
(s) 

Time per 
Planning 
cycle (ms) 

Plan Cycles 
Per Control 
Cycle 

Total 
Planning 
Cycles 

4.96 4.3 4.65 1156 
 

    We have tested our algorithm in different environments 
of different static and dynamic complexities. Figure 4 
shows a setting with 5 bunnies. With different spatial 
arrangements of these bunnies and by allowing different 
bunnies to be either static or dynamic, we created different 
environments for the same task – the same start and goal 
configurations of the manipulator. The environments can 
be roughly characterized by the number of static and 
dynamic obstacles. Among the 5 obstacles, we change the 
dynamic nature of the environments from allowing only 
one object to move (i.e., free-fly) to allowing all objects to 
move in different directions. Table 2 shows the 
performance data measured over these different 
environments of varying complexity with the same 
computer. Note that ENV Type classifies the 5 different 
environments by the number of static (S) and dynamic (D) 
obstacles. The last row shows the average performance of 
all these environments. As the results show, the planning 
cycle of our planner for the entire population of 
trajectories, i.e., the planner update rate, has the average 
frequency of about 200Hz. 

 
Figure 4.  

V. 

A setting with five bunnies 

CONCLUSIONS 
This paper addresses the problem of real-time adaptive 

and trajectory-optimized planning of manipulator motion in 
an environment with changes that are not known 
beforehand. A general approach based on evolutionary 
computation is introduced, which achieves simultaneous 
planning and execution of not only collision-free but also 
optimized motion, taking into account manipulator 
constraints. The method is tested on a PUMA 560 robot in 
simulated task environments of different static and 
dynamic complexity with promising results.  Future work 
includes further testing and improving the algorithm for 

more complex robots and tasks and incorporating realistic 
sensing scenarios and constraints. Testing on a real robot is 
also necessary.  

TABLE II.  AVERAGE PERFORMANCE DATA OVER 50 EXECUTIONS 
FOR EACH OF THE 5 ENVIRONMENTS 

ENV 
Type 
S, D 

Total 
Elapsed 
Time (s) 

Time per 
Planning 
cycle (ms) 

Plan Cycles 
Per Control 
Cycle 

4,1 4.62 4.27 4.68 
3,2 4.80 4.61 4.34 
2,3 5.65 5.14 3.89 
1,4 6.24 5.49 3.64 
0,5 6.49 5.97 3.35 
Average 5.56 5.10 3.98 
 

REFERENCES 
 

[1] J. E. Bobrow, S. Dubowski, and J. S. Gibson, “On the Optimal 
Control of Robotic Manipulators  with Actuator Constraints,” Proc. 
Amer. Control Conf., June 1983.  

[2] O. Brock and L. E. Kavraki, “Decomposition-based Motion 
Planning: A Framework for Real-time Motion Planning in High-
dimensional Configuration Spaces,” Proc. IEEE Int. Conf.  
Robotics & Automation,  April 2001. 

[3] O. Brock and O. Khatib, “Elastic Strips: A Framework for Motion 
Generation in Human Environments,” International Journal of 
Robotics Research (IJRR),  21(12):1031-1052, 2002. 

[4] P. Fiorini and Z. Shiller, “Time Optimal Trajectory Planning in 
Dynamic Environments,” Proc. IEEE Int. Conf. Robotics & 
Automation, 2:1553-1558, 1996.  

[5] C. Hocaoglu and A.C. Sanderson, “Evolutionary Path Planning 
Using Multiresolution Path Representation,” Proc. IEEE Int. Conf. 
Robotics & Automation, May 1998. 

[6] L. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars, 
“Probabilistic Roadmaps for Path Planning in High-dimensional 
Configuration Space," IEEE Trans. Robotics & Automation, 
12(4):566--580, 1996. 

[7] F. Large, D-A. Vasquez-Govea, Th. Fraichard, and C. Laugier, 
“Hihg-speed Navigation among Unkonwn Moving Obstacles,” 
Proc. IEEE Intell. Vehicles Symposium, 2004.  

[8] J.C. Latombe, Robot Motion Planning, Kluwer Academic 
Publishers, Norwell, MA, 1991. 

[9] S. M. LaValle, J. J. Kuffner, “Randomized Kinodynamic 
Planning,” IJRR, 20(5):378-400, May 2001.   

[10] P. Leven, and S. Hutchinson, “Toward Real-time Path Planning in 
Changing Environments,” Proc. Workshop Algorithmic 
Foundations Robotics, pp. 363-376, 2000.  

[11] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with 
Provable Bounds on Sub-Optimality,” Proc. Conf. Neural Info. 
Processing Sys., MIT Press, 2003.  

[12] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution 
Programs, 3rd Edition, Springer-Verlag, New York, 1996.  

[13] K. G. Shin and N. D. Mckay, “Minimum-Time Control of Robotic 
Manipulators with Geometric Path Constraints,” IEEE Trans. 
Automatic Control, 30(6):531-541, 1985. 

[14] P. Terdiman, http://www.codercorner.com/Opcode.htm. 
[15] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski, “Adaptive 

Evolutionary Planner/Navigator for Mobile Robots,” IEEE Trans. 
Evolutionary Computation, 1(1):18-28, April 1997. 

[16] T. Yoshikawa, “Manipulability of Robotic Mechanisms,” IJRR, 
4(2):3-9, April 1985.

 

http://www.codercorner.com/Opcode.htm

	Introduction
	Planning Approach
	Basic Planning Algorithm
	Trajectory Representation and Initialization
	Optimization Criteria and Fitness Evaluation
	Genetic Operations
	Real-time Improvement and Adaptiveness

	PUMA 560 and Environment Simulator
	Experimental Results and Discussion
	Conclusions
	
	
	
	References





