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Abstract: One of the ultimate goals in robotics is to make high-DOF robots work
autonomously in unknown changing environments. However, motion planning in
completely unknown environments is largely an open problem and poses many chal-
lenges. One challenge is that in such an environment, the configuration-time space
(CT-space) of a robot is not known beforehand. This paper describes how guaran-
teed collision-free regions in the unknown CT-space can be discovered progressively
via sensing in real time based on the concept dynamic envelope, which is not conser-
vative, i.e., does not assume worst-case scenarios, and is robust to uncertainties in
obstacle behaviors. The introduced method can be used in general by real-time mo-
tion planners for high-DOF robots to discover the existence of guaranteed collision-
free future motions efficiently. The utility is further confirmed both in simulation
and in real-world testing involving a 5-DOF robot manipulator.

1 Introduction

Most of the existing work addresses robot motion planning in known environ-
ments, which can be catogorized into the following:

1. Path planning for a robot in a static and known environment to search a
collision-free path in the (static) configuration space (C-space) [1] of the
robot. Approaches include finding collision-free regions or free space in the
C-space [2][3] and sampling-based planners to deal with high-dimensional
C-space for robots of high degrees of freedom (DOF)[4][5].

2. Motion planning for a robot in a known dynamic environment to search
a trajectory in the CT-space [2] of the robot. Again, sampling-based
planners were used here [5] to avoid constructing high-dimensional CT-
obstacles. For a mobile robot, the notion of “Inevitable Collision Regions”
(ICS) in the CT-space was introduced [6] essentially to characterize the
CT-obstacles.
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In both cases planning can be done off-line without the need of sensing (sensing
is only used to deal with uncertainities during actual execution of motion).
Collision detection is usually the most time consuming component of any
sampling-based planner. Its complexity increases as the complexity of the
robot and environment increases.

An extension to the above basic problems is through adding some obstacles
of unknown motion into the largely known environment. This is mostly ad-
dressed by on-line revising pre-planned paths with reactive schemes to avoid
collisions (e.g., [7][8][9]). These schemes usually assume partially unchang-
ing/known C-space or CT-space to limit the scale of revising/replanning in
order to facilitate real-time computation.

A further extension is motion planning in drastically changing environ-
ments with unknown obstacle motions. A real-time adaptive planning ap-
proach [10][11] for high-DOF robots is very effective, characterized by simul-
taneous planning and execution based on sensing. However, the approach
assumes known obstacles with unknown motions. Thus, planning future mo-
tion is based on predicting obstacle motion through tracking and frequently
updating the predictions.

Note that in those approaches, unknown changes in an environment are
dealt with by repeated computation or recomputation of (some parts of)
paths/trajectories, which involve repeated collision checking.

Another extension is motion planning in unknown but static environments.
No information about the obstacles is known. Such a problem needs active
sensing of the environment. One approach represents an environment in terms
of voxels so that obstacle geometry need not be known [12]. Sensing is used
to discover which voxels are occupied by obstacles. Such sensor based motion
planners [13][14] are often adapted from model based planners to plan paths
incrementally, as unknown C-Space becomes known gradually by sensing.

A largely open problem is motion planning in completely unknown envi-
ronments, where obstacle geometries and states are unknown, i.e., if and when
they move or not is not known. In other words, the CT-space of a robot is
completely unknown. The existing approaches to deal with known obstacles of
unknown motions are not suitable here as obstacles cannot be distinguished,
and thus their motions cannot be tracked and predicted.

This paper addresses this open problem. We present a novel approach to
discover guaranteed collision-free regions in the unknown and unpredictable
CT-space in real-time via sensing. We show how the approach can be used
for real-time motion planning in such an environment and test it through
simulation and experiments.
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2 Perceived CT-space vs. Predicted CT-space

We are interested in discovering true collision-free regions, or free space, in
the CT-space of a robot in an unknown and unpredictable environment (i.e.,
obstacles are not known and whether and how they move are not known).

This is different from the existing approaches that predict the CT-space to
deal with obstacles of unknown motion. Such approaches predict an obstacle’s
motion mostly by tracking its location or assuming constant velocity within
a planning period. Motion planning is then done in the predicted CT-space of
a robot, involving collision checking of the robot’s configuration at any future
time against the predicted obstacle configurations at the same time instant.
However, if obstacles themselves are unknown, they cannot be detected or
tracked so that prediction-based approaches are not suitable.

Fig. 1. Predicted CT-space vs. Perceived CT-Space

Moreover, predicted CT-space is often not the true CT-space and only
matches closely to it within a short period immediately after the time when
the prediction is made. It requires repeated modification as new sensing infor-
mation becomes available. Hence, motion planning based on prediction will
lead to re-computation of motions, and the planned motions may fail to be
collision-free due to inaccurately predicted CT-space. It is too conservative to
assume worst-case obstacle motion in order to have guaranteed collision-free
motions of the robot with the CT-obstacle space exaggerated.

We use the term perceived CT-space to call the CT-space discovered by
our approach via sensing, which includes actual (i.e., guaranteed) collision-free
regions discovered that will not turn false later as sensing continues. Therefore,
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it is not the same as a predicted CT-space. Figure 1 illustrates the difference
between the two. It compares predicted vs. perceived vs. actual CT-space in a
2-D example. Both predicted CT-space and perceived CT-space will change as
sensing/time progresses. However, unlike predicted CT-space, where a point
predicted collision-free may not be actually collision-free, the perceived CT-
space consists of actual collision-free regions that can only grow over time and
uncertain regions, which can be either free or CT-obstacle regions.

3 Perceived CT-Space

We now show how the actual CT-free space can be perceived over time.

3.1 Atomic obstacles

First of all, with obstacles completely unknown in an environment, it will be
difficult to try to distinguish different geometric obstacles from sensing. For
static environments, this problem can be addressed by, for example, represent-
ing an environment in terms of voxels without knowing obstacle geometry [12].
However, if the environment is changing drastically, this is computationally
costly as the entire set of voxels are only valid for the current sensing inter-
val and have to be re-computed at each subsequent sensing interval. Hence,
it makes sense to use the lower-level data from sensors directly to represent
obstacles without ever performing elaborate sensor information processing.
Without the loss of generality, the lower-level sensory data for obstacles can
be treated as atomic obstacles of similar and simple geometry at different
locations. Collectively the atomic obstacles represent actual obstacles in an
environment without distinguishing them (see Section 4). At each sensing in-
stant, only the locations of atomic obstacles (with default geometry) can be
sensed. However, we can put an upper bound on the changing rate of the envi-
ronment in terms of a maximum possible speed vmax of each atomic obstacle.
Of course, an atomic obstacle may have varied actual speeds in [0, vmax].

3.2 Dynamic envelope

We are interested in discovering collision-free regions via sensing in real-time
in the otherwise unknown CT-space for a general (high-DOF) robot. Assume
sensing data are obtained/updated at discrete times starting at t = 0. For any
CT-point (q, t), we ask the question: will the robot be guaranteed collision-free
at (q, t) based on the sensed information at the current time ti?

We can answer this question using the concept of dynamic envelope.

Definition 1: For a CT-point χ = (q, t), a dynamic envelope Eto(χ, ti), as a
function of current time ti ≤ t, is a closed surface enclosing the region occupied
by the robot at configuration q in the physical space so that the minimum
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distance between any point on Eto(χ, ti) and the region is di = vmax(t − ti),
where to ≤ ti is the time when the envelope was created. t−to is the maximum
lifespan of Eto(χ, ti).

The following are general properties of a dynamic envelope Eto
(χ, ti). They

capture non-worst case scenarios regarding atomic obstacle motions, without
assuming any particular kinds of obstacle motion.

1. A dynamic envelope shrinks monotonically over sensing time with speed
vmax, i.e., Eto(χ, ti+m) ⊂ Eto(χ, ti), where m > 0, to ≤ ti < ti+m ≤ t.

2. An atomic obstacle not on or inside Eto
(χ, to) will never be on or inside

Eto(χ, ti).
3. An atomic obstacle on Eto

(χ, to) will never be inside Eto
(χ, ti).

4. An atomic obstacle either on or inside Eto
(χ, to) can be outside Eto

(χ, ti),
for certain ti, if not moving towards the robot in maximum speed vmax

all the time, i.e., if not moving in the worst case.

From these properties, one can envision the following: suppose some atomic
obstacles are on or inside a dynamic envelope Eto

(χ, ti) initially; as the dy-
namic envelope shrinks during its maximum lifespan, no new atomic obstacles
will ever enter the dynamic envelope, and the atomic obstacles initially on or
inside it will be ”squeezed” out of the envelope at some later time during the
lifespan if these atomic obstacles do not always move towards the robot config-
uration q in vmax, i.e., under non-worst case scenarios. Hence, at time ti, if
no atomic obstacle is on or inside the dynamic envelope Eto

(χ, ti), χ = (q, t)
is guaranteed collision-free, i.e., the above question is answered. Moreover,
all the continuous configuration-time points in the interval [(q, ti), (q, t)] are
guaranteed collision-free.

Figure 2 shows an example, where χ = ((3, 3), 3), vmax = 1 unit/s.

(a) E0.1(χ, 0.1) (b) E0.1(χ, 1) (c) E0.1(χ, 1.89)

Fig. 2. Dynamic envelope of a planar rod robot. In (c), χ is percieved collision free
at ti = 1.89s.

In general, as soon as at some tl, no atomic obstacle sensed is on or inside
the dynamic envelope Eto

(χ, tl), the envelope is no longer needed, and it can
expire at tl, i.e., before its maximum lifespan is reached.
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3.3 Collision-free region vs. uncertain region

We have answered in the above that a CT-point (q, t) can be perceived at
ti(≤ t) as guaranteed collision-free and also explained that if (q, t) is perceived
at ti as guaranteed collision-free, the hyperline segment [(q, ti), (q, t)] in the
CT-space is also guaranteed collision-free.

Now a natural next question is: given a configuration q, what is the longest
hyperline segment [(q, ti), (q, t)], or the furthest time t, that can be perceived
at ti as guaranteed collision-free? The answer to that question depends on the
minimum distance dmin(q, ti) between the robot (if it were) at configuration
q and the closest atomic obstacle sensed at ti. Let

∆t(q, ti) =
dmin(q, ti)

vmax
, (1)

which is the minimum period before a collision can possibly occur at q. Let

tf (q, ti) = ti + ∆t(q, ti) (2)

Clearly, as long as t is within the time interval [ti, tf (q, ti)), the hyperline
segment [(q, ti), (q, t)] can be perceived at ti as guaranteed collision-free.
Thus, the longest hyperline segment that can be perceived at ti as guaranteed
collision-free is [(q, ti), (q, tf (q, ti)).

The union of all the guaranteed collision-free hyperline segments of the CT-
space perceived at ti is the maximum collision-free region (that may include
multiple connected continuous regions) perceived at ti, denoted as F (ti). F (ti)
consists of only CT-points for t ≥ ti. The union of the rest of the regions in
the CT-space for time t ≥ ti forms the uncertain region U(ti).

Theorem 1: For any ti and tj , such that ti ≤ tj , if a CT-point (q, t), where
t ≥ tj , belongs to F (ti), then it also belongs to F (tj). On the other hand, if
the point (q, t) belongs to U(ti), it may still belong to F (tj).

Proof: From ti to tj , the change in minimum distance at configuration q can
be expressed as:

dmin(q, tj)− dmin(q, ti) = pvmax(tj − ti), −1 ≤ p ≤ 1. (3)

From equations (1) and (2), and using equation (3), we get

tf (q, tj)− tf (q, ti) = (tj − ti) + dmin(q,tj)−dmin(q,ti)
vmax

= (1 + p)(tj − ti)
⇒ tf (q, tj)− tf (q, ti) ≥ 0

That is, if (q, t) is on the hyperline [ti, tf (q, ti)), then, since t ≥ tj , it is also
on the hyperline [tj , tf (q, tj)). On the other hand, if (q, t) belongs to U(ti),
then t ≥ tf (q, ti), but as long as t < tf (q, tj), (q, t) belongs to F (tj).

The significance of the above theorem is that more collision-free CT-space
points can be discovered as sensing time progresses, i.e., the collision-free
regions can only grow, while uncertain regions can only shrink.
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4 Representing Unknown Obstacles of Unknown
Geometry: An Example

There is much research on how to explore an unknown (mostly static) envi-
ronment using robots with sensors mounted, and issues studied include how to
move a robot to maximize sensing views (i.e., minimize occlusions) [15] and
how to map an environment accurately through repeated exploration (e.g.,
SLAM [16]). For sensor-based robot navigation, different kinds of sensors are
used either mounted in the environment to provide a world view or mounted
on a robot to provide a robot-centric, local view. However, these issues regard-
ing the arrangement and style of sensing is out of the scope of this paper. It is
important to note that the concepts introduced in Section 3 are independent
of any kind of sensing style.

In general, the lowest level data points of whatever sensor (e.g., laser range
finders, sonar, etc.) constitute atomic obstacles (as mentioned in Section 3).
As a concrete example, consider that an overhead stereovision sensor is used
to provide a view of an unknown environment. The stereovison sensor provides
an image of the environment. Every pixel (i, j) of that image maps to a surface
region Rij of 3-D points in the physical world. We can further obtain the 3-D
point (x, y, z) in Rij that is closest to the image plane. This mapping between
3-D point (x, y, z) and pixel (i, j) is a one-to-one mapping.

Fig. 3. An atomic obstacle Oij from stereo vision

Since Rij occludes the space behind it, from it one cannot tell if and how
there are objects in that occluded space. Therefore, to be safe, Rij and the
infinite volume of points it occludes can be viewed as an atomic obstacle Oij

that a robot cannot collide with. Oij is associated with a pixel (i, j) of the
image, which starts from the point (x, y, z) extending towards infinity. It can
be viewed as a trapezoidal ray originated from (x, y, z) as shown in Figure 3.
The 3-D environment can now be viewed as consisting of only these atomic
obstacles Oij for all (i, j)’s in the image. Let M ×N be the size of the image.

Note that since actual obstacles in the environment are entirely unknown
and can move/change unpredictably, we cannot relate the atomic obstacles
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from an image taken at time tk to those from a image taken at tk+1. Thus,
the low-level sensory data from tk is only useful within that sensing interval
and should be replaced entirely by the sensory data obtained from tk+1. In
other words, there is no need for accumulating sensory data, and the space
complexity for storing sensory data is simply a constant C = M ×N .

Now consider the time complexity of using the stored data. Since the sensed
atomic obstacles are used for perceiving collision-free or uncertain CT-points,
only those atomic obstacles enclosed in a dynamic envelope (of the robot at
the considered CT-point) need to be considered. For this example, atomic
obstacles are directly indexed by (i, j) in a one-to-one mapping between a
physical 3-D point (x, y, z) to a pixel (i, j). Projecting a dynamic envelope
onto the image plane, we can obtain the indices (i, j) of the atomic obstacles
enclosed and consider only them for collision test. Let n indicate the number
of such indices, then for any CT-point (q, t), the time complexity of collision
test is a function of n, which is usually much smaller than C. As the dynamic
envelope shrinks overtime, so is the time for collision test.

Of course, as viewing directions change, the atomic obstacles as defined
above change too, but that does not matter because we are not concerned here
with what the actual obstacles look like. Also note that the atomic obstacles
do not have to have the same size. It is important that the atomic obstacles
come directly from sensory data and are of simple shapes.

5 Computing Motions in the Perceived CT-space

The concept of dynamic envelope introduced in section 3 can be used by
motion planners to discover collision-free regions in the CT-space for future
motions efficiently, which do not require re-computation or revision.

Let q1 and q2 be two configurations of a robot. Let (q1, ts) and (q2, te)
be two points in the CT-space, and let the current time be to < ts. We are
interested in finding whether a trajectory segment connecting (q1, ts) and
(q2, te), where ts < te, is collision-free or not, based on sensing at each ti ∈
[to, ts), i = 1, 2, .... The trajectory segment can be represented by a sequence
Γ of CT-points between (q1, ts) and (q2, te) through interpolation. If the
resolution for interpolation is chosen such that the maximum gap between the
robot put at two consecutive CT-space points (after interpolation) is smaller
than the known size of an atomic obstacle, then if the two CT-space points
are guaranteed collision-free, the CT-points in between are also guaranteed
collision-free. In that sense, the sequence Γ truly represents a continuous
motion segment in the perceived CT-Space.

For every point χk = (qk, tk) in the sequence Γ , where t1 = ts, tm = te,
and 1 ≤ k ≤ m, we need to check if it is collision-free or not. This can be done
by creating the dynamic envelope Eto(χk, to) at to for each k. Note that for a
robot consisting of many links, a dynamic envelope can be built for each link
with a simple shape. We next observe all Eto(χk, ti)’s along Γ shrink as the
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sensing time ti progresses from to. If for every dynamic envelope Eto(χk, ti),
there exists a time tki ∈ [to, ts) when Eto

(χk, tki ) is free of atomic obstacles,
then it means Γ is a guaranteed collision-free motion segment, discovered
before its starting time ts. Moreover, if the starting time of Γ is moved to t′s,
such that max(tki ) ≤ t′s < ts (i.e., earlier than ts), the shifted Γ (along the
time axis) is also guaranteed collision-free. This means that the whole sweped
region of Γ along the time axis from max(tki ) to ts in the CT-space is now
discovered to be collision-free.

Our general algorithm to check whether a CT-point χ = (q, t) is collision-
free or not based on the (shrinking) dynamic envelope Eto(χ, ti), for ti ∈ [to, t),
is called the collision-free perceiver (CFP) as shown in Algorithm 1. CFP is
quite efficient for real-time operation because of the following: (1) CFP returns
a boolean value and does not require (more expensive) minimum distance
computation. (2) As shown in Section 4, CFP only needs to consider a subset
of the atomic obstacles sensed. The number n of such atomic obstacles is
related to the size of the dynamic envelope, which shrinks over time. (3) Both
the atomic obstacles and the dynamic envelope are of simple shapes. A time-
limit for CFP can be further imposed.

Algorithm 1 Collision-Free Perceiver (CFP)
1: Input configuration-time point χ = (q, t), current time to

2: i = 1, ti = to

3: Create dynamic envelope Eto(χ, ti)
4: while ti < t and (not time-limit) do
5: if no atomic obstacle is on or inside Eto(χ, ti) then
6: Eto(χ, ti) expires
7: return χ ∈ F (tj), ∀ti ≤ tj ≤ t, (χ is guaranteed collision-free)
8: else

i = i + 1 (Next sensing moment)
9: end if

10: end while
11: return χ may not be collision-free

The above method of computing guaranteed collision-free motion segments
in CT-space using CFP can be employed by any real-time motion planner
seeking collision-free motion in an unknown and unpredictable environment.
As the robot moves along a perceived collision-free trajectory segment, the
planner can continue finding subsequent collision-free motion segments. Since
the segment currently followed by the robot is truly collision-free, the robot
can safely stay on it until it needs to execute a subsequent collision-free motion
segment provided by the planner. As the planner does not need to worry if
the current segment being executed by the robot will become infeasible, it can
solely focus on planning the next motion segment. In section 7, we will show
concrete simulation and real-world examples of real-time planning using CFP.
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6 Robustness of Approach over Exaggerated vmax

As vmax, the maximum speed of an atomic obstacle, is the only known or
estimated parameter we assume in our approach dealing with completely un-
known environment, it is necessary to investigate how robust our approach
of perceiving collision-free CT-space points is with respect to very inaccurate
vmax. Specifically, it is natural to over-estimate vmax to be safe, i.e., the esti-
mated v′max satisfies: v′max > vmax. The effect of such over-estimation can be
stated in the following theorem.

Theorem 2: Let v′max = cvmax, c > 1, and let (q, t) be a collision-free CT-
point. If t′k and tk are the respective time instants when (q, t) is perceived to
be collision-free, then, they satisfy: tk < t′k ≤ t.

Proof: Suppose at time to, the dynamic envelopes Eto((q, t), to) and E′
to

((q, t), to)
for (q, t) were created with respect to vmax and v′max respectively, where

do = vmax(t− to) , and
d′o = v′max(t− to) = cvmax(t− to)

Clearly for any time to ≤ ti < t, E′
to

((q, t), ti) is greater than Eto((q, t), ti).
Suppose further that at least one atomic obstacle was on or inside Eto((q, t), to).
Thus, it was also on or inside E′

to
((q, t), to).

Suppose at time tk, where to ≤ tk ≤ t, the dynamic envelope Eto((q, t), tk)
has shrunk enough to just “squeeze out” atomic obstacles, i.e., the CT-point
(q, t) is perceived collision-free. Recall that dmin(q, tk) is the minimum dis-
tance between the robot if put at q and the atomic obstacles. Thus,

dk = vmax(t− tk) = dmin(q, tk)− ε (4)

where ε > 0 is very small. Clearly at tk, E′
to

((q, t), tk) still has atomic obstacles
because it is larger than Eto((q, t), tk). Later, suppose at time instant t′k,
where tk < t′k ≤ t, E′

to
((q, t), t′k) has shrunk enough to “squeeze out” atomic

obstacles in it, perceiving the CT-point (q, t) as collision-free. Thus,

d′k = cvmax(t− t′k) = dmin(q, t′k)− ε. (5)

From (4) and (5), we have d′k−dk = dmin(q, t′k)−dmin(q, tk). From the above
equation and equation (3), we have

d′k − dk = pvmax(t′k − tk), −1 ≤ p ≤ 1 (6)

From the equations (4), (5), and (6), we can further obtain

t′k − tk = (
c− 1
c + p

)(t− tk) ≤ t− tk (7)

Hence, tk < t′k ≤ t.
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The significance of the theorem is that, if a CT-point (q, t) is collision-free,
then it will be perceived as collision-free no later than time t no matter how
badly the actual vmax is overestimated as v′max. Moreover, t′k = t only in the
very scenario when, at any time ti ∈ [tk, t], the nearest atomic obstacle at tk
originally inside Eto((q, t), to) moves towards the robot’s configuration q with
vmax, and in all other cases, t′k < t. This shows the robustness of the CFP.

7 Implementation and Experimental Results

We have tested our approach in both simulation and real-world experiments.

7.1 Test in simulation

A planar rod robot was considered in the test. It can only translate on a plane
with a fixed orientation θ = −45◦. Thus the robot has two translational de-
grees of freedom, with reference position set at the top point of the rod. As
shown in Figure 4, the robot is initially at a collision-free CT-point (S, to) and
needs to reach a goal configuration G in this completely unknown environ-
ment, where there are unknown obstacles of arbitrary shapes formed by what
the robot can only sense as identical red circles (called the atomic obstacles).
The sensing frequency is 20 Hz. The obstacles can either be static or move
randomly with changing speeds no greater than vmax units/s, which can be
overestimated by the robot as v′max > vmax.

We want to check how effective the collision-free perceiver (CFP) of Algo-
rithm 1 can be used by a real-time motion planner to guide the rod robot to
its goal while avoiding obstacles. While the robot waits at the starting config-
uration S, the planner can explore the perceived CT-space to find a motion
segment for the robot to move. Different planners can be used here, and the
difference is only that they will provide different candidate motion segments
for CFP to check for feasibility (i.e., if guaranteed collision-free or not). A
motion segment can consist of multiple straight-line segments.

We use the real-time adaptive motion planner (RAMP) [10] to provide
CFP candidate motion segments. The planner is implemented in C#, on Dell
Optiplex GX620. RAMP can simultaneously establish a diverse set of trajec-
tories starting from the robot’s current location for the CFP to check and
let the robot to execute the best feasible trajectory segment. While the robot
executes the guaranteed collision-free trajectory segment, RAMP continues
planning subsequent feasible trajectory segments, using CFP. Thus, once the
robot finishes executing the current segment, it can hopefully move to the
next guaranteed collision-free trajectory segment seamlessly without stop.

Figure 6 shows the snapshots of an example run, when the rod robot of
unit length moves from position S= (1, 1) to the goal G= (9, 9) with speed 5
units/s. vmax = 1 unit/s, and the obstacles can change velocities instantly. The
sequences of green (or dark in B/W) reference positions show the perceived
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Fig. 4. Simulation environ-
ment

Fig. 5. Static narrow pas-
sage of width approximately
1 unit

(a) ti = 0.05s (b) ti = 0.7s

(c) ti = 3.25s (d) ti = 5.8s

Fig. 6. Snapshots of an example run in simulation

collision-free trajectory segments (without showing the time instants). The
sequences of red reference positions indicate uncertain trajectory segments
at each moment of perception, which may or may not be collision-free. The
robot executes the best green option found. Note that the robot never hits
an obstacle while moving along a green trajectory because it is guaranteed
collision-free. The attached movie shows the process in four examples with
increasing number of obstacles and vmax. The robot may only get hit by an
obstacle (and momentarily change color to blue) when it cannot find a green
trajectory so fast and has to stop its motion.

We tested the effects of overestimating the speed bound vmax of obstacles
in the same environment of the example run. Figure 7 shows the average
results over 30 runs for each c. The total time is the average total time for
the robot to plan and move simultaneously from the start position to the goal
position. If the robot cannot find a collision-free trajectory segment to move
to when it reaches the end of the current collision-free trajectory segment, it
has to stop its motion until a new collision-free segment is found. Thus, the
# stops means the average number of stops the robot has to make during its
journey from the start position to the goal position. The # hits is the average
number of times when the robot got hit by obstacles during its stops (i.e.,
before the next collision-free trajectory segment is found). The results show
that increasing c, or the level of over-estimation of vmax, has little effect on
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those performance parameters. The ups and downs in the curves reflect the
randomness in the environment.

(a) c vs. total time (sec) (b) c vs. # hits and # stops

Fig. 7. Effects of Over-estimating vmax as v′max = cvmax, c ≥ 1

We also tested how our approach works in a static environment (vmax =
0) with a narrow passage shown in figure 5, where the robot has to move
through the narrow passage to a goal, shown in every position of the path.
We performed experiments for varied over-estimation 1 ≤ v′max ≤ 4. In all
cases, the travel time for the robot from the start to the goal position was
constant: 2.49s. This, in fact, experimentally verified Theorem 2.

7.2 Real-world experiments with a high DOF robot

We have also tested the CFP (Algorithm 1) by embedding it in a simple
real-time motion planner for a real desktop 5-DOF robot manipulator with
revolute joints in an unknown and unpredictable environment, sensed via an
overhead stereovision sensor (Figure 8). Our real-time motion planner finds
a collision-free straight-line segment in the CT-space as the next-step motion
for the robot to execute, with a search method compromising randomized
and greedy search1 and using CFP for discovering collision-free motion. As
the robot moves, the planner simultaneously finds again the subsequent next
step until the goal is reached.

The planner was implemented in C++ on a low-end PC (Dell Optiplex
GX260). The 5-DOF manipulator is made from the Robix Rascal RC6 kit. The
stereo vision camera is PGR’s Digiclops. The obstacles are blocks unknown
to the robot, which can be moved in ways also unknown to the robot. Table
1 shows the input parameter values to the planner, where S and G are the
starting and goal configurations respectively. q̇−ve and q̇+ve are the negative
and positive bounds on the joint speeds of the robot. Note that the number of
atomic obstacles of an actual obstacle increase if the obstacle is close to the
origin of the camera frame.
1 In this way the planner is able to overcome local minima, but the details of

search and handling local minima is not the focus of this paper since a number
of different strategies can be used.
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(a) (b)

Fig. 8. Experimental setup. Fig(a) shows Robix Rascal RC 6 and obstacles of
unknown geometry in its workspace and (b) shows kinematics of the manipulator

The atomic obstacles generated from stereo vision are as described in sec-
tion 4. The atomic obstacles representing the robot itself and the known desk
surface (as “floor”) were filtered out. The shape of an atomic obstacle was
approximated as a straight-line ray. The shape of a link of the robot was
simplified by a cylindrical bounding volume. The number of atomic obstacles
in the test environment were in the range of 345–800. The average rate of
collision checking in the CFP computation was 1430.64 CT-points/second.

Table 1. Input Parameters and Values

S, G vmax (q̇−ve,q̇+ve) Sensor min#O(i, j)
(degrees) cm/sec (degrees/sec) Image resolution per obstacle

[−70, 45, 0, 0, 0]T 1 ([−6,−6,−5,−6,−7]T , 160× 120 115
[70,−45, 0, 0, 0]T [ 6, 6, 5, 6, 7]T )

Figure 9 shows a test environment and two different resulting paths that
the robot traveled. The environment had 4 blocks as obstacles, where two were
placed at the corners and two were stacked together to form a taller obstacle
in between. The taller obstacle created a local optima for the given robot
structure with limited dexterity, which our planner was able to overcome.

Figure 10 shows a sequence of selected snapshots of the robot motion in
another test environment, where there are four obstacles, and two of them are
dynamic, moved by the two hands of a human operator. (Note that a grid of
1× 1 cm2 squares on the desk was used as a guidance to move obstacles close
to vmax = 1cm/s.) As shown, the operator first moved one block towards the
robot. Between step 9 to step 18, the planner tried to get most of links closer
to their goal positions while avoiding the moving block and the block at the
bottom left corner. After step 18, the moving block decreased its speed, and a
new block was moved into the visible robot workspace. The planner noticed the
reduced speed of the first moving block in time due to the non-conservative
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(a) Path 1

(b) Path 2

Fig. 9. An environment
(Env1) and two traveled
paths by the robot

(a) Step #4 (b) Step #9 (c) Step #18

(d) Step #19 (e) Step #25 (f) Step #27

Fig. 10. Selected steps taken by the robot in an unknown
dynamic environment (Env2). In (a), robot is near the con-
figuration S and in (f), robot is at configuration G

nature of the dynamic envelopes and simply guided the robot to pass by
the moving block and the static block, while moving away from the newly
entered block to reach the goal in step 27. Table 2 shows the resulting statistics

Table 2. Average results from two environments (for the same start and goal con-
figurations of the robot)

Env Path length (deg) #Steps Total time (sec) #Sensing cycle (Hz)

Env1 514.924 62.2 82.8 3.5
Env2 235.98 27 49 4.58

characterizing the planner performance in the two task environments.

8 Conclusions and Future Work

The paper introduces the notion of perceived CT-Space for a robot, which
characterizes what truely collision-free regions can be perceived from sensing
in an otherwise completely unknown and unpredictable environment. Through
the novel concept of dynamic envelopes complemented by low-level atomic
obstacles directly from sensing, the paper presents an approach to discover
guaranteed collision-free motion segments to facilitate real-time robot motion
planning in completely unknown and unpredictable environments. The ap-
proach is in essence efficient because it does not assume worst-case behaviors
but rather operates based on perceiving the actual obstacle behaviors, and no
re-computation is needed for the already found collision-free motion segments.
The approach is also proven robust with respect to unknown maximum ve-
locities of obstacles. It can be used by different motion planners regardless of
specific planning strategies. It is tested in both simulation and real experi-
ments with a real 5-DOF robot manipulator.
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We will further take into account the robot’s position and control un-
certainty in producing guaranteed collision-free motions and further test the
approach in experiments to see how fast the obstacles have to move relative
to the robot for the approach to be infeasible.
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