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Abstract

A large number of robotic tasks require precision and thus the dealing with
uncertainties. The e�ects of various uncertainties often manifest to location
(i.e., position and orientation) uncertainties of objects. Thus, an important
problem that often arises is how to assess the region that an object may occupy
in the presence of uncertainties. This paper addresses the problem by describing
how to grow exactly an arbitrary polyhedral object in the three-dimensional
Cartesian space by its position and/or orientation uncertainties. Three types
of related regions for the object are described: (1) the grown regions, regions
possibly occupied by the object due to uncertainties in its position, orientation,
or both, (2) the grown shell regions, regions possibly occupied by the boundary
(surfaces) of the object due to uncertainties in its position, orientation or both,
and (3) the core regions, regions (which could be empty) de�nitely occupied
by the object in spite of uncertainty. The exact representations introduced
in this paper can serve as benchmarks against which e�cient but approximate
algorithms may be evaluated. A particularly important application of the grown
shell regions is in obtaining the set of all possible topological contacts among
polyhedral objects due to location uncertainties. Such a set can serve as a basis
from which more precise contact information can be extracted by additional
sensing means, such as vision and force/moment sensing. The approach for
this application and its implementation is introduced and discussed.

1 Introduction

Certain uncertainties in a robotic operation environment are intrinsic and inevitable,
for instance, the modeling and sensing uncertainties of a robot and the modeling and
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sensing uncertainties of the objects to be handled by the robot or in the environment.
Dealing with such uncertainties is crucial for robotic applications on tasks with high-
precision or low-tolerance requirement, such as assembly operations, planning and
navigation in crowded environments, precision material handling, etc. In many cases,
the e�ect of these uncertainties manifests to location (i.e., position and orientation)
uncertainties of objects, which may result in undesired collisions or contacts among
objects (including robot) during a robotic operation. The increased risk of collision
due to location uncertainties of objects can be likened to, as we observe, increased sizes
of objects in the same environment. This suggests us to link the location uncertainties
of an object to the enlargement of its size, that is, to �nd the region that the object
may occupy if its location uncertainty is taken into account. We call this process
growing an object by its location uncertainty. Finding the grown region of an object
by its location uncertainty could be useful in predicting collisions and thus preventing
unintended collisions due to uncertainties during motion planning (see Section 8),
and most importantly, can play a major role, once a collision occurs, in automatically
recognizing the topological contact in the presence of location uncertainties of the
objects involved.

Our concept and approach of growing an object by its location uncertainty is
novel in a number of ways. First, our approach decouples the e�ects of position and
orientation uncertainties and grows an object through growing its every (boundary)
surface element, i.e., every face, edge, and vertex, exactly. The decoupling of the
e�ects of position and orientation uncertainties makes it possible for exact growth,
i.e., the grown region computed is the least upper bound of the uncertain region
that the object's surface element may occupy due to location uncertainty. Or more
intuitively, the region is not \rounded out": all contours and concavities are preserved.
This distinguishes our approach from resembling the de�ning of tolerance zones for
an object's feature to accommodate its uncertainty in geometric tolerancing[18]. We
have a good reason: the exactness of a grown region is extremely useful in accurately
estimating the possible collisions among objects and furthermore, the possible types
of topological contacts among objects, in the presence of location uncertainties. It is,
however, important to note that the exact grown regions may not be easy to compute
due to the lack of e�cient algorithms and thus approximate representations may be
implemented (see Section 7.2). The signi�cance of the exact analytical representation,
then, is to serve as a benchmark against which di�erent approximate representations
can be evaluated.

It is also important to note that unlike in geometric tolerancing, we currently
do not consider the uncertainty in the shapes of objects, although since we grow
an object element by element, such uncertainty could also be accommodated rather
easily.

Our approach of growing an object through its surface elements provides great
convenience and 
exibility. From the descriptions of grown regions of individual
surface elements, the following three types of regions can be described easily: (1) the
grown regions of the object, as the regions possibly occupied by the object due to
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Figure 1: A 2-D example to show that partial growth is su�cient

uncertainty in its position, orientation, or both, (2) the grown shell regions of the
object, as the regions possibly occupied by the boundary (surfaces) of the object due
to uncertainties in its position, orientation, or both, and (3) the core regions of the
object, as the regions (which could be empty) de�nitely occupied by the object in
spite of uncertainties in its position, orientation, or both. In addition, this \modular"
approach of growth naturally encourages (a) parallel growth of elements and (b)
partial or local growth of an object to gain e�ciency. Note that it is not always
necessary to grow an object entirely; for instance, to obtain all possible contacts
between two objects based on their estimated locations, only those faces of the two
objects \facing" each other and the related edges and vertices need to be grown to
take into account uncertainties (Fig. 1). Most importantly, growing an object element
by element makes the method very general and applicable to convex and nonconvex
polyhedra alike regardless the location of an object's reference frame.

Finally, our method of growing an object takes place in the 3-D Cartesian space
rather than in some other object's con�guration space[15, 16] to facilitate the recog-
nition of topological contacts. As the result, the regions obtained are independent of
the con�guration and the shape of some other object.

Our work is particularly motivated by the need of automatic contact recognition
in the presence of uncertainties. Automatic contact recognition is crucial for part-
mating or assembly tasks where both task descriptions and operations are contact-
based (see, for example, [1, 19, 13]), especially because of uncertainties. First, because
of uncertainties, unintended contact between the part held (by the manipulator) and
other parts in the environment can occur. Thus it is necessary to be able to recognize
such a contact and to distinguish unintended contacts from intended ones, such as
the contacts which de�ne the goal state of an assembly. Secondly, the recognition
task itself is also much complicated by the presence of uncertainties, even if the
environment can be well controlled and structured in the sense that the models of
all objects and �xtures are known, and their locations are either �xed or can be
sensed. Such recognition task in the presence of uncertainties is especially di�cult if
the objects in contact are nonconvex.

Among the many attempts to determining contact states or constraints [4, 6, 2,
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Figure 2: A, B and their possible relationships

20, 11, 24, 25, 12, 7, 17], only a few addressed the e�ect of uncertainties in contact
recognition and were based almost universally on the approach of hypotheses-and-
tests. Particularly, Desai and Volz[4, 5] used force/moment sensing data and Xiao
and Su[25] used vision sensing to verify the contact hypotheses | a set of possible
topological contact situations taking into account uncertainties. Spreng[20] used test
motions for verifying contact hypotheses in terms of motion freedoms.

Clearly, a key problem is how to obtain e�ectively the initial contact hypotheses
in the �rst place. In[24], Xiao speci�cally de�ned the problem as how to obtain the
possible set of topological contact situations from the position/orientation sensing
data of the objects in contact, taking into account sensing uncertainties. This prob-
lem is in itself a di�cult one. The complex nature of the problem is best illustrated
through an example. Suppose that two polyhedral solids A and B are in collision
and that their geometrical models and sensed locations are known. An intersection
relationship between A and B can be derived[3, 8, 21], which may not be pure contact
relationship due to sensing uncertainties. The derivation may yield intrusions of one
object into the other, absence of some contact points or no contact at all between
the two objects. Fig. 2a shows a possible relationship between polyhedra A and B as
the result of derivation from the models of A and B and their sensed con�gurations.
Clearly such a relationship is impossible in reality, whereas, based on this derived
relationship, there is more than one contact situation that may actually occur due to
uncertainties, as shown in Fig. 2b. Notice that an intrusion in the derived relation-
ship, as it is caused by uncertainties, always means a possible contact, but absence of
certain contacts in the derived relationship does not mean that those contacts cannot
possibly occur in reality (e.g., see Fig. 2, where the point p of A may actually contact
B as shown in Fig. 2b). Thus, it is quite di�cult to determine the set of all possi-
ble contact situations between A and B taking into account location uncertainties.
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The approach proposed in[24] simpli�ed the problem by demanding the satisfaction
of some geometric constraints, and thus was not completely general. On the other
hand, the technique introduced in this paper, of growing objects by location uncer-
tainties, fundamentally facilitates the �nding of such a set in a general way. With the
set serving as an initial guidance, as demonstrated in[4, 25, 20], additional sensing
means, such as force/moment or vision sensing, can be used to reduce the set through
con�rming the existence (or non-existence) of each possible contact situation.

This approach of using di�erent sensors to compensate for the uncertainties of
one another is essential to accurate contact recognition, which in turn, is essential for
task state recognition and for devising error recovery strategies as di�erent contact
situations may require di�erent recovery motions[26, 5, 14, 9, 23].

The paper is organized as follows. In Section 2, we de�ne a general uncertainty
model in terms of position and orientation uncertainty bounds. In Section 3 and Sec-
tion 4, we present how to grow a polyhedron by position and orientation uncertainties
respectively, and in Section 5, we outline how to grow a polyhedron by location un-
certainty, i.e., both position and orientation uncertainties. Based on the results in
previous sections, we introduce three types of regions of a polyhedron in Section
6. In Section 7, we discuss how to apply the technique of growing a polyhedron to
recognizing topological contacts. We conclude the paper in Section 8.

2 Uncertainty Model

We describe the con�guration, i.e., the location L of a solid object as (M;p), where
p 2 R3 denotes the position of the origin of the object frame in a world coordinate
system and M is the rotation matrix of the object frame with respect to the world
coordinate system, which describes the orientation of the object frame. We denote
L̂ = (M̂; p̂) as an estimate of L = (M;p).

In the rest of the paper, we will use the subscripts p and o to indicate position-

related and orientation-related parameters respectively.

De�nition 1. The position uncertainty �p denotes the magnitude of the maximum
possible di�erence between an estimated position p̂ and the actual one p.

If we denote the Pythagorean metric on R3 as Dp, the set of all possible actual
positions Np(p̂) is the Dp-�p-neighborhood of p̂ (Fig. 3a). Np(p̂) can be abbreviated
as Np.

De�nition 2. For a solid object P , let q denotes the position vector of the point
q 2 P with respect to the origin of the object frame of P . The orientation sensing

uncertainty �o denotes the magnitude of the maximum possible angle between the
actual vector q and its estimate q̂ for all points q 2 P .

Let M3�3(R) be the set of rotational (orthogonal) matrices. From the fact that
8M1;M2 2 M3�3(R);M1 6= M2, 9 a unique axis of rotation a and a unique angle

 2 [��; �], such that the rotation matrix Rot(a; 
) (about a with angle 
) satis�es

Rot(a; 
) =M�1
1 �M2 =MT

1 �M2;
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we can de�ne a metric Do on M3�3(R) such that Do(M1;M2) = j
j (see Appendix
A for a proof). Thus, the set of all possible actual orientations No(M̂ ) is the Do-�o-
neighborhood of M̂ (Fig. 3b). No(M̂) can be abbreviated as No.

The Cartesian productNp�No describes the region of location uncertainty, i.e., the

set of all possible locations under the estimated location L̂ due to position uncertainty
�p and orientation uncertainty �o.

3 Growing a Polyhedron P by its Position Uncer-

tainty

We �rst de�ne the grown regions of a point, an edge, and a face of P respectively.
De�nition 3. If the orientation of P is �xed, then for any point q 2 P or rigidly
attached to P , any edge e 2 P , and any face f 2 P , the regions Qp(p̂), Ep(p̂), and
Fp(p̂) de�ned as

Qp(p̂) =
[

p2Np

q(p) Ep(p̂) =
[

p2Np

e(p) Fp(p̂) =
[

p2Np

f(p)

are the grown regions of the point q, the edge e, and the face f by the position uncer-

tainty of P respectively, where q(p), e(p), and f(p) denote the corresponding point,
edge, and face which q, e, and f occupy when P is at position p respectively. Qp(p̂),
Ep(p̂), and Fp(p̂) can be abbreviated as Qp, Ep, and Fp respectively. If q = v, a vertex
point of P , then Qp can also be denoted as Vp.

It is rather easy to obtain these grown regions. We describe them in the following
theorems.

Theorem 1. For any point q 2 P or rigidly attached to P , its grown region Qp by
position uncertainty is the ball centered at q(p̂) with radius �p.

Proof. By the De�nition 1 of position uncertainty in Section 2, Np represents a ball
centered at the origin O of the object frame of P in the world coordinate system,
with radius �p. By the above De�nition 3, that ball is the grown region of the point
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Figure 4: The grown regions Vp, Ep and Fp

O by position uncertainty. Since q is rigidly attached to P , i.e., to point O, when O
is at the position p̂, q is at the point q(p̂), and when O moves in the ball represented
by Np, q must move in a ball of the same size centered at q(p̂), which, by De�nition

3, is the region Qp.

Theorem 2. The grown regions Vp of a vertex v 2 P , Ep of an edge e 2 P , and Fp

of a face f 2 P are as described below (Fig. 4).

� Vp is the ball centered at v(p̂) with radius �p.

� Ep consists of a cylinder of radius �p with axis being e(p̂) and two half balls of
radius �p centered at the two end points of e(p̂) respectively.

� Let e1; :::; em denote the bounding edges of f and E1p , ..., Emp be their grown
regions by position uncertainty respectively. Then, Fp is a closed region formed
by the union of E1p , ..., Emp , and a right prism of height 2�p, which can be obtained
by sweeping the planar surface f(p̂) along its normal directions up and down
distance �p respectively.

Proof. The description of Vp is based on Theorem 1. Since both an edge and a face
are sets of points, their grown regions should be unions of the grown regions of the
points in the edge and face sets respectively. Thus, Ep can be viewed as the sweeping
volume of the ball Qp as the center q(p̂) changes from one end point of e(p̂) to the
other. Fp can be viewed as the sweeping volume of the ball Qp as the center q(p̂)

moves on the closed planar surface f(p̂).
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4 Growing a Polyhedron P by its Orientation Un-

certainty

4.1 Growing a point q of P

De�nition 4. For any point q 2 P or rigidly attached to P , if the position of P is
�xed,

Qo(M̂ ) =
[

M2No(M̂)

q(M)

is the grown region of the point q by orientation uncertainty of P , where q(M) denotes
the corresponding point which q occupies when P is at orientation M . Qo(M̂) can
be abbreviated as Qo. If q = v, a vertex point of P , then Qo can also be written as
Vo.
Theorem 3. For any point q 2 P or rigidly attached to P , let dq 6= 0 denote the
distance vector from the origin O of the object frame of P to q, measured with respect
to the object frame of P . The grown region Qo of P by the orientation uncertainty
of P is a spherical segment of one base as shown in Fig. 5, such that the sphere is
centered at O with radius dq, and Qo is bounded by the circle l(q) centered at position
(cos �o)dq relative to the object frame of P and with radius dq sin �o.

Proof. By De�nition 4, Qo is de�ned under a �xed position of P , i.e., the origin O is
unchanged. Thus, as the point q rigidly attaches to O, change of orientation of P only
causes rotations of q about O. In other words, Qo is a region on the sphere centered at
O with the radius being dq = kdqk. Furthermore, if dq(M) denotes the distance vector
from the origin O to the point q(M), by De�nition 2 of orientation uncertainty, dq(M)

must be inside the uncertainty cone whose axis coincides with the vector dq(M̂) as
shown in Fig. 6a, for all M 2 No. Thus, the region Q is the intersection of the sphere
and the cone, which is a spherical segment of one base (Fig. 6a). In addition, for
any orientation M of P , the following holds: kdq(M)k = dq, and if represented with

8



O

qd (M)^

O

a b

qd
o

∋

Figure 6: The formation of surface Qo of q

respect to the object frame of P , dq(M) = dq. Thus, as illustrated in Fig. 6b, the

bounding circle l(q) is centered at (cos�o)dq with radius dq sin �o.

4.2 Growing an edge e of P

De�nition 5. For any edge e 2 P , if the position of P is �xed,

Eo(M̂) =
[

M2No(M̂)

e(M)

is the grown region of the edge e by the orientation uncertainty of P , where e(M)
denotes the corresponding line segment which e occupies when P is at orientationM .
Eo(M̂ ) can be abbreviated as Eo.

Since an edge consists of points, for an edge e 2 P , apparently,

Eo(M̂ ) =
[
q2e

Qo(M̂ ):

Since by Theorem 3, the shape and size of Qo;8q 2 e, depends on the spatial rela-
tionship between the point q and the origin O of the object frame of P , it is clear
that the shape and size of Eo depends on the spatial relationship between the edge
e and the origin O (the center of rotation). For convenience, we set up a coordinate
system o � xyz at O in such a way that e is parallel to the z axis and on the xz
plane with x being positive, �1 and �2 denote the angles between positive z axis and
the two end-point position vectors of e respectively with �1 < �2, and de denote the
distance between the line which contains e and the z axis. Now, one can classify the
spatial relationships between e and O into the following classes:
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Figure 8: e is not on z, and Eo does not intersect z

1. e is on z;

2. e is not on z:

(a) Eo intersects z;
(b) Eo does not intersect z.

For cases in the �rst class, Eo is simply part of the circular (uncertainty) cone as
shown in Fig. 7, bounded by the grown surfaces V1

o and V2
o of the end vertices of e.

For cases in the second class, however, Eo is not a circular cone and is di�cult to
describe in terms independent of coordinates. For each case, the analytical equations
describing Eo, can be derived; but for di�erent cases, the descriptions are slightly
di�erent. For the sake of brevity, we only present how to derive the analytical de-
scriptions of Eo for the cases described by class 2(b) above, also as shown in Fig. 8, in
the following Theorems 4 to 6. The descriptions of Eo for other cases can be derived
in a similar way.

Theorem 4. Give an edge e 2 P satisfying the spatial relationship with a coordinate
system o�xyz as shown in Fig. 8a, where the origin O is the center of rotation, v1 and
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v2 are end vertices, and �1 < �2 � �=2. The grown region Eo of e by the orientation
uncertainty of P has a boundary surface formed by the grown surface V1

o of v1, the
grown surface V2

o of v2, and the surface Es which consists of points on the boundary
circle l(q) of Qo for all q 2 e. Es is described by the following equation in the spherical
coordinate system (r; �; �) established as shown in Fig. 9:

cos� =
r cos �o � cos �

q
r2 � d2e

de sin �
; (1)

where (
de

sin�2
� r � de

sin�1

�1 � �o � � � �2 + �o
(2)

Proof. We �rst use a parameter �, de�ned as the angle between the positive z axis
and the position vector of the point considered, to describe a point on e such that for
any point q 2 e, its spherical coordinates are expressed as (de= sin �; �; 0) (Fig. 10).
Thus, q can be denoted as a function of �: q(�), where � 2 [�1; �2]. Obviously q(�) is
a one-to-one function of �. Thus, the grown surface Qo of q, as de�ned in Theorem 3,
can be uniquely identi�ed as Qo(�); for any point s 2 Qo(�), its r coordinate satis�es

r =
de

sin �
; (3)

and its � coordinate satis�es
� = � + �; (4)

where � 2 [��o; �o]. Appendix B shows that l(q), the boundary circle of Qo(�),
satis�es 8<

: cos� =
r cos �o�cos �

p
r2�d2e

de sin �

r = de
sin�

(5)
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Since Eo is the union of Qo(�) for all � 2 [�1; �2], the equations (3) and (4) in fact
describe every point (r; �; �) in Eo, provided that � 2 [�1; �2], � 2 [��o; �o], and � is
within the boundary de�ned by (5):

cos � � r cos �o � cos �
q
r2 � d2e

de sin �
: (6)

We next try to determine the bounds on r and �. From equation (3) and the fact
that [�1; �2] � (0; �=2], r is a monotonically decreasing function of � for � 2 [�1; �2].
Thus, r assumes upper and lower bounds at � = �1 and � = �2 respectively, that is,

de
sin�2

� r � de
sin�1

: (7)

As for �, from (4), it is obvious that � assumes upper and lower bounds when � and
� assume their upper and lower bounds respectively, that is,

�1 � �o � � � �2 + �o: (8)

The boundary surface of Eo contains points where any of the coordinates among
r, �, and � assumes bounding values as described in (7), (8), and (6) respectively.
Since Qo(�1) and Qo(�2) are surfaces where r assumes the upper bound and lower
bound values respectively, the two surfaces, which are also denoted as V1

o and V2
o , are

part of the boundary surface of Eo. Having � take its bound values is equivalent to
changing (6) to an equation, which is exactly the equation (1). Thus, the surface Es
is described by (1), which consists of the points on the boundary circle l(q) of Qo for
all q 2 e.

Fig. 11 illustrates the surface Eo described in Theorem 4.

Theorem 5. Give an edge e 2 P satisfying the spatial relationship with a coordinate
system o � xyz as shown in Fig. 8b, where the origin O is the center of rotation, v1

and v2 are end vertices, and �=2 � �1 < �2. The grown region Eo of e has a boundary
surface consisting of the grown surface V1

o of v1, the grown surface V2
o of v2, and the
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surface Es which consists of points on the boundary circle l(q) of Qo for all q 2 e.
Es is described by the following equation in the spherical coordinate system (r; �; �)
established as shown in Fig. 9:

cos � =
r cos �o + cos �

q
r2 � d2e

de sin �
; (9)

where (
de

sin�1
� r � de

sin�2

�1 � �o � � � �2 + �o
(10)

Proof. The proof is almost identical to that of Theorem 4. Noticing that here � �
�=2, (9) can also be derived following Appendix B.

Fig. 12 illustrates the surface Eo described in Theorem 5.

Theorem 6. Give an edge e 2 P satisfying the spatial relationship with a coordinate
system o � xyz as shown in Fig. 8c, where the origin O is the center of rotation,
�1 < �=2, and �2 > �=2. The grown region Eo of e has a boundary surface consisting
of the two grown surfaces V1

o and V2
o of the end vertices v1 and v2 respectively, the

grown surface Qc
o of q

c (the closest point on e to O), and the surface Es, described
by the following equation in the spherical coordinate system (r; �; �) established as
shown in Fig. 9:

cos � =

8><
>:

r cos �o�cos �
p

r2�d2
e

de sin �
; if � � �=2

r cos �o+cos �
p

r2�d2
e

de sin �
; otherwise

(11)

where (
de � r � de

min(sin�1;sin�2)

�1 � �o � � � �2 + �o
(12)

Proof. As in the proof for Theorem 4, the same parameters � and � are used to
express r and � as in (3) and (4) respectively. However, here r is not a monotonical
function of � for � 2 [�1; �2]. Instead, r reaches the minimum value de at � = �=2,
which corresponds to the grown surface Qc

o of qc, the closest point on e to O (see
Fig. 8c). Thus, Qc

o is also part of Eo, and the bounds on r are as shown in (12),
which are di�erent from those in the case of Theorem 4. The rest of the proof follows
exactly as that of Theorem 4. Equation (11) can also be derived following Appendix
B.

Note that the situation described in Theorem 6 (shown in Fig. 8c) can be viewed as
the combination of the two situations shown in Fig. 8a and b: one with �1 < �2 = �=2
and the other with �=2 = �1 < �2. Thus, the grown region Eo can also be obtained
by applying Theorems 4 and 5 to the two situations respectively; the combined result
is the same as described in Theorem 6.

Fig. 13 illustrates the surface Eo described in Theorem 6.
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Figure 11: The surface Eo described in Theorem 4
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16



x

y

z

x

y

z

p

p

p

O

e

Figure 14: Eo w.r.t. the frame of P can be obtained by coordinate transforms

The general description of Eo with respect to the object frame of P can be obtained
easily through the transform from the spherical coordinates to the Cartesian coordi-
nates and then the rotational transform from o� xyz to the object frame o� xpypzp
of P (Fig. 14).

4.3 Growing a plane a containing a face f of P

De�nition 6. For a plane a which contains a face f 2 P and therefore rigidly
attached to P , if the position of P is �xed,

Ao(M̂) =
[

M2No(M̂)

a(M)

is the grown region of the plane a by the orientation uncertainty of P , where a(M)
denotes the corresponding plane which a occupies when P is at orientationM . Ao(M̂)
can be abbreviated as Ao.

Theorem 7. For a plane a which contains a face f 2 P and therefore rigidly attached
to P , the boundary surface of the grown region Ao(M̂) of a consists of two surfaces
Afar and Anear, such that

1. if O is on a, Afar and Anear are the boundary surfaces of the two nappes of the
circular cone with angle being (�=2� �o) whose apex is at O (Fig. 15a);

2. if O is not on a and d denotes the distance vector from O to the closest point
d 2 a, and K denotes the circular cone with angle being (�=2��o) whose apex is
at position d= cos �o, thenAfar is the boundary surface of the nappe of K further
from O along d, and Anear consists of the boundary surface of the other nappe
and the grown surface Do of the point d as described in Theorem 4 (Fig. 15b).
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Figure 16: The normal vector n of a

Proof. First, let us focus on the case where O is on a. Consider a unit normal vector
n of a originated from O. n is rigidly attached to a, and thus to P . By De�nition 2,
when P is at all orientations in No, the vector n is within the orientation uncertainty
cone of angle �o with vertex at O (Fig. 16). When n sweeps the boundary surface
of the cone, the plane a, always perpendicular to n, sweeps the boundary surface of
Ao accordingly, which is the surface of the circular cone as stated in the theorem
(Fig. 15a).

In the case where O is not on a, the position vector d of d is a normal vector of
a. When P is at all orientations in No, by De�nition 2, d is within the orientation
uncertainty cone of angle �o with vertex at O, and by Theorem 3, the point d is on a
spherical surface Do with the boundary circle l(d). When d sweeps the boundary of
the cone, i.e., when d sweeps the circle l(d), the plane a, always perpendicular to d,
sweeps the boundary surface of Ao accordingly, which is the surface as stated in the
theorem (Fig. 15b).
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4.4 Growing a face f of P

De�nition 7. For any face f 2 P if the position of P is �xed,

Fo(M̂) =
[

M2No(M̂)

f(M)

is the grown region of the face f by the orientation uncertainty of P , where f(M)
denotes the corresponding planar surface which f occupies when P is at orientation
M . Fo(M̂) can be abbreviated as Fo.

Theorem 8. For any (planar) face f 2 P , which is bounded by e1; e2; :::; em edges,
where m � 3, the grown region Fo of f is a closed region obtained by the union of
the grown regions E1o ; E2o ; :::; Emo , and the part of the grown region Ao of the plane a
containing f which is bounded by E1o ; E2o ; :::; Emo .
Proof. Because the planar face f is a closed set that is the part of the plane a bounded
by the edges e1; e2; :::; em, by De�nitions 6 and 7, the grown region Fo of f is also a
closed set that is the part of the grown region of a bounded by the grown regions of
the edges of f .

5 Growing A Polyhedron P by Both Position and

Orientation Uncertainties

We �rst de�ne the grown regions of a point, an edge, and a face of P by location
uncertainty, consisting of both position and orientation uncertainties.
De�nition 8. For any point q 2 P or rigidly attached to P , any edge e 2 P , and
any face f 2 P , the regions Q(L̂), E(L̂), and F(L̂), de�ned as

Q(L̂) = [
L2Np�No

q(L) E(L̂) = [
L2Np�No

e(L) F(L̂) = [
L2Np�No

f(L)

are the grown regions of the point q, the edge e, and the face f by the location uncer-

tainty of P respectively, where q(L), e(L), and f(L) denote the corresponding point,
edge and face which q, e, and f occupy respectively when P is at location L. Q(L̂),
E(L̂), F(L̂) can be abbreviated as Q, E, and F respectively. If q = v, a vertex point
of P , then Q can also be denoted as V.

Given a point q, an edge e, or a face f of a polyhedron P , whose estimated location
is L̂ = (p̂; M̂), to obtain V, E, and F , we can �rst obtain the grown region Qo(p̂) of
q, Eo(p̂) of e, or Fo(p̂) of f (Section 4), and then grow the obtained Vo, Eo, or Fo by
position uncertainty �p.

Note that since Vo, Eo, and Fo are not polyhedral, Section 3 cannot be readily
applied to growing them by position uncertainty. However, growing a region by
position uncertainty is not di�cult to achieve in the �rst place: by \rolling" the
position uncertainty ball along the boundary surface of the region, in our case, the
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boundary surface of a Vo, Eo, or Fo, with the center of the ball on the surface, the
boundary surface swept is the boundary surface of the grown region V, E, or F .

Speci�cally, the grown region Q can be obtained by translating the surface Qo

(described in Theorem 3) up and down a distance �p and �lling the gap between two
translated images of Qo by \rolling" the position uncertainty ball along the boundary
curve of Qo with the center of the ball on the curve. The description of the grown
region E of an edge can be obtained based on the grown region Q of a point by similar
derivations as those in Section 4.2. The grown region A of a plane a containing a face
f 2 P by both position and orientation uncertainties can be obtained by translating
the surfaceAnear ofAo(p̂) (see Section 4.3) towards the center of rotation O a distance
�p and the surface Afar away from O a distance �p. Finally, the grown region F of
the face f can be described based on A and the grown regions E's of the bounding
edges of f in the similar way as described in Theorem 8.

6 Grown Regions, Grown Shell Regions, and Core

Regions of a Polyhedron

Given the grown regions of individual faces of a polyhedron P : Fp's, Fo's, and F 's,
as the results from Sections 3, 4, and 5 respectively, we can describe three types of
uncertainty-related regions for the polyhedron P itself: the grown regions of P , the
grown shell regions of P , and the core regions of P as the following.

De�nition 9. For a polyhedron P ,

� its grown regions Gp by position uncertainty, Go by orientation uncertainty, and

G by location uncertainty are the closed regions bounded by the union of Fp's,
the union of Fo's, and the union of F 's respectively, of the faces of P ;

� its grown shell regions Sp by position uncertainty, So by orientation uncertainty,

and S by location uncertainty are the union of Fp's, the union of Fo's, and the
union of F 's respectively, of the faces of P ;

� its core regions Cp by position uncertainty, Co by orientation uncertainty, and

C by location uncertainty are the set di�erences Gp � Sp, Go � So, and G � S
respectively.

The meanings of these regions are given in the following theorem.

Theorem 9. Gp, Go, and G are the uncertain regions possibly occupied by P under
position, orientation, and location (i.e. both position and orientation) uncertain-
ties respectively. Sp, So, and S are the uncertain regions possibly occupied by the
boundary surface of P under position, orientation, and location uncertainties respec-
tively. Cp, Co, and C are the regions de�nitely occupied by P regardless of position
uncertainty, orientation uncertainty, and location uncertainty respectively.
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Figure 17: Illustration of the grown region Gp of a cube

Proof. The interpretations of the grown regions and the grown shell regions are quite
obvious so that we only focus on those of the core regions below. By De�nition 9,
the core region Cp is the region enclosed by the region Sp. For a �xed orientation of
P , let P (p) denote the region which P occupies at position p. Since 8p 2 Np, the
boundary surface of P (p) is contained in Sp, thus P (p) � Cp. Similarly, for a �xed
position of P , let P (M) denote the region which P occupies at orientation M , and
we can show that 8M 2 No; P (M) � Co. Furthermore, let P (L) denote the region
which P occupies at location L, and we can show that 8L 2 Np �No; P (L) � C.

Note that when uncertainties are too large, the core regions can become empty.
Speci�cally, when the position uncertainty �p is so large that the family of grown
regions of the (boundary) faces of P becomes a cover of P at p̂, then Gp = Sp, and
Cp = ;. That is, no region is guaranteed to be occupied by P . Similar phenomenon
can occur to core regions Co and C.

Fig. 17, Fig. 18, and Fig 19 illustrate the grown regions Gp, Go, and G respectively
of a cube whose object frame is established at its center.

7 Application to Contact Recognition

7.1 Contact Model

A contact situation between two polyhedra can be described in terms of the topolog-
ical contacts among their surface elements, i.e., faces, edges, and vertices.

De�nition 10. A principal contact (PC) is the single contact between a pair of
topological surface elements from di�erent objects which are not the boundaries of
other contacting topological elements (if there is more than one pair in contact).

For example, the upper leftmost picture in Fig. 20 shows a PC of face-face (f-f)
and not of edge-face or face-edge (f-e or e-f) or other types. Theoretically, there are
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Figure 18: Illustration of the grown region Go for a cube with its frame set at center
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Figure 19: Illustration of the grown region G for a cube with its frame set at center

22



    f-f f-e
e-f

f-v
v-f e-cross

e-v
v-e v-v

e-touch

Figure 20: Principal contacts

ten types of possible PC's as shown in Fig. 20.

De�nition 11. A contact formation (CF) represents a contact situation as the set
of principal contacts formed (e.g., f< f11 ; f

2
3 >;< e14; f

2
1 >; :::g).

Note that the concept of CF is mostly aimed at describing a contact situation
between two nonconvex objects. For two convex objects in contact, the CF should
contain only a single PC.

7.2 Approach

Based on the contact model de�ned, the problem of contact recognition (as intro-
duced in Section 1) can be formulated as: given two polyhedral objects P1 and P2

in collision, their geometric models, and their estimated locations, �nd the contact

formation between them taking into account location uncertainties.
First, we can apply the technique of growing polyhedra by their location uncer-

tainties to obtaining the set of all possible (due to uncertainties) principal contacts
between P1 and P2. We denote such a set as Spc.

Since contacts only occur between the boundary surfaces of two objects, all possi-
ble contacts between P1 and P2 due to uncertainties manifest to intersections between
their grown shell regions only. As the result, we can analyze the intersection between
the grown regions of one pair of surface elements (u1; u2) at a time, where u1 (or u2)
is either a face, an edge, or a vertex of P1 (or P2), and continue the process until all
pairs of such intersecting regions are considered. We certainly can also consider all
such pairs of grown regions in parallel with a parallel processor. In any case, the task
then is simpli�ed to that of �nding a mapping from the intersection between the two
grown regions of u1 and u2 to whether or not the principal contact < u1; u2 > possibly
exist. The implementation of such a task is described in the following subsection.

Once the set Spc is obtained, other sensing means can be used to reduce the set.
Speci�cally, vision and/or force/moment sensing data can be used to verify if a PC
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in Spc actually exists or not[25, 4]. The vision and force/moment sensing can expect
to eliminate non-existing PC's and to reduce Spc, in the most desirable case, to a
valid contact formation. Such contact formation shall represent the actual contact
situation between P1 and P2.

7.3 Implementation

Although from Sections 3, 4, and 5, we can describe analytically the grown regions
of two surface elements, since the grown regions are nonpolyhedral and nonconvex,
how to compute the kind of intersection between two such regions e�ciently poses a
great challenge. Nevertheless, since we aim at real-time recognition of contacts, to be
computationally e�cient is necessary.

Our practical solution at present includes the following two approximations:

1. approximate the precisely grown regions by circumscribing regions of simpler
shapes,

2. instead of reasoning about the kind of intersection between two regions, sim-
ply check if the two regions intersect, and then use additional constraints to
determine if a PC possibly exists.

The �rst approximation will not miss possible PC's but may introduce more PC's than
the actually possible ones since if two precisely grown regions intersect, the regions
circumscribing them also intersect, but not vice versa. The second approximation
may also result in extra PC's than actually possible. For example, to decide if e1 and
e2 in Fig. 21a can possibly be an e-touch principal contact (see Fig. 20), we may just
check

� if the grown regions of e1 and e2 intersect, and

� if the angle between the original e1 and e2 is less than or equal to �o.

These conditions, however, are necessary but not su�cient, as evident from observing
Fig. 21b, which shows a case that satis�es both conditions but does not suggest that
e1 and e2 possibly form an e-touch PC. Hence, with both approximations, an upper
bound of Spc may be obtained. This, after all, is not too intolerable.

Speci�cally, we have implemented an algorithm [27] which approximates the pre-
cisely grown regions by regions built from S-topes [22, 10]. The approximation pre-
serves major concavities of the grown regions. Given two polyhedral objects P1 and
P2 in contact, the algorithm assumes that one of the objects, say, P1, is �xed, and
that only P2 has location uncertainty. Thus the problem becomes that of growing P1

by the position uncertainty of P2 and growing P2 by its own orientation uncertainty
only1 (see Appendix C for a proof). By checking the intersection between every pair

1Note that the algorithm should work equally well even if both P1 and P2 have location uncer-

tainties since it is equally easy to approximate the grown regions by both position and orientation

uncertainties with the S-tope model.
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Figure 21: Determining if the PC < e1; e2 > possibly exists

of (approximated) grown regions of elements from the two objects respectively and
with proper reasoning, the algorithm e�ciently generates a set of PC's slightly larger
than Spc. As an example, for the two contacting objects A and B shown in Fig. 2,
the algorithm spent 0.572 seconds of CPU time on a SUN SPARC IPX to generate
an output set of PC's. Detailed description, analysis, and evaluation of the algorithm
can be found in [27].

It is important to emphasize that although an implementation generally involves
certain approximation due to lack of better algorithms for computation, the signif-
icance of the exact descriptions of grown regions by uncertainty, which is the main
contribution of this paper, is by no means lessened. Quite on the contrary, the exact
representation is a necessary benchmark against which di�erent approximate rep-
resentations can be evaluated and compared. The implemented algorithm in [27]
demonstrates one such feasible approximation.

8 Conclusions

We have presented a novel method to exactly grow an arbitrary polyhedron by its
location uncertainty, given its position and orientation uncertainty bounds. Based on
the method, three types of regions of a polyhedral object have been introduced: the
grown regions, the grown shell regions, and the core regions. Since the representations
are exact, they give the least upper bounds of the corresponding regions.

These regions can be useful in many robotic tasks where the e�ect of uncertainties
needs to be dealt with. In particular, by analyzing the intersections between the grown
shell regions of two objects, the set of all principal contacts that may be formed due
to location uncertainties between the two objects (in their current locations) can be
obtained, serving as the basis from which more precise contact information can be
extracted by additional sensing means. We have brie
y introduced such an application
and its implementation in this paper, more details of which can be found in [27].
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The grown regions and core regions of objects can be used to prevent and predict
collisions caused by uncertainties. For example, in planning a collision-free path[28]
for a robot in a crowded environment, it might be necessary to consider the grown
regions of the objects by location uncertainties so that a path planned can be guaran-
teed to be safe, i.e., collision-free, in spite of uncertainties. The exact representations
of the grown regions ensure that the remaining free space is the largest guaranteed
one taking into account uncertainties. The core regions of objects, on the other hand,
can be used to predict guaranteed collisions: if an object at certain location will in-
tersect the core region of an obstacle, then the object will de�nitely collide with the
obstacle at that location in spite of the location uncertainty of the obstacle.

Much more can be done as future extensions of the work reported in this paper.
Growing an object element by element provides, in addition to its advantages that we
have already shown, great 
exibility for possible extensions and/or improvements of
the current method. For instance, one may consider di�erent uncertainty parameters
(values) depending on surface elements. One may also consider the uncertainties
as Gaussian distributions or some other probabilistic distributions rather than error
bounds, under which the grown objects could be more useful. The method can also
be generalized to growing special-shape non-polyhedra such as cylindrical, conical, or
spherical objects, as well as objects with combined special shapes.

An important future task is to study good computer representations (approxima-
tions) of the exact grown regions described in this paper and e�cient algorithms to
build such representations and to reason about the intersections between two such
regions. The algorithm described in [27] demonstrates one such attempt. Di�erent
approximations should then be compared against the exact representation in order
to have their merits evaluated.
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Figure 22: Vectors q1, q2, q3 and the rotation axes

A. Proof that Do Is a Metric

Let M1, M2, M3 denote 3 � 3 rotation matrices. Do is de�ned as Do(M1;M2) = j
j,
where 
 satis�es Rot(a; 
) = MT

1 M2, 
100 2 [��; �], and a denotes the axis of
rotation. To show that Do is a metric, we need to prove the following:

1. Do(M1;M2) � 0 and i� M1 = M2, Do(M1;M2) = 0.

2. Do(M1;M2) = Do(M2;M1).

3. Do(M1;M2) +Do(M2;M3) � Do(M1;M3).

First, the de�nition of Do gives Do(M1;M2) � 0, and since


 = 0()MT
1 M2 = Rot(a; 0) = I3�3 ()M1 = M2

where I3�3 is the identity matrix, we know that i� M1 =M2, Do(M1;M2) = 0.
Secondly, since

MT
1 M2 = (MT

1 M2)
�1 = Rot�1(a; 
) = Rot(r;�
)

we have Do(M2;M1) = Do(M1;M2) = j
j.
Finally, letRot(a12; 
12) = MT

1 M2, Rot(a23; 
23) = MT
2 M3,Rot(a13; 
13) = MT

1 M3.
Let q1 be a vector which is perpendicular to a13 and �xed in the frame whose orienta-
tion is represented by M1. The rotations Rot(a12; 
12) and Rot(r13; 
13) rotate q1 to
q2 and to q3 respectively. The rotation Rot(a23; 
23) rotates q2 to q3 (Fig. 22a). We
know the fact that i� when a vector q is perpendicur to the rotation axis a, the angle
between q and its new position after a rotation of angle 
 can reach its maximum
value 
 (Fig. 22b). Thus, since q1 is perpendicular to a13, but q1 and q2 may not be
perpendicular to a12 and a23, we have

j
13j = 6 (q1;q3); j
12j � 6 (q1;q2); j
23j � 6 (q2;q3)

Also,
6 (q1;q2) + 6 (q2;q3) � 6 (q1;q3)

Combining the above equations, we have

j
12j+ j
23j � j
13j
that is, Do(M1;M2) +Do(M2;M3) � Do(M1;M3).
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B. Derivation of Equation (5)

Equation (5) describes the boundary circle l(q) of the grown region Qo of a point q
on e, as shown in Fig. 10, in terms of the spherical coordinates (r; �; �) (Fig. 9).

Let (x; y; z) denote a point on l(q) with spherical coordinates (r; �; �). Thus,

8><
>:

x = r sin � cos �
y = r sin � sin �
z = r cos �

(13)

Let (xq; yq; zq) be the Cartesian coordinates of the point q. Since the spherical
coordinates of q are (de= sin �; �; 0) (see Fig. 10), by Theorem 3,

r = de= sin �:

Consequently, the following holds:

8><
>:

xq = r sin�
yq = 0
zq = r cos�:

(14)

From Theorem 3, the center (xc; yc; zc) of the circle l(q) is at cos �pp, that is,

8><
>:

xc = r cos �o sin�
yc = 0
zc = r cos �o cos �:

(15)

The radius of l(q) is r sin �o. Thus l(q) satis�es the equation:(
(x� xc)2 + (y � yc)2 + (z � zc)2 = r2 sin2 �o
r = de= sin �

(16)

From equations (13) and (15), the �rst equation in (16) can be represented in spherical
coordinates as:

(sin � cos �� cos �o sin�)
2 + sin2 � sin2 �+ (cos � � cos �o cos �)

2 = sin2 �o:

which can be reduced to

cos� =
cos �o � cos � cos �

sin � sin�
: (17)

Note that for � � �=2, 8<
:

sin� = de
r

cos � =
p

r2�d2e

r
:

(18)

From (18) and (17), the �rst equation in (5) can be easily derived.
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C. Theorem 10 and Proof

Let P1 and P2 be two polyhdral objects in contact. If one of the objects, say, P1, is
assumed to be �xed, then the following theorem holds.

Theorem 10. Suppose P1 is �xed at a known location. Let �p and �o be the position
and orientation uncertainties of P2 respectively. Let Sp;1 be the grown shell region of
P1 by �p and So;2 be the grown shell region of P2 by �o. Then, the intersection between
Sp;1 and So;2 contains the information of all possible principal contacts between the
original P1 and P2, i.e., the information of Spc, taking into account the uncertainties.

Proof. We now show that for a �xed orientation of P2, represented by the rotation
matrix 1M2 with respect to the frame of P1, the position uncertainty �p of P2 can be
\transferred to" P1, so that growing P1 by �p is equivalent to growing P2 by �p. Let
1p̂2 be the estimated or sensed value of 1p2, which is the position vector of P2 with
respect to the frame of P1. By De�nition 1,

k1p̂2 �1p2k � �p:

Let 2p1 be the position vector of P1 with respect to the actual frame of P2. Then,

2p1 = �(2M1)
T (1p2);

where (2M1)T is the transpose of 1M2. Let 2p̂1 be:

2p̂1 = �(2M1)
T (1p̂2):

Since (2M1)T is a rotation matrix, j(2M1)T j = 1; thus

k2p̂1 �2p1k = k1p̂2 �1p2k � �p;

which means that the fact that the position of P2 with respect to P1 has an uncer-
tainty �p can be viewed equivalently as the position of P1 with respect to P2 has
an uncertainty �p. In that sense, the position uncertainty of P2 can be \transferred
to" P1. Thus, for a �xed orientation of P2 with respect to P1, all possible contacts
between P1 and P2 due to �p can be obtained from the intersection between Sp;1, the
grown region of P1 by �p, and P2 at its estimated position 1p̂2.

The orientation uncertainty of P2 can be taken care of by growing P2 by �o to
obtain So;2. The intersections between Sp;1 and So;2 contain the information of all

possible contacts between P1 and P2 due to both uncertainties �p and �o.
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