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Abstract 
 

This paper presents a new algorithm for real-time 
tracking of pairs of closest points as well as their 
corresponding surface features between certain general 
types of objects (which can be non-convex)  with 
parametric curved surfaces. The fact that the algorithm 
works directly on accurate parametric descriptions of 
curved surfaces rather than polygonal approximation of 
surfaces (i.e., polygonal meshes) enables it to not only 
provide accurate collision detection among certain  
curved objects in real-time, but more importantly, also 
provide accurate description of the state of a collision, 
i.e., the actual regions of contact in real-time. Such 
capability is very useful in applications requiring high 
accuracy in real-time, including certain haptic rendering 
tasks for virtual prototyping or virtual training. Test 
results show that the algorithm achieves correct tracking 
in the rate of 1 kHz.  

1. Introduction 

Collision avoidance or detection based on distance 
computation requires very efficient algorithms to be real-
time. There is considerable research on the subject [1, 2]. 
One major approach to boost efficiency is by applying 
collision check to multi-levels of simpler bounding 
envelope approximations of objects (such as boxes, 
spheres, etc) in order to rule out non-collisions or 
localize areas of collisions quickly. In addition, spatial 
and time coherences are often exploited through tracking 
to speed up the computation [3, 4].  

However, most of the real-time collision detection 
algorithms apply to polyhedral objects or polyhedral 
approximations of objects only (i.e., polygonal meshes) 
[1, 2]. Although polygons are simple to compute, 
polygonal approximation of curved objects often 
introduce undesirable artifacts especially in cases where 
the smooth nature of a curved surface needs to be 
maintained. Whereas, increasing the resolution of 
meshes tends to increase the burden of computation 
significantly. On the other hand, it is often the case that a 
curved surface that may require tens and thousands of 
polygons to approximate in order to reach certain level 
of smoothness can be described accurately in simple 

parametric forms. It is thus desirable to study collision 
detection and distance computation applied directly to 
smooth parametric surface expressions of curved objects, 
but there are relatively fewer related publications [5, 6, 
7, 8]. In particular, Johnson and Cohen achieved real-
time collision detection through effective multi-level 
representation of curved objects [7]. More recently, 
Patoglu and Gillespie developed an efficient real-time 
strategy to directly track the closest points between 
moving convex curved surfaces [8]. Their work 
presented an interesting new idea to achieve very 
efficient real-time distance computation and collision 
detection. However, the work can only be applied to a 
pair of natural geometrical surfaces, which, except for 
the closed ones such as spheres and ellipses, are often 
infinite surfaces.   

In this paper, we present a different and more general 
strategy to directly track the closest points in real time 
between two rigid objects consisting of finite surfaces, 
i.e., either closed surfaces or finite surface patches, 
described parametrically. A general object with two or 
more parametric surface patches can be viewed as 
formed by a set of features, in terms of parametric 
surfaces and the surface bounding curves and vertices. 
Our algorithm tracks both the closest features between 
two objects and the closest points (on the closest 
features) at the same time.  

Given initial pairs of the closest points between each pair 
of features between two objects as input, which can be 
computed or estimated off-line, our algorithm then 
tracks, in real-time, the time-changing closest features 
and points between the two objects as they move. The 
key of our approach is to repeatedly find good 
candidates of the closest features and good estimates of 
the closest points based on the results from the previous 
time frame so that the Newton’s approach can be 
properly applied to quickly find the true results, i.e., the 
closest points and their features. In the following 
sections, we describe the algorithm in detail and present 
implementation and test results.  

2. Object Representation and Types  
Our algorithm requires that the boundary of each object 
be described by a set of features, i.e., surfaces, curves, 
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and vertices, and their adjacency relations arranged in a 
hierarchical structure with three levels. Surface features 
are at the top level of the feature hierarchy, their 
bounding (lower-dimensional) curve features are at the 
next level (where each curve feature bounds two or more 
surface features), and finally the bounding (lower-
dimensional) vertices of the curve features are at the 
bottom level. Furthermore, each surface feature is 
represented by a parametric function f(u,v) with bounded 
parameters u and v, and each curve feature is represented 
by a function f(w) with a bounded parameter w. A vertex 
is represented by its coordinates with zero parameter. 

Our algorithm can be applied to general non-convex 
curved objects if the boundary of each object can be 
decomposed into a set of convex features (viewed from 
normal directions pointing into the object). See Fig. 1 for 
examples. With convex features, there is no more than 
one local minimum distance between any two features at 
any time, and there is no local maximum distance.  Of 
course, between two objects at any time, there can be 
multiple local minima of distance values.   

 

 

Figure 1: Non-convex curved objects made of convex 
features 

In addition, our algorithm can also handle objects with 
certain monotonically concave and circular features, 
such as a spherical surface feature forming the inside of 
a bowl (Fig. 3) or a cylindrical surface feature forming 
the inside of a pipe, even though such a concave feature 
can cause local maximum distance between it and 
another feature.  

3. The Algorithm 
For real-time tracking, our algorithm discretizes the 
continuous time into a sequence of adjacent time frames. 
At each time frame, our algorithm decides the closest 
pair(s) of features between two rigid objects O1 and O2 

and a corresponding closest pair of points on the two 
features (which determines the minimum distance 
between the two features) based on known pairs of 
closest points and features between O1 and O2 from the 

previous time frame and the locations (or configurations) 
of O1 and O2 in the current time frame.  

It takes advantage of time and space coherence due to 
continuity: each time frame is made small enough so that 
a closest pair of points between two features of O1 and 
O2 in time frame i will be close to the known closest pair 
of points between the features in the previous time frame 
i-1, which is the estimate for the Newton method in our 
approach. 

3.1. A top-down approach 

Our algorithm uses a top-down approach to search for 
the closest pair of points of any feature pair between the 
objects O1 and O2 in time frame i by considering the two 
points in the order from high-dimensional to low-
dimensional. For convenience, we measure the 
dimensionality of a feature pair as the sum of parametric 
variables in the two features. For example, a surface, 
curve, and vertex feature has 2, 1, and 0 parametric 
variables respectively. Hence, a surface-surface feature 
pair can be denoted as having a dimensionality 4; 
whereas, a surface-curve feature pair is of dimensionality 
3, etc.   

From a surface-surface feature pair (a, b) between O1 
and O2 and a corresponding closest pair of points (pa, pb) 
between a and b found in the previous time frame i-1, 
our algorithm tries to find the minimum distance and a 
corresponding pair of closest points between the two 
features at time frame i by applying a general procedure 
FindMin to a and b. FindMin searches a closest pair 
of points between the two features based on the Newton 
optimization method with the initial value (pa, pb), as 
will be described in Section 3.2.  

If FindMin returns no solution, it means that the closest 
points between a and b are on certain lower-dimensional 
feature pairs involving the boundary curves of a and/or b. 
Thus, FindMin will be applied to every such lower-
dimensional feature pair (c, d) involving the boundary 
curves of a and b with the initial value (p*

a, p
*
b), where 

p*
a and p*

b are points on c and d closest to pa and pb 
respectively. (p*

a and p*
b are found by applying Newton 

method again). In each case, if again no solution can be 
found, again FindMin will be applied to every one of 
the related even lower dimensional feature pairs (i.e., 
involving boundary vertices of the curves) in the same 
fashion. This top-down process starting from the surface-
surface pair (a, b) will always end up with a solution in 
terms of a pair of features, which could be of lower 
dimension than (a, b), that determine the current 
minimum distance between a and b and a corresponding 
pair of current  closest points (pi

a, pi
b) on them 

respectively (at frame i). This is because there always 
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exists a minimum distance between two finite surface 
patches including their bounding curves and vertices.  

Conducting the above process from every surface-
surface pair between O1 and O2 and comparing the 
distances between the obtained locally closest feature 
pairs, our algorithm can then determine the globally 
closest feature pair(s) between O1 and O2 at time frame i, 
with the corresponding pair(s) of closest points, each of 
which has the (same) globally minimum distance 
between them at time frame i.  

3.2. The FindMin procedure 

Given two features f and g belonging to two objects O1 
and O2 respectively, the FindMin procedure searches 
the pair of closest points on f and g respectively (which 
determine the minimum distance between f and g) based 
on the Newton optimization method, starting from a 
given initial estimate pair of closest points.  

Newton’s methods are common optimization techniques. 
To find a minimal )(XF

�
, where X

�
is a multi-variance 

vector, the procedure starts from an initial solution 0X
�

 
and proceeds by minimizing the second order Taylor 
series approximation for F through iterations. In each 
iteration, the solution kX

�
 is updated by:  

)( 1
1

1 −
−

− ∇−= kkk XFJXX
���

  (1)  

where J is the Hessian matrix of F, and )( 1−∇ kXF
�

is the 
first derivative of F. Such a method has second order 
convergence rate so that the solution can be reached very 
fast if the initial solution 0X

�
 is close by.  

In FindMin, the objective function for minimization is 
the square of the distance between two features f and g:     

22
)()(min)( qgpfdXF

X

������

� −==  (2) 

where p
�

 and q
�

 are the vectors of parameter(s) of f and 
g, with 0, 1 or 2 elements if the corresponding feature is 
a vertex, a curve or a surface respectively,  X

�
= 

T
n

T xxqp ][] [ 0 �
�� = , and n is the dimensionality of the 

feature pair as defined earlier. Note that when n is zero, 
X
�

 is zero vector, and both features are vertices with a 
unique distance between them. 

From multi-variant calculus, for a non-zero *X
�

to be a 
local minimum, the necessary condition is that  

0)( * =∇ XF
�

 (3) 

i.e., the first derivatives of F with respect to the elements 
in X

�
 must be zeros. When Eq. (3) is satisfied, the vector 

connecting two points on the two features respectively is 
orthogonal to the gradient at each point in each feature. 
An example is shown in Fig. 2 with a curve feature and a 
surface feature, where the solution ]  [ 000

* vuwX =
�

 

satisfies Eq. (3), and the vector d
�

 is orthogonal to all 
gradient vectors wg

�
, uf
�

 and vf
�

. 

If at least one of the features f and g is an open surface 
such that its boundary curve(s) are not counted or an 
open curve such that its boundary vertices are not 
counted, there are three possible scenarios:  

wg
�

uf
�

vf
�

),( 00 vuf)( 0wg

curve g(w)

surface f(u,v)

d
�

  

Figure 2: the vector d
�

 is orthogonal to all gradients of 
both surface feature f and curve feature g. 

1. There is no extreme (i.e., minimum or maximum) 
solution of X

�
satisfying Eq. (3).  

2. A solution of X
�

 satisfying Eq. (3) exists, but it is 
not a minimum solution between the two bounded 
features f and g.  

3. There exists a minimum solution of *X
�

(as 
illustrated in Fig. 1) between the bounded f and g.  

Our FindMin routine first runs the Newton’s 
iterations based on Eqs. (1)–(3). If a solution satisfying 
Eq. (3) cannot be found after a sufficient m number of 
iterations, then the above Scenario 1 can be assured 
because the Newton’s method converges very quickly if 
there is a solution and the given initial solution 0X

�
is 

close by (due to time and space coherence, see Section 
3.1). In such a case, FindMin returns “no solution” and 
stops. 

Otherwise, if a solution of X
�

satisfying Eq. (3) is found, 
FindMin will then check if every parameter value in 
the solution is within the bounds as defined by the 
corresponding feature. If not, it means that the solution is 
on the corresponding infinite features of f and/or g but 
not on the bounded f and g, and it is Scenario 2. 
FindMin thus returns “no solution” and stops.  
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If the solution *X
�

satisfying Eq. (3) is within the bounds 
of features f and g, and if f and g are convex, then it is 
Scenario 3, and FindMin returns *X

�
 as the solution. 

If either f or g is a monotonically concave and circular 
feature (Section 2), FindMin will further check 
whether *X

�
 is a minimum solution or not. If f is a curve 

feature f(w), then *X
�

= [w0 0q
� ]T, and the sufficient 

condition for f(w0) to be the closest point of f to g is:  

0))()((
0
0 >−•+•

=
=
qq
wwwwww qgwffff
��

������

 (4) 

If f is a surface feature f(u, v), then *X
�

= [u0 v0 0q
� ]T, and 

the sufficient condition for f(u0, v0) to be the closest 
point of f to g is:  

0 and  0
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Similar conditions can be written for the point g( 0q
� ) to 

be the closest point of g to f. Since the partial derivative 
vectors in Eq. (4) and Eq. (5) are already computed and 
used in the original Newton’s iterations, FindMin can 
check these conditions very quickly to decide if the 
solution *X

�
is a minimum solution or not. If yes, it is 

Scenario 3, and FindMin returns *X
�

 as the solution 
and stops.  

Otherwise, FindMin quickly finds a new initial 
estimate 0X

�
 based on *X

�
 and the cyclosymmetry and 

runs the Newton’s iterations again for solution. The 
obtained solution will be a minimum solution, and if 
Scenario 3 holds, FindMin will return it and stops. If 
not, FindMin will report “no solution” and stops.  

As described in Section 3.1, when FindMin returns no 
solution, our top-down algorithm will apply FindMin 
to a lower-dimensional feature pair involving either or 
both boundary features of f and g, and so on, until a 
solution is found (and there is always a solution 
eventually).  

3.3. Efficient computation 
The algorithm as described can be efficiently 
implemented by avoiding redundant checking of the 
feature pairs. Recall that our top-down approach goes 
from higher dimensional feature pairs to lower 
dimensional feature pairs. Since a lower-dimensional 
feature pair is related to more than one higher-
dimensional feature pair (e.g., a curve-surface pair is 

related to two surface-surface pairs), it can be visited 
more than once from different higher dimensional 
feature pairs. In such a case, our algorithm only applies 
FindMin to it once and stores the found results for 
possible future use.  

Our search process does not need to check all non 
surface-surface feature pairs (i.e., with dimensionality 
≤3). Such a lower-dimensional feature pair will be 
examined only if it is reached from a higher dimensional 
feature pair during the top-down process.  

4. Implementation and Test Results 

We have implemented our algorithm using C++. The 
implementation achieves real-time computation with an 
update rate of ~1k Hz on a Pentium IV processor (1.4G 
CPU, 256M RAM). In our test cases, a solution of 
FindMin, if existing, is usually found in 2—3 
iterations, and the maximum number of Newton 
iterations is set to 12. 

Our algorithm requires knowing object features as well 
as their parametric representations. To facilitate 
implementation, we currently build a feature database 
with some basic types of features, such as planes, 
ellipsoidal surface, cylindrical surfaces, conical surfaces, 
parabolic surfaces, straight lines, ellipses, parabolic 
curves, and vertices. We plan to extend the database to 
include other types of features such as polynomial curves 
and NURBS surfaces.  

Our testing program simulates object movements by 
taking as inputs the trajectories of moving objects in 
order to know the location of each object at each time 
frame. The locations of interested feature pairs are then 
obtained by proper coordinate transformations to 
facilitate needed computation.  

Fig. 3 shows a test example with two objects, a pen and a 
bowl. The pen has three convex surface features, (a top 
plane S5, a cylindrical surface S4, and a cone S3), two 
boundary circles (C2 and C3), and a vertex V1. The bowl 
has two surface features (a convex parabolic surface S1, 
and a concave spherical surface S2), and a circle (C1).  

The frames of the bowl and the pen are shown as XbYbZb 
and XpYpZp respectively. The global frame is overlapped 
with the frame of the pen. The representations of the 
surfaces in their part frames are listed in Eq. (6) (Note 
that we do not provide parametric representations here to 
be concise). The representations of the curve features 
can be derived from those of the surfaces. 

7 :5

   122 x:4    2224:3

252)7(22 x:2       422:1

=

=++=

=−++=+

zS

ySyxzS

zySzyxS

 (6) 
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Xp

Yp

Zp

Xb

Yb

Zb

S5: plane at the top

S4: cylinderical surface

C1: boundary circle 1

S2: concave spherical surface

S3: conical surface

C3: boundary circle 3

C2: boundary circle 2

V1: vertex of the cone

S1: parabolic surface

D= 8

Rotate around X axis

 
Figure 3: two objects (a bowl and a pen) in their initial 
locations with a minimum distance 8 

The relative location of the two frames in Fig. 3 is 
described by the following homogenous transformation 
matrix: 

 

�
�

�

�
�

�

�

�
�

�

�
�

�

�

−
=

1000
12100

4010
0001

Pen
Bowl T  (7) 

In one test, we make the pen move along a straight line 
that locates on the YZ plane (x=0) as shown in Fig. 4 (so 
that they can be projected into the YZ plane for 
convenience). In the left plot of Fig. 4, the pair of points 
that decide the global minimum distance are shown in 9 
time frames. The right plot of Fig. 4 shows the values of 
the global minimum distance and the corresponding pair 
of features as the function of the pen’s y coordinates 
when the pen moves. For example, when the pen moves 
to y=22, the minimal distance is decided by the pair of 
features (S1, C5) with the value 15.40764. Table 1 lists 
the coordinates and distance of the closest pair of points 
with respect to their own object frames as the pen moves. 

In another test, we make the pen rotating about its x axis 
by 1° in each time frame. The result is shown in Fig. 5, 
where the global minimum distance and the 
corresponding pairs of closest features are shown as 
functions of the angles rotated as the pen moves. For 
example, the minimal distance is decided by the pair of 
features (C1, S5) when the pen has rotated 180°, and by 
the pair of features (S2, C3) when the pen has rotated 
210°. Table 2 lists the coordinates of the closest pairs of 

points and the corresponding distance when the pen 
rotates around its x axis. The points are represented in 
their own object frames. 

Table 1: Pairs of closest points in several time frames 

Y  Min_Dist Point (Pen) Point (Bowl) 
0 8.0 (0,0,0) (0,-4,4) 
4 5.65685 (0,0,0) Full C1 
8 0 (0,0,0) (0,4,4) 
8.1 0.04472 (0,-0.03,0.06) (0,4,4) 
8.8 0.35777 (0,-0.48,0.96) (0,4,4) 
9.5 1.0 (0,-0.5,1.5) (0,4,4) 
14.8 6.3 (0,-0.5,6.8) (0,4,4) 
15.5 7.01783 (0,-0.5, 7) (0,4,4) 
22 15.40764 (0,-0.5, 7) (0,3.923 3.84) 

Table 2: Pairs of closest points when the pen rotates 

°  Min_Dist Point (Pen) Point (Bowl) 
45 8 (0,0,0) (0,-4,4) 
66 7.99198 (0,-.16,.32) (0,-4,4) 
90 7.56637 (0,-.5,1) (0,-4,4) 
120 6.42820 (0,-.5, 4) (0,-4,4) 
170 1.24994 (0,-.5,7) (0,-4,4) 
178 0.99513 (0,-0.279,7) (0,-4,4) 
182 0.99513 (0,0.279,7) (0,-2.897,2.925) 
210 3.38993 (0,0.5,7) (0,4,4) 
225 4.31371 (0,0,7) (0,4,4) 
270 7.56637 (0,0.5,7) (0,4,4) 
293 7.98452 (0,.222,.445) (0,-4,4) 

From the two sets of test results, one can see that the 
minimum distance changed smoothly until when the pair 
of features that decide the minimum distance changes 
from one frame to the next. Since the same pair of 
features could decide the minimum distance most likely 
in more than one time frame, we can speed up the 
tracking process by considering the same pair of features 
over a number of consecutive time frames in most cases. 
We also tested our algorithm in haptic rendering where 
the held object was moved arbitrarily by a user via a 
PHANToM 6DOF device and the min. distances to the 
other objects were shown in real-time − see video.  

5. Discussions 
Our algorithm can be evaluated in three aspects: speed, 
accuracy, and robustness. The current implementation of 
the algorithm already achieves real-time updating rate, 
but it can be further speeded up in a number of ways. 
One is that not all surface-surface feature pairs need to 
be examined in every time frame because a pair of such 
features with a distance significantly greater than the 
minimum distance between the objects at time frame i-1 
are not likely to become the closest pair of surface 
features at time frame i (taking into account the 
boundary curves and vertices). We can set up a threshold   
based on the maximal speed of the objects and use it to 
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Figure 4: The closest pairs of points and features and the minimum distance when pen moves along a straight line 
 
 

 
 

 
              Figure 5: The closest pairs of features and the minimum distance when pen rotates along its x axis 
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select pairs of surface features that are likely 
candidates to produce the closest feature pairs in each 
time frame. Distances between other surface feature 
pairs can be updated in slower rates. Other strategies 
introduced in the literature for such selection can also 
be applied [1,2]. Note that for convex objects, 
candidate surface-surface feature pairs can be 
selected as only those neighboring to the closest pair 
of features in the previous time frame.  

Other methods for further speeding up include 
parallel processing of surface-surface feature pairs 
(this will be straightforward since our algorithm is 
naturally parallel) and using multilevel representation 
of objects, which is a common approach in distance 
computation algorithms.  

The accuracy of our algorithm mainly depends on the 
resolutions in testing the convergence conditions in 
FindMin, which include (a) the orthogonal 
condition between the distance vector connecting two 
points of two features respectively and the tangent 
planes through those points, and (b) the condition for 
termination based on parameter change rate.  The 
higher the resolutions are, the more accurate the 
solution can be (the drawback is that the number of 
Newton iterations will increase). 

Our algorithm is robust for the types of objects 
described in Section 2. If, for example, an object 
involves a non-monotonically concave feature, then 
there can be multiple local minimum distances 
between such a feature and another feature of another 
object, and the algorithm cannot readily find all of 
them to determine the global minimum distance 
between the two features. This limitation is due to the 
Newton’s approach for always finding the local 
minimum close by.  

The robustness of our algorithm also depends on the 
Hessian matrix J in Eq. 1. The algorithm will not be 
able to find a solution when J is singular, i.e., there is 
no inverse of J. Different parametric representations 
for the same surface affects the robustness of the 
algorithm differently. Our experience is that 
robustness is the best if uf

�

 and vf
�

 of a surface are 
always perpendicular. 

6. Conclusions and Future Work 
The paper presents an efficient algorithm for tracking 
in real-time the minimum distance and the 
corresponding closest pairs of features and points 
between some general types of curved objects with 
parametric representations. The algorithm uses a top-
down approach to organize object features, adopts the 
efficient Newton’s approach for distance 
minimization, and takes advantage of the small 

change in the relative location between two objects in 
two consecutive time frames to provide good initial 
estimates for distance minimization. The algorithm 
achieves real-time speed with good accuracy and 
robustness. 

As the next step of our work, we will further 
investigate the extension of the algorithm so that it 
can be applied to even more general curved objects. 
We will also extend the algorithm to compute 
penetration distances between objects. Currently the 
search process (for maximum penetration distance) 
may stop at the intersection points between features, 
but we expect to solve the problem soon. Other issues 
such as further increasing the efficiency of the 
algorithm and the stability of the Newton’s method 
are also in our list for improving our algorithm.  
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