
On Random Sampling in Contact Con�guration Space�

Xuerong Ji and Jing Xiao

Computer Science Department

University of North Carolina - Charlotte

Charlotte, NC 28223, USA

xji@uncc.edu and xiao@uncc.edu

Abstract

Random sampling strategies play critical roles in ran-

domized motion planners, which are promising and

practical for motion planning problems with many de-

grees of freedom (dofs). In this paper, we address ran-

dom sampling in a constrained con�guration space { the

contact con�guration space between two polyhedra, mo-

tivated by the need for generating contact motion plans.

Given a contact formation (CF) between two polyhe-

dra A and B, our approach is to randomly generate

con�gurations of A satisfying the contact constraints

of the CF. Key to the approach is to guarantee that

sampling happens only in the constrained space to be

e�cient, which has not been addressed in the litera-

ture. We �rst describe our random sampling strategy

for con�gurations constrained by CFs consisting of one

or two principal contacts (PCs) and then present im-

plementation results.

1 Introduction

Contact motions are important in automatic assem-

bly processes, not only because they happen frequently

when clearance between objects is tight, but also be-

cause they reduce degrees of freedom (dofs), thus re-

duce uncertainties [14, 16]. Contact motion occurs

on the boundary of con�guration space obstacles (C-

obstacles) [13], but computing C-obstacles remains a

formidable task to date. While there were exact de-

scriptions of C-obstacles for polygons [2, 4], there were

�This research has been supported by the National
Science Foundation under grants IIS-9700412 and CDC-
9726424.

only approximations for polyhedra [5, 11]. Contact

motions, however, require exactness of contact con�g-

urations. Hence, some researchers started exploring

methodologies on contact motion planning without ex-

plicitly computing C-obstacles (see for example, [7]).

Recently the authors introduced a general divide-

and-merge approach for automatically generating a

contact state graph between arbitrary polyhedra [9,

20]. Each node in the graph denotes a contact state,

indicating by a contact formation (CF) [17] and a rep-

resentative con�guration of the CF, and each edge de-

notes the neighboring relationship between the two

nodes connected by the edge. With this approach, the

problem of contact motion planning is e�ectively sim-

pli�ed as graph search at high-level for state transi-

tions and motion planning at low-level within the set

of contact con�gurations constrained by the same con-

tact state1. However, even for such reduced-dimension

and reduced-scope motion planning, the dimensional-

ity or dofs can still be quite high for less-constrained

contact states, such as those consisting of only a single

principal contact (PC) [17] (see Fig. 1 for PCs between

two polyhedra). Thus, randomized motion planning is

desirable for planning contact motions, which requires

random sampling of contact con�gurations.

There are promising randomized planners for

collision-free motions, such as those based on prob-

abilistic roadmaps (PRM) [12, 15], to which random

sampling is to simply generate arbitrary con�gurations

of the considered object/robot. The sampled con�g-

urations may or may not be collision-free. To make

sampling more e�cient, several researchers introduced

1Note that a general contact motion crossing several con-
tact states consists of segments of motion in each contact
state.
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di�erent methods targeting at producing more sam-

ples in certain critical areas that tend to be close to

C-obstacles and sparse samples in other areas[1, 3, 8].

However, sampling exactly on the C-obstacle surface,

or in the contact con�guration space, has not been ad-

dressed in the literature.

In this paper, we extends the random sampling strat-

egy for a single PC reported in [10] to contact forma-

tions (CFs) of two PCs. Our approach takes advantage

of our work on automatic generation of contact state

graphs by building sampling on the knowledge of a con-

tact formation and a representative contact con�gura-

tion under the contact formation (obtainable from such

a graph). Particularly, given a CF and a seed con�gura-

tion satisfying the CF, the goal is to randomly sample

con�gurations satisfying the CF.

The paper is outlined as follows. In Section 2, we

review the notion of CFs and analyze the dofs for each

kind of single-PC or two-PC CF between two arbitrary

polyhedra. In Section 3, we present the random sam-

pling algorithms. In Section 4, we provide some ex-

perimental results of the sampling strategy. Section 5

concludes the paper.

2 Contact Formations and Degrees of

Freedom (dofs)

In this section, we �rst introduce notations related to

contact formations used throughout the paper and then

analyze the dofs for di�erent types of contact forma-

tions. Knowledge of the dofs is needed for our random

sampling strategy.

2.1 Notations

Consider two arbitrary polyhedra A and B. Assume

that A is moveable and B is static. The faces, edges,

and vertices of each object are the object's topological

elements. The boundary elements of a face are its edges

and vertices, and the boundary elements of an edge are

its vertices.

As de�ned in [17], a principal contact (PC) between

A and B describes a single contact between a pair of

f-f f-e/e-f f-v/v-f e-e-c

e-v/v-e v-ve-e-t

degenerate

Figure 1: Principal Contacts (PCs)

contacting elements which are not the boundary ele-

ments of other contacting elements. There are 10 types

of PCs (Fig. 1): face-face (f-f), face-edge(f-e)/edge-

face(e-f), face-vertex (f-v)/vertex-face(v-f), edge-edge-

cross (e-e-c), edge-edge-touch (e-e-t), edge-vertex (e-

v)/vertex-edge (v-e), and vertex-vertex (v-v), of which

e-e-t, e-v/v-e and v-v PCs between convex elements

are degenerate PCs. We denote a PC as uA-uB, where

uA and uB denote the contacting elements of A and B

respectively. With the notion of PCs, an arbitrary con-

tact between A andB can be characterized by the set of

PCs formed, called a contact formation (CF), denoted

as fPC1,...,PCng. As degenerate PCs rarely happen

in practice, in this paper, we only consider CFs formed

by non-degenerate PCs, referred to simply as PCs.

The two contacting elements of a non-degenerate PC

uniquely determine a plane, which we call a contact

plane (CP). Based on the region of contact on the con-

tact plane, we can further classify the PCs into the

following three types:

� plane PC: f-f, where the contacting elements in-

tersect at a planar region on the contact plane,

� line PC: e-f and f-e, where the contacting elements

intersect at a line, called a contact line.

� point PC: v-f, f-v, and e-e-c, where the contacting

elements intersect at a point, called a contact point.

A contact con�guration is de�ned as the con�gura-

tion of A relative to that of B when A and B are in

contact. Thus, the geometric interpretation of a PC

is the region of contact con�gurations (on the contact

plane) where the PC holds, and that of a CF is the
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intersection of the regions of contact con�gurations of

the participating PCs.

2.2 Degrees of Freedom

The dofs of a PC is expressed by the constraints it

imposes on contact con�gurations. To represent such

contact constraints, for an arbitrary polyhedron P , we

attach coordinate system (or frame) to it. Moreover,

for each element (vertex, edge or face) of the object P ,

we attach a coordinate system as follows:

� vertex: the coordinate system v has its origin at

the vertex, and the orientation is the same as that

of P .

� edge: the coordinate system e has its origin at one

of its bounding vertices, the direction of +X is

along the edge pointing to the other bounding ver-

tex, the direction of +Z is de�ned as the outward

normal of the edge 2, and the direction of +Y is

determined by the right-hand rule.

� face: the coordinate system f has its origin at one of

its bounding vertices, the direction of +Z is de�ned

as the outward normal of the face, the direction of

+X is along one of the bounding edges of the face,

and the direction of +Y is determined by the right-

hand rule.

Fig. 2 illustrates the coordinate systems of object P

and some of its elements.

We can present the contact constraint equations for

each type of PC between A and B in terms of ex-

pressions for contact con�gurations BTA (homogeneous

transformation matrix) (extending [19]), where for A,

B and their elements, we attach coordinate systems by

the above de�nitions. In each expression, the under-

lined symbols are independent variables, of which the

Greek symbols are rotational variables in Euler angles.

� v-f:
BTA =B TfB � Ttrans(x; y; 0) � Trotzyx(�; �; ) �AT�1vA

� f-v:
BTA =B TvB � Trotzyx(�; �; ) � Ttrans(x; y; 0) �AT�1fA

2The outward normal of an edge (or a vertex) is de�ned
as the sum of the outward normals of the faces forming the
edge (or vertex).

P YP

ZP

XP

Xf

Yf

Zf

f

Yv

Zv

Xvv

Xe

Ze

Ye

e

Figure 2: Coordinate systems for an object P and for its

vertex v, edge e and face f

� e-e-c:
BTA =B TeB � Ttrans(x1; 0; 0) � Trotzyx(�; �; ) �
Ttrans(x2; 0; 0) �AT�1eA

� e-f:
BTA =B TfB �Ttrans(x; y; 0)�Trotz(�)�Trotx()�AT�1eA

� f-e:
BTA =B TeB �Trotx()�Trotz(�)�Ttrans(x; y; 0)�AT�1fA

� f-f:
BTA =B TfB �Ttrans(x; y; 0)�Trotx(�)�Trotz(�)�AT�1fA

where ATvA ,
ATeA and ATfA (or BTvB ,

BTeB and BTfB )

represent the transformation matrices from the frame

of a vertex, edge and face of A (or B) to the frame of

A (or B) respectively. Ttrans(�; �; �) is the 4�4 trans-

lational matrix. Trotz(�), Troty(�), and Trotx(�) are

the 4�4 rotational matrix about z, y and x axis re-

spectively, and Trotzyx(�; �; �) is the combination of the

three rotational matrices.

The dofs for each type of PC equals to its number

of independent variables. Using `t' to indicate transla-

tional dofs and `r' to indicate rotational dofs, we sum-

marize the dofs for single-PC CFs below:

� plane PC: dofs = 3, (2t and 1r)

� line PC: dofs = 4, (2t and 2r)

� point PC: dofs = 5, (2t and 3r)
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B

A

B

A

(a) 2 dofs (b) 1 dof

Figure 3: CFs with two line PCs: (a) the contact lines

are parallel (2 dofs), (b) the contact lines are not parallel

(1 dof)

Since a free-ying polyhedron has 6 dofs, it is easy to

see that a point PC reduces the dof of the object by 1,

a line PC by 2, and a plane PC by 3.

The constraint equations for a two-PC CF are the

set of equations for the PCs involved. The dofs of a

two-PC CF depends not only on the topological types

of the PCs but also on the geometrical relation between

the PCs and their corresponding contact regions. We

summarize them below:

CFs where the two contact planes are not par-

allel:

� two plane PCs ff-f, f-fg:

dofs = 1, (1t)

� line PC and plane PC fe-f/f-e, f-fg3:

dofs = 1, (1t)

� point PC and plane PC fv-f/f-v/e-e-c, f-fg:

dofs = 2, (1t and 1r)

� two line PCs fe-f/f-e, e-f/f-eg (see Fig. 3):

dofs =

8>><
>>:

2, (1t and 1r)

if the two contact lines are parallel

1, (1t)

otherwise

� point PC and line PC fv-f/f-v/e-e-c, e-f/f-eg:

dofs = 3, (1t and 2r)

� two point PCs fv-f/f-v/e-e-c, v-f/f-v/e-e-cg:

dofs = 4, (1t and 3r)

3The notion \e-f/f-e" means either e-f or f-e. The same
explanation applies to all \/" used in the paper.

B

A

B

A

B

A

(c) 

(a) (b) 

B

A

(d) 

Figure 4: CFs with parallel contact planes: (a) two point

PCs (4 dofs), (b) two line PCs with collinear contact lines

(4 dofs), (c) one point and one plane PCs (3 dofs), (d) two

plane PCs (3 dofs)

For CFs where the contact planes are parallel

(see Fig. 4):

dofs =

8>>>>>>><
>>>>>>>:

4, (2t and 2r)

if two point PCs, else

4, (2t and 2r)

if contact point(s)/line(s) are collinear

3, (2t and 1r)

otherwise

3 Random Sampling Strategy

As mentioned in Section 1, the authors introduced a

general divide-and-merge approach [9, 20] to generate

contact state graphs automatically. This approach re-

duces the contact motion planning problem to a graph

search problem at the high level and the problem of

planning of contact motions within the same contact

formation at the low level, which we call CF-compliant

motion planning. Our random sampling strategy aims

at CF-compliant motion planning and takes advantage

of the known information provided by the divide-and-

merge approach: a CF and a (seed) contact con�gura-

tion satisfying the CF.
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(a)  (b)  

B

A

B

A

Figure 5: Two con�gurations of the same fe-f, e-fg CF:

(a) valid with no local penetration, (b) invalid with local

penetration

For each CF, our strategy generates contact con�g-

urations which satisfy the CF and are guaranteed no

local penetration, that is, no penetration between the

two objects through elements uA or uB of each PC or

through an element directly connected to uA (or uB)

and uB (or uA). We call such con�gurations valid con-

tact con�gurations for the CF. Fig. 5 shows two con-

�gurations with the same fe-f, e-fg CF, where (a) is a
valid con�guration, and (b) is invalid because it has a

local penetration between an adjacent face of the edge

and the face of B in the bottom PC.

We use two general methods to randomly generate a

valid con�guration:

� Direct Calculation: this method �rst calculates

the valid range for the values of each independent

variable4 and then randomly selects a value within

the range for the variable. In this way, all sam-

pled con�gurations are valid ones. For single-PC

CFs and some two-PC CFs (see Section 3.1 and 3.2

for details), it is a good method for sampling since

in those cases, the value ranges of all independent

variables can be e�ciently calculated.

� Hybrid Method: this method is for sampling re-

garding the other two-PC CFs where the range of

valid values for certain variables are hard or nearly

impossible to calculate. It �rst uses Direct Calcu-

lation to obtain valid samples for variables whose

ranges can be e�ciently computed. Then, if there

are still other variables, it uses the following two-

4A valid range refers to the range of values for a variable
which satisfy the contact constraints of the CF and do not
cause local penetration between the two objects.

step procedure to obtain a valid random sample for

each such variable without calculating the range of

valid values with respect to the two-PC CF:

Step 1: UseDirect Calculation to randomly �nd

a value of the variable satisfying one PC only.

Step 2: If the value sampled does not result in a

con�guration satisfying the other PC as well, sim-

ply discard the value and repeat Step 1, which we

call resampling. Alternatively, a convergent it-

eration strategy can be used to modify the invalid

value iteratively until a valid value is resulted (i.e. it

leads to a valid con�guration satisfying both PCs).

3.1 Sampling for single-PC CFs

Given a CF=fPC1g, and a valid con�guration Cseed

under the CF, the following function randomly gener-

ates a new valid con�guration under the CF:

func random sample 1PC(Cseed; PC1)

begin

// randomly translate A from Cseed to get C

C  trans 1PC(Cseed; PC1);

// randomly rotate A from C to get new C

C  rotate 1PC(C;PC1);

return C;

end.

The above function calls two subfunctions, which we

explain in turn now.

Function trans 1PC() is used to translate A ran-

domly along the contact plane of PC1 to new valid

con�gurations. Note that �nding explicitly the valid

ranges for the translational variables needs to calcu-

late the Minkowski sum of the two contacting elements

of the PC. In this function, we use a simple and e�-

cient method to achieve the same sampling e�ects with-

out calculating the Minkowski sum. The function ran-

domly picks two points on the two contacting elements

uA and uB of PC1 and then translates A until the two

points meet. In this way, the translation always leads

to a valid con�guration (i.e., maintaining the PC), and

the con�gurations are evenly sampled due to the uni-

form randomness.
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Figure 6: Example ff-fg CF and the sampling procedure of

the translational variables: (a) pick p1 and p2 randomly on

the two contacting faces of A and B respectively, and (b)

translate A so that p1 and p2 meet.

The function trans 1PC() is outlined below:

func trans 1PC(Ct; PC1)

begin

// uA is the contacting element of A in PC1

randomly sample a point p1 on uA;

// uB is the contacting element of B in PC1

randomly sample a point p2 on uB;

C  translate A from Ct so that p1 = p2;

return C;

end.

Note that if any of uA and uB is a vertex, the ran-

domly sampled point on it is the vertex itself; if any of

them is an edge or a face, the randomly sampled point

is a random point inside the bounded edge or face.

It is easy to pick a point randomly inside a bounded

edge or a bounded convex face: the point is some con-

vex combination of the boundary vertices. If the face

is concave, it is �rst decomposed into several convex

parts (e.g., triangles), and then the point is sampled

inside the convex parts.

Function rotate 1PC() generates a random rotation

(of A) compliant to the contact constraints of the CF

to achieve a new valid contact con�guration. It pro-

duces the random or arbitrary rotation through a se-

quence of rotations with respect to each independent

rotational variable. For each such variable, it �rst calls

a function get axis() to get its axis r and then calls

find angle range() to determine the valid range of val-

ues for the variable (to satisfy the CF and cause no

local penetration). Next it randomly picks an angle

inside the range and makes a rotation about r by the

angle. The function is outlined below.

func rotate 1PC(Cr; PC1)

begin

C  Cr;

d  rotational dofs of the CF;

for l = 1 to d do begin

r get axis(C; l; PC1);

(�1,�2)  find angle range(C; r; PC1);

�  randomly sampled angle in (�1,�2);

C  rotate A by � about r from C;

end;

return C;

end.

The function get axis() works based on the type of

the CF. The axes are determined to facilitate the cal-

culation of valid value ranges for the rotations: the

�rst axis is along the normal of the contact plane of

the PC, the second axis (if exists) is either along the

contact line (for line PCs) or any line on the contact

plane of the PC and passing through the contact point

(for point PCs), and the third axis (if exists) is de-

termined by the right-hand rule from the other two.

The angle range for the �rst rotation is (��; �], and
the ranges for the other two (if exist) are returned by

function find angle range(), which uses the algorithm

described in [18] to calculate angle ranges.

3.2 Sampling for two-PC CFs

For two-PC CFs with only one translational degree of

freedom,Direct Calculation is su�cient for sampling

valid con�gurations, while for other two-PC CFs, the

Hybrid Method introduced earlier (in the beginning

of Section 3) is used to sample valid con�gurations.

Nevertheless, we can combine the sampling processes

for all two-PC CFs in a general function as described

below.

From a given seed con�guration Cseed, function

random sample 2PC() randomly generates a valid

con�guration for an arbitrary two-PC CF.Without los-

ing generality, we designate PC1 to be the PC with

fewer dofs if PC1 and PC2 have di�erent dofs. Let
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CP1 and CP2 denote the contact planes of PC1 and

PC2 respectively, CL denote the intersecting line of

CP1 and CP2 if they are not parallel, and ~cl denote a

unit vector along either direction of CL. The function

is outlined as follows:

func random sample 2PC(Cseed; PC1; PC2)

begin

if (CF has 1 translational dof) then

C  trans 2PC(Cseed; PC1; PC2; ~cl);

else begin

~v0  random unit vector on CP1;

C  trans 2PC(Cseed; PC1; PC2; ~v0);

end;

for l = 1 to 3 do

if (CF has l-th rotational dof) then

C  rotate 1dof(l; C; PC1; PC2);

return C;

end.

In the above function, independent translational

variables are sampled by Direct Calculation with

guaranteed valid values. Function trans 2PC() im-

plements a random translation satisfying the two-PC

CF. With the axis ~v as an input, the function starts

from a given valid con�guration Ct and calls a proce-

dure find trans range() to calculate the valid range

of translations along ~v relative to the given con�gura-

tion Ct, and then it randomly generates an increment

of translation for object A within the valid range and

obtains a new valid con�guration, as outlined below.

func trans 2PC(Ct; PC1; PC2; ~v)

begin

// �nd translational ranges along �~v and ~v

// while maintaining PC1 and PC2. d1; d2 � 0

[�d1; d2]  find trans range(Ct; ~v; PC1; PC2);

d  randomly sampled value in [�d1; d2];
//if d < 0, translate along �~v by jdj
C  translate A along ~v by d from Ct;

return C;

end.

(a)  (b)  

p

PC1

PC2

A

B
p

PC1

PC2

A

B

(c)  

p

PC1

PC2

A

B

CL CL

Figure 7: The calculation of valid range of the translation

variable along CL for a CF with two non-parallel line PCs:

(a) calculate the range for PC1 along CL, (b) calculate the

range for PC2 along CL, (c) �nd intersection of the ranges.

The implementation of function find trans range()

involves computing the shortest separation distance

between the two contacting elements of the PC in-

volved, which can be two faces, a face and an edge,

a face and a vertex, or two edges, along a given tan-

gential direction of the contact plane. Fig. 7 shows

how find trans range() works in the case where CP1

and CP2 are non-parallel by an example. The function

�rst projects an arbitrary point of A to CL, denoted

as p, and then calculates the valid ranges to translate

A along ~cl and �~cl without breaking PC1 and PC2

respectively. Next it �nds the intersection of the two

ranges and returns it as the �nal range. In the case of a

given random unit vector, the function works similarly.

To sample rotational variables, we need to �rst deter-

mine rotation axes. From analyzing all kinds of two-PC

CFs, we discover the following three general character-

izations of rotation axes, each corresponding to one ro-

tational variable (if it exists), which are su�cient for all

possible rotations constrained by two-PC CFs. We sim-

ply index them by l = 1; 2; 3 in random sample 2PC():

� l = 1: the rotation axis is denoted by X and de-

�ned as passing through one point on PC2 (i.e., one

point on both contacting elements of PC2) along

the normal of CP1.
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Figure 8: The axes of the three rotational variables for

various CFs, (a) two point PCs with parallel CPs, (b) two

line PCs with parallel CPs and collinear contact lines, (c)

one point and one plane PCs, (d) two lines PCs with parallel

contact lines, (e) one point and one line PCs, (f) two point

PCs.

� l = 2: the rotation axis is denoted by Y and de�ned

as along the contact line of PC1 (if PC1 is a line

PC), or passing through the contact point of PC1

and parallel to CL (if PC1 is a point PC).

� l = 3: the rotation axis is denoted by Z and de-

�ned as passing through the two contact points (for

two point PCs) or along one contact line (for two

collinear line PCs, or one point and one line PCs

with the point on the line).

Fig. 8 illustrates these three kinds of rotation axes in

various examples. Note that in all cases, the rotation

axis Y is actually for a combined rotation and trans-

lation in order to maintain the CF. As the rotation

and translation are mutually dependent, there is only

one independent variable. We will explain its sampling

later.

Clearly, depending on the rotational dofs, not all ro-

tations about these axes are always possible. Table 1

summarizes all kinds of two-PC CFs, their rotational

dofs and corresponding rotational axes.

Now we explain the sampling strategies regarding

rotational variables about X, Y , and Z respectively in

more detail.

About X, i.e., l = 1:

We use the Hybrid Method introduced earlier.

The function rotate 1dof(1; C; PC1; PC2) �rst calcu-

lates the angle range about X which satis�es PC2 by

calling find angle range() (see Section 3.1). It then

samples an angle � inside the range, and next rotates

A about X by � to get a new con�guration C. If C also

satis�es PC1, i.e., forms a valid con�guration, it is re-

turned; otherwise, either resampling or convergent

iteration can be used (as introduced before Section

3.1). Here convergent iteration is to modify � by k�,

i.e., �  k�, where 0 < k < 1, repeatedly until � re-

sults in a valid con�guration, i.e., a convergence to the

valid value range is achieved.

About Y , i.e., l = 2:

Sampling again uses the Hybrid Method. As men-

tioned earlier, the motion here is a combined transla-

tion and rotation with one independent variable. In all

cases where this motion is possible (Fig. 8 gives some

examples), CP1 and CP2 are not parallel, and they

intersect at line CL.

The function rotate 1dof(2; C; PC1; PC2) uses a

translational variable d along an axis ~v on CP1 and

perpendicular to CL as the independent variable for

the combined motion. It �rst randomly samples d with

a value satisfying PC1 by Direct Calculation (in a

procedure similar to but simpler than trans 2PC(),

since only one PC needs to be satis�ed). Next it checks

whether PC2 can also be satis�ed by a guarded rotation

about Y , with the angle calculated, which depends on

the value of d. If so, the function returns a valid con-

�guration C; otherwise, again, either resampling or

convergent iteration on the value d (i.e., d  kd,

where 0 < k < 1, repeatedly until d results in a valid

con�guration) can be used. Fig. 9 shows how a rotation
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CF type rot. dofs X Y Z

two point PCs 2
p

x
p

CP1 k CP2 collinear contact points/lines 2
p

x
p

others 1
p

x x

2 plane PCs 0 x x x

1 line, 1 plane PCs 0 x x x

CP1: k CP 2 two non-parallel line PCs 0 x x x

1 point, 1 plane PCs 1
p

x x

two parallel line PCs 1 x
p

x

1 point, 1 line PCs 2
p p

x

2 point PCs 3
p p p

Table 1: Two-PC CFs, their rotational dofs, and corresponding rotational axes

B

A

B

   (a)  (b)

PC1

PC2

B

A

(c) 

PC1

PC2

Aθ

PC1d1 d2

v
Y

Figure 9: Sampling a combined motion with rotation about

Y for a CF with two line PCs: (a) seed con�guration and

translational range [�d1; d2] along ~v, (b) con�guration after

translation along ~v by a sampled d (not shown) and the

guarded rotation angle �, (c) con�guration after the guarded

rotation about Y by � to meet PC2.

about Y is sampled.

About Z, i.e., l = 3:

Unlike the two previous cases about X and

Y , here the rotational variable about Z is sam-

pled using Direct Calculation. The function

rotate 1dof(3; C; PC1; PC2) �rst calculates the ro-

tational angle ranges (�11; �12) and (�21; �22) about

Z for PC1 and PC2 respectively by calling

find angle range() (see Section 3.1), and then �nds

the intersection of the ranges as the valid range of the

rotational variable. Finally an angle � is sampled ran-

domly inside the range, and A is rotated about Z by �

to generate a valid con�guration.

In summary,we have presented above a general func-

tion random sample 2PC() to produce random con�g-

urations satisfying any given two-PC CFs. Note that

only in two steps regarding rotations about X and Y

(i.e., l = 1; 2), the Hybrid Method is used, and Di-

rect Calculation is used in sampling all the other

variables to maximize e�ciency.

In the Hybrid Method, the alternative to Direct

Calculation is either resampling or convergent it-

eration. Resampling for a single variable is simply to

repeat the sampling process for that variable until a

value which results in a valid con�guration is found or

after some pre-determined number of tries.

Convergent iteration, on the other hand, guarantees

to �nd a valid value for the variable or makes it con-

verge to the valid value range. If there are more than

one connected valid value range, which may happen in

the cases where the two-PC CF has multiple connected

regions of contact con�gurations, caution is needed to

make the convergence to each valid range equally likely

in order to ensure the even distribution of samples.

This, however, can be achieved by always using the

newly randomly sampled con�guration as the seed con-

�guration for the next sample.
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4 Experimental Results

The random sampling strategy for single-PC and two-

PC CFs has been implemented in C. The program runs

on SUN Ultra10 workstation. The machine is rated at

12.1 SPECint95 and 12.9 SPECfp95. The input to the

program is a CF and a valid contact con�guration sat-

isfying the CF. The output are random con�gurations

of the same CF which are guaranteed no local penetra-

tion. We use VRML as the output format.

Fig. 10 shows the sampling results for several single-

PC CFs between a cube A and an L-shape B. Fig. 11

shows the sampling results for two-PC CFs between

di�erent shapes of objects. The running time (in sec-

onds) for generating 1000 samples of the examples in

Fig. 10 and Fig. 11 are summarized in Table 2.

From Table 2, clearly it takes much shorter time to

generate samples for single-PC CFs. This is because,

though usually single-PC CFs have higher dofs, sam-

pling is done byDirect Calculation. For two-PC CFs

of the same objects, usually the higher dofs the CF has,

the more time is needed to sample the same number of

con�gurations, although the time also depends on the

geometry of the objects. For the same CF, the run-

ning time of the algorithm is nearly proportional to

the number of samples generated.

In the last two rows of Table 2, we show the run-

ning times of the examples using convergent itera-

tion and resampling respectively. It seems that con-

vergent iteration runs faster in most cases. Our ex-

periments show that for convergent iteration with

k = 0:5, after at most 13 iterations, a valid con�gu-

ration can be obtained for all the four examples. For

resampling, on the other hand, after at most 73 re-

sampling iterations, a valid con�guration can be ob-

tained.

Our experiments also show that among the three ro-

tational variables, the sampling of the second one about

Y with dependent translation is the most expensive,

followed by that of the �rst variable, and sampling for

the third variable is the fastest because ofDirect Cal-

culation.

5 Conclusion

This paper addresses random sampling of con�gura-

tions constrained by contact, which is not only nec-

essary for planning contact motions with certain ran-

domized planners but also useful for planning collision-

free motions since the sampled contact con�gurations

probabilistically characterize the C-obstacles. An ef-

�cient random sampling strategy is implemented for

sampling con�gurations constrained by single-PC or

two-PC CFs, which satisfy contact constraints of the

CF without causing local penetration. The strategy

is characterized by directly computing valid samples

wherever possible to maximize e�ciency. In the next

step, we intend to apply such a strategy to randomized

contact motion planning.
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(f) {v-f, v-f}: 4 dofs(e) {v-f, e-f}: 3 dofs

(d) {e-f, f-e}: 2 dofs(c) {e-e-c, f-f}: 2 dofs

(b) {e-f, e-f}: 1 dof(a) {f-f, f-f}: 1 dof

Figure 11: Examples for two-PC CFs: seed con�gurations and the results for 1000 samples

Method CF dofs time(s) CF dofs time(s)

Direct ff-fg, Fig. 10(a) 3 0.23 fe-fg, Fig. 10(b) 4 0.25

Direct fv-fg, Fig. 10(c) 5 0.45 fe-e-cg, Fig. 10(d) 5 0.45

Direct ff-f, f-fg, Fig. 11(a) 1 6.7 fe-f, e-fg, Fig. 11(b) 1 1.5

Hybrid fe-e-c, f-fg, Fig. 11(c) 2 3.7 or 3.8 fe-f, f-eg, Fig. 11(d) 2 61.1 or 56.1

Hybrid fv-f, e-fg, Fig. 11(e) 3 50.4 or 50.9 fv-f, v-fg, Fig. 11(f) 4 34.7 or 40.4

Table 2: Examples in Fig. 10 and Fig. 11 and their running times for 1000 samples. In the last two rows, the two

numbers given for each case under times(s) correspond to the running times using convergent iteration and resampling

respectively.


