

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3TM-2013

IEEE Standard for Identity-Based
Cryptographic Techniques using
Pairings

Sponsor

Microprocessor Standards Committee
of the
IEEE Computer Society

Approved 22 August 2013

IEEE-SA Standards Board

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Abstract: Common identity-based public-key cryptographic techniques that use pairings,
including mathematical primitives for secret value (key) derivation, public-key encryption, and
digital signatures, as well as cryptographic schemes based on those primitives are specified in
this standard. Also, related cryptographic parameters, public keys and private keys, are specified.
The purpose of this standard is to provide a reference for specifications of a variety of techniques
from which applications may select.
Keywords: encryption, identity-based encryption, IEEE 1363.3TM, pairing-based cryptography,
pairing-based encryption, public-key cryptography

•

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2013 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 15 November 2013. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics
Engineers, Incorporated.

PDF: ISBN 978-0-7381-8649-8 STD98390
Print: ISBN 978-0-7381-8650-4 STDPD98390

IEEE prohibits discrimination, harassment, and bullying.
For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission
of the publisher.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These
notices and disclaimers, or a reference to this page, appear in all standards and may be found under the
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Standards
Documents.”

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards
Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are
developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards
Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a
consensus development process, approved by the American National Standards Institute (“ANSI”), which
brings together volunteers representing varied viewpoints and interests to achieve the final product.
Volunteers are not necessarily members of the Institute and participate without compensation from IEEE.
While IEEE administers the process and establishes rules to promote fairness in the consensus development
process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the
soundness of any judgments contained in its standards.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and
expressly disclaims all warranties (express, implied and statutory) not included in this or any other
document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness
for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness
of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort.
IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related
to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved
and issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his
or her own independent judgment in the exercise of reasonable care in any given circumstances or, as
appropriate, seek the advice of a competent professional in determining the appropriateness of a given
IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO:
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE
UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND
REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event
that an IEEE standard is translated, only the English version published by IEEE should be considered the
approved IEEE standard.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board
Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its
committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures,
symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall
make it clear that his or her views should be considered the personal views of that individual rather than the
formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of
membership affiliation with IEEE. However, IEEE does not provide consulting information or advice
pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a
consensus of concerned interests, it is important that any responses to comments and questions also receive
the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and
Standards Coordinating Committees are not able to provide an instant response to comments or questions
except in those cases where the matter has previously been addressed. For the same reason, IEEE does not
respond to interpretation requests. Any person who would like to participate in revisions to an IEEE
standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

 Secretary, IEEE-SA Standards Board
 445 Hoes Lane
 Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with
the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory
requirements. Implementers of the standard are responsible for observing or referring to the applicable
regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not
in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws.
They are made available by IEEE and are adopted for a wide variety of both public and private uses. These
include both use, by reference, in laws and regulations, and use in private self-regulation, standardization,
and the promotion of engineering practices and methods. By making these documents available for use and
adoption by public authorities and private users, IEEE does not waive any rights in copyright to the
documents.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to
photocopy portions of any individual standard for company or organizational internal use or individual,
non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance
Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission
to photocopy portions of any individual standard for educational classroom use can also be obtained
through the Copyright Clearance Center.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time
by the issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten
years old and has not undergone a revision process, it is reasonable to conclude that its contents, although
still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to
determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended
through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at
http://ieeexplore.ieee.org/xpl/standards.jsp or contact IEEE at the address listed previously. For more
information about the IEEE SA or IEEE’s standards development process, visit the IEEE-SA Website at
http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL:
http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata
periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to
the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant
has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the
IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may
indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without
compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of
any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not
responsible for identifying Essential Patent Claims for which a license may be required, for conducting
inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing
agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely
their own responsibility. Further information may be obtained from the IEEE Standards Association.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2013 IEEE. All rights reserved.

vi

Participants

At the time this standard was completed, the P1363 Working Group had the following membership:

William Whyte, Chair
Don Johnson, Vice Chair

Kendall Ananyi
Matt Ball
Xavier Boyen
Mike Brenner
Daniel Brown
Mark Chimley
Andy Dancer
Mike Geipel

David Jablon
Satoru Kanno
Tetsutaro Kobayashi
David Kravitz
Phil MacKenzie
Michael Markowitz
Luther Martin
Marc Provencher
Jim Randall

Roger Schlafly
Mike Scott
Hovav Shacham
Ari Singer
Terence Spies
Yongge Wang
Tom Wu
Go Yamamoto

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

Ed Addario
Mike Brenner
Keith Chow
Andy Dancer
James Davis
Thomas Dineen
Andrew Fieldsend
Randall C. Groves
Werner Hoelzl
Atsushi Ito
Mark Jaeger

Piotr Karocki
Thomas Kurihara
Susan Land
William Lumpkins
Greg Luri
Michael S. Newman
Nick S.A. Nikjoo
Randall Safier
Bartien Sayogo
Gil Shultz

Kapil Sood
Thomas Starai
Rene Struik
Walter Struppler
Joseph Tardo
Srinivasa Vemuru
John Vergis
Karl Weber
William Whyte
Oren Yuen
Janusz Zalewski

When the IEEE-SA Standards Board approved this standard on 22 August 2013, it had the following
membership:

Richard H. Hulett, Chair
John Kulick, Vice Chair
Robert Grow, Past Chair
Judith Gorman, Secretary

Satish Aggarwal
Masayuki Ariyoshi
Peter Balma
William Bartley
Ted Burse
Clint Chaplin
Wael Diab
Jean-Philippe Faure

Alexander Gelman
Paul Houzé
Jim Hughes
Young Kyun Kim
Joseph L. Koepfinger*
David J. Law
Thomas Lee
Hung Ling

Oleg Logvinov
Ted Olsen
Gary Robinson
Jon Walter Rosdahl
Mike Seavey
Yatin Trivedi
Phil Winston
Yu Yuan

*Member Emeritus

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2013 IEEE. All rights reserved.

vii

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Richard DeBlasio, DOE Representative
Michael Janezic, NIST Representative

Don Messina
IEEE Standards Program Manager, Document Development

Joan Woolery

IEEE Client Services Manager, Professional Services

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2013 IEEE. All rights reserved.

viii

Introduction

This introduction is not part of IEEE Std 1363.3-2013, IEEE Standard for Identity-Based Cryptographic Techniques
using Pairings.

This standard describes eight identity-based cryptographic schemes that use pairings in their
implementation. The schemes include approaches to encryption, digital signatures, signcryption, and key
exchanges. These schemes may be used to encrypt both stored data as well as data in transit. An underlying
mathematical operation called a “pairing” is a common element of these schemes, and the standard
describes algorithms for calculating pairings and gives parameters suitable for implementing the specified
schemes at industry-standard security levels (NIST SP 800-57 [B125]).a

a The numbers in brackets correspond to those of the bibliography in Annex F.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2013 IEEE. All rights reserved.

ix

Contents

1. Overview .. 1
1.1 Scope ... 1
1.2 Purpose .. 1
1.3 Organization of the document.. 2

2. Normative references .. 3

3. Definitions .. 3

4. Types of cryptographic techniques ... 7
4.1 General model.. 7
4.2 Primitives ... 8
4.3 Schemes ... 9
4.4 Table summary .. 10

5. Mathematical conventions .. 11
5.1 Mathematical notation ... 11
5.2 Bit strings and octet strings .. 13
5.3 Finite fields .. 13
5.4 Elliptic curves and points ... 16
5.5 Pairings .. 16
5.6 Data type conversion ... 16

6. Hashing primitives.. 23
6.1 Hashing to an integer ... 23
6.2 Hashing to a string ... 24
6.3 Hashing to a point in a subgroup ... 25
6.4 Hashing to an element of a finite field ... 29

7. Pairing-based primitives ... 30
7.1 General .. 30
7.2 SK primitives ... 30
7.3 BB1 primitives ... 33
7.4 BF primitives ... 36
7.5 SCC key agreement primitives .. 38

8. Identity-based encryption schemes ... 39
8.1 SK KEM scheme ... 40
8.2 BB1 KEM scheme .. 42
8.3 BB1 IBE scheme .. 44
8.4 BF IBE scheme .. 46

9. Identity-based signature schemes ... 48
9.1 BLMQ signature scheme ... 48

10. Identity-based signcryption schemes .. 50
10.1 BLMQ signcryption scheme .. 50

11. Identity-based key agreement schemes .. 53
11.1 Wang key agreement scheme .. 54
11.2 SCC key agreement scheme .. 57

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2013 IEEE. All rights reserved.

x

Annex A (informative) Number-theoretic background .. 59

Annex B (normative) Conformance ..121

Annex C (informative) Rationale ..126

Annex D (informative) Security considerations ..127

Annex E (informative) Formats ...128

Annex F (informative) Bibliography ...131

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

Copyright © 2013 IEEE. All rights reserved.

1

IEEE Standard for Identity-Based
Cryptographic Techniques using
Pairings

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, security, health,
or environmental protection, or ensure against interference with or from other devices or networks.
Implementers of IEEE Standards documents are responsible for determining and complying with all
appropriate safety, security, environmental, health, and interference protection practices and all
applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may
be found under the heading “Important Notice” or “Important Notices and Disclaimers
Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at
http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

1.1 Scope

This document specifies identity-based cryptographic schemes based on the bilinear mappings over elliptic
curves known as pairings. Specific techniques include algorithms to compute the pairings and specification
of recommended elliptic curves and curve parameters over which the pairings are defined. The class of
computer and communications systems is not restricted.

1.2 Purpose

The proliferation of electronic communication and the Internet brings with it the need for privacy and data
protection. Public-key cryptography offers fundamental technology addressing this need. Many alternative
public-key techniques have been proposed, each with its own benefits. IEEE Std 1363TM-20001 and
IEEE Std 1363aTM-2004 have produced a comprehensive reference defining a range of common public-key
techniques covering key agreement, public-key encryption, and digital signatures from several families,
namely the discrete logarithm, integer factorization, and elliptic curve families. This document will specify
identity-based cryptographic techniques based on pairings. These offer advantages over classic public-key

1 Information on references can be found in Clause 2.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

2

techniques specified in IEEE Std 1363-2000. Examples are the lack of a requirement to exchange or look
up public keys of a recipient and the simplified use of short-lived keys. The class of computer and
communications systems is not restricted.

1.3 Organization of the document

This standard contains two parts: the main document and the annexes.

1.3.1 Structure of the main document

The structure of the main document is as follows:

⎯ Clause 1 is a general overview.

⎯ Clause 2 provides references to other standards and publications.

⎯ Clause 3 defines some terms used throughout this standard.

⎯ Clause 4 gives an overview of the types of cryptographic techniques that are defined in this
standard.

⎯ Clause 5 defines certain mathematical conventions used in the standard, including notation and
representation of mathematical objects. It also defines formats to be used in communicating the
mathematical objects as well as primitives for data type conversion.

⎯ Clause 6 defines certain cryptographic hashing primitives that are used to build the complete
schemes described in subsequent clauses.

⎯ Clause 7 defines certain pairing-based primitives that are used to build the identity-based schemes
that are defined in the subsequent clauses.

⎯ Clause 8 defines four pairing-based, identity-based encryption schemes.

⎯ Clause 9 defines a pairing-based, identity-based signature scheme.

⎯ Clause 10 defines a pairing-based, identity-based signcryption scheme.

⎯ Clause 11 defines two pairing-based, identity-based key agreement schemes.

1.3.2 Structure of the annexes

The annexes provide background and helpful information for the users of the standard and consist of the
following material:

⎯ Annex A (informative) Number-theoretic background

⎯ Annex B (normative) Conformance

⎯ Annex C (informative) Rationale

⎯ Annex D (informative) Security considerations

⎯ Annex E (informative) Formats

⎯ Annex F (informative) Bibliography

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

3

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

IEEE Std 1363TM-2000, IEEE Standard Specifications for Public-Key Cryptography.2, 3

IEEE Std 1363aTM-2004, IEEE Standard Specifications for Public-Key Cryptography—Amendment 1:
Additional Techniques.

3. Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards
Dictionary: Glossary of Terms and Definitions4 should be consulted for terms not defined in this clause.

authentication of ownership: The assurance that a given, identified party intends to be associated with a
given public key. This may also include assurance that the party possesses the corresponding private key
(see D.3.2 in IEEE Std 1363-2000 for more information).

bit length: See: length.

bit string: An ordered sequence of bits (0s and 1s). A bit and a bit string of length 1 are equivalent for all
purposes of this standard.

ciphertext: The result of applying encryption to a message. Contrast: plaintext. See also: encryption.

conformance region: A set of inputs to a primitive or a scheme operation for which an implementation
operates in accordance with the specification of the primitive or scheme operation (see B.1 for more
information).

cryptographic family: Three families of techniques are presented in this standard, based on the underlying
hard problem: discrete logarithm over finite fields (DL), discrete logarithm over elliptic curve groups (EC),
and integer factorization (IF).

decrypt: To produce plaintext from ciphertext. Contrast: encrypt. See also: ciphertext; encryption;
plaintext.

digital signature: A digital string for providing authentication. Commonly, in public-key cryptography, it
is a digital string that binds a public key to a message in the following way: Only the person knowing the
message and the corresponding private key can produce the string, and anyone knowing the message and
the public key can verify that the string was properly produced. A digital signature may or may not contain
the information necessary to recover the message itself. See also: digital signature scheme; public key;
public-key cryptography; private key; signature scheme with appendix; signature scheme with
message recovery.

2 IEEE publications are available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org/).
3 The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics Engineers, Inc.
4IEEE Standards Dictionary: Glossary of Terms and Definitions is available at http://shop.ieee.org.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

4

digital signature scheme: A method for providing authentication. In public-key cryptography, this method
can be used to generate a digital signature on a message with a private key in such a way that anyone
knowing the corresponding public key can verify that the digital signature was properly produced. See also:
digital signature; public key; public-key cryptography; private key; signature scheme with appendix;
signature scheme with message recovery.

domain parameters: A set of mathematical objects, such as fields or groups, and other information,
defining the context in which public/private key pairs exist. More than one key pair may share the same
domain parameters. Not all cryptographic families have domain parameters. See also: public/private key
pair; valid domain parameters.

domain parameter validation: The process of ensuring or verifying that a set of domain parameters is
valid. See also: domain parameters; key validation; valid domain parameters.

encrypt: To produce ciphertext from plaintext. Contrast: decrypt. See also: ciphertext; encryption;
plaintext.

encryption scheme: A method for providing privacy. In public-key cryptography, this method can be used
to modify a message with the help of a public key to produce what is known as ciphertext in such a way
that only the holder of the corresponding private key can recover the original message from the ciphertext.
See also: ciphertext; plaintext; private key; public key; public-key cryptography.

family: See: cryptographic family.

field: A setting in which the usual mathematical operations (addition, subtraction, multiplication, and
division by nonzero quantities) are possible and obey the usual rules (such as the commutative, associative,
and distributive laws). A discrete logarithm (DL) or elliptic curve (EC) scheme is always based on
computations in a field. See Koblitz [B98]5 for a precise mathematical definition.

finite field: A field in which there are only a finite number of quantities. The discrete logarithm (DL) and
elliptic curve (EC) schemes are always implemented over finite fields. See Clause 5 for a description of the
particular finite fields used in this standard.

first bit: The leading bit of a bit string or an octet. For example, the first bit of 0110111 is 0. Contrast: last
bit. Syn: most significant bit; leftmost bit. See also: bit string; octet.

first octet: The leading octet of an octet string. For example, the first octet of 1c 76 3b e4 is 1c. Contrast:
last octet. Syn: most significant octet; leftmost octet. See also: octet; octet string.

key agreement: A method by which two entities, using each other’s public keys and their own private
keys, agree on a common secret key that only the two entities know. The secret key is then commonly used
in some symmetric cryptography technique. See also: private key; public key; secret key; symmetric
cryptography.

key confirmation: The assurance provided to each party participating in a key agreement protocol that the
other party is capable of computing the agreed-upon key and that it is the same for both parties (see D.5.1.3
in IEEE Std 1363-2000 for more information). See also: key agreement.

key derivation: The process of deriving a secret key from a secret value. See also: secret key; secret
value.

key pair: See: public/private key pair.

5 The numbers in brackets correspond to those of the bibliography in Annex F.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

5

key validation: The process of ensuring or verifying that a key or a key pair is valid. See also: domain
parameter validation; public/private key pair; valid key; valid key pair.

last bit: The trailing bit of a bit string or an octet. For example, the last bit of 0110111 is 1. Contrast: first
bit. Syn: least significant bit; rightmost bit. See also: first bit; octet.

last octet: The trailing octet of an octet string. For example, the last octet of 1c 76 3b e4 is e4. Contrast:
first octet. Syn: least significant octet; rightmost octet. See also: octet; octet string.

least significant: See: last bit; last octet.

leftmost bit: See: first bit.

leftmost octet: See: first octet.

length: (A) Length of a bit string is the number of bits in the string. (B) Length of an octet string is the
number of octets in the string. (C) Length in bits of a nonnegative integer n is 2log (1)n +   (i.e., the

number of bits in the integer’s binary representation). (D) Length in octets of a nonnegative integer n is

256log (1)n +   (i.e., the number of digits in the integer’s representation base 256). For example, the length

in bits of the integer 500 is 9, whereas its length in octets is 2.

message recovery: See: signature with message recovery.

message representative: A mathematical value for use in a cryptographic primitive, computed from a
message that is input to an encryption or a digital signature scheme. See also: encryption scheme; digital
signature scheme.

most significant: See: first bit; first octet.

octet: A bit string of length 8. An octet has an integer value between 0 and 255 when interpreted as a
representation of an integer in base 2. An octet can also be represented by a hexadecimal string of length 2,
where the hexadecimal string is the representation of its integer value base 16. For example, the integer
value of the octet 10011101 is 157; its hexadecimal representation is 9d. See also: bit string.

octet string: An ordered sequence of octets. See also: octet.

parameters: See: domain parameters.

plaintext: A message before encryption has been applied to it; the opposite of ciphertext. Contrast:
ciphertext. See also: encryption.

private key: The private element of the public/private key pair. See also: public/private key pair; valid
key.

public key: The public element of the public/private key pair. See also: public/private key pair; valid
key.

public-key cryptography: Methods that allow parties to communicate securely without having prior
shared secrets, usually through the use of public/private key pairs. Contrast: symmetric cryptography.
See also: public/private key pair.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

6

public/private key pair: A pair of cryptographic keys used in public-key cryptography, consisting of a
public key and a private key that correspond to each other by some mathematical relation. The public key is
commonly available to a wide audience and can be used to encrypt messages or verify digital signatures;
the private key is held by one entity and not revealed to anyone; it is used to decrypt messages encrypted
with the public key and/or produce signatures that can verified with the public key. A public/private key
pair can also be used in key agreement. In some cases, a public/private key pair can only exist in the
context of domain parameters. See also: digital signature; domain parameters; encryption; key
agreement; public-key cryptography; valid key; valid key pair.

rightmost bit: See: last bit.

rightmost octet: See: last octet.

root: If ()f x is a polynomial, then its root is a value r of the variable x such that () 0f r = .

secret key: A key used in symmetric cryptography; it commonly needs to be known to all parties involved
but cannot be known to an adversary. Contrast: public/private key pair. See also: key agreement; shared
secret key; symmetric cryptography.

secret value: A value that can be used to derive a secret key, but typically it cannot by itself be used as a
secret key. See also: secret key.

shared secret key: A secret key shared by two parties, usually derived as a result of a key agreement
scheme. See also: key agreement; secret key.

shared secret value: A secret value shared by two parties, usually during a key agreement scheme. See
also: key agreement; secret value.

signature: See: digital signature.

signature scheme with appendix: A digital signature scheme that requires the signed message as input to
the verification algorithm. Contrast: signature scheme with message recovery. See also: digital
signature; digital signature scheme.

signature scheme with message recovery: A digital signature scheme that contains enough information
for recovery of the signed message, thus limiting the possible message size while eliminating the need to
transmit the message with the signature and input it to the verification algorithm. Contrast: signature
scheme with appendix. See also: digital signature; digital signature scheme.

signature verification: The process of verifying a digital signature. See also: digital signature; digital
signature scheme.

symmetric cryptography: Methods that allow parties to communicate securely only when the parties
already share some prior secrets, such as the secret key. Contrast: public-key cryptography. See also:
secret key.

valid domain parameters: A set of domain parameters that satisfies the specific mathematical definition
for the set of domain parameters of its family. Although a set of mathematical objects may have the general
structure of a set of domain parameters, it may not actually satisfy the definition (for example, it may be
internally inconsistent) and thus not be valid. See also: domain parameters; public/private key pair;
valid key; valid key pair; validation.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

7

valid key: A key (public or private) that satisfies the specific mathematical definition for the keys of its
family, possibly in the context of its set of domain parameters. Although some mathematical objects may
have the general structure of keys, the objects may not actually lie in the appropriate set (for example, the
objects may not lie in the appropriate subgroup of a group or be out of the bounds allowed by the domain
parameters) and thus not be valid keys. See also: domain parameters; public/private key pair; valid
domain parameters; valid key pair; validation.

valid key pair: A public/private key pair that satisfies the specific mathematical definition for the key pairs
of its family, possibly in the context of its set of domain parameters. Although a pair of mathematical
objects may have the general structure of a key pair, the keys may not actually lie in the appropriate sets
(for example, the objects may not lie in the appropriate subgroup of a group or be out of the bounds
allowed by the domain parameters) or may not correspond to each other; such a pair is thus not a valid key
pair. See also: domain parameters; public/private key pair; valid domain parameters; valid key;
validation.

validation: See: domain parameter validation; key validation.

4. Types of cryptographic techniques

This clause gives an overview of the types of cryptographic techniques that are specified in this standard as
well as some requirements for conformance with those techniques. See Annex B for more on conformance.

4.1 General model

This document provides a reference for specifications of a variety of pairing-based public-key
cryptographic techniques from which applications may select, and it defines these techniques in a
framework that allows the selection of techniques appropriate for particular applications. Pairing-based
cryptography enables either more compact versions of traditional cryptographic methods, such as short
signature schemes, or key management techniques that can map an application-chosen identity string to a
public key. In some circumstances, these identity-based techniques can yield more efficient or easier-to-use
protocols.

The framework for pairing-based cryptographic techniques is similar to that defined in
IEEE Std 1363a-2004, in that number-theoretic hard problems are used as the basis for cryptographic
schemes that are incorporated into protocols. Pairing-based cryptography uses a different, but related, set of
problems that are presumed to be computationally infeasible at appropriate sizes. These problems, typically
variants of the bilinear Diffie-Hellman (BDH) problem, are close relatives of the Diffie-Hellman problem
cited in IEEE Std 1363-2000.

Different types of cryptographic techniques can be viewed abstractly according to the following three-level
general model:

⎯ Primitives—Basic mathematical operations that are based on number-theoretic hard problems.
Primitives are not meant to achieve security just by themselves, but the primitives serve as building
blocks for schemes.

⎯ Components—Cryptographic operations comprising primitives and other mathematical operations
that in turn comprise schemes.

⎯ Schemes—A collection of related operations combining primitives and components. Schemes can
provide complexity-theoretic security, which is enhanced when the schemes are appropriately
applied in protocols.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

8

⎯ Protocols—Sequences of operations to be performed by multiple parties to achieve some security
goal. Protocols can achieve desired security for applications if implemented correctly.

From an implementation viewpoint, primitives can be viewed as low-level implementations (e.g.,
implemented within cryptographic accelerators or software modules), schemes can be viewed as medium-
level implementations (e.g., implemented within cryptographic service libraries), and protocols can be
viewed as high-level implementations (e.g., implemented within entire sets of applications).

A general framework of primitives is provided in Clause 5 through Clause 7; specific schemes are defined
in Clause 8 through Clause 11. This standard, however, does not define protocols. These are application-
specific and hence are outside the scope of the standard. Nevertheless, the techniques defined in this
standard are key components for constructing various cryptographic protocols. Also, Annex D discusses
security considerations related to how the techniques can be used in protocols to achieve certain security
attributes.

4.2 Primitives

The following types of primitives are defined in this standard:

⎯ Cryptographically hashing an octet string to either an integer or a point on an elliptic curve

⎯ Generation of an identity-based private key

⎯ Verification of an identity-based private key

⎯ Encryption of a plaintext message

⎯ Decryption of a ciphertext message

⎯ Generation of an identity-based signature

⎯ Verification of an identity-based signature

⎯ Reencryption of a ciphertext into a different ciphertext

⎯ Derivation of an identity-based public key

⎯ Derivation of a shared secret from public and private keys

⎯ Encapsulation of a random session key

⎯ Decapsulation of an encrypted session key

⎯ Setup of system parameters needed for the operation of an identity-based cryptographic scheme

Primitives in this standard are presented as mathematical operations and are useful only as building blocks
for the full schemes that follow.

Primitives assume that their inputs satisfy certain input constraints, as listed with the specification of each
primitive. An implementation of a primitive is unconstrained on an input not satisfying the input
constraints, as long as it does not adversely affect future operation of the implementation; the
implementation may or may not return an error condition. For example, an implementation of a signature
primitive may return something that looks like a signature even if its input was not a valid private key. It
may also reject the input. It is up to the user of the primitive to guarantee that the input will satisfy the
constraints or to include the relevant checks. For example, the user may choose to use the relevant key and
domain parameter validation techniques.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

9

The specification of a primitive consists of the following information:

⎯ Input to the primitive

⎯ Input constraints about the input made in the description of the operation performed by the
primitive

⎯ Output from the primitive

⎯ Operation performed by the primitive, expressed as a series of steps

⎯ Conformance region recommendations describing the minimum recommended set of inputs for
which an implementation should operate in conformance with the primitive (see Annex B for more
on conformance)

The specifications are functional specifications, not interface specifications. As such, the format of inputs
and outputs and the procedure by which an implementation primitive is invoked are outside the scope of
this standard. See Annex E for more information on input and output formats.

4.3 Schemes

The following types of schemes are defined in this standard:

⎯ Identity-based encryption and key encapsulation

⎯ Identity-based signatures

⎯ Identity-based signcryption

⎯ Identity-based key agreement

⎯ Identity-based proxy reencryption

The goal of these schemes is to allow encrypted communication between multiple parties assuming the
presence of one or more trusted key servers. These schemes allow the sending party to transform a string
representing the identity of the receiving party a set of key server parameters into a public key. This public
key can then be used to encrypt or derive a symmetric key, typically used with a symmetric encryption
algorithm to encrypt a message to the second party. The receiving party shall then request a private key for
that identity string from a key server. The key server uses a derivation operation to calculate the receiver’s
private key, which is communicated back to the receiver. Subsequent communications to the receiver that
use the same identity string can be decrypted with a stored version of this key.

Schemes in this standard are presented in a general form based on certain primitives and additional
methods, such as message encoding methods. For example, an encryption scheme is based on an encryption
primitive, a decryption primitive, and an appropriate message encoding method.

Schemes also include key management operations, such as selecting a private key or obtaining another
party’s public key. For proper security, a party needs to be assured of the true owners of the keys and
domain parameters and of their validity. Generation of domain parameters and keys needs to be performed
properly, and in some cases, validation also needs to be performed. Although outside the scope of this
standard, proper key management is essential for security. It is addressed in more detail in Annex D.

The specification of a scheme consists of the following information:

⎯ Scheme options, such as choices for primitives and additional methods

⎯ One or more operations, depending on the scheme, expressed as a series of steps

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

10

⎯ Conformance region recommendations for implementations conforming with the scheme (see
Annex B for more on conformance)

As for primitives, the specifications are functional specifications, not interface specifications. As such, the
format of inputs and outputs and the procedure by which an implementation of a scheme is invoked are
outside the scope of this standard. See Annex E for more information on input and output formats.

4.4 Table summary

Table 1 gives a summary of all the schemes in this standard, together with the primitives and additional
methods that are invoked within a scheme.

Table 1 —Summary of schemes and their components

Scheme name Components Primitives
SK KEM

SK-KEM-S
SK-KEM-EX
SK-KEM-EN
SK-KEM-DE

P-SK-G
P-SK-V
P-SK-E
P-SK-D
IHF1
SHF1

BB1 KEM

BB1-KEM-S
BB1-KEM-EX
BB1-KEM-EN
BB1-KEM-DE

P-BB1-G
P-BB1-V
P-BB1-E
P-BB1-D
IHF1
SHF1

BB1 IBE BB1-IBE-S
BB1-IBE-EX
BB1-IBE-EN
BB1-IBE-DE

P-BB1-G
P-BB1-V
P-BB1-E
P-BB1-D
IHF1
SHF1

BF IBE BF-IBE-S
BF-IBE-EX
BF-IBE-EN
BF-IBE-DE

P-BF-G
P-BF-V
P-BF-E
P-BF-D
IHF1
SHF1
PHF-SS
PHF-GFP
PHF-GF2

BLMQ signature BLMQ-SIG-S
BLMQ-SIG-EX
BLMQ-SIG-SI
BLMQ-SIG-VE

P-BLMQ-G
P-BLMQ-GV

BLMQ signcryption BLMQ-SC-S
BLMQ-SC-EX
BLMQ-SC-SE
BLMQ-SC-DV

P-BLMQ-G
P-BLMQ-GV

Wang key agreement WKA-KA-D1
WKA-KA-D2
WKA-KA-V
WKA-KA-D3
WKA-KA-G

P-BF-D
P-BF-G
PHF-SS
PHF-GFP
PHF-GF2

SCC key agreement SCC-KA-G P-BF-G
P-BF-V
P-SCC-D1

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

11

5. Mathematical conventions

This clause describes certain mathematical conventions used in the standard, including notation,
terminology, and representation of mathematical objects. It also contains primitives for data type
conversion. Note that the internal representation of mathematical objects is left entirely to the
implementation and may or may not follow the one described in 5.1.

5.1 Mathematical notation

The following mathematical notation is used throughout the document.

0 denotes the integer 0, the bit 0, or the additive identity (the element zero) of a finite field. See 5.3 for
more on finite fields.

1 denotes the integer 1, the bit 1, or the multiplicative identity (the element one) of a finite field. See 5.3 for
more on finite fields.

 a b× denotes the product of a and b, where a and b are either both integers or both finite field elements.
When it does not cause confusion, × is omitted and the notation ab is used. See 5.3 for more on finite fields.

a P× denotes scalar multiplication of an elliptic curve point P by a non-negative integer a. When it does
not cause confusion, × is omitted and the notation aP is used. See 5.4 for more on elliptic curves.

x   denotes the smallest integer greater than or equal to the real number x. For example, 5 5=   and

5.3 6=   .

x   denotes the largest integer less than or equal to the real number x. For example, 5 5=   and

5.3 5=   .

[],a b denotes the interval of integers between and including the integers a and b.

(,)LCM a b denotes the least common multiple of a and b for two positive integers a and b (i.e., the least

positive integer that is divisible by both a and b). See A.1.1 and A.2.2 for an algorithm to compute the
LCM.

(,)GCD a b denotes the greatest common divisor of a and b for two positive integers a and b (i.e., the

largest positive integer that divides both a and b). See A.1.1 and A.2.2 for an algorithm to compute the
GCD.

X Y⊕ denotes the bitwise exclusive-or (XOR) of two bit strings or two octet strings X and Y of the same
length.

||X Y denotes the ordered concatenation of two strings X and Y. X and Y are either both bit strings or both

octet strings.

lg x denotes the logarithmic function of a positive number x to the base 2.

256log x denotes the logarithmic function of a positive number x to the base 256.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

12

moda n denotes the unique remainder r, 0 r n≤ < , when the integer a is divided by the positive integer n.
For example, 23 mod 7 = 2. The operator “mod” has the lowest precedence of all arithmetic operators (e.g.,
5 + 8 mod 3 is equal to 13 mod 3, not 5 + 2). See A.1.1 for more details.

(mod)a b n≡ denotes that | ()n a b− , so that the integers a and b have the same remainder when divided

by the positive integer n. It is pronounced “a is congruent to b modulo n.” This is equivalent to
(a mod n) = (b mod n). See A.1.1 for more details.

(mod)a b n≡/ denotes that | ()n a b−/ , so that the integers a and b have different remainders when divided

by the positive integer n. It is pronounced “a is not congruent to b modulo n.” This is equivalent
to (mod) (mod)a n b n≠ .

1 moda n− denotes a positive integer b n< , if it exists, such that () mod 1ab n = . This is pronounced “the

(multiplicative) inverse of a modulo n” and is also denoted by
1

mod n
a

. See Annex A for a more detailed

description and an algorithm for computing it.

mod
a

n
b

 denotes an integer a multiplied by the inverse of the integer b, with the computations performed

modulo n. It is equivalent to 1 modab n− .

()GF p denotes the finite field of p elements, represented as the integers modulo p, where p is a prime

number. This is also known as a prime finite field. See 5.3.1 for more information.

()mGF p denotes the finite field containing mp elements for some integer 1m > , where p is a prime

number. If |n m , then this is also known as an extension field of the field ()nGF p .

()GF q denotes the finite field containing q elements. In the context of this document, q will be a power of

a prime.

/ ()E GF q denotes an elliptic curve defined over the field ()GF q .

/ ()tE GF q denotes the order twist of order t of the elliptic curve / ()E GF q .

(())E GF q denotes the additive group of points on the elliptic curve / ()E GF q .

(())[]E GF q n denotes the subgroup of (())E GF q consisting of all points of order n.

(())E GF q denotes the order of the group (())E GF q or the number of points on an elliptic curve defined

over the field ()GF q . This may be abbreviated to # E when the context is clear.

(,)e P Q denotes a pairing, or an efficiently computable, nondegenerate bilinear mapping. For an elliptic

curve / ()E GF q and an integer | # (())n E GF q , such a pairing takes as parameters elliptic curve points

(())[]P E GF q n∈ and (())kQ E GF q∈ , and evaluates as an element in the multiplicative group ()kGF q ∗ .

The integer k is known as the embedding degree and is the smallest integer k such that | 1kn q − .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

13

2 (,)e P Q denotes a pairing, the output of which is compressed by a factor of 2 and represented as an

element in / 2()kGF p .

3 (,)e P Q denotes a pairing, the output of which is compressed by a factor of 3 and represented as an

element in / 3()kGF p

()Pφ denotes a distortion map or a nonrational endomorphism on an elliptic curve group (())kE GF q . Such

a mapping maps a point (())P E GF q∈ to a point () (())kP E GF qφ ∈ such that P and ()Pφ are linearly

independent.

()d Pφ denotes a mapping from (())dE GF q to (())dE GF q . If k is the embedding degree of E, then let ε be

the degree of the maximal twist of E. Then ε | k, and we define the degree of the field over which we
consider the twist to be d = k/ε.

(x / n) denotes a Jacobi symbol. See A.1.3.2 for a detailed description and A.4.3 for an algorithm to
compute Jacobi symbols.

O denotes the point at infinity on an elliptic curve. See 5.4 for more information.

exp(,)a b denotes the result of raising a to the power b, where a is an integer or a finite field element and b

is an integer. This may also be denoted by ba .

NOTE—Throughout this main document, integers and field elements are denoted with lowercase letters whereas octet
strings and elliptic curve points are denoted with uppercase letters.

5.2 Bit strings and octet strings

Bit strings and octet strings are ordered sequences. The terms “first” and “last,” “leftmost” and “rightmost,”
and “leading” and “trailing” are used to distinguish the ends of these sequences (“first,” “leftmost,” and
“leading” are equivalent; “last,” “rightmost,” and “trailing” are equivalent; other publications sometimes
use “most significant,” which is synonymous with “leading,” and “least significant,” which is synonymous
with “trailing”).

NOTE—When a string is represented as a sequence, it may be indexed from right to left or from left to right, starting
with any index; this does not change the meaning of the terms above. For example, consider the octet string of 4 octets:
1c 76 3b e4. One can represent it as a string a0 a1 a2 a3 with a0 = 1c, a1 = 76, a2 = 3b, and a3 = e4. In this case, a0
represents the first octet, and a3 represents the last octet. Alternatively, one can represent it as a string a1 a2 a3 a4 with
a1 = 1c, a2 = 76, a3 = 3b, and a4 = e4. In this case, a1 represents the first octet, and a4 represents the last octet. Yet
another possibility would be to represent it as a3 a2 a1 a0 with a3 = 1c, a2 = 76, a1 = 3b, and a0 = e4. In this case, a3
represents the first octet and a0 represents the last octet. No matter how this string is represented, the value of the first
octet is always 1c and the value of the last octet is always e4.

5.3 Finite fields

This subclause describes the kinds of underlying finite fields ()GF q that shall be used and how elements of

these finite fields are to be represented for use with the primitives in 5.6. As noted in 5.2, the internal
representation of objects is left to the implementation and may be different. If the internal representation is
different, then conversion to the representation defined here may be needed at certain points in
cryptographic operations.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

14

5.3.1 Prime finite fields

A prime finite field is a field containing a prime number of elements. If p is a prime, then there is a unique
(up to isomorphism) field ()GF p with p elements, and the elements of ()GF p shall be represented by the

integers 0,1,2, , 1p − . A description of the arithmetic of ()GF p is given in Annex A.

5.3.2 Odd characteristic extension fields

An odd characteristic extension field is a finite field whose number of elements is a power of an odd prime.
For a positive integer k, there is a unique (up to isomorphism) field ()kGF p with kp elements. For the

purposes of conversion, the elements of ()kGF p shall be represented in a polynomial basis. For the

purposes of this standard, the representation is determined by choosing a suitable irreducible
binomial ()f x of degree /k d over ()dGF p for some exact divisor d of k. Then, ()kGF p is isomorphic to

()[] /(())dGF p x f x and the elements of ()kGF p can be represented as a vector

1 2 2 1 0(, , , , ,)k ka a a a a− − 

of /k m d= elements of the field ()dGF p that we identify with the polynomial

1 2 2
1 2 2 1 0

m m
m ma x a x a x a x a− −

− −+ + + + +

where 0 1ia p≤ ≤ − for 0 1i k≤ ≤ − . The towering method used is represented in the form / / /a b c  ,

where a, b, c, etc. are integers whose product is k. For example, for 12k = , a 3 / 2 / 2 representation means
that an element in ()kGF p is represented as a cubic extension, over a quadratic extension, over another

quadratic extension over the base field. The values ia are then read from left to right as the values at the

bottom of this tower, from most significant to least significant.

The constants required by the irreducible polynomials that define the tower of extensions also form a part
of the extension field representation.

A description of the arithmetic of ()kGF p is given in Annex A.

5.3.3 Binary finite fields

There is more than one way to implement multiplication in (2)kGF . To specify a multiplication rule, one

chooses a basis representation for the field. The basis representation is a rule for interpreting each bit string;
the multiplication rule follows from this interpretation. There are two common families of basis
representations: polynomial basis representations and normal basis representations. More details about
these representations can be found in Annex A.

In a polynomial basis representation, each element of (2)kGF is represented by a different binary

polynomial of degree less than k. More explicitly, the bit string 1 2 1 0(,..., , ,)ka a a a− is taken to represent the

binary polynomial

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

15

1 2
1 2 1 0...k

ka x a x a x a−
− + + + +

The polynomial basis is the set

1 2{ ,..., , ,1}kB x x x−=

The addition of bit strings corresponds to addition of binary polynomials.

Multiplication is defined in terms of an irreducible binary polynomial of degree m, called the field
polynomial for the representation. The product of two elements is the product of the corresponding
polynomials, reduced modulo ()p x .

A normal basis for (2)kGF is a set of the form

2 12 2 2{ , , ,..., }
k

B
−

= θ θ θ θ

with the property that no subset of B adds to 0. (In the language of linear algebra, the elements of B are said
to be linearly independent.) There exist normal bases for (2)kGF for every positive integer m.

The representation of (2)kGF via the normal basis B is carried out by interpreting the bit string

0 1 2 1(, , ,...,)ka a a a − as the element

2 12 2 2
0 1 2 1...

k

ka a a a
−

−θ + θ + θ + + θ

All of the elements θi of a normal basis B satisfy the same irreducible binary polynomial ()p x . This

polynomial is called the field polynomial for the basis. An irreducible binary polynomial is called a normal
polynomial if it is the field polynomial for a normal basis.

A description of the arithmetic of (2)kGF is given in Annex A.

5.3.4 Ternary finite fields

Ternary finite fields GF(3k) and operations on elements of GF(3k) is defined in 5.3.2.

5.3.5 Unitary extension fields

An extension field element that is unitary can be compressed in a way that enables accurate exponentiation
of the important parts of the element. In a compressed form, however, such elements can still be accurately
exponentiated using special algorithms. The result of pairing calculations described in this standard is
always unitary, and hence, compression of the pairing value is always possible and may be desirable. If the
embedding degree is a multiple of 2, then compression by a factor 2 is possible, and the Lucas function
(LUC method) of exponentiation can be used (Menezes et al. [B115]). If the embedding degree is a
multiple of 3, then compression by a factor of 3 is possible, and the efficient and compact subgroup trace
representation (XTR) method of exponentiation can be used (Menezes et al. [B115]).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

16

The compressed representation will either be the / 2()kGF p or the / 3()kGF p trace of an element in ()kGF p .

See Annex A for definitions of the term unitary and for a description of the trace function.

5.4 Elliptic curves and points

An elliptic curve group (())E GF q is a set of points of the form (,)P PP x y= where Px and Py are elements

of ()GF q that satisfy a certain equation, together with the point at infinity denoted by O. See Annex A for

more on elliptic curves and elliptic curve arithmetic.

5.5 Pairings

All pairings in this standard use groups of points in an elliptic curve. Additive notation will always be used
for operations on elliptic curve points and multiplicative notation will always be used for operations on
points in the multiplicative group of a finite field. Thus, the notation used for a pairing will be as follows:

(,) (,)abe aP bQ e P Q=

This notation will be used for a modified and reduced pairing as described in Annex A.

5.6 Data type conversion

This subclause describes the primitives that shall be used to convert between different types of objects and
strings when such conversion is required in primitives, schemes, or encoding techniques. Representation of
mathematical and cryptographic objects as octet strings is not specifically addressed in this subclause;
rather, it is discussed in the informative Annex E. Figure 1 shows the primitives presented in this subclause
and their relationships.

Figure 1 —Data type conversion primitives

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

17

5.6.1 Converting between integers and bit strings: I2BSP and BS2IP

In performing cryptographic operations, bit strings sometimes need to be converted to non-negative
integers and vice versa.

To convert a non-negative integer x to a bit string of length l (l has to be such that 2l x>), the integer x
shall be written in its unique l-digit representation base 2:

1 2
1 2 1 02 2 2l l

l lx x x x x− −
− −= + + + +

where each ix is either 0 or 1 (note that one or more leading digits will be zero if 12lx −<). Then, let the bit

ib have the value l ix − for1 i l≤ ≤ . The bit string shall be 1 2 lb b b .

For example, the integer 10 945 is represented by a bit string of length 19 as 000 0010 1010 1100 0001.

The primitive that converts integers to bit strings is called the integer to bit string conversion primitive or
I2BSP. It takes an integer x and the desired length l as input and outputs the bit string if 2l x> . It shall
output “error” otherwise.

The primitive that converts bit strings to integers is called the bit string to integer conversion primitive or
BS2IP. It takes a bit string as input and outputs the corresponding integer. Note that the bit string of length
zero (the empty bit string) is converted to the integer 0.

5.6.2 Converting between bit strings and octet strings: BS2OSP and OS2BSP

To represent a bit string as an octet string, one simply pads enough zeroes on the left to make the number of
bits a multiple of 8 and then breaks it up into octets. More precisely, a bit string 1 2 1 0l lb b b b− −  of length l

shall be converted to an octet string 1 2 1 0d dM M M M− −  of length /8d l=    as follows. For 0 (1)i d≤ < − ,

let the octet 8 7 8 6 8 1 8i i i i iM b b b b+ + +=  . The leftmost octet 1dM − shall have its leftmost 8d l− bits set to 0 and

its rightmost 8 (8)d l− − bits shall be 1 2 8 8l l db b b− − − .

The primitive that converts bit strings to octet strings is called the bit string to octet string conversion
primitive or BS2OSP. It takes the bit string as input and outputs the octet string.

The primitive that converts octet strings to bit strings is called the octet string to bit string conversion
primitive or OS2BSP. It takes an octet string of length d and the desired length l of the bit string as input. It
shall output the bit string if / 8d l=    and if the leftmost 8d l− bits of the leftmost octet are zero; it shall

output “error” otherwise.

5.6.3 Converting between integers and octet strings: I2OSP and OS2IP

To represent a non-negative integer x as an octet string of length l (l has to be such that 256l x>), the
integer shall be written in its unique l-digit representation base 256 as follows:

1 2
1 2 1 0256 256 256l l

l lx x x x x− −
− −= + + + +

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

18

where 0 256ix≤ < (note that one or more leading digits will be zero if 1256lx −<). Then, let the octet iM

have the value ix for 0 (1)i l≤ < − . The octet string shall be 1 2 1 0l lM M M M− −  .

For example, the integer 10 945 is represented by an octet string of length 3 as 00 2A C1.

The primitive that converts integers to octet strings is called the integer to octet string conversion primitive
or I2OSP. It takes an integer x and the desired length l as input and outputs the octet string if 256l x> . It
shall output “error” otherwise.

The primitive that converts octet strings to integers is called the octet string to integer conversion primitive
or OS2IP. It takes an octet string as input and outputs the corresponding integer. Note that the octet string
of length zero (the empty octet string) is converted to the integer 0.

5.6.4 Converting between finite field elements and octet strings: FE2OSP and OS2FEP

An element x of a finite field ()GF q , for purposes of conversion, is represented by an integer if q is an odd

prime or a power of an odd prime (see 5.3.1, 5.3.2, and 5.3.5). If q is an odd prime or an odd prime power,
then to represent x as an octet string, I2OSP shall be used with the integer value representing x and the
length 256log q   as inputs.

The primitive that converts finite field elements to octet strings is called the field element to octet string
conversion primitive or FE2OSP. It takes a field element x, the field size q, and both the field characteristic
p and the extension degree k if q is an odd prime-power as inputs, and outputs the corresponding octet
string.

To convert an octet string back to a field element, if q is an odd prime or an odd prime power, then OS2IP
shall be used with the octet string as the input. The primitive that converts octet strings to finite field
elements is called the octet string to field element conversion primitive or OS2FEP. It takes the octet string
and the field size q as inputs and outputs the corresponding field element. It shall output “error” if OS2BSP
or OS2IP outputs “error.”

5.6.5 Converting between finite field elements and integers: FE2IP and I2FEP

In performing cryptographic operations, finite field elements sometimes need to be converted to non-
negative integers. The primitive that performs this is called the field element to integer conversion
primitive or FE2IP.

An element α of a finite field ()GF q shall be converted to a non-negative integer i by the following, or an

equivalent, procedure:

a) Convert the element α to an octet string using FE2OSP.

b) Convert the resulting octet string to an integer i using OS2IP.

c) Output i.

NOTE—If q is an odd prime, then α is already represented as an integer and FE2IP merely outputs that representation.
If q is a power of 2, then FE2IP outputs an integer whose binary representation is the same as the bit string representing
α.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

19

To convert an integer to an element of the finite field GF(q), the primitive integer to finite field element
primitive, or I2FEP, is used. A positive integer i with 0 ≤ i < q shall be converted to an element α of a finite
field ()GF q by the following, or an equivalent, procedure:

a) Convert the integer i to an octet string using I2OSP.

b) Convert the resulting octet string to a field element α using OS2FEP.

c) Output α.

5.6.6 Converting between elliptic curve points and octet strings

An elliptic curve point P (which is not the point at infinity O) can be represented in either compressed or
uncompressed form. (For internal calculations, it may be advantageous to use other representations; e.g.,
the projective coordinates of A.6.4.3. Also see A.6.4.2 for more information on point compression.) The
uncompressed form of P is simply given by its two coordinates. The compressed form is presented in
5.6.6.1. The octet string format is defined to support both compressed and uncompressed points.

5.6.6.1 Compressed elliptic curve points

The compressed form of an elliptic curve point P ≠ O defined over ()GF p is the pair (,)P Px y , where Px is

the x coordinate of P and Py is a bit that is computed as defined in 5.6.6.1.1.

Two compressed forms are defined: A least significant bit (LSB) compressed form is defined for elliptic
curves over ()GF p , and a SORT (sorted order) compressed form is defined for elliptic curves over

()mGF p . Note that the case where a curve is defined over (3)mGF can be handled the same way that a

curve defined over ()mGF p can be.

5.6.6.1.1 LSB compressed form

For / ()E GF p , the LSB compressed form of ˆ(,)P Px y has ˆFE2IP() mod 2P Py y= . In other words, Py is the

rightmost bit of ˆPy .

Procedures for point decompression (i.e., recovering ˆPy given Px and Py) are given in A.7.

NOTE—The term “LSB” refers to the fact that the compressed bit Py is the least significant bit of the integer

representation of ˆPy .

5.6.6.1.2 SORT compressed form

Let (,)P Px y′ be the inverse of the point (,)P Px y , where P Py y′ = − .

The SORT compressed form has 1Py = if FE2IP() FE2IP()P Py y′> and 0Py = otherwise.

A procedure for point decompression is given in A.7.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

20

NOTE 1— It may be more efficient to determine Py by comparing the coefficients of Py and 'Py directly, rather than

first computing FE2IP()Py and FE2IP()Py′ .

NOTE 2— Although the SORT compressed form is defined here for any field, in the representations in 5.6.6.2, it is

only employed for elliptic curves over ()mGF p .

NOTE 3— The name “SORT” refers to the fact that the compressed bit is based on comparing the integer
representations of Py and Py′ .

5.6.6.2 Two-coordinate point representations

For all the conversion primitives in this subclause, the point O shall be represented by an octet string
containing a single 0 octet. The rest of this subclause discusses octet string representation of a point P ≠ O .
Let the x coordinate of P be Px and the y coordinate of P be Py . Let (,)P Px y be the compressed

representation of P in one of the forms in 5.6.6.1.

The representations in this subclause are all “lossless”; i.e., the elliptic curve point can be uniquely
recovered from its octet string representation because both coordinates are represented.

An octet string PO representing P shall have one of the following three formats: compressed,
uncompressed, or hybrid. (The hybrid format contains information of both compressed and uncompressed
form.) For all primitives in this subclause, PO shall have the following general form:

|| ||PO PC X Y=

where PC is a single octet of the form 0000SUCY defined as follows:

⎯ Bit S is 1 if the format uses the SORT compressed form; 0 otherwise.

⎯ Bit U is 1 if the format is uncompressed or hybrid; 0 otherwise.

⎯ Bit C is 1 if the format is compressed or hybrid; 0 otherwise.

⎯ Bit Y is equal to the bit if the format is compressed or hybrid; 0 otherwise.

⎯ X is the octet string of length 256log q   representing Px according to FE2OSP (see 5.6.4).

⎯ Y is the octet string of length 256log q   representing Py of P according to FE2OSP (see 5.6.4) if the

format is uncompressed or hybrid; Y is an empty string if the format is compressed.

The primitive that converts elliptic curve points to octet strings for a given representation is called the
elliptic curve point to octet string conversion primitive–R, or EC2OSP–R, where R is the representation. It
takes an elliptic curve point P and the size q of the underlying field as input and outputs the corresponding
octet string PO.

The primitive that converts octet strings to elliptic curve points is called the octet string to elliptic curve
point conversion primitive–r, or OS2ECP–R. It takes the octet string and the field size q as inputs and
outputs the corresponding elliptic curve point, or “error.” It shall use OS2FEP to get Px . It shall use

OS2FEP to get Py if the format is uncompressed and may output “error” if the recovered point is not on the

elliptic curve. It shall use point decompression (see A.7) to get Py if the format is compressed. It can

get Py by either of these two means if the format is hybrid, and if the format is hybrid, then it may output

“error” if different values are obtained by the two means. It shall output “error” in the following cases:

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

21

⎯ If the first octet is not as expected for the representation

⎯ If the octet string length is not as expected for the representation

⎯ If an invocation of OS2FEP outputs “error”

⎯ If an invocation of the point decompression algorithm outputs “error”

The pairs of primitives for each of five representations are defined in 5.6.6.2.1 through 5.6.6.2.5.

5.6.6.2.1 Uncompressed representation: EC2OSPXY and OS2ECPXY

This representation is defined for elliptic curves over all finite fields in this standard.

In this representation, the octet PC shall have binary value 0000 0100 and the octet strings X and Y shall
represent Px and Py , respectively. The length of the octet string PO shall be 2561 log q+    . The

corresponding primitives are called EC2OSPXY and OS2ECPXY.

5.6.6.2.2 LSB compressed representation: EC2OSPXL and OS2ECPXL

This representation is defined for elliptic curves over ()GF p only.

In this representation, the octet PC shall have binary value 0000 001 Y~ , where Y~ is equal to the bit Py

in the LSB compressed form, the octet string X shall represent Px , and the octet string Y shall be the empty

string. The length of the octet string PO shall be 2561 2 log q+    . The corresponding primitives are called

EC2OSPXL and OS2ECPXL.

5.6.6.2.3 SORT compressed representation: EC2OSPXS and OS2ECPXS

This representation is defined for elliptic curves over ()mGF p only.

In this representation, the octet PC shall have binary value 0000 101 Y~ , where Y~ is equal to the bit Py

in the SORT compressed form, the octet string X shall represent Px , and the octet string Y shall be the

empty string. The length of the octet string PO shall be 2561 2 log q+    . The corresponding primitives are

called EC2OSPXS and OS2ECPXS.

5.6.6.2.4 LSB hybrid representation: EC2OSPXYL and OS2ECPXYL

This representation is defined for elliptic curves over ()GF p only.

In this representation, the octet PC shall have binary value 0000 011 Y~ , where Y~ is equal to the bit in
the LSB compressed form, and the octet strings X and Y shall represent Px and Py , respectively. The

length of the octet string PO shall be 2561 2 log q+    . The corresponding primitives are called

EC2OSPXYL and OS2ECPXYLSORT hybrid representations: EC2OSPXYS and OS2ECPXYS.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

22

5.6.6.2.5 SORT hybrid representation: EC2OSPXYS and OS2ECPXYS

This representation is defined for elliptic curves over ()mGF p only.

In this representation, the octet PC shall have binary value 0000 111 Y~ , where Y~ is equal to the bit
y~P in the SORT compressed form, and the octet strings X and Y shall represent Px and Py , respectively.

The length of the octet string PO shall be 2561 2 log q+    . The corresponding primitives are called

EC2OSPXYS and OS2ECPXYS.

5.6.6.3 X-coordinate-only representation: EC2OSPX and OS2ECPX

The x-coordinate-only representation in this subclause is “lossy”; i.e., the elliptic curve point cannot be
uniquely recovered from its octet string representation because only the x coordinate is represented.

This representation is defined for elliptic curves over all fields in this standard.

In this representation, the octet PC shall have binary value 0000 0001, the octet string X shall represent Px ,

and the octet string Y shall be empty. The length of the octet string PO shall be 2561 2 log q+    . The

corresponding primitives are called EC2OSPX and OSC2ECPX.

OS2ECPX may output any of the (at most two) elliptic curve points with the given x coordinate. Thus, the
original y coordinate is not necessarily recovered.

This representation should be employed only if the recipient of the octet string PO does not need to resolve
the ambiguity in the y coordinate or can do so by other means.

NOTE—In some situations, only the x coordinate is needed. For instance, a shared secret value computed may only be
on the x coordinate of other party’s public key, not on the y coordinate. If this representation is employed in such a
situation, then when the “octet-string-to-point” conversion primitive is called, the implementation need not compute a y
coordinate at all (although it may output “error” if no point exists with the given x coordinate).

5.6.6.4 Summary of representations

Table 2 summarizes the point representations in 5.6.6.2 and 5.6.6.3.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

23

Table 2 —Elliptic curve point representations

Representation Primitives PC X Y Finite fields
Uncompressed EC2OSPXY

OS2ECPXY
0000 0100

Px Py All

LSB compressed EC2OSPXL
OS2ECPXL

0000
001 Y~

Px Empty ()GF p

SORT compressed EC2OSPXS
OS2ECPXS

0000
101 Y~

Px Empty ()mGF p

LSB hybrid EC2OSPXYL
OS2ECPXYL

0000
011 Y~

Px Py ()GF p

SORT hybrid EC2OSPXYS
OS2ECPXYS

0000
111 Y~

Px Py ()mGF p

x-coordinate-only EC2OSPX OS2ECPX 0000 0001
Px Empty All

Point O All 0000 0000 Empty Empty All

NOTE 1— The first four bits of the first octet PC are reserved and may be used in future formats defined in an
amendment to, or in future versions of, this standard. It is essential that these bits be set to 0 and checked for 0 to
distinguish the formats defined here from other formats. Of course, implementations may support other
nonstandard formats that employ the reserved bits, but these formats would not conform with the ones defined in
this subclause.

NOTE 2— The various representations employ distinct values for the first octet PC, so the octet strings produced
by the different representations are nonoverlapping, except at the point O . Consequently, it is possible to construct
a generic OS2ECP primitive that handles all representations.

6. Hashing primitives

The schemes described in 7.2 through 7.4 require the use of two or more cryptographic hash functions. The
schemes described in these subclauses are based on one of the hash functions defined by NIST in Federal
Information Processing Standards Publication 180-4 [B60], which will be denoted H. The hash function H
chosen will depend on a security parameter that defines the level of bit strength that is required. This bit
strength is required to be one of the standard levels: 80, 112, 128, 192, or 256. The hash function H is then
used to construct the required hash function as described in 6.1 through 6.4.

6.1 Hashing to an integer

The function IHF1 is a cryptographic hash function that hashes a string to an integer. The function IHF1
uses the SHA family (Federal Information Processing Standards Publication 180-4 [B60]) to accomplish
this. Other hash functions can be constructed as needed.

6.1.1 The function of IHF1

Returns an integer between 0 and 1n − that is based on a cryptographic hash function applied to an input
string.

Input:

⎯ A string {0,1}s ∗∈

⎯ An integer n

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

24

⎯ A security parameter {80,112,128,192,256}t ∈

Input constraints: The string s is within the allowed range of values for inputs to the relevant hash
function. The integer n has the property that 22 tn ≤ .

Output:

⎯ An integer nv Z∈ .

Operation: The following steps or their mathematical equivalent shall be used to produce correct output:

a) If t = 80, then let H = SHA-1.

b) Else if t = 112, then let H = SHA-224.

c) Else if t = 128, then let H = SHA-256.

d) Else if t = 192, then let H = SHA-384.

e) Else if t = 265, then let H = SHA-512.

f) Let 0 0v = .

g) Let 0 0 00 00h x=  , string of null bytes of length 2t bits.

h) Let 1 0 ||t h s= .

i) Let 1 1()h H t= .

j) Let a1 = OS2IP(h1).

k) Let 1 1v a= .

l) Let 2 1 ||t h s= .

m) Let h2 = H(t2).

n) Let a2 = OS2IP(h2).

o) Let v2 = 22t v1 + a2

p) Output 2 modv n .

6.2 Hashing to a string

The function IHF1 is a cryptographic hash function that hashes a string to a string. The function SHF1-
SHA uses the SHA-1 and SHA-2 family (Federal Information Processing Standards Publication 180-4
[B60]) to accomplish this. Other hash functions can be constructed as needed.

6.2.1 Function of SHF1

Returns an n-bit string that is based on a cryptographic hash function applied to an input string.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

25

Input:

⎯ A string {0,1}s ∗∈

⎯ An integer n

⎯ A security parameter {80,112,128,192,256}t ∈

Input constraints: The string s is within the allowed range of values for inputs to the relevant hash
function. The integer n has the property that 22 tn ≤ .

Output:

⎯ A string {0,1}nv ∈

Operation: Use the following steps:

a) Output IHF1(, 2 ,)ns t .

6.3 Hashing to a point in a subgroup

6.3.1 General

The function PHF-SS is a cryptographic hash function that hashes a string into a subgroup of
points (())[]E GF q p on two particular supersingular elliptic curves. PHF-GFP is a cryptographic hash

function that hashes a string into a subgroup of points (())[]eE GF q p , where 3q > . PHF-GF2 is a

cryptographic hash function that hashes a string into a subgroup of points ((2))[]eE GF p . PHF-GF3 is a

cryptographic hash function that hashes a string into a subgroup of points ((3))[]eE GF p .

6.3.2 Function of PHF-SS

Returns an element of an elliptic curve group (())[]E GF q p for a supersingular elliptic curve
2 3/ () : 1E GF q y x= + or 2 3/ () :E GF q y x x= + .

Input:

⎯ A string {0,1}s ∗∈

⎯ A security parameter {80,112,128,192,256}t ∈

⎯ A flag j taking the values 0 or 1 that defines a supersingular elliptic curve, with 0j = representing

the elliptic curve 2 3/ () : 1E GF q y x= + and 1j = representing the elliptic curve
2 3/ () :E GF q y x x= +

⎯ A prime q with 11(mod12)q ≡ that defines the finite field ()GF q

⎯ A prime p with | # (())p E GF q and 2 | # (())p E GF q/ for the elliptic curve E defined by the flag j

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

26

Input constraints: The string s is within the allowed range of values for inputs to the relevant hash
function. The prime q satisfies 11(mod12)q ≡ .

Output:

⎯ An element of (())[]E GF q p for the selected elliptic curve.

Operation: The following steps or their mathematical equivalent shall be used to produce correct output:

a) Let (1) /r q p= + .

b) If 0j = , then perform the following steps:

1) Let IHF1(, ,)y s q t= .

2) Let 2 (2 1) / 3(1) modqx y q−= − .

3) Let (,)Q x y= .

c) Else if 1j = , perform the following steps:

1) Let IHF1(, ,)x s q t= .

2) If the Jacobi symbol (/) 1x q = + , then perform the following steps

i) Let (1) / 4 modqy x q+= .

ii) Let (,)Q x y= .

3) Else perform the following steps:

i) Let (1) / 4() modqy x q+= − .

ii) Let (,)Q x y= − .

d) Return rQ .

6.3.3 Function of PHF-GFP

Returns an element of an elliptic curve group (())[]eE GF q p , where q is a prime and 3q > .

Input:

⎯ A string {0,1}s ∗∈

⎯ A security parameter {80,112,128,192,256}t ∈

⎯ A prime q that defines the finite field ()eGF q

⎯ An integer e that defines the finite field ()eGF q

⎯ A prime p that defines the subgroup (())[]eE GF q p of (())eE GF q

⎯ An elliptic curve 2 3/ () :eE GF q y x ax b= + +

⎯ A cofactor # (()) /er E GF q p=

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

27

Input constraints: The string s is within the allowed range of values for inputs to the relevant hash
function.

Output:

⎯ An element of (())[]eE GF q p

Operation: The following steps or their mathematical equivalent shall be used to produce correct output:

a) Let i = 0.

b) Let x = H2FEQ(I2BSP(i)||s, t, q, e).

c) Let 3 ()et x ax b GF q= + + ∈ .

d) If 0t = , then output (,0)x and stop.

e) Apply the appropriate technique from A.2.5 to find α, the square root of t.

f) If the result of step e) indicates that no square root exists, then increment i by 1 and then go to
step b).

g) Let y1 = FE2IP(α).

h) Let y2 = FE2IP(–α).

i) If y1 > y2 then let y = –α else let y = α.

j) Let Q = (x, y).

k) Return rQ.

6.3.4 Function of PHF-GF2

Returns an element of an elliptic curve group ((2))[]eE GF p .

Input:

⎯ A string {0,1}s ∗∈

⎯ A security parameter {80,112,128,192,256}t ∈

⎯ An integer e that defines the finite field (2)eGF

⎯ A prime p that defines the subgroup ((2))[]eE GF p of ((2))eE GF

⎯ An elliptic curve 2 3 2/ (2) :eE GF y xy y x x b+ + = + +

⎯ A cofactor # ((2)) /er E GF p=

Input constraints: The string s is within the allowed range of values for inputs to the relevant hash
function.

Output:

⎯ An element of ((2))[]eE GF p

Operation: The following steps or their mathematical equivalent shall be used to produce correct output:

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

28

a) Let i = 0.

b) Let H2FEQ(|| , , 2,) (2)ex i s t e GF= ∈ .

c) If x = 0, then output 2(0,)b and stop.

d) Let 3 2t x ax b= + + .

e) If t = 0, then output (,0)x and stop.

f) Let 2u x t−= .

g) Apply the appropriate technique from A.4.7 to find an element z for which z2 + z = β or determine
that none exist.

h) If the result of step g) indicates that no such element exists, increment i by 1 and go to step b).

i) Generate a random bit β that will be used to pick which y coordinate will be chosen for the
calculated x coordinate.

j) Let (β)y z x= + .

k) Let Q = (x, y).

l) Return rQ.

6.3.5 Function of PHF-GF3

Returns an element of an elliptic curve group ((3))[]eE GF p .

Input:

⎯ A string {0,1}s ∗∈

⎯ A security parameter {80,112,128,192,256}t ∈

⎯ An integer e that defines the finite field (3)eGF

⎯ An elliptic curve E/GF(3e):y2 = x3 – x + b with b = 1 or b = –1

⎯ A cofactor # ((3)) /er E GF p=

Input constraints: The string s is within the allowed range of values for inputs to the relevant hash
function.

Output:

⎯ An element of ((3))[]eE GF p

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

29

Operation: The following steps or their mathematical equivalent shall be used to produce correct output:

a) Let 0i = .

b) Let y = H2FEQ(i||s,t,3,e) ∈GF(3e).

c) Let 2u y b= − .

d) If () 0Tr u ≠ , then increment i by 1 and go to step b).

e) Use the method from A.4.10 to find an element z for which 3z z u− = .

f) Generate a random element β∈GF(3e) that will be used to select which possible x coordinate is
chosen for a particular y coordinate.

g) Let x z β= + .

h) Let (,)Q x y= .

i) Return rQ .

6.4 Hashing to an element of a finite field

6.4.1 Hashing to an element of a finite field: Function of BS2FQE

The function BS2FQE is a cryptographic hash function that hashes a string into the finite field ()kGF q .

Input:

⎯ A string {0,1}s ∗∈

⎯ A prime q that defines the finite field ()kGF q

⎯ An integer e that defines the finite field ()kGF q

⎯ A security parameter {80,112,128,192,256}t ∈

Input constraints: The string s is within the allowed range of values for inputs to the relevant hash
function.

Output:

⎯ An element of ()kGF q

Operation: The following steps or their mathematical equivalent shall be used to produce correct output:

a) For i = 0 to 1e − , do the following:

1) Let IHF1(2 () || , ,)it I BS i s q t= .

2) Next i.

b) Return the field element represented by 1
0 1 1

e
ex t t x t x −

−= + + + .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

30

7. Pairing-based primitives

7.1 General

This clause describes the mathematical operations that are used to build the pairing-based schemes
described in Clause 8 through Clause 11.

The primitives discussed in this clause make use of the following parameters:

⎯ 1G , a group of prime order p.

⎯ 2G , a group of prime order p.

⎯ 3G , a group of prime order p.

⎯ A pairing 1 2 3

2 1 3

, 1
:

, 2i

G G G i
e

G G G i

× → =
 × → =

. In all pairing-based primitives and components, the auxiliary

parameter j is always defined to be 3j i= − . Thus, if 1i = , then 2j = , and if 2i = , then 1j = .

The selection of the groups and specific pairing is left as a parameter to the schemes using these primitives.
Annex A defines various recommended choices for these elements, depending on the performance and
security requirements of the specific application.

7.2 SK primitives

These primitives define operations with cryptographic strength defined by reduction to the q-bilinear
Diffie-Hellman inverse (q-BDHI) problem. For more information on this problem, to review the proof that
reduces the problem of breaking these primitives to q-BDHI, and for information on the associated
primitives, see Chen and Cheng [B41].

For all these operations, the systems parameters are assumed to be defined as follows.

The server secret is defined to be

⎯ s, a random element of pZ .

The public parameters are defined to be 1 2 3 1 2(, , , , , ,)iG G G e Q Q R=P , where

⎯ 1G , 2G , 3G , ie , the system parameters as defined in 7.1

⎯ Qi: a generator of Gi

⎯ jQ : a generator of jG , defined such that either ()j iQ Qφ= (for a supersingular curve) or

()j d iQ Qφ= (for an ordinary curve)

⎯ R: isQ

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

31

7.2.1 SK: Generation (P-SK-G)

Input:

⎯ The parameters 1 2 3 1 2(, , , , , ,)iG G G e Q Q R=P

⎯ The server secret s

⎯ An encoded identity pM Z∈

Input constraints: The parameters P describe valid bilinear groups; s is the private key corresponding to
R, so that iR sQ= ; and M is an element of pZ .

Output:

⎯ The derived private key MK , an element of jG , or “error”

Operation: The following steps or their mathematical equivalent shall be used to compute MK :

a) If 0(mod)M s p+ ≡ , then output “error” and stop.

b) Compute 1() modt M s p−= + .

c) Compute KM = tQj.

d) Output KM.

7.2.2 SK: Verification (P-SK-V)

Input:

⎯ The parameters 1 2 3 1 2(, , , , , ,)iG G G e Q Q R=P

⎯ A public-key element M in pZ

⎯ The corresponding private key MK

Input constraints: The parameters P describe valid bilinear groups, and MK is the private key associated

with the public key M.

Output:

⎯ The value “valid” if KM is consistent with R and M and “invalid” otherwise

Operation: The following steps or their mathematical equivalent shall be used to produce correct output:

a) Compute 1 (,)i i MT e MQ R K= + .

b) Compute 2 (,)i i jT e Q Q= .

c) If T1 = T2, then output the value “valid”; otherwise, output the value “invalid.”

NOTE—The value 2 (,)i i jT e Q Q= is a constant and can be computed once and cached, saving a pairing operation.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

32

7.2.3 SK: Encryption (P-SK-E)

Input:

⎯ The parameters 1 2 3 1 2(, , , , , ,)iG G G e Q Q R=P

⎯ The public-key element M

⎯ A message randomizer r, an integer with 0 ≤ r ≤ p – 1

Input constraints: The parameters P describe valid bilinear groups; R is the public parameter associated
with the server secret s; and M is an element of pZ .

Output:

⎯ A ciphertext E, where E is an element of iG , along with a blinding factor B, an element of iG ,

along with a blinding factor B, an element of 3G

Operation: The following steps or their mathematical equivalent shall be used to produce correct output:

a) Compute ()iE r MQ R= + .

b) Compute (,)r
i i jB e Q Q= .

c) Output E and B.

NOTE—The blinding factor B is the same as that obtained in P-SK-D (7.2.4).

7.2.4 SK: Decryption (P-SK-D)

Input:

⎯ The parameters 1 2 3 1 2(, , , , , ,)iG G G e Q Q R=P

⎯ The public-key element M

⎯ The associated private key MK

⎯ A ciphertext E

Input constraints: The parameters P describe valid bilinear groups; R is a public key, an element of iG ; M

is an element of pZ ; IDK , an element of jG , is a valid generated value for M according to P-SK-GV; and E

is an element of iG .

Output:

⎯ A blinding factor B, an element of 3G .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

33

Operation: Use the following steps:

a) Compute (,)i MB e E K= .

b) Output B.

NOTE—If both parties follow the algorithms specified, then the value B computed here is 1 2(,)r
ie Q Q , the same as

that obtained in P-SK-E (7.2.3).

7.3 BB1 primitives

7.3.1 General

These primitives define operations with cryptographic strength defined by reduction to the BDH problem.
For more information on this problem, to review the proof that reduces the problem of breaking these
primitives to BDH, and for information on the associated primitives, see Boneh and Boyen [B26].

For all these operations, the systems parameters are assumed to be defined as follows.

The server secret is defined to be

⎯ s, comprising three random elements 1s , 2s , 3s , of pZ

The public parameters are defined to be 1 2 3 1 2(, , , , , , , ,)iG G G e Q Q R T V=P , where

⎯ 1G , 2G , 3G , ie : the system parameters as defined in Clause 6

⎯ Qi : a generator of Gi

⎯ Qj: a generator of Gj

⎯ i iR s Q=

⎯ 3 iT s Q=

⎯ 2(,)i jV e R s Q=

7.3.2 BB1: Generation (P-BB1-G)

Input:

⎯ The parameters 1 2 3 1 2(, , , , , , , ,)iG G G e Q Q R T V=P

⎯ The server secret s

⎯ A randomizer r, an integer in pZ

⎯ An encoded identity M in pZ , typically derived from an identity string

Input constraints: The parameters P describe valid bilinear groups; s is the server secret corresponding to
P; and M is an element of pZ .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

34

Output:

⎯ The derived secret key, 0,MK and 1,MK , two elements of jG

Operation: The following steps or their mathematical equivalent shall be used to compute 0,MK and 1,MK :

a) Compute 1 2 1 3()t s s r s M s= + + in pZ .

b) Compute 0,M jK tQ= .

c) Compute 1,M jK rQ= .

d) Output 0,MK and 1,MK .

7.3.3 BB1: Verification (P-BB1-V)

Input:

⎯ The parameters 1 2 3 1 2(, , , , , , , ,)iG G G e Q Q R T V=P

⎯ A public-key element M in pZ

⎯ The corresponding key 0,MK and 1,MK

Input constraints: The parameters P describe valid bilinear groups and correspond to the server secret s;
M is an element of pZ ; and 0,MK and 1,MK are two elements of jG .

Output:

⎯ The value “valid” if 0,MK and 1,MK are consistent with P and M and “invalid” otherwise

Operation: The following steps or their mathematical equivalent shall be used to produce correct output:

a) Compute 0 0,(,)i i MT e Q K= .

b) Compute 1 1,(,)i MT e MR T K= + .

c) If 0 1T TV= , then output the value “valid”; otherwise, output the value “invalid.”

7.3.4 BB1: Encryption (P-BB1-E)

Input:

⎯ The parameters 1 2 3 1 2(, , , , , , , ,)iG G G e Q Q R T V=P

⎯ The public-key element M in pZ

⎯ A message randomizer r, an element of pZ

Input constraints: The parameters P describe a valid bilinear group and the public parameters associated
with the server secret s; and M is an element of pZ .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

35

Output:

⎯ An ciphertext 0E and 1E , both elements of iG , along with a blinding factor B, an element of 3G

Operation: The following steps or their mathematical equivalent shall be used to produce correct output:

a) Compute 0 iE rQ= .

b) Compute 1 ()E rM R rT= + .

c) Compute rB V= .

d) Output 0E , 1E , and B.

NOTE—The point multiplications in step a) and step b) and the field exponentiation in step c) can be performed very
efficiently using classic precomputation algorithms. Precomputation is viable and inexpensive because the base
elements iQ , R, T, and V, are all part of the public parameters and do not depend on the recipient identity.

7.3.5 BB1: Decryption (P-BB1-D)

Input:

⎯ The parameters 1 2 3 1 2(, , , , , , , ,)iG G G e Q Q R T V=P

⎯ The public-key element M

⎯ The associated private key 0,MK and 1,MK

⎯ A ciphertext Eo and E1

Input constraints: The parameters P describe valid bilinear groups and public parameters; M is an element
of pZ ; 0,MK and 1,MK are elements of jG corresponding to M according to P-BB1-V; and 0E and 1E are

elements of iG .

Output:

⎯ A blinding factor B, an element of 3G

Operation: Use the following steps:

a) Compute 0 0, 1 1,(,) / (,)i M i MB e E K e E K= .

b) Output B.

NOTE—If both parties follow the algorithms specified, then the value B computed here is rV , the same as that
obtained in P-BB1-E (7.3.4).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

36

7.4 BF primitives

7.4.1 General

These primitives define operations with cryptographic strength defined by reduction to the bilinear Diffie-
Hellman problem. For more information on this assumption, and to review the proof that these operations
reduce to this problem, see Boneh and Franklin [B28]. This system differs from the primitives earlier in this
clause in that the identity is encoded into an element of 1G instead of into pZ . The mapping from a string to

an element of 1G , which is typically an elliptic curve group, is more complex than mapping onto an integer

in pZ , which is where these primitives get their name.

For all these operations, the systems parameters have two components: a server secret and a set of public
parameters.

The server secret is defined to be

⎯ s, a random element of pZ

The public parameters are defined to be 1 2 3(, , , , ,)iG G G e Q R=P , where

⎯ 1G , 2G , 3G , e, the system parameters as defined in Clause 6

⎯ Q, a generator of jG

⎯ R, equal to sQ , an element of jG

7.4.2 BF: Generation (P-BF-G)

Input:

⎯ The parameters 1 2 3(, , , , ,)iG G G e Q R=P

⎯ The server secret s

⎯ An encoded identity M in Gi

Input constraints: The parameters P describe valid bilinear groups; s is the server secret corresponding to
R; and M is an element of iG .

Output:

⎯ The derived secret D, an element of iG

Operation: Use the following steps:

a) Compute D = sM.

b) Output D.

NOTE—The details of encoding identities into values M vary depending on the construction that employs the P-BF
primitives. Not all possible encoding methods will yield secure schemes. Some constructions will include additional
elements in the BF public key to be used in computing M.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

37

7.4.3 BF: Verification (P-BF-V)

Input:

⎯ The public parameters 1 2 3(, , , , ,)iG G G e Q R=P

⎯ An encoded identity M, an element of Gi

⎯ The purported generated key D

Input constraints: The parameters P describe valid bilinear groups; D is a BF public key and, thus, an
element of iG ; M is an element iG ; and D is an element of iG .

Output:

⎯ The value “valid” if D is consistent with M and R and “invalid” otherwise.

Operation: Use the following steps:

a) Compute 1 (,)iT e D Q= .

b) Compute 2 (,)iT e M R= .

c) If T1 = T2, then output the value “valid”; otherwise, output the value “invalid.”

7.4.4 BF: Encryption (P-BF-E)

Input:

⎯ The public parameters 1 2 3(, , , , ,)iG G G e Q R=P

⎯ An encoded identity M, an element of Gi

⎯ A per-message random integer r

Input constraints: The parameters P describe valid bilinear groups.

Output:

⎯ A ciphertext E, an element of jG , along with a blinding factor B, an element of 3G .

Operation: Use the following steps:

a) Compute E = rQ.

b) Compute (,)iB e rM R= .

c) Output E and B.

NOTE—The blinding factor B is the same as that obtained in P-BF-D (7.4.5).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

38

7.4.5 BF: Decryption (P-BF-D)

Input:

⎯ The public parameters 1 2 3(, , , , ,)iG G G e Q R=P

⎯ A ciphertext C

⎯ A generated value D

Input constraints: The parameters P describe valid bilinear groups; C is an element of iG ; and D, an

element of jG , is a valid generated value according to P-BF-G.

Output:

⎯ A blinding factor B, an element of 3G

Operation: Use the following steps:

a) Compute (,)iB e C D= .

b) Output B.

NOTE—If both parties follow the algorithms specified, then the value B computed here is (,)s
ie U X , the same

blinding factor obtained in P-BF-E (7.4.4).

7.5 SCC key agreement primitives

7.5.1 Pairing-based SCC key agreement: Derive secret value (P-SCC-D1)

P-SCC-D1 is the identity-based secret value derivation primitive, SCC version. It is based on the work of
Chen et al. [B42]. This primitive derives a shared secret value from a domain public key, one party’s two
key pairs, and another party’s two public keys. If two parties correctly execute this primitive, then the
parties will produce the same output. It assumes that the input keys are valid.

Input:

⎯ Elliptic curve domain parameters q, a, b, r, and G associated keys R, d, x, Q, E (the domain
parameters shall be the same for these keys)

⎯ A pairing e

⎯ A domain public key iR G∈

⎯ The party’s own identity-based private key jD G∈

⎯ The party’s own second private key x, which is an integer

⎯ The other party’s identity-based public key jQ G∈

⎯ The other party’s second public key E, which is an elliptic curve

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

39

Input constraints: The domain public key R, private key d, private key x, public keys Q and E, and elliptic
curve domain parameters q, a, b, r, and G are valid; all the keys are associated with the domain parameters.

Output:

⎯ The derived shared secret value, which is a nonzero field element z in ()GF q ; or “error.”

Operation: The shared secret value z shall be computed by the following or an equivalent sequence of
steps:

a) Compute an elliptic curve point A xR= .

b) Compute a pairing 1 (,)it e A Q= .

c) Compute a pairing 2 (,)it e E D= .

d) Compute 3 1 2t t t= .

e) Compute 1 3FE2OSP()o t= .

f) Compute an elliptic curve point B xE= .

g) Convert B into an octet string o using EC2OSP.

h) Let 1||z o o= .

i) Output z as the shared secret value.

A conformance region should include the following:

⎯ At least one valid set of elliptic curve domain parameters q, a, b, r, and g

⎯ At least one valid private key D for each set of domain parameters

⎯ A valid private key x associated with the same set of domain parameters as s

⎯ All valid public keys Q and E associated with the same set of domain parameters as s

NOTE—This primitive does not address small subgroup attacks, which may occur when the public keys Q and E are
not valid. To prevent them, a key agreement scheme should validate the public keys Q and E before executing this
primitive.

8. Identity-based encryption schemes

This clause describes identity-based encryption (IBE) methods and identity-based key encapsulation
mechanisms (ID-KEM) for each of the family of primitives described in Clause 8. The setting is the same
as the primitives, in that the schemes assume that there are three parties involved in the operations: a key
server, a sender, and a recipient. Each IBE scheme is described in terms of four operations: setup, extract,
encrypt, and decrypt. Each ID-KEM scheme is described with the same setup and extract operations but
with encapsulate and decapsulate operations instead of with encryption and decryption.

The IBE and ID-KEM operations are similar but have different performance characteristics suited to
different applications. IBE has the ability to encrypt a message directly, whereas ID-KEM provides the
ability to encrypt to multiple recipients in a more efficient way.

The following operations are common to IBE and ID-KEM schemes:

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

40

Setup: This operation is performed at the key server. This operation generates the secret and public
parameters for the key server and establishes the parameters for all subsequent operations using that key
server. This standard does not describe the necessary security design elements needed to protect the key
server’s secret keying material or the mechanisms needed to transmit the public parameter information to
the sender and recipient. These are both crucial elements but are dependent on the specific security
requirements of the application.

Extract: This operation is performed at the key server, typically after an authenticated request from the
recipient. This operation takes an identity string ID and uses the key server secret to compute the private
key corresponding to the identity string. This standard does not describe the authentication mechanism used
to ensure that private keys are only given to the proper recipients. The specific methods and protocols used
for authentication are critical to system security but are dependent on the requirements of the application.

The following operations are unique to IBE schemes:

Encrypt: This operation is performed at the sender. Given an identity string, a set of public parameters from
a key server, and a message m, this operation encrypts the message. Note that, in practice, the message m
will be a session key used to encrypt a larger message, although this is not mandatory.

Decrypt: This operation is performed at the recipient. Given a messaged encrypted with a set of server
parameters and identity string ID, this operation uses the corresponding private key IDK , generated during

an Extract operation, to decrypt the message.

The following operations are unique to ID-KEM schemes:

Encapsulate: This operation is performed at the sender. Given an identity string ID and a set of public
parameters from a key server, this operation outputs a pair (,)k c , where k is an encryption key used to

encrypt the message with a symmetric algorithm, and c is the encapsulation of key k. The encapsulation c
and the message encrypted with k are typically delivered to the recipient.

Decapsulate: This operation is performed at the recipient. Given an encapsulation c encrypted with an
identity string ID, and the corresponding private key IDK , generated during an Extract operation, returns the

decryption key k.

8.1 SK KEM scheme

SK-KEM uses the SK family of primitives to construct an ID-KEM mechanism that has a security
reduction to the q-BSK problem. This KEM is based on the work of Sakai and Kasahara [B140] and is
described in full with security proofs in Chen and Cheng [B41]. The scheme takes a security parameter t
and a key size parameter n.

It requires the definition of four hash functions:

⎯ 1 :{0,1} pH Z∗ → , where 1() IHF1(BS2OSP(), ,)H s s p t=

⎯ 2 3: {0,1}nH G → , where 2 () SHF1(FE2OSP(), ,)H x x n t=

⎯ 3 :{0,1} qH Z∗ → , where 3 () IHF1(BS2OSP(), ,)H s s q t=

⎯ 4 :{0,1} {0,1}nH ∗ → , where 4 () SHF1(BS2OSP(), ,)H s s n t=

The scheme also requires a random bit generation algorithm:

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

41

⎯ 1R : a source of random values in the space {0,1}n

8.1.1 SK KEM: Setup (SK-KEM-S)

The setup operation requires random generation of the parameters needed to operate the rest of the scheme
steps.

The steps to setup the key server and system parameters are as follows:

a) Establish the set of base groups 1G , 2G , 3G , and a pairing 3:i i je G G G× → . Annex A contains

recommendations for the generation of these objects.

b) Select a random generator 1Q in iG using the appropriate technique from 7.3 on an output of R1.

Calculate the corresponding generator 2Q in jG .

c) Generate a random server secret s in pZ ∗ . Calculate the corresponding R as 1sQ .

d) Precalculate the pairing value 1 2(,)iO e Q Q= .

e) Make the public parameter set 1 2 1 2 3(, , , , , , ,)iR O Q Q G G G e=P available. Secure the server secret s

in a way appropriate to the application.

8.1.2 SK KEM: Extract (SK-KEM-EX)

The extract operation takes an arbitrary identity string ID in {0,1}∗ and calculates the corresponding private

key IDK in 2G .

The steps to compute the private key IDK corresponding to an identity string ID are as follows:

a) Compute the identity element 1()M H ID= .

b) Use the P-SK-G primitive to compute IDK using M and the server secret s and public system

parameters.

8.1.3 SK KEM: Encapsulate (SK-KEM-EN)

The encapsulate operation takes an arbitrary identity string ID in {0,1}∗ and the public parameters for a key

server, and outputs the pair (,)k c , where k is a key to be used to encrypt a message, and c is the

encapsulation of k to be transmitted to the receiver.

The steps to compute the encapsulation values are as follows:

a) Using 1R , generate a random n-bit message m.

b) Compute 3 ()r H m= .

c) Compute P-SK-E, using r as the message randomizer.

d) Output (,)c E B m= ⊕ .

e) Output 4 ()k H m= .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

42

8.1.4 SK KEM: Decapsulate (SK-KEM-DE)

The decapsulate operation takes an encapsulated value c computed for identity ID, and the private key IDK

that corresponds to ID, and it computes the key value k that can be used to decrypt the message that was
encrypted by the sender.

The steps to compute the decapsulated key are as follows:

a) Parse the encapsulated value c as the pair (,)U V .

b) Compute P-SK-D on U, returning the value B.

c) Compute 2 ()m H B V= ⊕ .

d) Compute 3 ()r H m= .

e) Compute 1 1(())Q R H ID Q= + ⋅ .

f) Verify that U rQ= . If not, then output “error” and stop.

g) Return 4 ()k H m= .

8.2 BB1 KEM scheme

BB1-KEM uses the P-BB1 family of primitives to construct a KEM mechanism that has a security reduction
to the BDH problem. This KEM is based on the work of Boneh and Boyen [B26] and is explicitly
described in Boyen [B33]. The scheme takes a security parameter t and a key size parameter n.

It requires the definition of two hash functions:

⎯ 1 :{0,1} pH Z∗ → , where 1() IHF1(BS2OSP(), ,)H s s p t=

⎯ 2 3: {0,1}nH G → , where 2 () SHF1(FE2OSP(), ,)H x x n t=

The scheme also requires a random bit generation algorithm:

⎯ 1R : a source of random values in the space pZ

8.2.1 BB1 KEM: Setup (BB1-KEM-S)

The setup operation requires random generation of the parameters needed to operate the rest of the scheme
steps. This operation creates a server secret that shall be secured, as all private keys calculated within the
system depend on it. It is recommended that applications establish a methodology for changing the server
secret and public parameters on a regular basis, and have a methodology for handling the disclosure of a
server secret.

The steps to setup the key server and system parameters are as follows:

a) Establish the set of base groups 1G , 2G , 3G and a pairing 3:i i je G G G× → . Annex A contains

recommendations for the generation of these objects.

b) Select a random generator 1Q in iG using the appropriate technique from 7.3 on an output of R1.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

43

c) Select a random generator 2Q in jG that may, but does need not to be, related to 1Q by an explicit

mappingφ .

d) Generate random server secrets 1s , 2s , and 3s in pZ .

e) Calculate the corresponding R as 1 1s Q and T as 3 1s Q .

f) Calculate the pairing value V as 1 1 2 2(,)ie s Q s Q .

g) Make the public parameter set 1 2 1 2(, , , , , , ,)iQ Q R T V G G e=P available. Secure the server secrets 1s ,

2s , and 3s in a way appropriate to the application.

8.2.2 BB1 KEM: Extract (BB1-KEM-EX)

The extract operation takes an arbitrary identity string ID in {0,1}∗ and calculates the corresponding private

key elements 0, IDK and 1,IDK in 2G . It is recommended that applications establish a methodology for

authenticating access to private keys by using the ID string as an identity in a trusted authentication system.
The details of authenticating the key request are beyond the scope of this document, but they are critical for
the security of an implemented application.

The steps to compute the private key 0, IDK and 1,IDK corresponding to an identity string ID are as follows:

a) Compute the identity element 1()M H ID= .

b) Use the P-BB1-G primitive to compute 0, IDK and 1,IDK using M, the server secrets 1s , 2s , and 3s ,

the public system parameters.

8.2.3 BB1 KEM: Encapsulate (BB1-KEM-EN)

The encapsulate operation takes an arbitrary identity string ID in {0,1}∗ and the public parameters for a key

server, and it outputs the pair (,)k c , where k is a key to be used to encrypt a message and c is the

encapsulation of k to be transmitted to the receiver.

The steps to compute the encapsulation values are as follows:

a) Using 1R , generate a random integer r.

b) Compute P-BB1-E, using r as the message randomizer.

c) Output c as the pair 0 1(,)E E .

d) Output 2 ()k H B= .

8.2.4 BB1 KEM: Decapsulate (BB1-KEM-DE)

The decapsulate operation takes an encapsulated value c computed for identity ID, and the private key

0, IDK and 1,IDK that corresponds to ID, and computes the key value k that can be used to decrypt the

message that was encrypted by the sender.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

44

The steps to compute the decapsulated key are as follows:

a) Parse the encapsulated value c as the pair 0 1(,)E E .

b) Compute PBB1D on 0 1(,)E E to obtain the value B.

c) Return 2 ()k H B= .

8.3 BB1 IBE scheme

BB1 IBE uses the P-BB1 family of primitives to construct an IBE mechanism that has a security reduction
to the BDH problem. This cryptosystem is based on the work of Boneh and Boyen [B26]. The scheme
takes a security parameter t and a key size parameter n.

It requires the definition of three hash functions:

⎯ 1 :{0,1} pH Z∗ → , where 1() IHF1(BS2OSP(), ,)H s s p t=

⎯ 2 3: {0,1}nH G → , where 2 () SHF1(FE2OSP(), ,)H x x n t=

⎯ 3 3 1 1: {0,1}n
pH G G G Z× × × → , where

3 1 2 1 2(, , ,) IHF1(FE2OSP() || BS2OSP() || EC2OSP() || EC2OSP(), ,)H x s P P x s P P p t=

The scheme also requires a random bit generation algorithm:

⎯ 1R : a source of random values in the set pZ

8.3.1 BB1 IBE: Setup (BB1-IBE-S)

The setup operation requires random generation of the parameters needed to operate the rest of the scheme
steps. This operation creates a server secret that shall be secured, as all private keys calculated within the
system depend on it. It is recommended that applications establish a methodology for changing the server
secret and public parameters on a regular basis, and have a methodology for handling the disclosure of a
server secret.

The steps to setup the key server and system parameters are as follows:

a) Establish the set of base groups 1G , 2G , 3G and a pairing 3:i i je G G G× → . Annex A contains

recommendations for the generation of these objects.

b) Select a random generator 1Q in iG using the appropriate technique from 7.3.1 on an output of R1.

c) Select also a random generator 2Q in jG , which may but need not be related to 1Q by an explicit

mappingφ .

d) Generate random server secrets s1, s2, and s3, in pZ .

e) Calculate the corresponding R as 1 1s Q and T as 3 1s Q .

f) Calculate the pairing value V as 1 1 2 2(,)ie s Q s Q .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

45

g) Make the public parameter set 1 2 1 2(, , , , , , ,)iQ Q R T V G G e=P available. Secure the server secrets 1s ,

2s , and 3s in a way appropriate to the application.

8.3.2 BB1 IBE: Extract (BB1-IBE-EX)

The extract operation takes an arbitrary identity string ID in{0,1}∗ and calculates the corresponding private

key elements 0, IDK and 1,IDK in jG . It is recommended that applications establish a methodology for

authenticating access to private keys by using the ID string as an identity in a trusted authentication system.
The details of authenticating the key request are beyond the scope of this document, but they are critical for
the security of an implemented application.

The steps to compute the private key 0, IDK and 1,IDK corresponding to an identity string ID are as follows:

a) Compute the identity element 1()M H ID= .

b) Use the P-BB1-G primitive to compute 0, IDK and 1,IDK using M, the server secrets 0, IDK and

1,IDK using M, the server secrets 1s , 2s , 3s , and the public system parameters.

8.3.3 BB1 IBE: Encrypt (BB1-IBE-EN)

The encryption operation takes an arbitrary identity string ID in {0,1}∗ a message M in{0,1}∗ and the public

parameters for a key server, and it outputs a ciphertext c to be transmitted to the receiver.

The steps to compute the ciphertext are as follows:

a) Using 1R , generate a random integer r in pZ .

b) Compute P-BB1-E, using r as the message randomizer.

c) Compute 2 ()Y H B M= ⊕ .

d) Compute 3 0 1(, , ,)t r H B Y E E= + in pZ .

e) Output the quadruple 0 1(, , ,)c Y E E t= as the ciphertext.

8.3.4 BB1 IBE: Decrypt (BB1-IBE-DE)

The decryption operation takes a ciphertext c computed for identity ID, and the private key 0, IDK and 1,IDK

that corresponds to ID, and it computes the message M that was encrypted by the sender, or an “error”
signal.

The steps to compute the decapsulated key are as follows:

a) Parse c as the quadruple 0 1(, , ,)c Y E E t= .

b) Compute P-BB1-D on 0 1(,)E E , to obtain the value B.

c) Compute 3 0 1(, , ,)r t H B Y E E= − in pZ .

d) Verify that rB V= and that 0 1E rQ= . If not, then output “error” and stop.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

46

e) Return 2 ()M Y H B= ⊕ .

NOTE—The verifications in step d) can be performed very efficiently using classic precomputation methods for field
exponentiation and curve multiplication. Precomputation is viable because the base elements V and 1Q are part of the

public parameters and thus constant and independent of the recipient identity.

8.4 BF IBE scheme

BF IBE uses the P-BF family of primitives to construct an IBE scheme that has a security reduction to the
BDH problem. This IBE scheme is based on the work of Boneh and Franklin [B28] and is described with
full security proofs in that work. The scheme takes a security parameter t and a key size parameter n. The
following scheme uses the Fujisaki-Okamoto transform to create an IND-CCA secure IBE scheme.

BF IBE requires the definition of four hash functions:

⎯ 1 1:{0,1}H G∗ → , where H1 is defined to be one of PHF-SS, PHF-GFP, and PHF-GF2, the choice of

which will depend on the elliptic curve chosen to define 1G

⎯ 2 3: {0,1}nH G → , where 2 () SHF1(FE2OSP(), ,)H x x n t=

⎯ 3 :{0,1} {0,1}n n
pH Z ∗× → , where 3 1 2 1 2(,) IHF1(BS2OSP() || BS2OSP()), 1,)H s s s s p t= −

⎯ 4 :{0,1} {0,1}n nH → , where 4 () SHF1(BS2OSP(), ,)H s s n t=

The scheme also requires a random bit generation algorithm:

⎯ 1R : a source of random bits in {0,1}n

8.4.1 BF IBE: Setup (BF-IBE-S)

The setup operation requires random generation of the parameters needed to operate the rest of the scheme
steps. This operation creates a server secret that shall be secured, as all private keys calculated within the
system depend on it. It is recommended that applications establish a methodology for changing the server
secret and public parameters on a regular basis, and have a methodology for handling the disclosure of a
server secret.

The steps to setup the key server and system parameters are as follows:

a) Establish the set of base groups 1G , 2G , and 3G , and a pairing 3:i i je G G G× → . Annex A contains

recommendations for the generation of these objects. iG shall be of the form (())[]E GF q p , where p

and q are primes.

b) Select a random generator Q in jG using A.7.15.

c) Generate a random server secret s in pZ ∗ .

d) Calculate the corresponding R as sQ .

e) Make the public parameter set 1 2 3(, , , , ,)iP R Q G G G e= available. Secure the server secret s in a way

appropriate to the application.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

47

8.4.2 BF IBE: Extract (BF-IBE-EX)

The extract operation takes an arbitrary identity string ID in {0,1}∗ and calculates the corresponding private

key IDK in 1G . It is recommended that applications establish a methodology for authenticating access to

private keys by using the ID string as an identity in a trusted authentication system. The details of
authenticating the key request are beyond the scope of this document, but they are critical for the security
of an implemented application.

The steps to compute the private key IDK corresponding to an identity string ID are as follows:

a) Compute the identity element 1()M H ID= .

b) Use the P-BF-G primitive to compute IDK using M and the server secret s and public system

parameters.

8.4.3 BF IBE: Encrypt (BF-IBE-EN)

The encrypt operation takes an arbitrary identity string ID in {0,1}∗ , the set of public parameters P, and a

message m of length n, and it calculates the ciphertext E of the message. The intention is that only the
possessor of the corresponding private key IDK will be able to decrypt E to recover m. Note that in

practice, m will typically be a symmetric encryption key used to encrypt a larger data block typically
transmitted or stored with E.

The steps to compute the ciphertext E are as follows:

a) Using 1R , compute an n-bit message randomizer o.

b) Compute 1()M H ID= .

c) Compute 3 (,)r H o M= .

d) Compute 1C rQ= .

e) Compute the blinding value B using P-BF-EN with M, r and the public parameters P.

f) Compute 2 2 ()C o H B= ⊕ .

g) Compute 3 4 ()C m H o= ⊕ .

h) Output the ciphertext 1 2 3(, ,)E C C C= .

8.4.4 BF IBE: Decrypt (BF-IBE-DE)

The decrypt operation takes a ciphertext E and the private key IDK from the BF-IBE-EX operation and

either recovers the message m or outputs “error.”

The steps to decrypt E into m are as follows:

a) Using P-BF-D with 1C as the ciphertext, and IDK as the key, compute the blinding value B.

b) Compute 2 2 ()o C H B= ⊕ .

c) Compute 3 4 ()m C H o= ⊕ .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

48

d) Compute 3 (,)r H o M= .

e) Test if 1C rQ= . If not, then output “error” and stop.

f) Output m as the decrypted message.

9. Identity-based signature schemes

9.1 BLMQ signature scheme

9.1.1 General

The BLMQ signature uses the DHI family of primitives to construct an identity-based signature that has a
security reduction to an assumption that is related to (and actually weaker than) the q-BDHI assumption.
This signature is a noninteractive proof of knowledge of a private key generated according to the work of
Sakai and Kasahara [B140].

It requires the definition of the following two hash functions:

⎯ 1 :{0,1} pH Z∗ →

⎯
2 :{0,1} qH Z∗ →

9.1.2 BLMQ signature: Setup (BLMQ-SIG-S)

The setup operation requires random generation of the parameters needed to operate the rest of the scheme
steps. This operation creates a server secret that shall be secured, as all private keys calculated within the
system depend on it. The steps to setup the key server and system parameters are as follows:

Input:

⎯ A security parameter t

Output:

⎯ A public parameter set 1 2 1 2 3(, , , , , , ,)iR O Q Q G G G e=P and a server secret s

The steps to setup the key server and public parameters P are as follows:

a) Establish the set of base groups 1G , 2G , 3G , and a pairing 3:i i je G G G× → as described in

Annex A.

b) Pick a random generator 2Q in jG .

c) Calculate 1 2()Q Qφ= in Gi if ϕ is defined.

d) Generate a random server secret s in pZ ∗ .

e) Calculate 2R sQ= .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

49

f) Calculate 1 2(,)iO e Q Q= .

g) Make the public parameter set 1 2 1 2 3(, , , , , , ,)iR O Q Q G G G e=P available.

9.1.3 BLMQ signature: Extract (BLMQ-SIG-EX)

The extract operation takes an arbitrary identity string ID in {0,1}∗ and calculates the corresponding private

key IDK in 1G . To minimize the size of signatures and private keys, it is advisable to set up users’ keys in

1G instead of 2G .

Input:

⎯ A set of public parameters 1 2 1 2 3(, , , , , , ,)iR O Q Q G G G e=P

⎯ A server secret s

⎯ An identity ID in {0,1}∗

Output:

⎯ A private key KID

The steps to compute the private key IDK corresponding to an identity string ID are as follows:

a) Compute the identity element 1()M H ID= in pZ .

b) Compute 1
1()IDK M s Q−= + using the server secret s.

9.1.4 BLMQ signature: Create signature (BLMQ-SIG-SI)

Input:

⎯ The parameters 1 2 1 2 3(, , , , , , ,)iR O Q Q G G G e=P

⎯ The public-key element M

⎯ The associated private key 1
1()IDK M s Q−= +

⎯ A randomizer r, an integer

⎯ A message m to be signed

Input constraints: The parameters P describe valid bilinear groups; R is the public parameter associated
with s; and M is an element of pZ .

Output:

⎯ A signature (,)h S , where h is an element of pZ and S is an element of iG .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

50

Operation: Use the following steps:

a) Compute 1 2(,)r
iu e Q Q= .

b) Compute 2 (,)h H m u= .

c) Compute () mS r h K= + .

d) Output h and S.

9.1.5 BLMQ signature: Verify signature (BLMQ-SIG-VE)

Input:

⎯ The parameters 1 2 1 2 3(, , , , , , ,)iR O Q Q G G G e=P

⎯ The public-key element M

⎯ A signature (h, S)

Input constraints: The parameters P describe valid bilinear groups; R is a public key, an element of jG ; M

is an element of pZ ; MK , an element of iG , is a valid generated value for M; h is an element of pZ ; and S

is an element of iG .

Output:

⎯ The value “valid” if the purported signature (,)h S is accepted with respect to the public-key

element M and “invalid” otherwise.

Operation: Use the following steps:

a) Compute 2

1 2

(,)

(,)
i

h
i

e S MQ R
u

e Q Q

+
= .

b) Output “valid” if 2 (,)h H m u= and “invalid” otherwise.

If both parties follow the algorithms specified, then a valid signature (,)h S is always accepted.

10. Identity-based signcryption schemes

10.1 BLMQ signcryption scheme

The BLMQ signcryption scheme uses the DHI family of primitives to construct a fast scheme to jointly
perform both a signature and an encryption in settings that require private and authenticated
communications. The scheme has security proofs under the q-BDHI assumption. This construction
efficiently combines the BLMQ signature with the DHI-like encryption layer. The scheme is used to sign
and encrypt messages of length n.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

51

It requires the definition of the following three hash functions:

⎯ 1 :{0,1} pH Z∗ →

⎯ 2 :{0,1} qH Z∗ →

⎯ 3 3: {0,1}nH G →

10.1.1 BLMQ signcryption: Setup (BLMQ-SC-S)

The setup operation requires random generation of the parameters needed to operate the rest of the scheme
steps.

The steps to set up the key server and system-wide parameters 1 2 1 2 3(, , , , , , ,)iR O Q Q G G G e=P are as

follows:

a) Establish the set of base groups G1, G2, G3, and a pairing 3:i i je G G G× → .

b) Pick a random generator Q2 in jG . Calculate the corresponding 1 2()Q Qφ= in Gi.

c) Generate a random server secret s in pZ ∗ . Calculate the corresponding R as sQ2.

d) Precalculate the pairing value 1 2(,)iO e Q Q= .

e) Make the public parameter set 1 2 1 2 3(, , , , , , ,)iR O Q Q G G G e=P available.

10.1.2 BLMQ signcryption: Extract (BLMQ-SC-EX)

The extract operation takes an arbitrary identity string ID in {0,1}∗ and calculates the corresponding private

key IDK in jG . Users’ keys shall lie in jG .

The steps to compute the private key IDK corresponding to an identity string ID are as follows:

a) Compute the identity element 1()M H ID= in pZ .

b) Compute 1
2()IDK M s Q−= + using the server secret s.

10.1.3 BLMQ signcryption: Sign and encrypt (BLMQ-SC-SE)

Input:

⎯ The parameters 1 2 1 2 3(, , , , , , ,)iR O Q Q G G G e=P

⎯ The sender’s public identifier AM

⎯ The associated private key 1
2()A AK M s Q−= +

⎯ The receiver’s identifier BM

⎯ A randomizer r, an integer with 0 ≤ r ≤ p – 1

⎯ A message m to be jointly signed and encrypted

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

52

Input constraints: The parameters P describe valid bilinear groups; R is the public parameter associated
with s; and AM and BM are both elements of pZ .

Output:

⎯ A ciphertext (, ,)c S T , where c is a bitstring of length n and S and T are both elements of iG .

Operation: Conduct the following steps:

a) Compute 1 2(,)r
iu e Q Q= .

b) Compute 2 (,)h H m u= .

c) Compute () AS r h K= + .

d) Compute (())BT r M Rφ= + .

e) Compute 3 ()c m H u= ⊕ .

f) Output the ciphertext (c, S, T).

10.1.4 BLMQ signcryption: Decrypt and verify (BLMQ-SC-DV)

Input:

⎯ The parameters 1 2 1 2 3(, , , , , , ,)iR O Q Q G G G e=P

⎯ The sender’s public identifier AM

⎯ The receiver’s private key 1
2()B BK M s Q−= +

⎯ A ciphertext (c, S, T)

Input constraints: The parameters P describe valid bilinear groups; R is a public key, an element of jG ;

AM and BM are both elements of pZ ; BK , an element of jG , is a valid generated value for BM ; h is an

element of pZ ; and S is an element of iG .

Output:

⎯ Either a rejection message or a pair made of a plaintext m and a valid signature (,)h S for m on

behalf of the sender AM

Operation: Use the following steps:

a) Compute (,)i Bu e T K= .

b) Compute 3 ()m c H u= ⊕ .

c) Compute 2 (,)h H m u= .

d) Accept the message if 2

1 2

(,)

(,)
i A

h
i

e S M Q R
u

e Q Q

+
= .

e) If the test of step d) succeeds, output the plaintext m and the signature (h, S).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

53

11. Identity-based key agreement schemes

In a key agreement scheme, each party combines its own private key(s) with the other party’s public key(s)
to come up with a secret key. Other information known to both parties may also enter the scheme as key
derivation parameters. If the parties use the corresponding keys and identical key derivation parameters,
and the scheme is executed correctly, then the parties will arrive at the same secret key (see footnote 1). A
key agreement scheme can allow two parties to derive shared secret keys without any prior shared secret.

A key agreement scheme consists of a key agreement operation, along with supporting key management.
Domain parameter and key pair generation for the key agreement schemes are specified in Clause 11. A
key agreement operation has the following form for all the schemes:

a) An administrator establishes one or more sets of valid domain parameters with which the parties’
key pairs shall be associated.

b) Users obtain their valid private keys associated with the domain parameters established in step a).

c) Users obtain the other party’s identity-based public key and one or more purported public keys for
the operation.

d) (Optional) Depending on the cryptographic operations in step c), users choose an appropriate
method to validate the public keys and the domain parameters. If any validation fails, output
“invalid” and stop.

e) Users apply certain cryptographic operations to the private and public keys to produce a shared
secret value.

f) For each shared secret key to be agreed on, users establish or agree on key derivation parameters
and derive a shared secret key from the shared secret value and the key derivation parameters using
a key derivation function.

NOTE 1— By the definition of a key agreement scheme, if the correct keys are used and computation is performed
properly, then the shared secret keys computed by the two parties will also be the same. However, to verify the
identities of the parties and to ensure that the two parties indeed possess the same key, the parties may need to perform
a key confirmation protocol. See D.5.1.3 of IEEE Std 1363-2000 for more details.

NOTE 2— A given public/private key pair may be used by either party for any number of key agreement operations,
depending on the implementation.

NOTE 3— Depending on the key derivation function, there may be security-related constraints on the set of allowed
key derivation parameters. The interpretation of these parameters is left to the implementation. For instance, it may
contain key-specific information, protocol-related public information, and supplementary, private information. For
security, the interpretation should be unambiguous. See D.5.1.4 of IEEE Std 1363-2000 for further discussion.

NOTE 4— The attributes of the shared secret key depend on the particular key agreement scheme used, the attributes of
the public/private key pairs, the nature of the parameters to the key derivation function, and whether or not key
confirmation is performed. See D.5.1 of IEEE Std 1363-2000 for further discussion of the attributes of the shared secret
key.

NOTE 5— The two parties may produce errors under certain conditions, such as the following:

⎯ Private key not found in step b)

⎯ Public key not found in step d)

⎯ Public key not valid in step e)

⎯ Private key or public key not supported in step f)

⎯ Key derivation parameter not supported in step f)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

54

NOTE 6— Such error conditions should be detected and handled appropriately by an implementation, but the specific
methods for detecting and handling them are outside of the scope of this standard.

11.1 Wang key agreement scheme

The Wang key agreement scheme is an IBKAS-IDAK, identity-based key agreement scheme, IDAK
version. In this scheme, each party contributes two key pairs.

The following scheme options shall be established between the parties to the scheme:

⎯ A secret value derivation operation, which shall be P-WKA-D1

⎯ A key derivation function, which should be KDF1 as defined in subclause 13.1 of
IEEE Std 1363-2000, or a function designated for use with IBKAS-IDAK in an addendum to this
standard

These scheme options may remain the same for any number of executions of the key agreement scheme, or
they may be changed at some frequency. The information need not be kept secret.

These primitives define operations with cryptographic strength defined by reduction to the bilinear Diffie-
Hellman problem (see 7.3).

For these operations, the system parameters comprise a server secret and a set of public parameters.

The server secret is defined to be

⎯ s, a random element of pZ

The pubic parameters are defined to be P = (G1,G2,G3,ei,Q,R,H), where

⎯ 1 2 3, , , iG G G e are as defined in Clause 7

⎯ Q is a generator of iG

⎯ R, equal to sQ, an element of Gi

⎯ H is a cryptographic hash function H that maps an octet string to an octet string of length

h = 2 1log / 2G  

11.1.1 Wang key agreement: Derive public key (WKA-KA-D1)

This operation derives an entity’s public key from its public identity string.

Input:

⎯ The public parameters P = (G1,G2,G3,ei,Q,R,H)

⎯ Parameters t, j, q, p, where t is a security parameter, j is the flag defining the supersingular elliptic
curve as specified in A.11, and q and p are system parameters

⎯ An octet string ID representing a user’s identity

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

55

Output:

⎯ The derived public key W, which is a generator of jG ; or “error”

Operation:

a) Compute PHF-SS(, , , ,)W ID t j q p= .

b) Output W.

11.1.2 Wang key agreement: Derive private key (WKA-KA-D2)

This operation derives an entity’s private key from a public key and a server secret.

Input:

⎯ The public parameters P = (G1,G2,G3,ei,Q,R,H)

⎯ The server secret s

⎯ The public key W

Input constraints: The parameters P, the server secret s, and the public key W are valid.

Output:

⎯ The derived private key U, which is an element of jG , or “error.”

Operation: Use the following steps:

a) Compute U sW= using P-BF-G.

b) Output U.

11.1.3 Wang key agreement: Verification (WKA-KA-V)

This operation verifies that a private key is valid.

Input:

⎯ The public parameters P = (G1,G2,G3,ei,Q,R,H)

⎯ A public key W, an element of Gj

⎯ A private key U, an element of Gj

Input constraints: The public parameters, public key, and private key are valid.

Output:

⎯ The value “valid” if U is the private key corresponding to W and “invalid” otherwise.

Operation: Perform the following steps:

a) Compute 1 (,)iT e Q U= using P-BF-D.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

56

b) Compute 2 (,)iT e R W= using P-BF-D.

c) If 1 2T T= , then output “valid”; otherwise output “invalid.”

11.1.4 Wang key agreement: Derive secret value (WKA-KA-D3)

This operation derives a secret shared value from one party’s two key pairs and another party’s two public
keys. If two parties correctly execute this primitive, then the two parties will produce the same output. This
operation can be invoked by a scheme to derive a shared secret key; specifically, it may be used with this
scheme.

Input:

⎯ The public parameters P = (G1,G2,G3,ei,Q,R,H)

⎯ The first party’s identity-based private key U, an element of jG

⎯ The first party’s second key pair (,)u V , where u is an element of pZ andV uW=

⎯ The second party’s identity-based public key W ′

⎯ The second party’s second public keyV ′

⎯ A cryptographic hash function H that maps an octet string to an octet string of length h

⎯ A flag f that takes the values 0 and 1. The value 0 indicates the role of initiator; the value 1
indicates the role responder

Input constraints: The public parameters P are valid; the keys U, (,)u V ,W ′ , V ′ are valid and are all

associated with the parameters P.

Output:

⎯ The derived shared secret value z, an element of ()GF q ∗ ; or the message “error”

Operation: Perform the following steps:

a) Let EC2OSPX()o V= .

b) Let EC2OSPX()o V′ ′= .

c) Compute an octet string (||)t H o o′= .

d) Convert t into an integer using OS2IP.

e) Compute an octet string (||)t H o o′ ′= .

f) Convert t′ into an integer using OS2IP.

g) Compute ()P u i U= + .

h) Compute R i W V′ ′ ′= + .

i) If f = 0, then let (,)iz e P R= .

j) If f = 0, then let (,)iz e R P= .

k) If 1z = , then terminate.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

57

l) Output z.

11.1.5 Wang key agreement: Generate shared secrets (WKA-KA-G)

A sequence of shared secret keys 1K , 2K , …, tK shall be generated by each party by performing the

following or an equivalent sequence of steps:

a) Obtain the valid set of elliptic curve domain parameters with which the parties’ two identity-based
key pairs shall be associated.

b) Obtain the identity-based private key w and select a valid key pair (,)u v for the operation,

associated with the parameters established in step a).

c) Obtain the other party’s identity-based public key w′ and the purported public key v′ for the
operation, associated with the parameters established in step a).

d) Compute a shared secret value z from the selected private keys w and u and the other party’s two
public keys w′ and v′ with the selected secret value derivation primitive.

e) Convert the shared secret value z to an octet string Z using FE2OSP.

f) For each shared secret key to be agreed on

1) Establish or otherwise agree on key derivation parameters iP for the key.

2) Derive a shared secret key iK from the octet string Z and the key derivation parameters iP

with the selected key derivation function (see 9.1.5).

A conformance region should include the following:

⎯ At least one valid set of domain parameters

⎯ At least one valid private key w for each set of domain parameters

⎯ All valid key pairs (,)u v associated with the same set of domain parameters as w

⎯ All valid public keys w′ and v′ associated with the same set of domain parameters as s; if key
validation is performed, then the invalid public keys w′ and v′ that are appropriately handled by
the implementation may also be included in the conformance region

⎯ A range of key derivation parameters P

11.2 SCC key agreement scheme

The security of this scheme was described by Chen et al. [B42]. Each party contributes two key pairs.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

58

The following options shall be established or otherwise agreed on between the parties to the scheme:

⎯ A secret value derivation primitive, which shall be P-SCC-D1

⎯ A key derivation function, which should be KDF1 (subclause 13.1 of IEEE Std 1363-2000) or a
function designated for use with SCC key agreement in an addendum to this standard

The preceding information may remain the same for any number of executions of the key agreement
scheme, or it may be changed at some frequency. The information need not be kept secret.

11.2.1 SCC key agreement: Generate shared secrets (SCC-KA-G)

A sequence of shared secret keys 1K , 2K , …, tK shall be generated by each party by performing the

following or an equivalent sequence of steps:

a) Obtain the valid set of elliptic curve domain parameters with which the parties’ two identity-based
key pairs shall be associated.

b) Obtain the identity-based private key D and select a valid key pair (,)x E xP= using P-BF-G, with

the parameters established in step a).

c) Obtain the other party’s identity-based public key Q and the purported public key E′ for the
operation, associated with the parameters established in step a).

d) Compute a shared secret value z from the selected private keys D and x and the other party’s two
public keys Q and E with the selected secret value derivation primitive P-SCC-D1.

e) Convert the shared secret value z to an octet string Z using FE2OSP.

f) For each shared secret key to be agreed on

1) Establish or otherwise agree on key derivation parameters iP for the key.

2) Derive a shared secret key iK from the octet string Z and the key derivation parameters iP

with the selected key derivation function (see 9.1.4).

A conformance region should include the following:

⎯ At least one valid set of domain parameters

⎯ At least one valid private key D for each set of domain parameters

⎯ All valid key pairs (,)x E associated with the same set of domain parameters as s

⎯ All valid public keys Q and iP associated with the same set of domain parameters as s; if key

validation is performed, then the invalid public keys Q and iP that are appropriately handled by the

implementation may also be included in the conformance region

⎯ A range of key derivation parameters P

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

59

Annex A

(informative)

Number-theoretic background

A.1 Integer and modular arithmetic: Overview

A.1.1 Modular arithmetic

A.1.1.1 Modular reduction

Modular arithmetic is based on a fixed integer m > 1 called the modulus. The fundamental operation is
reduction modulo m. To reduce an integer a modulo m, one divides a by m and takes the remainder r. This
operation is written as follows:

r := a mod m.

The remainder shall satisfy 0 ≤ r < m.

Examples:

11 mod 8 = 3

7 mod 9 = 7

–2 mod 11 = 9

12 mod 12 = 0

Congruences

Two integers a and b are said to be congruent modulo m if the two integers have the same result with
reduction modulo m. This relationship is written as follows:

a ≡ b (mod m)

Two integers are congruent modulo m if and only if their difference is divisible by m.

Example:

11 ≡ 19 (mod 8)

If r = a mod m, then r ≡ a (mod m).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

60

If a0 ≡ b0 (mod m) and a1 ≡ b1 (mod m), then

a0 + a1 ≡ b0 + b1 (mod m)

a0 – a1 ≡ b0 – b1 (mod m)

a0a1 ≡ b0b1 (mod m)

A.1.1.2 Integers modulo m

The integers modulo m are the possible results of reduction modulo m. Thus, the set of integers modulo m
is

Zm = {0, 1, …, m – 1}

One performs addition, subtraction, and multiplication on the set Zm by performing the corresponding
integer operation and reducing the result modulo m. For example, in Z7

3 = 6 + 4

5 = 1 – 3

6 = 4 × 5

A.1.1.3 Modular exponentiation

If v is a positive integer and g is an integer modulo m, then modular exponentiation is the operation of
computing gv mod m (also written exp (g, v) mod m). Subclause A.2.1 contains an efficient method for
modular exponentiation.

A.1.1.4 GCDs and LCMs

If m and h are integers, the greatest common divisor (or GCD) is the largest positive integer d dividing both
m and h. If d = 1, then m and h are said to be relatively prime (or coprime). Subclause A.2.2 contains an
efficient method for computing the GCD.

The least common multiple (or LCM) is the smallest positive integer l divisible by both m and h. The GCD
and LCM are related by

GCD (h, m) × LCM (h, m) = hm

(for h and m positive), so that the LCM is easily computed if the GCD is known.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

61

A.1.1.5 Modular division

The multiplicative inverse of h modulo m is the integer k modulo m such that hk ≡ 1 (mod m). The
multiplicative inverse of h is commonly written as h–1 (mod m). It exists if h is relatively prime to m and not
otherwise.

If g and h are integers modulo m, and h is relatively prime to m, then the modular quotient g/h modulo m is
the integer gh–1 mod m. If c is the modular quotient, then c satisfies g ≡ hc (mod m).

The process of finding the modular quotient is called modular division. Subclause A.2.2 contains an
efficient method for modular division.

A.1.2 Prime finite fields

A.1.2.1 Field GF(p)

In the case in which m equals a prime p, the set Zp forms a prime finite field and is denoted GF(p).

In the finite field GF(p), modular division is possible for any denominator other than 0. The set of nonzero
elements of GF(p) is denoted GF(p)*.

A.1.2.2 Orders

The order of an element c of GF(p)* is the smallest positive integer v such that cv ≡ 1 (mod p). The order
always exists and divides p – 1. If k and l are integers, then ck ≡ cl (mod p) if and only if k ≡ l (mod v).

A.1.2.3 Generators

If v divides p – 1, then there exists an element of GF(p)* having order v. In particular, there always exists
an element g of order p – 1 in GF(p)*. Such an element is called a generator for GF(p)* because every
element of GF(p)* is some power of g. In number-theoretic language, g is also called a primitive root for p.

A.1.2.4 Exponentiation and discrete logarithms

Suppose that the element g of GF(p)* has order v. Then, an element h of GF(p)* satisfies

h ≡ g l (mod p)

for some l if and only if h v ≡ 1 (mod p). The exponent l is called the discrete logarithm of h (with respect to
the base g). The discrete logarithm is an integer modulo v.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

62

A.1.3 Modular square roots

A.1.3.1 Legendre symbol

If p > 2 is prime and a is any integer, then the Legendre symbol (a / p) is defined as follows. If p divides a,
then (a / p) = 0. If p does not divide a, then (a / p) equals 1 if a is a square modulo p and –1 otherwise.
(Despite the similarity in notation, a Legendre symbol should not be confused with a rational fraction; the
distinction shall be made from the context.)

Algorithms for computing Legendre symbol are given in A.2.3.

A.1.3.2 Square roots modulo a prime

Let p be an odd prime and let g be an integer with 0 ≤ g < p. A square root modulo p of g is an integer z
with 0 ≤ z < p and

z 2 ≡ g (mod p)

The number of square roots modulo p of g is 1+J, where J is the Jacobi symbol (g / p).

If g = 0, then there is one square root modulo p, namely, z = 0. If g ≠ 0, then g has either 0 or 2 square roots
modulo p. If z is one square root, then the other is p – z.

A procedure for computing square roots modulo a prime is given in A.2.5.

A.2 Integer and modular arithmetic: Algorithms

A.2.1 Modular exponentiation

Modular exponentiation can be performed efficiently by the binary method outlined in the following.

Input: a positive integer v, a modulus m, and an integer g modulo m.

Output: gv mod m.

1. Let v = vrvr–1...v1v0 be the binary representation of v, where the most significant bit vr of v is 1.
2. Set x ← g.
3. For i from r – 1 down to 0 do

3.1 Set x ← x2 mod m.
3.2 If vi = 1, then set x ← gx mod m.

4. Output x.

There are several modifications that improve the performance of this algorithm. These methods are
summarized in Gordon [B68].

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

63

A.2.2 Extended Euclidean algorithm

The following algorithm computes efficiently the GCD d of m and h. If m and h are relatively prime, then
the algorithm also finds the quotient g/h modulo m.

Input: an integer m > 1 and integers g and h > 0. (If only the GCD of m and h is desired, then no input g is
required.)

Output: the GCD d of m and h, and if d = 1, then the integer c with 0 < c < m and c ≡ g/h (mod m).

1. If h = 1, then output d := 1 and c := g and stop.
2. Set r0 ← m.
3. Set r1 ← h mod m.
4. Set s0 ← 0.
5. Set s1 ← g mod m.
6. While r1 > 0

6.1 Set q ←  r0 / r1.
6.2 Set r2 ← r0 – qr1 mod m.
6.3 Set s2 ← s0 – qs1 mod m.
6.4 Set r0 ← r1.

Set r1 ← r2.
Set s0 ← s1.
Set s1 ← s2.

7. Output d : = r0.
8. If r0 = 1, then output c := s0.

If m is prime, then the quotient g/h exists provided that h ≡⁄ 0 (mod m) and can be found efficiently using
exponentiation via

c := g hm–2 mod m

A.2.3 Evaluating Legendre symbols

The following algorithm efficiently computes the Legendre symbol.

Input: an integer a and a prime 2p > .

Output: the Legendre symbol (a / p).

1. Set x ← a, y ← p, L ← 1.
2. While y > 1

2.1 Set x ← (x mod y).
2.2 If x > y/2, then

2.2.1 Set x ← y – x.
2.2.2 If y ≡ 3(mod 4), then set L ← –L.

2.3 If x = 0, then set x ← 1, y ← 0, L ← 0.
2.4 While 4 divides x

2.4.1 Set x ← x/4.
2.5 If 2 divides x, then

2.5.1 Set x ← x/2.
2.5.2 If y ≡ ± 3 (mod 8), then set L← –L.

2.6 If x ≡ 3 (mod 4) and y ≡ 3 (mod 4), then set L ← –L.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

64

2.7 Switch x and y.
3. Output L.

The Legendre symbol can also be found efficiently using exponentiation via

a

p







 := a (p – 1)/2 mod p

A.2.4 Generating Lucas sequences

Let P and Q be nonzero integers. The Lucas sequence Vk for P, Q is defined by

V0 = 2, V1 = P, and Vk = PVk–1 – QVk–2 for k ≥ 2

This recursion is adequate for computing Vk for small values of k. For large k, one can compute Vk modulo
an odd integer n > 2 using the following algorithm (see Joye and Quisquater [B90]). The algorithm also
computes the quantity Q k/2 mod n; this quantity will be useful in the application given in A.2.5.

Input: an odd integer n > 2, integers P and Q, and a positive integer k.

Output: Vk mod n and Q k/2 mod n.

1. Set v0 ← 2, v1 ← P, q0 ← 1, q1 ← 1.
2. Let k = kr kr–1...k1 k0 be the binary representation of k, where the leftmost bit kr of k is 1.
3. For i from r downto 0, do the following:

3.1 Set q0 ← q0 q1 mod n.
3.2 If ki = 1, then set

 q1 ← q0 Q mod n.
 v0 ← v0 v1 – P q0 mod n.
 v1 ← v1

2 – 2 q1 mod n.
else set
 q1 ← q0.
 v1 ← v0 v1 – P q0 mod n.
 v0 ← v0

2 – 2 q0 mod n.
4. Output v0 and q0.

A.2.5 Finding square roots modulo a prime

The following algorithm computes a square root z modulo p of g ≠ 0.

Input: an odd prime p, and an integer g with 0 < g < p.

Output: a square root modulo p of g if one exists. (In case III, the message “no square roots exist” is
returned if none exists.)

I. p ≡ 3 (mod 4), that is p = 4k + 3 for some positive integer k. (See Lehmer [B104].)
1. Compute and output z := g k + 1 mod p.

II. p ≡ 5 (mod 8), that is p = 8k + 5 for some positive integer k. (See Atkin [B16].)
1. Compute γ := (2g)k mod p.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

65

2. Compute i := 2gγ 2 mod p.
3. Compute and output z := gγ (i – 1) mod p.

III p ≡ 1 (mod 8). (See Lehmer [B104].)
1. Set Q ← g.
2. Generate a value P with 0 < P < p not already chosen.
3. Compute via A.2.4 the quantities

V := V(p+1)/2 mod p and Q0 := Q (p–1)/4 mod p

4. Set z ← V / 2 mod p.
5. If (z 2 mod p) = g, then output z and stop.
6. If 1 < Q0 < p – 1, then output the message “no square roots exist” and stop.
7. Go to step 2.

NOTE 1— To perform the modular division of an integer V by 2 (needed in step 4 of case III), one can simply divide by
2 the integer V or V + p (whichever is even). (The integer division by 2 can be accomplished by shifting the binary
expansion of the dividend by one bit.)

NOTE 2— As written, the algorithm for case III works for all p ≡ 1 (mod 4), although it is less efficient than the
algorithm for case II when p ≡ 5 (mod 8).

NOTE 3— In case III, a given choice of P will produce a solution if and only if P 2 – 4Q is not a quadratic residue
modulo p. If P is chosen at random, then the probability of this is at least 1/2. Thus, only a few values of P will be
required. It may therefore be possible to speed up the process by restricting to very small values of P and implementing
the multiplications by P in A.2.4 by repeated addition.

NOTE 4— In cases I and II, the algorithm produces a solution z provided that one exists. If it is unknown whether a
solution exists, then the output z should be checked by comparing w := z 2 mod p with g. If w = g, then z is a solution;
otherwise, no solutions exist. In case III, the algorithm performs the determination of whether a solution exists.

A.2.6 Finding square roots modulo a power of 2

If r > 2 and a < 2r is a positive integer congruent to 1 modulo 8, then there is a unique positive integer b
less than 2r–2 such that b2 ≡ a (mod 2r). The number b can be computed efficiently using the following
algorithm. The binary representations of the integers a, b, h are denoted as

a = ar–1...a1a0

b = br–1...b1b0

h = hr–1...h1h0

Input: an integer r > 2, and a positive integer a ≡ 1 (mod 8) less than 2r.

Output: the positive integer b less than 2r–2 such that b2 ≡ a (mod 2r).

1. Set h ← 1.
2. Set b ← 1.
3. For j from 2 to r – 2, do the following:

If hj+1 ≠ aj+1, then
Set bj ← 1.
If 2j < r

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

66

 then h ← (h + 2j+1b – 22j) mod 2 r.
 else h ← (h + 2j+1b) mod 2 r.

4. If br–2 = 1, then set b ← 2r–1 – b.
5. Output b.

A.2.7 Computing the order of a given integer modulo a prime

Let p be a prime and let g satisfy 1 < g < p. The following algorithm determines the order of g modulo p
when the factorization of p – 1 is known.

Input: a prime p and an integer g with 1 < g < p.

Output: the order d of g modulo p.
1. Factor ∏=−

i

e
i

ipp 1

2. For all divisors d of p – 1
For all primes pi | d

If gd ≡ 1 (mod p) and ipdg /
≠ 1 (mod p)

Output d.

A.2.8 Constructing an integer of a given order modulo a prime

Let p be a prime and let T divide p – 1. The following algorithm generates an element of GF(p) of order T
when the factorization of p – 1 is known.

Input: a prime p and an integer T dividing p – 1.

Output: an integer u having order T modulo p.

1. Generate a random integer g between 1 and p.
2. Compute via A.2.7 the order d of g modulo p.
3. If T does not divide d, then go to step 1.
4. Output u := gd/T mod p.

A.3 Extension fields: Overview

A.3.1 Finite fields

A finite field (or Galois field) is a set with finitely many elements in which the usual algebraic operations
(addition, subtraction, multiplication, and division by nonzero elements) are possible and in which the usual
algebraic laws (commutative, associative, and distributive) hold. The order of a finite field is the number of
elements it contains. If q > 1 is an integer, then a finite field of order q exists if q is a prime power and not
otherwise.

The finite field of a given order is unique in the sense that any two fields of order q display identical
algebraic structure. Nevertheless, there are often many ways to represent a field. It is traditional to denote
the finite field of order q by Fq or GF(q); this standard uses the latter notation for typographical reasons. It
should be borne in mind that the expressions “the field GF(q)” and “the field of order q” usually imply a
choice of field representation.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

67

In pairing-based cryptography, one makes use of GF(pn) for various n and p.

A.3.2 Polynomials over finite fields

A polynomial over GF(q) is a polynomial with coefficients in GF(q). Addition and multiplication of
polynomials over GF(q) are defined as usual in polynomial arithmetic, except that the operations on the
coefficients are performed in GF(q).

A polynomial over the prime field GF(p) is commonly called a polynomial modulo p. Addition and
multiplication are the same as for polynomials with integer coefficients, except that the coefficients of the
results are reduced modulo p.

Example: Over the prime field GF(7),

(t 2 + 4t + 5) + (t 3 + t + 3) = t 3 + t 2 + 5t + 1
(t 2 + 3t + 4) (t + 4) = t 3 + 2t + 2

A binary polynomial is a polynomial modulo 2.

Example: Over the field GF(2),

(t 3 + 1) + (t 3 + t) = t + 1
(t 2 + t + 1) (t +1) = t 3 + 1

A polynomial over GF(q) is reducible if it is the product of two smaller degree polynomials over GF(q);
otherwise, it is irreducible. For instance, the examples in this subclause show that t 3 + 2t + 2 is reducible
over GF(7) and that the binary polynomial t 3 + 1 is reducible.

Every nonzero polynomial over GF(q) has a unique representation as the product of powers of irreducible
polynomials. (This result is analogous to the fact that every positive integer has a unique representation as
the product of powers of prime numbers.) The degree – 1 factors correspond to the roots of the polynomial.

A.3.2.1 Polynomial congruences

Modular reduction and congruences can be defined among polynomials over GF(q), in analogy to the
definitions for integers given in A.1.1. To reduce a polynomial a (t) modulo a nonconstant polynomial
m (t), one divides a (t) by m (t) by long division of polynomials and takes the remainder r (t). This
operation is written as

r (t) := a (t) mod m (t)

The remainder r (t) shall either equal 0 or have degree smaller than that of m (t).

If m (t) = t – c for some element c of GF(q), then a (t) mod m (t) is just the constant a (c).

Two polynomials a (t) and b (t) are said to be congruent modulo m (t) if the two polynomials have the same
result on reduction modulo m (t). This relationship is written as

a (t) ≡ b (t) (mod m(t))

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

68

One can define addition, multiplication, and exponentiation of polynomials (to integral powers) modulo
m (t), analogously to how the operations are defined for integer congruences in A.1.1. In the case of a prime
field GF(p), each of these operations involves both reduction of the polynomials modulo m (t) and
reduction of the coefficients modulo p.

A.3.3 Extension fields

If m is a positive integer, then the extension field GF(pm) consists of the pm possible m-tuples of integers
modulo p. Thus, for example,

GF(23) = {000, 001, 010, 011, 100, 101, 110, 111}

GF(32) = {00, 01, 02, 10, 11, 12, 20, 21, 22}

The integer m is called the degree of the field.

A.3.3.1 Addition

For m > 1, the addition of two elements is implemented by component-wise addition modulo p. Thus, for
example, in GF(25), we have

(11001) + (10100) = (01101)

and in GF(32), we have

(01) + (22) = (20)

A.3.3.2 Multiplication

There is more than one way to implement multiplication in GF(pm). To specify a multiplication rule, one
chooses a basis representation for the field. The basis representation is a rule for interpreting each m-tuple;
the multiplication rule follows from this interpretation.

For the purposes of this standard, we focus on polynomial basis representations.

A.3.4 Polynomial basis representations

In a polynomial basis representation, each element of GF(pm) is represented by a different polynomial
modulo p of degree less than m. More explicitly, the tuple (am-1 … a2 a1 a0) is taken to represent the
polynomial

am–1 t
m–1 + … + a2t

 2 + a1t + a0

where 0 1ia p≤ ≤ − for 0 1i m≤ ≤ − .

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

69

The polynomial basis is the set

B = {t m–1, …, t2, t, 1}

The addition of m-tuples, as defined in A.3.3, corresponds to the addition of polynomials modulo p.

Multiplication is defined in terms of an irreducible polynomial f(t) of degree m, called the field polynomial
for the representation. The product of two elements is simply the product of the corresponding polynomials,
reduced modulo f(t).

There is a polynomial basis representation for GF(pm) corresponding to each irreducible polynomial f(t) of
degree m over GF(p). Irreducible polynomials modulo p exist of every degree. Roughly speaking, every
one out of m polynomials modulo p of degree m is irreducible.

A.3.5 Extension fields (continued)

A.3.5.1 Exponentiation

If k is a positive integer and α is an element of GF(pm), then exponentiation is the operation of computing
α k. Subclause A.4.3 contains an efficient method for exponentiation.

A.3.5.2 Division

If α and β ≠ 0 are elements of the field GF(pm), then the quotient α /β is the element γ such that α = βγ.

In the finite field GF(pm), modular division is possible for any denominator other than 0. The set of nonzero
elements of GF(pm) is denoted GF(pm)*.

Subclause A.4.2 contains an efficient method for division.

A.3.5.3 Orders

The order of an element γ of GF(pm)* is the smallest positive integer v such that γ v = 1. The order always
exists and divides pm – 1. If k and l are integers, then γ k = γ l in GF(pm) if and only if k ≡ l (mod v).

A.3.5.4 Generators

If v divides pm – 1, then there exists an element of GF(pm)* having order v. In particular, there always exists
an element γ of order pm – 1 in GF(pm)*. Such an element is called a generator for GF(pm)* because every
element of GF(pm)* is some power of γ.

A.3.5.5 Exponentiation and discrete logarithms

Suppose that the element γ of GF(pm)* has order v. Then an element η of GF(pm)* satisfies η = γ l for some l
if and only if η v = 1. The exponent l is called the discrete logarithm of η (with respect to the base γ). The
discrete logarithm is an integer modulo v.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

70

A.3.5.6 Field extensions

Given two extensions K = GF(pn) and L = GF(pm), L is an extension of K if and only if n | m. For pairing-
based cryptography, we often require that K be embedded in the extension L. This is defined in A.5.7.

A.4 Extension fields: Algorithms

The following algorithms perform operations in a finite field GF(pm) having pm elements. The elements of
GF(pm) are represented by a polynomial basis modulo the irreducible polynomial f (t).

A.4.1 Exponentiation

Exponentiation can be performed efficiently by the binary method outlined as follows.

Input: a positive integer k, a field GF(pm) and a field element α.

Output: α k.

1. Let k = kr kr–1 ... k1 k0 be the binary representation of k, where the most significant bit kr of k is 1.
2. Set x ← α.
3. For i from r – 1 down to 0, do the following:

3.1 Set x ← x2.
3.2 If ki = 1, then set x ← α x.

4. Output x.

There are several modifications that improve the performance of this algorithm. These methods are
summarized in Gordon [B68].

A.4.2 Division

The quotient α/β can be computed directly (i.e., in one step by an algorithm with inputs α and β), or
indirectly (by computing the multiplicative inverse β –1 and then multiplying it by α). The common method
of performing division in a finite field GF(pm) is the indirect method using The Extended Euclidean
Algorithm.

Input: two polynomials f(x), g(x) ≠ 0 over GF(pm).

Output: d(x) = GCD (f(x), g(x)), s(x), t(x) satisfying s(x)f(x)+t(x)g(x) = d(x).

1. Set s1(x) ← 1, s2(x) ← 0, t1(x) ← 1, t2(x) ← 0.
2. While g(x) ≠ 0

2.1 Set q(x) ← f(t) / g(t), r(x) ← f(x) – g(x)q(x).
2.2 Set s(x) ← s2(x) – q(x)s1(x), t(x) ← t2(x) – q(x)t1(x).
2.3 Set f(x) ← g(x), g(x) ← r(x).
2.4 Set s2(x) ← s1(x), s1(x) ← s(x), t2(x) ← t1(x), t1(x) ← t(x).

3. Set d(x) ← f(x), s(x) ← s2(x), t(x) ← t2(x).
4. Output d(x), s(x), t(x).

This algorithm produces the t(x), the multiplicative inversion of g(x) modulo f(x). By  f(x) / g(x) is meant
the quotient upon polynomial division, dropping any remainder.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

71

A.4.3 Squares

To determine whether a given element is a square, the Legendre symbol can be computed as follows:

Input: f(x), g(x) ≠ 0 ∈ GF(pm) where g(x) is irreducible.

Output: the Legendre–Kronecker–Jacobi symbol (f(x) / g(x)).

1. Set k ← 1.
2. While deg(m) ≠ 0

2.1. If f(x) = 0, then return 0.
2.2. a ← the leading coefficient of f(x).
2.3. f(x) ← f(x) / a.
2.4. If deg(m) ≡ 1 (mod 2), then k ← k (a / p).
2.5. If pdeg(m) ≡ 3 (mod 4) and deg (m) deg (f) ≡ 1 (mod 2), then k ← –k.
2.6. r(x) ← f(x), f(x) ← m(x) mod r(x), m(x) ← r(x).

3. Return k.

A.4.4 Square roots

To compute a square root in a finite field, the Tonelli-Shanks algorithm is used.

Input: an element a ∈ GF(q), where q = pk.

Output: an element x ∈ GF(q) such that a = x2 or “quadratic nonresidue” if a is not a square.

1. Write q – 1 = 2ev.
2. Choose n ∈ GF(q) until (n / q) = –1. Set z ← nv.
3. Set y ← z, r ← e, x ← a ((v–1)/2), b ← ax2, x ← ax.
4. If b = 1, return x.

Otherwise, find the smallest integer m such that 12 =
m

b . If m = r, return “a is a quadratic
nonresidue.”

5. Set t ←
12 −−mr

y , y ← t2, r ← m, x ← xt, b ← by and go to step 4.

Notes: p, k, q, e, v, r, m are integers.

a, x, n, z, y, b, t are elements ∈ GF(q).

(n / q) can be computed by forming n(q–1)/2.

A.4.5 Trace in binary field extension

If α is an element of GF(2m), the trace of α is

Tr(α) = α + α2 + α2
2

 + ... + α2
m–1

The value of Tr(α) is 0 for half the elements of GF(2m), and 1 for the other half.

The trace can be computed efficiently as follows.

The basic algorithm inputs α ∈ GF(2m) and outputs T = Tr (α).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

72

1. Set T ←α.
2. For i from 1 to m – 1, do the following:

2.1 T ← T 2 +α.
3. Output T.

If many traces are to be computed with respect to a fixed polynomial basis

{t m–1, …, t, 1}

then it is more efficient to compute and store the element

τ = (τm–1…τ1τ0)

where each coordinate

τj = Tr (t j)

is computed via the basic algorithm. Subsequent traces can be computed via

Tr (α) = α ⋅ τ

where the “dot product” of the bit strings is given by bitwise AND (or bitwise multiplication).

A.4.6 Half-trace in binary fields

If m is odd, then the half-trace of α ∈ GF(2m) is

HfTr (α) = α + α2
2

 + α2
4

 + ... + α2
m–1

The following algorithm inputs α ∈ GF(2m) and outputs H = HfTr (α):

1. Set H ←α.
2. For i from 1 to (m – 1)/2, do the following:

2.1 H ← H 2.
2.2 H ← H 2 +α.

3. Output H.

A.4.7 Solving quadratic equations over GF(2m)

If β is an element of GF(2m), then the equation

z2 + z = β

has 2 – 2T solutions over GF(2m), where T = Tr (β). Thus, there are either 0 or 2 solutions. If z is one
solution, then the other solution is z + 1. In the case β = 0, the solutions are 0 and 1.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

73

The following algorithms compute a solution if one exists:

Input: a field GF(2m) along with a polynomial or normal basis for representing its elements; an element
β ≠ 0.

Output: an element z for which z 2 + z = β, if such an element exists.

If m is odd, then compute z := half-trace of β via A.4.6. For m even, proceed as follows:

1. Choose random ρ ∈ GF(2m).
2. Set z ← 0 and w ←ρ.
3. For i from 1 to m – 1, do the following:

3.1 Set z ← z2 + w 2 β.
3.2 Set w ← w2 + ρ.

4. If w = 0, then go to step 1.
5. Output z.

If the latter algorithm is to be used repeatedly for the same field and memory is available, then it is more
efficient to precompute and store ρ and the values of w. Any element of trace 1 will serve as ρ, and the
values of w depend only on ρ and not on β.

The algorithm presented here produces a solution z provided that one exists. If it is unknown whether a
solution exists, then the output z should be checked by comparing γ := z2 + z with β. If γ = β, then z is a
solution; otherwise, no solutions exist.

A.4.8 Trace in ternary field extensions

The following algorithm computes the trace of (3)mGFα∈ :

Input: (3)mGFα ∈

Output: Tr()T = α

1. Set T ← α .
2. For i from 1 to m – 1, do the following:

2.1 3T T← + α .
3. Output T.

A.4.9 The 1/3-trace in ternary fields

If mod 3r m= is not zero, then the 1/3-trace of (3)mGFα ∈ is
3 63 3 3() ...

m r

CrTr
−

α = α + α + α + + α . The

following algorithm calculates ()CrTr α .

Input: (3)mGFα ∈ .

Output: ()C CrTr= α .

1. Set C ← α .
2. For i from 1 to () / 3m r− , do the following:

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

74

2.1
33C C← + α .

3. Output C.

A.4.10 Solving cubic equations over GF(3m)

The following algorithm computes a solution to 3z z− = β over (3)mGF , where m is not divisible by 3.

Input: (3)mGFβ∈ with () 0Tr β ≠ .

Output: (3)mz GF∈ with
3z z− = β .

1. Set ()C CrTr← β .

2. Set 3z C C← − .
3. If 1(mod3)m ≡ , then z z← β − .

4. Output z.

A.5 Polynomials over a finite field

The computations in this clause can take place either over a prime field (having a prime number p of
elements) or over a binary field (having 2m elements) or over a ternary field (having 3m elements).

A.5.1 Exponentiation modulo a polynomial

If k is a positive integer and f(t) and m(t) are polynomials with coefficients in the field GF(q), then f(t)k mod
m(t) can be computed efficiently by the binary method outlined as follows.

Input: a positive integer k, a field GF(q), and polynomials f(t) and m(t) with coefficients in GF(q).

Output: the polynomial f(t)k mod m(t).

1. Let k = kr kr–1 ... k1 k0 be the binary representation of k, where the most significant bit kr of k is 1.
2. Set u(t) ← f(t) mod m(t).
3. For i from r – 1 downto 0, do the following:

3.1 Set u(t) ← u(t)2 mod m(t).
3.2 If ki = 1, then set u(t) ← u(t) f(t) mod m(t).

4. Output u(t).

There are several modifications that improve the performance of this algorithm. These methods are
summarized in Gordon [B68].

A.5.2 GCDs over a finite field

If f(t) and g(t) ≠ 0 are two polynomials with coefficients in the field GF(q), then there is a unique monic
polynomial d(t) of largest degree that divides both f(t) and g(t). The polynomial d(t) is called the GCD of
f(t) and g(t). The following algorithm computes the GCD of two polynomials:

Input: a finite field GF(q) and two polynomials f(t), g(t) ≠ 0 over GF(q).

Output: d(t) = GCD(f(t), g(t)).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

75

1. Set a(t) ← f(t), b(t) ← g(t).
2. While b(t) ≠ 0

2.1 Set c(t) ← the remainder when a(t) is divided by b(t).
2.2 Set a(t) ← b(t).
2.3 Set b(t) ← c(t).

3. Set α ← the leading coefficient of a(t).
4. Set d(t) ← α –1 a(t).
5. Output d(t).

A.5.3 Factoring polynomials over GF(p) (special case)

Let f(t) be a polynomial with coefficients in the field GF(p), and suppose that f(t) factors into distinct
irreducible polynomials of degree d. (This is the special case needed in A.9.) The following algorithm finds
a random degree-d factor of f(t) efficiently:

Input: a prime p > 2, a positive integer d, and a polynomial f(t), which factors modulo p into distinct
irreducible polynomials of degree d.

Output: a random degree-d factor of f(t).

1. Set g(t) ← f(t).
2. While deg(g) > d

2.1 Choose u(t) ← a random monic polynomial of degree 2d – 1.
2.2 Compute via A.5.1

c(t) := u t pd

()()/−1 2 mod g(t).

2.3 Set h(t) ← GCD(c(t) – 1, g(t)).
2.4 If h(t) is constant or deg(g) = deg(h), then go to step 2.1.
2.5 If 2 deg(h) > deg(g), then set g(t) ← g(t) / h(t); else g(t) ← h(t).

3. Output g(t).

A.5.4 Factoring polynomials over GF(2) (special case)

Let f(t) be a polynomial with coefficients in the field GF(2) and suppose that f(t) factors into distinct
irreducible polynomials of degree d. (This is the special case needed in A.9.) The following algorithm finds
a random degree-d factor of f(t) efficiently:

Input: a positive integer d and a polynomial f(t) that factors modulo 2 into distinct irreducible polynomials
of degree d.

Output: a random degree-d factor of f(t).

1. Set g(t) ← f(t).
2. While deg(g) > d

2.1 Choose u(t) ← a random monic polynomial of degree 2d – 1.
2.2 Set c(t) ← u(t).
2.3 For i from 1 to d – 1, do the following:

2.3.1 c(t) ← c(t)2 + u(t) mod g(t).
2.4 Compute h(t) := GCD(c(t), g(t)) via A.5.2.
2.5 If h(t) is constant or deg(g) = deg(h), then go to step 2.1.
2.6 If 2 deg(h) > deg(g), then set g(t) ← g(t) / h(t); else g(t) ← h(t).

3. Output g(t).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

76

A.5.5 Checking polynomials over GF(2r) for irreducibility

If f(t) is a polynomial with coefficients in the field GF(2r), then f(t) can be tested efficiently for
irreducibility using the following algorithm:

Input: a polynomial f(t) with coefficients in GF(2r).

Output: the message “true” if f(t) is irreducible; the message “false” otherwise.

1. Set d ← degree of f(t).
2. Set u(t) ← t.
3. For i from 1 to d/2, do the following:

3.1 For j from 1 to r, do the following:
 Set u(t) ← u(t)2 mod f(t).

 Next j.
3.2 Set g(t) ← GCD(u(t) + t, f(t)).
3.3 If g(t) ≠ 1, then output “false” and stop.

3. Output “true.”

A.5.6 Finding a root in GF(2m) of an irreducible binary polynomial

If f(t) is an irreducible polynomial modulo 2 of degree d dividing m, then f(t) has d distinct roots in the field
GF(2m). A random root can be found efficiently using the following algorithm:

Input: an irreducible polynomial modulo 2 of degree d, and a field GF(2m), where d divides m.

Output: a random root of f(t) in GF(2m).

1. Set g(t) ← f(t) (g(t) is a polynomial over GF(2m)).
2. While deg(g) > 1

2.1 Choose random u ∈ GF(2m).
2.2 Set c(t) ← ut.
2.3 For i from 1 to m – 1, do the following:

2.3.1 c(t) ← c(t)2 + ut mod g(t).
2.4 Set h(t) ← GCD(c(t), g(t)).
2.5 If h(t) is constant or deg(g) = deg(h), then go to step 2.1.
2.6 If 2 deg(h) > deg(g), then set g(t) ← g(t) / h(t); else g(t) ← h(t).

3. Output g(0).

A.5.7 Embedding in an extension field

Given a field F = GF(pd), the following algorithm embeds F into an extension field K = GF(pde):

Input: integers d and e; a polynomial basis B for F = GF(pd) with field polynomial f(t); a polynomial basis
for K = GF(pde).

Output: an embedding of F into K; that is a function taking each α ∈ F to a corresponding element β of K.

1. Compute via A.5.6 a root λ ∈ K of f(t).
2. Output

β := am–1 λm–1 + … + a2λ2 + a1λ + a0

where (am–1 … a1 a0) is the m-tuple representing α with respect to β.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

77

A.6 Elliptic curves: Overview

A.6.1 Introduction

A plane curve is defined to be the set of points satisfying an equation F (x, y) = 0. The simplest plane
curves are lines (whose defining equation has degree 1 in x and y) and conic sections (degree 2 in x and y).
The next simplest are the cubic curves (degree 3). These include elliptic curves, so called because of their
origin problem of computing an arc length of an ellipse. This standard restricts its attention to cubic plane
curves, although other representations could be defined. The coefficients of such a curve shall satisfy a side
condition to guarantee the mathematical property of nonsingularity. The side condition is given in this
clause for each family of curves.

An elliptic curve is a nonsingular (smooth) algebraic curve of genus one with a defined point. The set of
points on an elliptic curve is topologically equivalent to a torus—a surface with one hole in it—and
simplistically, the number of holes in a surface is the definition of the term “genus.” Elliptic curves should
strictly be written as a pair (E, O), where E is the curve and O is the defined point. However, O is invariably
taken to be the point at infinity and the elliptic curve is often simply referred to as E. (see Silverman [B149]
for a mathematically precise definition of “elliptic curve.”)

In cryptography, the elliptic curves of interest are those defined over finite fields. That is, the coefficients
of the defining equation F (x, y) = 0 are elements of GF(q), and the points on the curve are of the form
P = (x, y), where x and y are elements of GF(q). Examples are given in A.6.1.1 through A.6.1.4.

A.6.1.1 The Weierstrass equation

There are several kinds of defining equations for elliptic curves, but the most common are the Weierstrass
equations. This standard will be concerned with both ordinary and supersingular curves. The general
equation of an elliptic curve is

y2 + a1xy +a3y = x3 +a2x
2 +a4x + a6

If we let p denote the characteristic of K, the equation can be simplified for different values of p.

⎯ For the finite fields GF(pm) with p > 3, the standard Weierstrass equation for ordinary curves is

y 2 = x 3 + ax + b

where a and b are integers modulo p for which 4a 3 + 27b 2 ≡⁄ 0 (mod p).

⎯ For the binary finite fields GF(2m), the standard Weierstrass equation for ordinary curves is

y 2 + xy = x 3 + ax 2 + b

where a and b are elements of GF(2m) with b ≠ 0.

⎯ One can also define the following supersingular curves. We define these by giving the base field,
then the “embedding degree” k (which will be used later), followed by the equation of the curve.
We will only be interested in even embedding degree curves.

1) GF(2s), k = 2, s even, y 2 + y = x 3 + δx, where Tr δ ≠0.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

78

2) GF(2s), k = 2, s odd, y 2 + y = x 3.

3) GF(3s) with k = 2, y 2 = x 3 + ax + b if j = 0, y 2 = x 3 + ax2 + b if j ≠ 0.

4) GF(p) with p > 3, k = 2, y 2 = x 3 + ax + b

i) If p ≡ 3 (mod 4), then b = 0 and –a is not a square mod p.

ii) If p ≡ 5 (mod 6), then a = 0.

iii) If p ≡ 1 (mod 12), then a = 3mc2, b = 2mc3, where m = j / (1728 – j) and c ∈ GF(p)×.

5) GF(2s), k = 4, y 2 + y = x 3 + x + b for b = 0 or 1.

6) GF(3s), k = 6, y 2 = x 3 – x + b for b = ±1.

Given a Weierstrass equation, the elliptic curve E consists of the solutions (x, y) over GF(q) to the defining
equation, along with an additional element called the point at infinity (denoted O). The points other than O
are called finite points. The number of points on E (including O) is called the order of E and is denoted by
#E (GF(q)).

Example: Let E be the curve

y 2 = x 3 + 10 x + 5

over the field GF(13). Then the points on E are

{O, (1,4), (1,9), (3,6), (3,7), (8,5), (8,8), (10,0), (11,4), (11,9)}

Thus, the order of E is #E (GF(13)) = 10.

Example: Let E be the curve

y 2 + xy = x 3 + (t + 1) x 2 + 1

over the field GF(23) given by the polynomial basis with field polynomial t 3 + t + 1 = 0. Then the points on
E are

{O, ((000), (001)),
((010), (100)), ((010), (110)), ((011), (100)), ((011), (111)),
((100), (001)), ((100), (101)), ((101), (010)), ((101), (111)),
((110), (000)), ((110), (110)), ((111), (001)), ((111), (110))}

Thus, the order of E is #E (GF(23)) = 14.

For more information on elliptic curve cryptography, see Menezes [B114].

A.6.1.2 Orders

The order of a point P on an elliptic curve is the smallest positive integer r such that rP = O. The order
always exists and divides the order of the curve #E(GF(q)). If k and l are integers, then kP = lP if and only
if k ≡ l (mod r).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

79

A.6.1.3 Pairings

The primitives defined in the body of this standard use the general concept of a pairing. Here, we define a
pairing e as a bilinear map between elements of two finite, cyclic, additive groups, G1 and G2 to a third
finite, cyclic group GT defined multiplicatively:

e:G1 × G2 → GT

Both G1 and G2 are of prime order r, as is GT. The bilinear property is such that

For all P, P’ ∈ G1 and all Q, Q’ ∈ G2, e(P + P’,Q) = e(P,Q)e(P’,Q) and e(P,Q + Q’) = e(P,Q)
e(P,Q’)

We also impose the condition that the map be nondegenerate; i.e.:

For all 0 ≠ P ∈ G1 there exists Q ∈ G2 such that e(P,Q) ≠ 1

For all 0 ≠ Q ∈ G2 there exists P ∈ G1 such that e(P,Q) ≠ 1

For cryptographic use, the groups G1 and G2 over which the pairings are defined are subgroups of points on
an elliptic curve.

Elliptic curves fall into two general categories: supersingular curves and ordinary curves. The former are
curves where the kernel of the “multiplication by p” map (where p is the characteristic of K) is trivial.
Supersingular curves were the first to be considered for use in pairing-based cryptography because all
supersingular curves possess maps (non-GF(q)-rational endomorphisms) that prove useful in constructing
the Tate pairing.

The first pairing-based cryptosystems used the Weil and Tate pairings on supersingular curves. Further
research in pairing-based cryptography has led to a range of suitable pairings and families of curves. Apart
from super-singular curves, all the curve families are of ordinary curves. The primary factors that dictate
which pairing and curve to use are the efficiency of computations and the security level. As with most
cryptography, increasing levels of security can be obtained by increasing the size of the field over which
the operations are defined, but not all curve-pairing combinations have the same relationship between
security and efficiency. Subclause A.12 suggests some appropriate system parameters for different levels of
security and suggests appropriate combinations of pairings and curves.

A.6.1.4 Twists

For a field K, if char (K) ≠ 2,3, then we define quadratic, quartic, and sextic twists of E(K) as follows. Let

E: y 2 = x 3 + Ax + B

Case 1: if A, B ≠ 0, then there are quadratic twists only; one can define the twist by giving a value D to
produce the curve

E': y 2 = x 3 + D2Ax +D3B

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

80

Essentially, there are two such values of D, one producing the original curve and one producing the
quadratic twist.

Case 2: if B = 0, then there are quartic twists and quadratic twists. By giving a value D, one can define the
quartic twists by

E': y 2 = x 3 + DAx

There are essentially four such values of D, which produce nonisomorphic curves over the base field. One
of these produces the same curve, two the quartic twists, and the remaining one produces the quadratic
twist of E.

Case 3: if A = 0, there are sextic twists and quadratic twists. By giving a suitable value of D, one can define
the twists via

E': y 2 = x 3 + DB

There are essentially six such values of D: one produces the curve itself, one produces the quadratic twist,
two produce a cubic twist, and the remaining two produce sextic twists.

A.6.2 Operations on elliptic curves

There is an addition operation on the points of an elliptic curve that possesses the algebraic properties of
ordinary addition (e.g., commutativity and associativity). This operation can be described geometrically as
follows.

Define the inverse of the point P = (x, y) to be

(,)

(,)

(,)

x y

P x x y

x c y

−
− = +
 +

Then the sum P + Q of the points P and Q is the point R with the property that P, Q, and –R lie on a
common line.

A.6.2.1 The point at infinity

The point at infinity O plays a role analogous to that of the number 0 in ordinary addition. Thus

P + O = P
P + (– P) = O

for all points P.

if p ≥ 3

if q = 2m
 and E is ordinary

if q = 2m and E is supersingular

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

81

A.6.2.2 Full addition

When implementing the formulas for elliptic curve addition, it is necessary to distinguish between doubling
(adding a point to itself) and adding two distinct points that are not inverses of each other because the
formulas are different in the two cases. Also, there are the special cases involving O. By “full addition” is
meant choosing and implementing the appropriate formula for the given pair of points. Algorithms for full
addition are given in A.7.1, A.7.2, A.7.3, and A.7.9.

A.6.2.3 Scalar multiplication

Elliptic curve points can be added but not multiplied. It is, however, possible to perform scalar
multiplication, which is another name for repeated addition of the same point. If n is a positive integer and
P a point on an elliptic curve, then the scalar multiple nP is the result of adding n copies of P. Thus, for
example, 5P = P + P + P + P + P.

The notion of scalar multiplication can be extended to zero and the negative integers via

0P = O, (–n) P = n (–P)

A.6.3 Curve orders

Finding a base point of prime order requires knowledge of the curve order n = #E(GF(q)). Since r shall
divide n, one has the following problem: given a field F = GF(q), find an elliptic curve defined over F
whose order is divisible by a sufficiently large prime r. (Note that “sufficiently large” is defined in terms of
the desired security; see A.12.) This subclause discusses this problem.

A.6.3.1 Basic facts

⎯ If n is the order of an elliptic curve over GF(q), then the Hasse bound is

2 1 2 1q q q q q− + ≤ ≤ + +

Thus, the order of an elliptic curve over GF(q) is approximately q.

⎯ If q is a prime p, let n be the order of the curve y 2 = x 3 + ax + b, where a and b are both nonzero.
Then if λ ≠ 0, the order of the curve y 2 = x 3 + aλ 2x + bλ 3 is n if λ is a square modulo p and
2p + 2 – n otherwise. (This fact allows one to replace a given curve by one with the same order and
satisfying some extra condition, such as a = p – 3, which will be used in A.7.5.) In the case b = 0,
there are four possible orders; in the case a = 0, there are six. (The formulas for these orders can be
found in step 6 of A.9.2.3.)

⎯ If q = 2m, let n be the order of the curve y 2 + xy = x 3 + ax 2 + b, where a and b are both nonzero.
Then, if λ ≠ 0, the order of the curve y 2 + xy = x 3 + (a + λ) x 2 + b is n if λ has trace 0 and
2m+1 + 2 – n otherwise (see A.4.5). (This fact allows one to replace a given curve by one with the
same order and satisfying some extra condition, such as a = 0 which will be used in A.7.8.)

⎯ If q = 2m, then the curves y 2 + xy = x 3 + ax 2 + b and y 2 + xy = x 3 + a 2 x 2 + b 2 have the same order.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

82

A.6.3.2 Near primality

Given a trial division bound lmax, the positive integer k is called smooth if every prime divisor of k is at
most lmax. Given large positive integers rmin and rmax, u is called nearly prime if u = kr for some prime r in
the interval rmin ≤ r ≤ r max and some smooth integer k. (The requirement that k be smooth is omitted in most
definitions of near primality. It is included here to guarantee that there exists an efficient algorithm to check
for near primality.) In the case in which a prime order curve is desired, the bound lmax is set to 1.

NOTE—Because all elliptic curves over GF(q) have order at most max 2u q q= + , then rmax should be no greater than

umax. (If no maximum is desired, e.g., as in ANSI X9.62-2005 [B9], then one takes rmax ← umax.) Moreover, if rmin is
close to umax, then there will be a small number of possible curves to choose from, so that finding a suitable one will be

more difficult. If a prime-order curve is desired, then a convenient choice is minr q q= + .

A.6.4 Representation of points

This subclause discusses the issues involved in choosing representations for points on elliptic curves for
purposes of internal computation and for external communication.

A.6.4.1 Affine coordinates

A finite point on E is specified by two elements x, y in GF(q) satisfying the defining equation for E. These
are called the affine coordinates for the point. The point at infinity O has no affine coordinates. For the
purposes of internal computation, it is most convenient to represent O by a pair of coordinates (x, y) not on
E. For q = 2m, the simplest choice is O = (0,0). For q = pm, one chooses O = (0,0) unless b = 0; in which
case, O = (0,1).

A.6.4.2 Coordinate compression

The affine coordinates of a point require 2ml bits to store and transmit where q itself requires l bits to
represent it. This is far more than is needed, however. For purposes of external communication, therefore, it
can be advantageous to compress one or both of the coordinates.

The y coordinate can always be compressed. The compressed y coordinate, denoted ỹ, is a single bit,
defined as follows:

⎯ If q is a power of an odd prime, then ỹ: = y mod 2, where y is interpreted as a positive integer less
than q. Put another way, ỹ is the rightmost bit of y.

⎯ If q is a power of 2, then ỹ is the rightmost bit of the field element y x –1 (except when x = 0; in
which case, ỹ: = 0).

NOTE 1— Algorithms for decompressing coordinates are given in A.7.11 and A.7.12.

NOTE 2— There are many other possible ways to compress coordinates; the methods given here are the ones that have
appeared in the literature (see Menezes [B113] and Seroussi [B146]).

A.6.4.3 Projective coordinates

If division within GF(q) is relatively expensive, then it may pay to keep track of numerators and
denominators separately. In this way, one can replace division by α with multiplication of the denominator
by α. This is accomplished by the projective coordinates X, Y, and Z, given by

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

83

2 3
,

X Y
x y

Z Z
= =

The projective coordinates of a point are not unique because

(X, Y, Z) = (λ2X, λ3Y, λZ)

for every nonzero λ ∈ GF(q).

The projective coordinates of the point at infinity are (λ2, λ3, 0), where λ ≠ 0.

Other kinds of projective coordinates exist, but the ones given here provide the fastest arithmetic on elliptic
curves. (See Chudnovsky and Chudnovsky [B44].)

These formulas provide the method for converting a finite point from projective coordinates to affine. To
convert from affine to projective, one proceeds as follows:

X ← x, Y ← y, Z ← 1

Projective coordinates are well suited for internal computation but not for external communication because
their use requires so many bits. The use of projective coordinates is more common over GF(p) because
division tends to be more expensive there.

A.7 Elliptic curves: General algorithms

A.7.1 Full addition and subtraction (prime case)

The following algorithm implements a full addition (on a curve modulo p) in terms of affine coordinates.
Note that this algorithm can also be used for supersingular curves of characteristic 3.

Input: a field K = GF(pn) for p > 3; coefficients a, b for an elliptic curve E: y 2 = x 3 + ax + b over K; points
P0 = (x0, y0) and P1 = (x1, y1) on E.

Output: the point P2 := P0 + P1.

1. If P0 = O, then output P2 ← P1 and stop.
2. If P1 = O, then output P2 ← P0 and stop.
3. If x0 ≠ x1, then

3.1 Set λ ← (y0 – y1) / (x0 – x1) mod p.
3.2 Go to step 7.

4. If y0 ≠ y1, then output P2 ← O and stop.
5. If y1 = 0, then output P2 ← O and stop.

6 Set λ ← (3 x1
2 + a) / (2y1) mod p.

7. Set x2 ← λ 2 – x0 – x1 mod p.
8. Set y2 ← (x1 – x2) λ – y1 mod p.
9. Output P2 ← (x2, y2).

The preceding algorithm requires three or four modular multiplications and a modular inversion.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

84

To subtract the point P = (x, y), one adds the point –P = (x, –y).

A.7.2 Full addition and subtraction (binary case)

The following algorithm implements a full addition [on an ordinary curve over GF(2m)] in terms of affine
coordinates.

Input: a field GF(2m); coefficients a, b for an elliptic curve E: y 2 + xy = x 3 + ax 2 + b over GF(2m); points
P0 = (x0, y0) and P1 = (x1, y1) on E.

Output: the point P2 := P0 + P1.

1. If P0 = O, then output P2 ← P1 and stop.
2. If P1 = O, then output P2 ← P0 and stop.
3. If x0 ≠ x1 then

3.1 Set λ ← (y0 + y1) / (x0 + x1).
3.2 Set x2 ← a + λ 2 + λ + x0 + x1.
3.3 Go to step 7.

4. If y0 ≠ y1, then output P2 ← O and stop.
5. If x1 = 0, then output P2 ← O and stop.
6. Set

6.1 λ ← x1 + y1 / x1.
6.2 x2 ← a + λ 2 + λ.

7. y2 ← (x1 + x2) λ + x2 + y1.
8. P2 ← (x2, y2).

The preceding algorithm requires two general multiplications, a squaring, and a multiplicative inversion.

To subtract the point P = (x, y), one adds the point –P = (x, x + y).

A.7.3 Full addition and subtraction (supersingular curves in characteristic 2)

The following algorithm implements a full addition (on a supersingular curve over GF(2m)) in terms of
affine coordinates.

Input: a field GF(2m); coefficients a, b for an elliptic curve E: y 2 + y = x 3 + ax + b over GF(2m); points P0
= (x0, y0) and P1 = (x1, y1) on E.

Output: the point P2 := P0 + P1.

1. If P0 = O, then output P2 ← P1 and stop.
2. If P1 = O, then output P2 ← P0 and stop.
3. If x0 ≠ x1 then

3.1 Set λ ← (y0 + y1) / (x0 + x1).
3.2 Set x2 ← λ 2 + x0 + x1.
3.3 Go to step 7.

4. If y0 ≠ y1, then output P2 ← O and stop.
5. If x1 = 0, then output P2 ← O and stop.
6. Set

6.1 λ ← a + x0
2.

6.2 x2 ← λ 2.
7. y2 ← (x1 + x2) λ + y1 + 1.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

85

8. P2 ← (x2, y2).

The preceding algorithm requires two general multiplications, a squaring, and a multiplicative inversion.

To subtract the point P = (x, y), one adds the point –P = (x, x + y).

A.7.4 Elliptic scalar multiplication

Scalar multiplication can be performed efficiently by the addition–subtraction method outlined as follows.

Input: an integer n and an elliptic curve point P.

Output: the elliptic curve point nP.

1. If n = 0, then output O and stop.
2. If n < 0, then set Q ← (–P) and k ← (–n), else set Q ← P and k ← n.
3. Let hl hl–1 ...h1 h0 be the binary representation of 3k, where the most significant bit hl is 1.
4. Let kl kl–1...k1 k0 be the binary representation of k.
5. Set S ← Q.
6. For i from l – 1 downto 1 do

 Set S ← 2S.
 If hi = 1 and ki = 0 then compute S ← S + Q via A.7.1, A.7.2, or A.7.3.
 If hi = 0 and ki = 1 then compute S ← S – Q via A.7.1, A.7.2, or A.7.3.

7. Output S.

There are several modifications that improve the performance of this algorithm. These methods are
summarized in Gordon [B68].

A.7.5 Projective elliptic doubling (prime case)

The projective form of the doubling formula on the curve y 2 = x 3 + ax + b over GF(pm) for p > 3 is

2 (X1, Y1, Z1) = (X2, Y2, Z2)

where

2 4
1 13M X aZ=

Z2 = 2Y1Z1
2

1 14S X Y=

X2 = M2 – 2S
4

18T Y=

Y2 = M (S – X2) – T

The algorithm Double given as follows performs these calculations.

Input: a modulus p; the coefficients a and b defining a curve E modulo p; projective coordinates (X1, Y1,
Z1) for a point P1 on E.

Output: projective coordinates (X2, Y2, Z2) for the point P2 = 2P1.

1. T1 ← X1.
2. T2 ← Y1.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

86

3. T3 ← Z1.
4. If T2 = 0 or T3 = 0, then output (1, 1, 0) and stop.
5. If a = p – 3, then

 2
4 3T T← .

 T5 ← T1 – T4.
 T4 ← T1 + T4.
 T5 ← T4 × T5.
 T4 ← 3 × T5.

 = M.
 else

 T4 ← a.
 2

5 3T T← .

 2
5 5T T← .

 T5 ← T4 × T5.

2

4 1T T← .
 T4 ← 3 × T4.
 T4 ← T4 + T5.

 = M.
6. T3 ← T2 × T3.
7. T3 ← 2 × T3.

 = Z2.

8. T2 ← T2
2

.

9. T5 ← T1 × T2.
10. T5 ← 4 × T5.

 = S.

11. T1 ← T4
2

.

12. T1 ← T1 – 2 × T5.

 = X2.

13. T2 ← T2
2 .

14. T2 ← 8 × T2.
 = T.

15. T5 ← T5 – T1.
16. T5 ← T4 × T5.
17. T2 ← T5 – T2.

 = Y2.
18. X2 ← T1.
19. Y2 ← T2.
20. Z2 ← T3.

This algorithm requires 10 field multiplications and 5 temporary variables. If a is small enough that
multiplication by a can be done by repeated addition, then only 9 field multiplications are required. If
a = p – 3, then only 8 field multiplications are required (see Chudnovsky and Chudnovsky [B44]). The
proportion of elliptic curves modulo p that can be rescaled so that a = p – 3 is about 1/4 if p ≡ 1 (mod 4)
and about 1/2 if p ≡ 3 (mod 4). (See A.6.3.1.)

A.7.6 Projective elliptic addition (prime case)

The projective form of the adding formula on the curve y 2 = x 3 + ax + b over GF(pm) for p > 3, is

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

87

(X0, Y0, Z0) + (X1, Y1, Z1) = (X2, Y2, Z2)

where

U0 = X0 Z1
2

S0 = Y0 Z1
3

U1 = X1 Z0
2

S1 = Y1 Z0
3

W = U0 – U1

R = S0 – S1

T = U0 + U1

M = S0 + S1

Z2 = Z0Z1W

X2 = R 2 – TW 2

V = TW 2 – 2X2

2Y2 = VR – MW 3

The algorithm Add given as follows performs these calculations.

Input: a modulus p; the coefficients a and b defining a curve E modulo p; projective coordinates (X0, Y0,
Z0) and (X1, Y1, Z1) for points P0 and P1 on E, where Z0 and Z1 are nonzero.

Output: projective coordinates (X2, Y2, Z2) for the point P2 = P0 + P1, unless P0 = P1. In this case, the triplet
(0, 0, 0) is returned. [The triplet (0, 0, 0) is not a valid projective point on the curve, but rather it is a marker
indicating that routine Double should be used.]

1. T1 ← X0 = U0 (if Z1 = 1).
2. T2 ← Y0 = S0 (if Z1 = 1).
3. T3 ← Z0.
4. T4 ← X1.
5. T5 ← Y1.
6. If Z1 ≠ 1, then

 T6 ← Z1.

 T7 ← T6
2

.

 T1 ← T1 × T7 = U0 (if Z1 ≠ 1).
 T7 ← T6 × T7.
 T2 ← T2 × T7 = S0 (if Z1 ≠ 1).

7. T7 ← T3
2 .

8. T4 ← T4 × T7 = U1.
9. T7 ← T3 × T7.
10. T5 ← T5 × T7 = S1.
11. T4 ← T1 – T4 = W.
12. T5 ← T2 – T5 = R.
13. If T4 = 0, then

 If T5 = 0, then output (0,0,0) and stop.
 else output (1, 1, 0) and stop.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

88

14. T1 ← 2 × T1 – T4 = T.
15. T2 ← 2 × T2 – T5 = M.
16. If Z1 ≠ 1, then

 T3 ← T3 × T6.
17. T3 ← T3 × T4 = Z2.

18. T7 ← T4
2 .

19. T4 ← T4 × T7.
20. T7 ← T1 × T7.

21. T1 ← T5
2 .

22. T1 ← T1 – T7 = X2.
23. T7 ← T7 – 2 × T1 = V.
24. T5 ← T5 × T7.
25. T4 ← T2 × T4.
26. T2 ← T5 – T4.
27. T2 ← T2 / 2

 = Y2.
28. X2 ← T1.
29. Y2 ← T2.
30. Z2 ← T3.

NOTE—The modular division by 2 in step 27 can be carried out in the same way as in A.2.4. This algorithm can also
be used for supersingular ternary curves.

This algorithm requires 16 field multiplications and 7 temporary variables. In the case Z1 = 1, only 11 field
multiplications and 6 temporary variables are required. (This is the case of interest for elliptic scalar
multiplication.)

A.7.7 Projective elliptic doubling (binary case)

The projective form of the doubling formula on the curve y 2 + xy = x 3 + ax 2 + b over GF(2m) uses not the
coefficient b but rather the field element

22:=
m

c b
−

computed from b by m – 2 squarings. (Thus, b = c 4.) The formula is

2 (X1, Y1, Z1) = (X2, Y2, Z2)

where

Z2 = X1 Z1
2

X2 = (X1 + c Z1
2)4

U = Z2 + X1
2 + Y1Z1

Y2 = X1
4 Z2 + UX2

The algorithm Double given as follows performs these calculations.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

89

Input: a field of 2m elements; the field elements a and c specifying a curve E over GF(2m); projective
coordinates (X1, Y1, Z1) for a point P1 on E.

Output: projective coordinates (X2, Y2, Z2) for the point P2 = 2P1.

1. T1 ← X1.
2. T2 ← Y1.
3. T3 ← Z1.
4. T4 ← c.
5. If T1 = 0 or T3 = 0 then output (1, 1, 0) and stop.
6. T2 ← T2 × T3.

7. T3 ← T3
2 .

8. T4 ← T3 × T4.
9. T3 ← T1 × T3 = Z2.
10. T2 ← T2 + T3.
11. T4 ← T1 + T4.

12. T4 ← T4
2

.

13. T4 ← T4
2 = X2.

14. T1 ← T1
2

.

15. T2 ← T1 + T2 = U.
16. T2 ← T2 × T4.

17. T1 ← T1
2

.

18. T1 ← T1 × T3.
19. T2 ← T1 + T2 = Y2.
20. T1 ← T4.
21. X2 ← T1.
22. Y2 ← T2.
23. Z2 ← T3.

This algorithm requires five field squarings, five general field multiplications, and four temporary
variables.

A.7.8 Projective elliptic addition (binary case)

The projective form of the adding formula on the curve y 2 + xy = x 3 + ax2 + b over GF(2m) is as follows:

(X0, Y0, Z0) + (X1, Y1, Z1) = (X2, Y2, Z2)

where

U0 = X0 Z1
2

S0 = Y0 Z1
3

U1 = X1 Z0
2

W = U0 + U1

S1 = Y1 Z0
3

R = S0 + S1
L = Z0 W

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

90

V = RX1 + LY1
Z2 = LZ1
T = R + Z2

 X2 = a Z2
2 + TR + W 3

Y2 = TX2 + VL 2

The algorithm Add given below performs these calculations.

Input: a field of 2m elements; the field elements a and b defining a curve E over GF(2m); projective
coordinates (X0, Y0, Z0) and (X1, Y1, Z1) for points P0 and P1 on E, where Z0 and Z1 are nonzero.

Output: projective coordinates (X2, Y2, Z2) for the point P2 = P0 + P1, unless P0 = P1. In this case, the triplet
(0, 0, 0) is returned. (The triplet (0, 0, 0) is not a valid projective point on the curve, but rather it is a marker
indicating that routine Double should be used.)

1. T1 ← X0 = U0 (if Z1 = 1).
2. T2 ← Y0 = S0 (if Z1 = 1).
3. T3 ← Z0.
4. T4 ← X1.
5. T5 ← Y1.
6. If a ≠ 0, then

 T9 ← a.
7. If Z1 ≠ 1, then

 T6 ← Z1 .

 T7 ← T6
2

.

 T1 ← T1 × T7 = U0 (if Z1 ≠ 1).
 T7 ← T6 × T7.
 T2 ← T2 × T7 = S0 (if Z1 ≠ 1).

8. T7 ← T3
2 .

9. T8 ← T4 × T7 = U1.
10. T1 ← T1 + T8 = W.
11. T7 ← T3 × T7.
12. T8 ← T5 × T7 = S1.
13. T2 ← T2 + T8 = R.
14. If T1 = 0, then

 If T2 = 0, then output (0, 0, 0) and stop.
 else output (1, 1, 0) and stop.

15. T4 ← T2 × T4.
16. T3 ← T1 × T3 = L (= Z2 if Z1 =

1).
17. T5 ← T3 × T5.
18. T4 ← T4 + T5 = V.

19. T5 ← T3
2 .

20. T7 ← T4 × T5.
21. If Z1 ≠ 1, then

 T3 ← T3 × T6 = Z2 (if Z1 ≠ 1).
22. T4 ← T2 + T3 = T.
23. T2 ← T2 × T4.

24. T5 ← T1
2 .

25. T1 ← T1 × T5
26. If a ≠ 0, then

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

91

 T8 ← T3
2

.

 T9 ← T8 × T9.
 T1 ← T1 + T9.

27. T1 ← T1 + T2 = X2.
28. T4 ← T1 × T4.
29. T2 ← T4 + T7 = Y2.
30. X2 ← T1.
31. Y2 ← T2.
32. Z2 ← T3.

This algorithm requires 5 field squarings, 15 general field multiplications, and 9 temporary variables. If
a = 0, then only 4 field squarings, 14 general field multiplications, and 8 temporary variables are required.
[About half of the elliptic curves over GF(2m) can be rescaled so that a = 0. These curves are precisely the
curves with order divisible by 4. See A.6.3.1.]

In the case Z1 = 1, only 4 field squarings, 11 general field multiplications, and 8 temporary variables are
required. If also a = 0, then only 3 field squarings, 10 general field multiplications, and 7 temporary
variables are required. (These are the cases of interest for elliptic scalar multiplication.)

A.7.9 Projective full addition and subtraction

The following algorithm FullAdd implements a full addition in terms of projective coordinates.

Input: a field of q elements; the field elements a and b defining a curve E over GF(q); projective
coordinates (X0, Y0, Z0) and (X1, Y1, Z1) for points P0 and P1 on E.

Output: projective coordinates (X2, Y2, Z2) for the point P2 = P0 + P1.

1. If Z0 = 0, then output (X2, Y2, Z2) ← (X1, Y1, Z1) and stop.
2. If Z1 = 0, then output (X2, Y2, Z2) ← (X0, Y0, Z0) and stop.
3. Set (X2, Y2, Z2) ← Add[(X0, Y0, Z0), (X1, Y1, Z1)].
4. If (X2, Y2, Z2) = (0, 0, 0), then set (X2, Y2, Z2) ← Double[(X1, Y1, Z1)].
5. Output (X2, Y2, Z2).

An elliptic subtraction is implemented as follows:

Subtract[(X0, Y0, Z0), (X1, Y1, Z1)] = FullAdd[(X0, Y0, Z0), (X1, U, Z1)]

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

92

where

1

1

1 1 1

mod if

if 3

if 2

m

m

Y p q p

U Y q

X Z Y q

− =
= − =
 + =

A.7.10 Projective elliptic scalar multiplication

Input: an integer n and an elliptic curve point P = (X, Y, Z).

Output: the elliptic curve point nP = (X*, Y*, Z*).

1. If n = 0 or Z = 0, then output (1, 1, 0) and stop.
2. Set

2.1 X* ← X.
2.2 Z* ← Z.
2.3 Z1 ← 1.

3. If n < 0, then go to step 6.
4. Set

4.1 k ← n.
4.2 Y* ← Y.

5. Go to step 8
6. Set k ← (–n).
7. If q = p, then set Y* ← –Y (mod p); else set Y* ← XZ +Y.
8. If Z* = 1, then set X1 ← X*, Y1 ← Y*; else set X1 ← X* / (Z*)2, Y1 ← Y* / (Z*)3.
9. Let hl hl–1 ...h1 h0 be the binary representation of 3k, where the most significant bit hl is 1.
10. Let kl kl–1...k1 k0 be the binary representation of k.
11. For i from l – 1 down to 1, do

11.1 Set (X*, Y*, Z*) ← Double[(X*, Y*, Z*)].
11.2 If hi = 1 and ki = 0, then set (X*, Y*, Z*) ← FullAdd[(X*, Y*, Z*), (X1, Y1, Z1)].
11.3 If hi = 0 and ki = 1, then set (X*, Y*, Z*) ← Subtract[(X*, Y*, Z*), (X1, Y1, Z1)].

12. Output (X*, Y*, Z*).

There are several modifications that improve the performance of this algorithm. These methods are
summarized in Gordon [B68].

A.7.11 Decompression of y coordinates (prime case)

The following algorithm recovers the y coordinate of an elliptic curve point from its compressed form.

Input: a prime number p, an elliptic curve E defined over K = GF(pm) for p > 3, the x coordinate of a point
(x, y) on E, and the compressed representation ~y of the y coordinate.

Output: the y coordinate of the point.

1. Compute g := x3 + ax + b over K.
2. Find a square root z of g modulo p via A.4.4. If the output of A.4.4 is “no square roots exist,” then

return an error message and stop.
3. Let z be the rightmost bit of z (in other words, z mod 2).
4. If z = ỹ, then y ← z, else y ← p – z.
5. Output y.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

93

NOTE—When implementing the algorithm from A.2.5, the existence of modular square roots should be checked.
Otherwise, a value may be returned even if no modular square roots exist.

A.7.12 Decompression of y coordinates (binary case)

The following algorithm recovers the y coordinate of an elliptic curve point from its compressed form.

Input: a field GF(2m), an elliptic curve E defined over GF(2m), the x coordinate of a point (x, y) on E, and
the compressed representation ~y of the y coordinate.

Output: the y coordinate of the point.

1. If x = 0, then compute y b− via A.4.4 and go to step 7.

2. Compute the field element α := x3 + ax2 + b in GF(2m).
3. Compute the element β := α (x2)–1 via A.4.2.
4. Find a field element z such that z2 + z = β via A.4.7. If the output of A.4.7 is “no solutions exist,”

then return an error message and stop.
5. Let z be the rightmost bit of z.
6. Compute ()y z z y x= + +  .

7. Output y.

NOTE—When implementing the algorithm from A.4.7, the existence of solutions to the quadratic equation should be
checked. Otherwise, a value may be returned even if no solutions exist.

A.7.13 Decompression of y coordinates (ternary case)

The following algorithm recovers the y coordinate of a supersingular elliptic curve point from its
compressed form.

Input: a field GF(3m), a supersingular elliptic curve E defined over GF(3m), the x coordinate of a point (x,
y) on E, and the compressed representation ~y of the y coordinate.

Output: the y coordinate of the point.

1. Compute 3z x x b= − − over GF(3m).
2. Find the square root of z over GF(3m) via A.4.4 If the output of A.4.4 is “no square root exists,” then

return an error message and stop.
3. Let z be the leftmost nonzero coefficient of z.
4. If z = ỹ, then y z← else y z← − .

5. Output y.

NOTE—When implementing the algorithm from A.4.4, the existence of the quadratic equation should be checked.
Otherwise, a value may be returned even if no square root exists.

A.7.14 Finding a random point on an elliptic curve (prime case)

The following algorithm provides an efficient method for finding a random point (other than O) on a given
elliptic curve over the finite field GF(p).

Input: a field K = GF(pm) where p > 3 and the parameters a, b of an elliptic curve E over K.

Output: a randomly generated point (other than O) on E.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

94

1. Choose random x ∈ K.
2. Set α ← x3 + ax + b.
3. If α = 0, then output (x, 0) and stop.
4. Apply the appropriate technique from A.4.4 to find a square root modulo p of α or to determine that

none exist.
5. If the result of step 4 indicates that no square roots exist, then go to step 1. Otherwise, the output of

step 4 is an element β with 0 < β < p such that

β 2 ≡ α
6. Generate a random bit μ and set y ← (–1) μ β.
7. Output (x, y).

A.7.15 Finding a random point on an elliptic curve (binary case)

The following algorithm provides an efficient method for finding a random point (other than O) on a given
elliptic curve over the finite field GF(2m).

Input: a field GF(2m) and the parameters a, b of an elliptic curve E over GF(2m).

Output: a randomly generated point (other than O) on E.

1. Choose random x in GF(2m).

2. If x = 0, then output (0, b2
m–1

) and stop.
3. Set α ← x3 + ax2 + b.
4. If α = 0, then output (x, 0) and stop.
5. Set β ← x –2 α.
6. Apply the appropriate technique from A.4.7 to find an element z for which z2 + z = β or to determine

that none exist.
7. If the result of step 6 indicates that no solutions exist, then go to step 1. Otherwise, the output of

step 6 is a solution z.
8. Generate a random bit μ and set y ← (z + μ) x.
9. Output (x, y).

A.7.16 Finding a random point on an elliptic curve (ternary case)

The following algorithm provides an efficient method for finding a random point (other than O) on a given
supersingular elliptic curve over the finite field GF(3m).

Input: a field GF(3m) and the parameters a, b of an elliptic curve E over GF(3m).

Output: a randomly generated point (other than O) on E.

1. Choose random y in GF(3m).
2. Set 2y bα ← − .

3. If () 0Tr α ≠ , then go to step 1.

4. Use A.4.10 to find an element z such that z3 – z = α.
5. Generate a random element ()3GFβ∈ .

6. Let x z← +β .

7. Output (x,y).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

95

A.7.17 Finding a point of large prime order

If the order #E(GF(q)) = u of an elliptic curve E is nearly prime, then the following algorithm efficiently
produces a random point on E whose order is the large prime factor r of u = kr. (See A.6.3 for the
definition of nearly prime.)

Input: a prime r, a positive integer k not divisible by r, and an elliptic curve E over the field GF(q).

Output: if #E(GF(q)) = kr, a point G on E of order r. If not, the message “wrong order.”

1. Generate a random point P (not O) on E via A.7.14 or A.7.15.
2. Set G ← kP.
3. If G = O, then go to step 1.
4. Set Q ← rG.
5. If Q ≠ O, then output “wrong order” and stop.
6. Output G.

A.7.18 Curve orders over small binary fields

If d is “small” (i.e., it is feasible to perform 2d arithmetic operations), then the order of the curve y2 + xy =
x3 + ax2 + b over GF(2d) can be calculated directly as follows. Let

μ = (–1)Tr (a)

For each nonzero x ∈ GF(2d), let

λ (x) = Tr (x + b/x2)

Then

#E(GF(2d)) = 2d + 1 + () ()

0

1
x

x

λ

≠

μ −

A.7.19 Curve orders over extension fields

Given the order of an elliptic curve E over a finite field GF(2d), the following algorithm computes the order
of E over the extension field GF(2de).

Input: positive integers d and e, an elliptic curve E defined over GF(2d), and the order w of E over GF(2d).

Output: the order u of E over GF(2de).

1. Set P ← 2d + 1 – w and Q ← 2d.
2. Compute via A.2.4 the Lucas sequence element Ve.
3. Compute u := 2de + 1 – Ve.
4. Output u.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

96

A.7.20 Curve orders via subfields

The algorithms of A.7.18 and A.7.19 allow construction of elliptic curves with known orders over GF(2m),
provided that m is divisible by an integer d that is small enough for A.7.18. The following algorithm finds
such curves with nearly prime orders when such exist. (See A.6.3 for the definition of nearly prime.)

Input: a field GF(2m); a subfield GF(2d) for some (small) d dividing m; lower and upper bounds rmin and
rmax for the base point order.

Output: elements a, b ∈ GF(2m) specifying an elliptic curve E, along with the nearly prime order
n = #E(GF(2m)), if one exists; otherwise, the message “no such curve.”

1. Select elements a0, b0 ∈ GF(2d) such that b0 has not already been selected. (If all of the b0’s have
already been tried, then output the message “no such curve” and stop.) Let E be the elliptic curve
y2 + xy = x3 + a0 x

2 + b0.
2. Compute the order w = #E(GF(2d)) via A.7.18.
3. Compute the order u = #E(GF(2m)) via A.7.19.
4. Test u for near-primality using the techniques in ANSI X9.80-2005 [B11].
5. If u is nearly prime, then set λ ← 0 and n ← u and go to step 9.
6. Set u′ = 2m+1 + 2 – u.
7. Test u′ for near-primality using the techniques in ANSI X9.80-2005 [B11].
8. If u′ is nearly prime, then set λ ← 1 and n ← u′, else go to step 1.
9. Find the elements a1, b1 ∈ GF(2m) corresponding to a0 and b0 via A.5.7.
10. If λ = 0, then set τ ← 0. If λ = 1 and m is odd, then set τ ← 1. Otherwise, find an element

τ ∈ GF(2m) of trace 1 by trial and error using A.4.5.
11. Set a ← a1 + τ and b ← b1.
12. Output n, a, b.

NOTE—It follows from A.6.3.1 that any a0 can be chosen at any time in step 1.

A.8 Class group calculations

The following computations are necessary for the complex multiplication technique described in A.9.

A.8.1 Overview

A reduced symmetric matrix is one of the form

S
A B

B C
=








where the integers A, B, C satisfy the following conditions:

a) GCD (A, 2B, C) = 1.

b) |2B| ≤ A ≤ C.

c) If either A = |2B| or A = C, then B ≥ 0.

The matrix S will be abbreviated as [A, B, C] when typographically convenient.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

97

The determinant D := AC – B 2 of S will be assumed throughout this subclause to be positive and squarefree
(i.e., containing no square factors).

Given D, the class group H (D) is the set of all reduced symmetric matrices of determinant D. The class
number h(D) is the number of matrices in H(D).

The class group is used to construct the reduced class polynomial. This is a polynomial wD (t) with integer
coefficients of degree h (D). The reduced class polynomial is used in A.9 to construct elliptic curves with
known orders.

A.8.2 Class group and class number

The following algorithm produces a list of the reduced symmetric matrices of a given determinant D. See
Buell [B36].

Input: a squarefree determinant D > 0.

Output: the class group H (D).

1. Let s be the largest integer less than / 3D .
2. For B from 0 to s do

2.1 List the positive divisors A1, …, Ar of D + B 2 that satisfy 22B A D B≤ ≤ + .

2.2 For i from 1 to r do
2.2.1 Set C ← (D + B 2) / Ai.
2.2.2 If GCD (Ai, 2B, C) = 1, then
 list [Ai, ,B, C].
 if 0 < 2B < Ai < C, then list [Ai, – B, C].

3. Output list.

Example: D = 71. The values of B that need to be checked are 0 ≤ B < 5.

⎯ B = 0 gives A = 1, leading to [1,0,71].

⎯ B = 1 gives A = 2,3,4,6,8, leading to [3, ±1,24] and [8, ±1,9].

⎯ B = 2 gives A = 5, leading to [5, ±2, 15].

⎯ B = 3 gives A = 8, but no reduced matrices.

⎯ B = 4 gives no divisors A in the right range.

Thus the class group is

H (71) = {[1,0,71], [3, ±1,24], [8, ±1,9], [5, ±2, 15]}

and the class number is h (71) = 7.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

98

A.8.3 Reduced class polynomials

Let

() ()
2 2

1

3 3
1 1

2 2

j

j

j j j j
F z z z

∞

=

 − += + − + 
 



= 1 – z – z2 + z5 + z7 – z12 – z15 + ...

and

D Bi
e

A

 − +θ= π  
 

Let

f0(A, B, C) = θ –1/24 F(–θ) / F(θ 2)

f1(A, B, C) = θ –1/24 F(θ) / F(θ 2)

f2(A, B, C) = 2 θ1/12F(θ4) / F(θ2)

NOTE—Because

3
0.0658287

2
e

−πθ < ≈

the series F (z) used in computing the numbers ƒJ(A, B, C) converges as quickly as a power series in 3

2
e

−π .

If [A, B, C] is a matrix of determinant D, then its class invariant is

C(A, B, C) = (N λBL 2–I/6 (ƒJ (A, B, C))K)
G

where

G = GCD(D,3),

I

D

D D

D D

D

=











≡
≡ /≡
≡ ≡
≡

3

0

2

6

1 2 6 7 8

0 3

3

5 8

if

if 3 (mod 8) and

if 3 (mod 8) and 0

if

, , , (mod),

(mod),

(mod),

(mod),

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

99

J

AC

C

A

=









0

1

2

for odd,

for even

for even

,

,

K

D

D

D

=









≡
≡
≡

2

1

4

if 1,2,6 (mod 8),

if 3,7 (mod 8),

if 5 (mod 8),

L

A C A C

A C AC

A C AC

A C AC

AC D C

D C

D A

D A

=

− +
+ −
− +
− −











≡
≡
≡
≡

2

2

2

2

2

5

if odd or 5 (mod 8) and even,

if 1,2,3,6,7 (mod 8) and even,

if 3 (mod 8) and even,

if 1,2,5,6,7 (mod 8) and even,

M
A

A

A

C=
−
−







−

−

() ,

()

()/

()/

1

1

2

2

1 8

1 8

if odd

if even,

N

D

D AC

D AC

M D

D AC

M D AC

=

≡
≡
≡

≡
≡

− ≡



















1 if 5 (mod 8)

 or 3 (mod 8) and odd

 or 7 (mod 8) and even,

if 1,2,6 (mod 8)

 or 7 (mod 8) and odd,

if 3 (mod 8) and even,

λ = e π iK/24.

If [A1, B1, C1], ..., [Ah, Bh, Ch] are the reduced symmetric matrices of (positive squarefree) determinant D,
then the reduced class polynomial for D is

() ()()1

h

D j j jj
w t t C A ,B ,C

=
= −∏

The reduced class polynomial has integer coefficients.

NOTE—The previous computations need to be performed with sufficient accuracy to identify each coefficient of the
polynomial wD (t). Because each such coefficient is an integer, this means that the error incurred in calculating each
coefficient should be less than ½.

Example.

w71(t) = ()t −





1

2
1 0 710f , ,

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

100

 () ()t
e

t
ei i

−






 − −








− π π/ /

, , , ,
8

1

8

12
31 24

2
3 1 24f f

 () ()t
e

t
ei i

−






 − −








−23 24

2

23 24

2
2

8 1 9
2

8 1 9
π π/ /

, , , ,f f

 () ()t
e

t
ei i

+






 + −








−5 12

0

5 12

0
2

5 2 15
2

5 2 15
π π/ /

, , , ,f f

= (t – 2.13060682983889533005591468688942503...)

 (t – (0.95969178530567025250797047645507504...) +

 (0.34916071001269654799855316293926907...) i)

 (t – (0.95969178530567025250797047645507504...) –

 (0.34916071001269654799855316293926907...) i)

 (t + (0.7561356880400178905356401098531772...) +

 (0.0737508631630889005240764944567675...) i)

 (t + (0.7561356880400178905356401098531772...) –

 (0.0737508631630889005240764944567675...) i)

 (t + (0.2688595121851000270002877100466102...) –

 (0.84108577401329800103648634224905292...) i)

 (t + (0.2688595121851000270002877100466102...) +

 (0. 84108577401329800103648634224905292...) i)
= t 7 – 2t 6 – t 5 + t 4 + t 3 + t 2 – t – 1.

A.9 Complex multiplication

A.9.1 Overview

If E is a non-supersingular elliptic curve over GF(q) of order u, then

Z = 4q – (q + 1 – u)2

is positive by the Hasse bound (see A.6.3). Thus, there is a unique factorization

Z = DV 2

where D is squarefree (i.e., contains no square factors). Thus, for each non-supersingular elliptic curve over
GF(q) of order u, there exists a unique squarefree positive integer D such that

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

101

(*) 4q = W 2 + DV 2

(**) u = q + 1 ± W

for some W and V.

It is said that E has complex multiplication (CM) by D (or, more properly, by D−). D is called a CM
discriminant for q.

If one knows D for a given curve E, then one can compute its order via (*) and (**). As will be
demonstrated in the following discussion, one can construct the curves with CM by small D. Therefore, one
can obtain curves whose orders u satisfy (*) and (**) for small D. The near-primes are plentiful enough that
one can find curves of nearly prime order with small enough D to construct.

Over GF(p), the CM technique is also called the Atkin-Morain method (Morain [B123]); over GF(2m), it is
also called the Lay-Zimmer method (Lay and Zimmer [B103]). Although it is possible [over GF(p)] to
choose the order first and then the field, it is preferable to choose the field first because there are fields in
which the arithmetic is especially efficient.

There are two basic steps involved: finding an appropriate order, and constructing a curve having that
order. More precisely, one begins by choosing the field size q, the minimum point order rmin, and trial
division bound lmax. Given those quantities, D is called appropriate if there exists an elliptic curve over
GF(q) with CM by D and having nearly prime order.

Step 1 (using A.9.2.3):

Find an appropriate D. When one is found, record D, the large prime r, and the positive integer k such that
u = kr is the nearly prime curve order.

Step 2 (using A.9.3):

Given D, k, and r, construct an elliptic curve over GF(q) and a point of order r.

A.9.2 Finding a nearly prime order over GF(p)

A.9.2.1 Congruence conditions

A squarefree positive integer D can be a CM discriminant for p only if it satisfies the following congruence
conditions. Let

()2

min

1p
K

r

 + 
 
  

⎯ If p ≡ 3 (mod 8), then D ≡ 2, 3, or 7 (mod 8).

⎯ If p ≡ 5 (mod 8), then D is odd.

⎯ If p ≡ 7 (mod 8), then D ≡ 3, 6, or 7 (mod 8).

⎯ If K = 1, then D ≡ 3 (mod 8).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

102

⎯ If K = 2 or 3, then D ≡⁄ 7 (mod 8).

Thus, the possible squarefree Ds are as follows:

If K = 1, then

D = 3, 11, 19, 35, 43, 51, 59, 67, 83, 91, 107, 115, ….

If p ≡ 1 (mod 8) and K = 2 or 3, then

D = 1, 2, 3, 5, 6, 10, 11, 13, 14, 17, 19, 21, ….

If p ≡ 1 (mod 8) and K ≥ 4, then

D = 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, ….

If p ≡ 3 (mod 8) and K = 2 or 3, then

D = 2, 3, 10, 11, 19, 26, 34, 35, 42, 43, 51, 58, ….

If p ≡ 3 (mod 8) and K ≥ 4, then

D = 2, 3, 7, 10, 11, 15, 19, 23, 26, 31, 34, 35, ….

If p ≡ 5 (mod 8) and K = 2 or 3, then

D = 1, 3, 5, 11, 13, 17, 19, 21, 29, 33, 35, 37, ….

If p ≡ 5 (mod 8) and K ≥ 4, then

D = 1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, ….

If p ≡ 7 (mod 8) and K = 2 or 3, then

D = 3, 6, 11, 14, 19, 22, 30, 35, 38, 43, 46, 51, ….

If p ≡ 7 (mod 8) and K ≥ 4, then

D = 3, 6, 7, 11, 14, 15, 19, 22, 23, 30, 31, 35, ….

A.9.2.2 Testing for CM discriminants (prime case)

Input: a prime p and a squarefree positive integer D satisfying the congruence conditions from A.9.2.1.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

103

Output: if D is a CM discriminant for p, then an integer W such that

4p = W 2 + DV 2

for some V. (In the cases D = 1 or 3, the output also includes V.) If not, then the message “not a CM
discriminant.”

1. Apply the appropriate technique from A.2.5 to find a square root modulo p of –D or to determine
that none exist.

2. If the result of step 1 indicates that no square roots exist, then output “not a CM discriminant” and
stop. Otherwise, the output of step 1 is an integer B modulo p.

3. Let A ← p and C ← (B 2 + D) / p.

4. Let
A B

S
C D

 
←  

 
 and

1

0
U

 
←  

 
.

5. Until |2B| ≤ A ≤ C, repeat the following steps:

5.1 Let
1

δ=
2

B

C
 +  

.

5.2 Let
0 1

1 δ
T

− 
←  

 
.

5.3 Replace U by T–1U.
5.4 Replace S by T t S T, where T t denotes the transpose of T.

6. If D = 11 and A = 3, then let δ ← 0 and repeat steps 5.2, 5.3, and 5.4.
7. Let X and Y be the entries of U. That is,

X
U

Y

 
=  
 

8. If D = 1 or 3, then output W ← 2X and V ← 2Y and stop.
9. If A = 1, then output W ← 2X and stop.
10. If A = 4, then output W ← 4X + BY and stop.
11. Output “not a CM discriminant.”

A.9.2.3 Finding a nearly prime order (prime case)

Input: a prime p, a trial division bound lmax, and lower and upper bounds rmin and rmax for base point order.

Output: a squarefree positive integer D, a prime r in the interval rmin ≤ r ≤ rmax, and a smooth integer k
such that u = kr is the order of an elliptic curve modulo p with complex multiplication by D.

1. Choose a squarefree positive integer D, not already chosen, satisfying the congruence conditions of
A.9.2.1.

2. Compute via A.2.3 the Jacobi symbol
D

J
p

− 
=  
 

. If J = –1, then go to step 1.

3. List the odd primes l dividing D.

4. For each l, compute via A.2.3 the Jacobi symbol
p

J
l

 
=  
 

. If J = –1 for some l, then go to step 1.

5. Test via A.9.2.2 whether D is a CM discriminant for p. If the result is “not a CM discriminant,” then
go to step 1. (Otherwise, the result is the integer W, along with V if D = 1 or 3.)

6. Compile a list of the possible orders, as follows:
— If D = 1, then the orders are

p + 1 ± W, p + 1 ± V

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

104

— If D = 3, then the orders are

p + 1 ± W, p + 1 ± (W + 3V)/2, p + 1 ± (W – 3V)/2

— Otherwise, the orders are p + 1 ± W.
7. Test each order for near-primality. If any order is nearly prime, then output (D, k, r) and stop.
8. Go to step 1.

Example: Let p = 2192 – 264 – 1. Then

p = 4X 2 – 2XY +
1

4

+ D
 Y 2 and p + 1 – (4X – Y) = r

where D = 235

X = –31037252937617930835957687234

Y = 5905046152393184521033305113

and r is the prime

r = 6277101735386680763835789423337720473986773608255189015329

Thus, there is a curve modulo p of order r having complex multiplication by D.

A.9.3 Constructing a curve and point (prime case)

A.9.3.1 Constructing a curve with prescribed CM (prime case)

Given a prime p and a CM discriminant D, the following technique produces an elliptic curve y2 ≡ x3 + a0 x
+ b0 (mod p) with CM by D. (Note that there are at least two possible orders among curves with CM by D.
The curve constructed here will have the proper CM, but not necessarily the desired order. This curve will
be replaced in A.9.3.2 by one of the desired order.)

For nine values of D, the coefficients of E can be written down at once:

D a0 b0
1 1 0
2 –30 56
3 0 1
7 –35 98
11 –264 1694
19 –152 722
43 –3440 77658
67 –29480 1948226
163 –8697680 9873093538

For other values of D, the following algorithm may be used.

Input: a prime modulus p and a CM discriminant D > 3for p.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

105

Output: a0 and b0 such that the elliptic curve

y 2 ≡ x 3 + a0x + b0 (mod p)

has CM by D.

1. Compute w(t) ← wD(t) mod p via A.8.3.
2. Let W be the output from A.9.2.2.
3. If W is even, then use A.5.3 with d = 1 to compute a linear factor t – s of wD(t) modulo p. Let

V := (–1)D 2 4I/K s 24/(GK) mod p

where G, I and K are as in A.8.3. Finally, let

a0 := –3(V + 64)(V + 16) mod p

b0 := 2(V + 64)2 (V – 8) mod p

4. If W is odd, then use A.5.3 with d = 3 to find a cubic factor g (t) of wD(t) modulo p. Perform the
following computations, in which the coefficients of the polynomials are integers modulo p.

V t
t g t | D

t g t D
():

m od ()

m od ()
=

− /
−





24

8256

if 3

if 3 |

a1(t) := –3(V(t) + 64) (V(t) + 256) mod g(t)

b1(t) := 2(V(t) + 64)2 (V(t) – 512) mod g(t)

a3(t) := a1(t)
3 mod g(t)

b2(t) := b1(t)
2 mod g(t)

Now, let σ be a nonzero coefficient from a3(t), and let τ be the corresponding coefficient from b2(t).
Finally, let

a0 := στ mod p

b0 := στ 2 mod p

5. Output (a0, b0).

Example: If D = 235, then

wD (t) = t 6 – 10 t 5 + 22 t 4 – 24 t 3 + 16 t 2 – 4 t + 4

If p = 2192 – 264 – 1, then

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

106

wD (t) ≡ (t 3 – (5 + φ)t 2 + (1 – φ)t – 2) (t 3 – (5 – φ)t 2 + (1 + φ)t – 2) (mod p)

where φ = 1254098248316315745658220082226751383299177953632927607231. The resulting
coefficients are

a0 = –2089023816294079213892272128

b0 = –36750495627461354054044457602630966837248

Thus, the curve y 2 ≡ x 3 + a0x + b0 modulo p has CM by D = 235.

A.9.3.2 Choosing the curve and point (prime case)

Input: EC parameters p, k, and r, and coefficients a0, b0 produced by A.9.3.

Output: a curve E modulo p and a point G on E of order r, or a message “wrong order.”

1. Select an integer ξ with 0 < ξ < p.
2. If D = 1, then set a ← a0ξ mod p and b ← 0.

If D = 3, then set a ← 0 and b ← b0ξ mod p.
Otherwise, set a ← a0ξ 2 mod p and b ← b0ξ 3 mod p.

3. Look for a point G of order r on the curve

y2 ≡ x3 + ax + b (mod p)

via A.7.17.
4. If the output of A.7.17 is “wrong order,” then output the message “wrong order” and stop.
5. Output the coefficients a, b, and the point G.

The method of selecting ξ in the first step of this algorithm depends on the kind of coefficients desired.
Two examples follow.

⎯ If D ≠ 1 or 3, and it is desired that a = –3 (see A.7.6), then take ξ to be a solution of the congruence
a0ξ 2 ≡ –3 (mod p), provided one exists. If one does not exist, or if this choice of ξ leads to the
message “wrong order,” then select another curve as follows. If p ≡ 3 (mod 4) and the result was
“wrong order,” then choose p – ξ in place of ξ; the result leads to a curve with a = –3 and the right
order. If no solution ξ exists, or if p ≡ 1 (mod 4), then repeat A.9.3 with another root of the reduced
class polynomial. The proportion of roots leading to a curve with a = –3 and the right order is
roughly one half if p ≡ 3 (mod 4), and one quarter if p ≡ 1 (mod 4).

⎯ If there is no restriction on the coefficients, then choose ξ at random. If the output is the message
“wrong order,” then repeat the algorithm until a set of parameters a, b G is obtained. This will
happen for half the values of ξ, unless D = 1 (one quarter of the values) or D = 3 (one sixth of the
values).

A.10 Pairings for cryptography

All pairing algorithms defined here are based on the Miller algorithm (Miller [B121]). We consider only
those algorithms that are practical for use in the cryptographic algorithms presented in the main body.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

107

A.10.1 Pairing-friendly elliptic curves

To be useful for pairing-based cryptography, a notion of “pairing-friendly” curves has become established,
and this may be formalized by the following conditions. First we define the embedding degree of E with
respect to r be defined as the smallest integer k such that r | qk – 1. Then an elliptic curve is pairing-friendly
if:

There is a prime r | #E (GF(q)) such that r > √q

k < log2(r) /8

A.10.2 Curve families

All the curves we consider are defined over a finite field K = GF(q). For cryptographic use, we also need a
suitable subgroup of E(K) of size r. If #E(K) is the order of the group of K-rational points of E, then the
trace t of E/K is t = q + 1 – #E(K). Note that r | #E(K) and for h = #E(K) / r, we define GT to be the
subgroup of order r of GF(qh).

The search for, and analysis of, pairing-friendly curves has led to a grouping of curves into families, which
can often be described by equations in the parameters t, r, and q.

If k is the embedding degree of E, then we let ε be the degree of the maximal twist of E, which we denote
E'. Note that ε | k so we define the degree of field over which we consider the twist to be d = k/ε.

Curves may then be classified as follows:

E1 = E(GF(q))

E2 = E(GF(qk))

E3 = E'(GF(qd))

Note that r | qk – 1 and for E3, r | #E'(GF(q)).

The elements of E1 of order r form the 1-eigenspace of the Frobenius map with respect to r. This will in all
cases be equal to the pairing group G1. The r-eigenspace of Frobenius lies in E2.

Pairings may be classified into three different types according to the curve types. In particular, the types
depend on how the group G2 is represented.

In all cases there is a map ζ:G2 → E2 and the Miller loop is always applied to ζ(Q) rather than to the
element Q itself.

A.10.2.1 Type 1 (E supersingular)

G1 = G2 = a subgroup of E1 of order r.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

108

A.10.2.2 Type 2 (E ordinary)

G1 = a subgroup of E1 of order r.

G2 = a subgroup of E2 of order r, which is distinct from both the 1-eigenspace and the q-eigenspace of
Frobenius.

A.10.2.3 Type 3 (E ordinary)

G1 = a subgroup of E1 of order r.

G2 = a subgroup of E3 of order r.

A.10.3 The Miller loop

The Miller loop is a function,

fP,n(Q)

where P is on the base curve E1 and Q is on the extension E2. In defining the Miller loop, we consider two
arbitrary points on the curve and an arbitrary loop length n. When using this loop within a pairing
calculation, we will specify more precisely the values of P, Q, and n. There are various optimizations (e.g.,
for specific curves or by using properties of twisted curves within the algorithm), but only the basic
algorithm is given here.

The basic algorithm is as follows:

Input: P ∈ E1, Q ∈ E2

Output: fP,n(Q)

Set T ← P, f ← 1.

1) Write n as 
−

=

1

0

2
m

i

i
in with ni ∈ {0,1}.

2) Loop for i from m – 1 down to 0

i. Set f ← f.2lT,T(Q) / v2T(Q).

ii. Set T ← 2T.

iii. If ni = 1, then

a. Set f ← f.lT,P(Q) / vT+P(Q).

b. Set T ← T + P.

iv. End if

3) End loop.

4) Return f.

i. The line functions lA,B(Q) and vA+B(Q) are the functions obtained by substituting the
coordinates of Q into the equations for the lines used in the standard formation of A+B. l

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

109

is the straight line y – mx – c, which passes through the points A and B, and v is the
vertical line passing through A+B.

ii. Hence, if Q = (x, y), A = (x1, y1), B = (x2, y2), and A+B = (x3, y3), then

)(

)(

)(

)(
)(

21

1221

12

12
, xx

yxyx
x

xx

yy
yQl BA −

−
−

−
−

−=

vA+B(Q) = x – x3

See A.6.2 for details of how to compute these operations.

A.10.4 Pairing calculations

In the main document, we consider two pairings:

e1: G1 × G2 → GT

and

e2: G2 × G1 → GT

The pairing e2 is computed from e1 via e2 (P,Q) = e1 (Q,P), so from now on, we shall only consider e1,
which we will denote e (P,Q). In all cases, the algorithms and primitives in the main body use pairings with
parameters derived from the generators Q1 of G1 and Q2 of G2. We therefore define the pairings in the
follow sublcause with parameters in curves E1, E2, or E3. When the domain parameters are defined, the
choice of curve and generators ensures these definitions are consistent.

A.10.5 Pairings

For all of the pairings defined in this subclause, r is the order of G1, G2 and P; t is the trace of E over K; and
k is the embedding degree of E, all as defined in A.10.1.

A.10.5.1 Tate

The Tate pairing is defined as:

rp
rP

k

QfQPe /)1(
,)(),(−=

where P ∈ E1, Q ∈ E2.

A.10.5.2 Eta

The Eta pairing is only defined for supersingular elliptic curves and is given by the following:

rp
tP

k

QfQPe /)1(
1,)(),(−

−=

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

110

where P ∈ E1, Q ∈ E2.

A.10.5.3 Ate

The Ate pairing may be computed as follows:

rp
tQ

k

PfQPe /)1(
1,)(),(−

−=

where P ∈ E1, Q ∈ E2.

A.10.5.4 R-Ate

The R-Ate pairing is defined in terms of two Miller loops and the line and vertical functions from the
Miller-Loop definition as follows:

() ())(/)()(, ,,, QvQlQfQfQPe bPaBPbPaBPPbBPa +⋅⋅=

where A,B,a,b ∈ Z and A = aB + b, P ∈ E1, Q ∈ E2.

A.11 Elliptic curves for pairing-based cryptography

A.11.1 Super-singular curves

Supersingular curves have embedding degree k ∈ {1, 2, 3, 4, 6}. We only consider those with even
embedding degree.

A.11.1.1 Super-singular curves with embedding degree 2

In fields GF(2s) of characteristic 2, curves with k = 2 are of the form

E1: y
2 + y = x3 +δx where s is even and Tr δ ≠ 0 (see A.4.5).

E2: y
2 + y = x3 where s is odd.

In fields of prime characteristic q = p > 3 supersingular curves with k = 2 can be defined by:

If q ≡ 3 (mod 4), then y2 = x3 + ax, where –a ∉ (GF(q))2\{0}.

If q ≡ 5 (mod 6), then y2 = x3 + b.

If q ≡ 1 (mod 12), then curves may be computed by:

Input: q

Output: An elliptic curve E parameterized in integers m and c

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

111

Find D, the smallest prime such that D ≡ 3 (mod 4) and (–D / q) = –1

1) Compute a root j ∈ GF(q) of the reduced class polynomial HD (mod q) using algorithm A.8.3

2) Set m = j / (1728 – j).

3) Return E: y2 = x3 + 3mc2x + 2mc3 for any c.

A.11.1.2 Super-singular curves with embedding degree 4

There are only two forms of supersingular curve with k = 4, and such curves only exist over a field of
characteristic 2.

E1: y
2 + y = x3 + x

and

E2: y
2 + y = x3 + x + 1

A.11.1.3 Super-singular curves with embedding degree 6

Supersingular curves with k = 6 only exist over fields of characteristic 3, i.e., GF(3s), and have the form

E: y2 = x3 – x ± d

where d ∈ GF(q) with Tr d = 1 (see A.4.5).

A.11.2 MNT curves

The Miyaji, Nakabayashi, and Takano (MNT) technique (Miyaji et al. [B122]) for finding ordinary pairing-
friendly curves relies on the complex multiplication technique of A.9.3. A resulting curve defined over
GF(p) has its order divisible by a large prime r where the r-torsion group of E is defined over an extension
field GF(pk).

Input: k = 3, 4, or 6, a maximal cofactor cmax, and the maximum discriminant Dmax.

Output: GF(q), and elliptic curve E such that |E(GF(q))| = cr where c ≤ cmax and r is prime.

1) λ ← –2k/2 + 4.

2) For c from 1 to cmax do

i. For c' from 1 to 4c – 1, do

a. nk ← λc + c'.

b. m ← 4c – c'.

c. fk ← nk
2 – m2

.

d. for squarefree D = 1 to Dmax do

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

112

1. s ← c'mD.

2. for each solution of y2 – sv2 = fk do

i. t ← (y – nk)/m + 1.

ii. r ← Φk(t – 1) / c'.

iii. q ← cr + t – 1.

iv. If t∈ℤ, r is prime and q is prime,

v. Return q, and E computed by A.9.3, using p = q, t, D.

3) Return “fail.”

A.11.3 Cocks-Pinch curves

The Cocks-Pinch (CP) approach gives a way to construct pairing-friendly curves with an arbitrary
embedding degree. The CP approach works by fixing a prime subgroup size r and a CM discriminant D,
and then finding the trace t and prime q such that the CM equation is satisfied.

Input: k, D square free.

Output: GF(q), and elliptic curve E.

1. Choose a prime r such that k | r – 1 and
1=






 −

r

D
.

2. Find z a kth root of unity in (ℤ/rℤ)× .

3. t' ← z + 1.

4. y' ← (t'-2)/√(-D) (mod r).

5. Choose t ∈ ℤ such that t ≡ t' (mod r)'.

6. Choose y ∈ ℤ such that y ≡ y' (mod r)'.

7. q ← (t2 + Dy2)/4.

8. If q is prime and an integer and D ≤ 1012, then construct E by A.9.3, using p = q, D.

A.11.4 BN curves

Barreto-Naehrig curves are of the form E: y2 = x3+b, parameterized by

r(x) = 36x4 – 36x3 + 18x2 – 6x + 1

q(x) = 36x4 – 36x3 + 24x2 – 6x + 1

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

113

t(x) = 6x2 + 1

where r and q are both prime. For such curves, k = 12. To find a BN curve, choose random values for x
until r and q are both prime then choose b ∈ GF(q) such that #E(GF(p)) = r.

A.11.5 Kachisa-Schaefer-Scott (KSS) curves

KSS curves are of the form E: y2 = x3+b, parameterized by the following:

r(x) = (x4 – 36x3 + 16x + 7) / 7

q(x) = x6 + 37x3 + 343

t(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 +1763x +2401) / 21

where r and q are both prime. For such curves, k = 18. To find a KSS curve, choose random values for x
until r and q are both prime and then choose b ∈ GF(q) such that #E(GF(p)) = r.

A.11.6 Brezing-Wang (BW) curves

For k = 24, BW curves are of the form E: y2 = x3+b, parameterized by the following:

r(x) = x8 – x4 + 1

q(x) = (x – 1)2 (x8 – x4 + 1)/3 + x

t(x) = x + 1

where r and q are both prime. To find such a BW curve, choose random values for x until r and q are both
prime and then choose b ∈ GF(q) such that #E(GF(p)) = r.

A.12 Choosing a curve and pairing

A.12.1 Security considerations

When considering curves, pairings, and fields, a balance needs to be made between security and efficiency.
In general, more efficient arithmetic is obtained if the value ρ = log q / log r is small. Hence, to achieve
efficiency at a particular security level, it is often necessary to use curves with a large embedding degree k.
This is certainly not true in all cases, and efficient arithmetic can be obtained at reasonable security levels
with k = 2, for example.

Table A.1 lists the minimum recommended sizes of the subgroup and extension fields in terms of bits for
different security levels. The security levels are the block cipher key-length equivalents (e.g., AES-128,
AES-192, and AES-256 as described in NIST 800-57-2011 [B125]).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

114

Table A.1— Parameter sizes for selected security levels

Security level log2r k × log2q
112 224 2048
128 256 3072
192 384 8192
256 512 15 360

A.12.2 Curve-pairing compatibility

Not all types of elliptic curves are compatible with the different pairings described in the preceding clauses.
Table A.2 summarizes which curve families are compatible with which pairings.

Table A.2—Compatibility of pairings with selected curve types

 Curve family
Pairing Super-singular MNT CP BN KSS BW

Tate Yes Yes Yes Yes Yes Yes
Eta Yes No No No No No
Ate No Yes Yes Yes Yes Yes
R-Ate No Yes Yes Yes Yes Yes

A.12.3 Suitable domain parameters

Clause A.6 through Clause A.12 have defined various curves and pairings and have presented algorithms
for their construction and computation. For each pairing and each curve, specific optimizations of the
Miller algorithm can be made to produce efficient computations. Such optimizations have been omitted
from this document in the interests of simplicity and practicality. Instead, all pairings are defined in terms
of a common, basic Miller loop with P ∈ E1, Q′ ∈ E2. This means that, in many cases, maps from E1 to E2
or E3 to E2 are required to form Q′ for use in the pairings. Table A.3 summarizes the properties of these
mappings for selected types of curves. In practice, when implementing cryptographic schemes using these
algorithms, optimized Miller loops may be preferred.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

115

Table A.3—Summary of mappings used to implement pairings using selected curve types

Curve
type

Curve k Pairing Order Map of Q → Q′

SS E1: y
2 = x3 + x over GF(p),

p ≡ 3 mod 4
2 Tate p+1 (x,y) → (ζx,y) where ζ is a cube

root of unity
SS E1: y

2 = x3 + x over GF(p),
p ≡ 2 mod 3

2 Tate p+1 (x,y) → (x,iy) where i2 = –1

SS E1: y
2 + y = x3 + x + a,

a = {1,2} over GF(2)
4 Tate 2m ± 2(m+1)/2 + 1 (x,y) → (u2x + s2, y + u2sx + s)

where u ∈ GF(22), s ∈ GF(24),
& u2+u+1= 0, s2+(u+1)s = 0

SS E1: y
2 = x3 - x + b,

b = ±1 over GF(3)
6 Tate 3m ± 3(m+1)/2 + 1 (x,y) → (α – x, iy)

where i ∈ GF(32), α ∈ GF(33),
& i2= –1, α3– α – b = 0

SS E1: y
2 = x3 – x + b,

b = ±1 over GF(3m)
6 Eta 3m ± 3(m+1)/2 + 1 (x,y) → (ρ – x, iy)

where i2= –1, ρ3 = ρ + b
SS E1: y

2 + y = x3 + x + b,
b ∈ {0,1} over GF(2m)

4 Eta 2m ± 2(m+1)/2 + 1 (x,y) → (x – s2, y + sx + t)
where s,t ∈ GF(24), s2+s+1 =
0, t2 + t + s = 0

BN E1: y
2 = x3 + b over GF(p)

E2: y
2 = x3 + b over GF(pk)

12 Tate Parameterized Q′ = Q

BN E1: y
2 = x3 + b over GF(p)

E2: y
2 = x3 + b over GF(pk)

12 Ate Parameterized Q′ = Q

BN E1: y
2 = x3 + b over GF(p)

E2: y
2 = x3 + bv–1 over GF(pk)

where 3 | (p-1) & v is a cubic
and quadratic nonresidue in
GF(p2)

12 Ate Parameterized (x,y) → (xv1/3, yv1/2)

MNT E1: y
2 = x3 + ax + b over

GF(p)
E2: y

2 = x3 + a v–2x + bv–3 over
GF(pk)

6 Tate or
ate

Parameterized (x,y) → (vx, v3/2y)

MNT E1: y
2 = x3 + ax over GF(p)

E2: y
2 = x3 + a v–1x over

GF(pk)

6 Tate or
ate

Parameterized (x,y) → (v1/2x, v3/4y)

MNT E1: y
2 = x3 + b over GF(p)

E2: y
2 = x3 + bv–1 over GF(pk)

6 Tate or
ate

Parameterized (x,y) → (v1/3x, v1/2y)

CP E1: y
2 = x3 + ax + b over

GF(p)
E2: y

2 = x3 + a v–2x + bv–3 over
GF(pk)

Any Tate or
ate

Parameterized (x,y) → (vx, v3/2y)

CP E1: y
2 = x3 + ax over GF(p)

E2: y
2 = x3 + a v–1x over

GF(pk)

Any Tate or
ate

Parameterized (x,y) → (v1/2x, v3/4y)

CP E1: y
2 = x3 + b over GF(p)

E2: y
2 = x3 + bv–1 over GF(pk)

Any Tate or
ate

Parameterized (x,y) → (v1/3x, v1/2y)

KSS E1: y
2 = x3 + b over GF(p)

E2: y
2 = x3 + bv–1 over GF(pk)

18 Tate or
ate

Parameterized (x,y) → (v1/3x, v1/2y)

BW E1: y
2 = x3 + b over GF(p)

E2: y
2 = x3 + b over GF(pk)

12 Tate Parameterized Q′ = Q

BW E1: y
2 = x3 + b over GF(p)

E2: y
2 = x3 + b over GF(pk)

12 Ate Parameterized Q′ = Q

BW E1: y
2 = x3 + b over GF(p)

E2: y
2 = x3 + bv–1 over GF(pk)

where 3 | (p – 1) & v is a cubic
and quadratic nonresidue in
GF(p2)

12 Ate Parameterized (x,y) → (xv1/3, yv1/2)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

116

A.12.4 Example curves

The following parameters can be used to implement the schemes described in this document. These
parameters are meant to be used with the ate pairing as defined in A.10.5.3.

A.12.4.1 Example 1

At the 128-bit security level as defined in NIST 800-57-2011 [B125], writing ω = √5, we have the
following:

E1: y
2 = x3 + 5

E: y2 = x3 + 5

E2: y
2 = x3 + ω

k = 12

q = 0xB640D86C60602B112028B881BF7FD34C078201004C25FFFDBFFF550000000001

 p = 0xB640D86C60602B112028B881BF7FD34B2F8180C0391C7FFDBFFF550000000001

t – 1 = 0xD8008040130980000000000000000000

P1 = (0x1,
0x18B96D0423CDF2FCEE2CFC51E55988BA58044548921C53F778DD1DFE3BA7CE22)

P2 =
(0x3E010C633DEB0E3A31B5185D0FDB9A936AF0E26164A830CB5E26B70E6DAFB860 +
0x5B3A6D5A50174E41C25954EE86180B8EF649B35A9F7D95D3D56A9A6B98D0EC9Dω,

0x29700D3295327C272AB24323CF7E2BBFDFE243164692CBDED142729801A9801A +
0x54616AEB636A2296799010D3E4DA893ABBE752502D70B1062313580A88BB452Eω)

A.12.4.2 Example 2

At the 192-bit security level as defined in NIST 800-57-2011 [B125], writing ω = 3√2, we have the
following:

E1: y
2 = x3 + 2

E: y2 = x3 + 5

E2: y
2 = x3 + ω

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

117

k = 18

q =
0x6B5A6E1D00FF3E57F01A85E93A632A698EBC0675342E193F88B71E95084EF791B2868
06FB1EAFE66EDC2FB8568A06924CC5FBB83EB5F97E1A909DC4AB6194331D

 p =
0xF42FC00001B36F25E0014387354424803422547260939EE8E63BADEEBAFEAD48BBEF
389BF4EEB7E91CCA352A00000001

t – 1 = 0x6C8700000081047D000039842039A00B6558628750D8C256DCC31700001C88000

P1 =
(0x16E41EDDFEC88FCC60A040689E1D1234A0A805C54CB7FFDFB18893EB3C545C5110
61FDCCA1AE6B686CEF2BB9854DEC2857FC9F1DD0B2280201F5C9D1D5C84425B9,

0x2789E25971C895E57E37A9FFE864A83FE5C8BC4CE589C4C7151A133F8A6E41822C0E
E0F46D25291B9CE8BB0EB15BC22145CD1C5780EFEF6091B4386C3D8F93247A)

P2 =
(0x14984D6199AED6782375E3175C1E25E4D24C4CD3AE6E65430AE14751D6695D1D6A
ABBE570292300B3AD4C176DDCA9A4C8B1747CF098B081787430645C0A8A2A56D +
0x3D0324C329EAC589DE8552005D76A6A7A7638D7165CD392921CFE4BB96C32C2C5D6
D0B8A9147D77119FDA42594DDA0B670366CB76A209346AC0C3310BE3DD4657 ω +
0x4518D02BD8D4CB75DEC343027DC71A513EEBDE1AA232EC7CEBADF2E3F7E1D7AE
4344F5A6717E78001BD5EAD462DC791F360567B251CF2C8E770D185E0794A67194 ω2,

0x3A6D0FB82C81845322F3880BA86628BFC9716EF028AB41D6F3D107F5858F12DBA557
9146743A8EC57660B22B77CD6D7ADD1A0ECD0DD322738420FA1FFF24BC7958 +
0x227E11E448F0200195795700E03F14F3F2D3412C784E26D1D00F60FF8B6725CCB04964
1F24C8822E73435C3B82762A032359458C56D75C29ED466D7EC277A5BCAA ω +
0x411974A2922DC7804CB921C316B42E203E71DBEBE3BA8DD95B9356025A6F00916C1
8934B0C5A5362C6F5C5A29C6EF5D14DF4BC067A9C261C114E9EFE3EB991AE22 ω2)

A.12.4.3 Example 3

At the 256-bit security level as defined in NIST 800-57-2011 [B125], writing ω1 = √2 and ω2 = 4√2, we
have the following:

E1: y
2 = x3 + 1

E: y2 = x3 + 5

E2: y
2 = x3 + 1/ω2

k = 24

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

118

q =
0x2CC1038ECBEEB01BECF95968F21A7FB9121D72014EA0BDD7B906F8C7D2FB362C5A
12FDACBD5E2C42413D4CF74198E2693978D6FE97ABD52B562FF98DBF0D1EE01DA3C
EDBD7F54F6F2F1EE158774A67B5

 p =
0x98C29B81028BC6F535C95626C60D06F9042850D631FCFBBC585F647DE763E467FF0A
D1A96885B7A27118F357E6E6E8E06158E0EFEFFE5F7E6B1984C3BA05F371

t – 1 = 0xF000000000800005

P1 =
(0x647BCE704B0A7F30676B57261DA029E090748839F7DD739AC95F52033FE2C1BDEDF
F6DE9F7F368934A26573B05FC529201ECFF3076E03545F5622550475BCB0B945B9A2D17
D7E08390AC72C659608AE,
0xB82BB0F6F5C80E4C76C78A286AF059440FDFCB15366121F983C323CA63595913EEFF
37CCC7E8933D924F1EA43F561B1838A0B8F0B3CBA1C4B5761E60940EDF6CE251C77C7
117E64C4D2B5FF034B926C)

P2 =
(0x1FB74F74231E64ADE2E02714FBEE28A84791F927A18FEF5421CDD753DE3E10330C1
FC1E59F3D33550CEF3EBD14042323076FF6E0D3DAE864E028DCFF11C87179E9027DD0
658B44E5F86B9BCB14216807 +
0x1D971D94A7B12E869B0D7997AE345821C791AAE001766216446085479A5CB5459CB0
7D719DFD91DD4689763E57C3A2314AD3022830387AC5F96100BDC1B0EDBD841A7F2C
4E3C2BFE76B9626C501F2A34 ω1

+
ω2(0x227A454F6E97C31B9EBCB192B87A6713885218FBE4F332F9C476DC0FB8FC1CAA0
DD73C803A88DCD30E52CC255FFFE526BD6D356D5C54CDAD6B67078B0940C2846D54
7213365D0C6AACDBC64228C444E4 +
0x133EA14E90C5373B20CCE3CB6B5FA14B6C48B6B2B34EDDF645CD02B9D0E88DFB3
A9A2E38F8FFD7C2F1A8C3008B31D4A49A94A40A64D978C46051A523381478588F4D86
78948C97AA25DCEFACBE2FAC64 ω1),

0x456EFA04B448C5B338306BEE2D62D352B63DF8DB308E9B880504D749868586947CD8
3D1EAEF61860B0225EB5E128A807F2F23188CDFC56F4356C90BAF57082F2DD963ADA
BA7FAD05853D79566F42A07 +
0x2B50BC53A508122622D565EDD8AEE8B9B2E6F5F173D68E065C8DF05732173F9015D
CEDE8F9B7D7898B049E392CA40453BCE2005ED89562AB47290D2EE2BD38D43688AA5
2DEF25C304D809E68C7883DC0 ω1

+ ω2 (0x1C6E29D93DF19ACF3B0F6695F4E577C0F47FD2AFFD359056929D5C4D62E55

82E547BA9E33729147346DCE49F76E4DA790B173902403327539FF2B7045B24AEDAA61

0D98F8B96F4947B0E86D06DFCF7BD +
0x2C7C3508D8CB4E0D4FEE1A9DDE53244C4E18192D0A389E8DBFC83AB1014A63E57B
D0D18A88D53C4AA330DA1A2B07E11FE652FBA96C232D4EC14A5727461333614ACB54
BBBB4B3E91D8A15B8E5500AB3D ω1)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

119

A.12.4.4 Example 4

At the 128-bit security level as defined in NIST 800-57-2011 [B125], we have the following:

E: y2 = x3 –x + 1

p = 3

m = 509

k = 6

r = 0xF 5538 6BA0 A59D E6BA 9595 87D5 511B D8E8 B716 1C15 392A CB80 DC5F

 B128 7455 ABBD B5A4 5FD4 5F94 AEB0 2F9E 80EA 9684 9C66 5DCB FC69

 6763 1DF5 DCA1 25B9 0486 4CAA F1CE 8705 F491 78A4 B1CE 5CCC 3274

 F4BE BEF6 9ACF 6607 D449 8CDF 5427 8305 2DA7 2BA1 7D0F

#E(GF(3m)) / r = 0x7

P = (

(1,1,0,1,0,2,2,1,2,0,2,1,1,1,0,2,0,0,0,2,1,1,1,1,2,2,0,1,1,2,0,0,0,0,2,2,0,1,1,

 2,2,0,0,2,1,0,1,1,1,0,2,2,1,1,2,0,0,2,1,1,1,2,0,0,0,1,1,2,1,2,0,0,0,0,2,2,1,1,

 2,2,2,0,1,2,1,1,1,1,0,1,0,0,0,0,0,0,0,2,0,0,2,1,2,0,2,2,1,0,0,0,1,2,2,0,0,1,0,

 2,1,2,1,0,0,1,0,1,1,2,1,1,1,0,1,0,2,2,2,2,1,2,1,0,1,0,0,1,1,2,2,0,2,1,1,1,2,2,

 1,2,1,0,1,2,0,2,1,0,0,1,1,2,2,1,0,1,2,1,0,2,1,2,0,0,1,0,1,1,1,1,2,0,1,1,2,2,2,

 2,2,2,0,0,2,1,2,0,0,1,1,2,2,1,2,0,2,0,2,0,2,1,0,1,0,2,1,0,1,2,0,1,0,2,1,1,1,2,

 2,0,2,0,0,1,0,2,1,0,1,2,0,0,2,1,0,2,1,2,1,0,1,0,0,0,0,2,2,2,1,1,2,1,0,1,2,1,2,

 2,2,0,0,1,1,2,0,2,0,1,1,0,1,0,1,1,1,1,1,2,2,2,0,1,0,0,0,0,1,2,1,0,0,1,1,1,0,1,

 0,1,1,2,0,2,1,0,0,2,0,0,2,0,2,2,2,0,2,1,0,2,1,0,0,2,1,2,1,1,0,1,0,2,2,2,0,0,0,

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

120

 2,2,0,0,2,0,0,1,2,0,2,1,0,2,2,2,1,2,1,0,1,0,1,1,0,1,2,0,0,1,0,2,2,2,0,0,0,2,2,

 1,1,0,1,2,0,2,2,1,0,2,2,2,0,1,2,0,0,2,1,0,1,1,1,0,0,1,1,1,1,2,1,1,1,0,1,2,2,0,

 1,0,2,0,2,0,2,1,0,1,2,2,1,0,0,2,2,0,0,0,2,0,0,2,1,1,1,1,1,2,2,0,0,2,1,1,0,0,1,

 2,1,0,2,2,0,2,2,2,0,1,2,1,0,2,0,0,1,1,1,0,2,1,0,1,1,1,2,0,1,0,1,2,2,0,2,0,0,0,

 2,1),

(1,1,1,1,1,2,0,2,2,2,2,2,0,2,0,1,1,1,2,2,0,2,0,1,0,0,1,1,0,2,1,1,0,1,2,0,0,1,0,

 1,1,2,0,2,1,2,0,2,0,0,2,0,1,2,1,1,1,1,2,0,2,1,0,2,0,2,1,2,0,1,0,0,2,0,1,1,2,1,

 1,1,1,1,2,0,1,2,0,1,2,1,2,1,2,2,0,0,1,2,0,1,1,1,1,0,2,1,1,1,1,0,2,0,2,1,0,0,1,

 1,1,0,0,1,2,1,2,2,1,1,2,2,2,1,2,0,1,2,2,1,0,1,2,2,1,0,0,0,0,1,0,0,1,1,1,0,2,2,

 1,2,0,0,0,2,0,1,1,0,0,2,2,0,2,1,2,2,2,0,2,1,0,1,0,0,1,1,1,1,1,0,2,2,1,1,0,2,0,

 2,0,0,2,1,0,1,0,1,1,1,0,0,0,0,0,1,1,1,2,2,1,2,0,2,0,0,0,2,2,2,0,1,1,1,2,1,0,2,

 2,1,0,1,2,0,2,0,0,2,1,2,1,1,0,0,0,1,1,0,0,0,1,1,0,2,1,0,2,1,1,2,2,1,2,1,1,1,1,

 0,0,0,1,0,1,0,2,0,1,0,2,1,0,0,2,0,2,2,2,1,0,1,1,2,2,2,1,0,1,2,1,1,1,0,0,0,2,1,

 0,1,2,0,1,1,1,2,1,2,1,2,0,1,0,2,2,2,0,1,1,0,0,0,0,2,1,2,1,0,0,1,0,2,0,1,0,1,0,

 1,0,1,2,0,1,0,2,2,2,2,0,1,1,2,2,2,1,0,2,2,0,1,1,2,2,1,0,0,0,0,2,0,1,1,0,2,0,2,

 2,2,2,0,2,2,0,1,2,0,2,2,2,1,2,0,2,1,2,0,1,1,1,0,1,2,1,2,1,2,0,1,2,1,0,0,0,1,1,

 1,1,2,0,0,2,1,2,1,0,1,0,1,2,2,1,1,0,2,0,1,0,2,1,1,2,1,1,1,0,0,2,1,1,1,1,0,2,0,

 2,2,0,2,1,0,0,2,1,2,2,2,0,0,2,2,1,1,1,0,0,1,1,0,2,2,2,2,0,2,1,1,1,0,1,2,1,2,2,

 2,1)

)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

121

Annex B

(normative)

Conformance

The purpose of this annex is to provide implementers with a consistent language for claiming conformance
with parts of this standard. Note, however, that this annex does not provide the means for verifying that a
particular implementation indeed operates as claimed (this is sometimes called “implementation
validation”). Therefore, conformance claims made by an implementation are mere claims unless their
accuracy can be assured by other means. Such other means may include, for example, implementation
validation or assignment of legal liability to the implementer claiming conformance. Such claims are
outside the scope of this standard.

Note also that conformance for the purposes of this standard is a matter of functional correctness, not
secure implementation; for the latter, implementers should refer to the security considerations in Annex D.

An implementation may claim conformance with one or more primitives, schemes, or scheme operations
specified in this standard, as further described in this annex.

An implementation shall not claim conformance with this standard as a whole.

For background on primitives and schemes, please refer to Clause 4. Specific primitives and schemes are
defined in Clause 7 through Clause 11.

B.1 General model

A claim of conformance is an assertion by an implementation that it operates in accordance with some
specification over some set of inputs. Thus, a claim of conformance has fundamentally two parts as
follows:

⎯ The specification with which conformance is claimed

⎯ A set of inputs, or conformance region, for which the specification is defined, and over which
conformance is claimed

For the purposes of this standard, the specification may be that of a primitive, a scheme operation, or a
scheme. (An implementation may claim conformance with a scheme by claiming conformance with each
operation in the scheme.) For a primitive, the inputs are those stated in the specification; for a scheme
operation, the term “input” refers both to initial inputs such as messages and to inputs obtained during a
step of the operation such as domain parameters, keys, and key derivation parameters. Recommended
conformance regions are given in the specifications.

The set of inputs for which a specification is defined depends on the particular primitive or scheme. For a
primitive, the set consists of all inputs that satisfy the input constraints stated for the primitive. For a
scheme operation, the set includes at least those inputs that satisfy the input constraints for any primitives
invoked by the operation. If the operation includes key validation or domain parameter validation, then the
specification may also be defined for certain inputs that do not satisfy the input constraints for a primitive
invoked by the scheme. Thus, for example, the specification of a scheme operation may be defined for
invalid as well as valid keys when key validation is included in the scheme, even though the specification
of a primitive invoked by the scheme is not defined for invalid keys. This is because the behavior of the
scheme with key validation is defined as follows on invalid keys: The keys are rejected.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

122

The minimum behavioral requirements for claiming conformance over a conformance region are as
follows:

a) On all inputs in the conformance region, the implementation shall perform steps identical to or
equivalent to those specified.

b) On all other inputs it accepts, the behavior of the implementation shall not interfere with correct
operation on inputs in the conformance region. The behavior is otherwise unconstrained.

Acceptable behaviors in item b) include operating in accordance with the specification (if the specification
is defined for the input), rejecting the input, performing steps similar to those specified, or performing some
other noninterfering operation.

Because primitives are intended for low-level software or hardware implementation, it may be inconvenient
for an implementation of a primitive to check whether an input is supported. Consequently, while an
implementation of a primitive may reject some unsupported inputs, it is not expected that an
implementation of a primitive will reject every unsupported input. Primitives are not intended to provide
security apart from schemes, so such checking is appropriately deferred to the schemes. It is expected that
an implementation of a scheme will reject many or even all unsupported inputs, depending on whether key
and domain parameter validation is included. For more discussion on the risks of not rejecting unsupported
inputs, see D.3.

An implementation may claim conformance over with more than one conformance region, or more than
one specification.

NOTE 1— In the interest of interoperability, a conformance region should be sufficiently broad to support a range of
possible applications. It is expected that implementation profiles for various applications will give minimum
interoperability criteria, in terms of specifications and associated conformance region constraints. For a similar reason,
a conformance region should be documented explicitly. (In some cases, however, the documentation may be implicit to
some extent; for instance, the domain parameters may be unambiguously specified but secret.)

NOTE 2— Although an implementation’s behavior is unconstrained on inputs outside the conformance region (except
for not interfering with the behavior on inputs in the conformance region), it is recommended in the interest of
robustness that an implementation include checks that prevent failure when specified input constraints are not satisfied.
For instance, an implementation should include checks that prevent division by zero, or infinite loops, even if those
checks are not necessary when the specified input constraints are satisfied.

NOTE 3— The concept of “equivalence” (as in “perform steps … equivalent to”) should be understood in the sense of
indistinguishability. A conformant implementation of a scheme or primitive may perform steps identical to those
specified for the scheme or primitive, in the sense of performing those steps exactly as specified, or it may perform
similar steps that produce the same observable behavior. For instance, if a step calls for generating a random number,
then the implementation may generate a pseudorandom number. Under the usual cryptographic assumption that the
pseudorandom generator is indistinguishable from a truly random generator, the implementation is equivalent to the
specification at that step. Similarly, an implementation may choose to apply restrictions that exclude certain rare
events. For instance, an implementation may exclude DL or EC private keys that are equal to 1 and instead generate
private keys in the range [2, r – 1]. An implementation with such a restriction will be indistinguishable from the
specification and may still claim conformance. On the other hand, an implementation that generates private keys in the
range [1,1000] could not claim conformance because its behavior would be observably different from the specification.
As another example, an implementation of BF might output an error message when the output of the encryption
primitive equals its input, which is a rare event.

B.2 Conformance requirements

An implementation claiming conformance with a primitive or scheme specified in this standard shall meet
the requirements specified in the clauses of the standard indicated in the following discussion, in addition to
the general criteria in B.1. Requirements are to be understood in the context of Clause 2 (Normative

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

123

references), Clause 3 (Definitions), Clause 4 (Types of cryptographic techniques), and Clause 5
(Mathematical conventions).

An implementation may claim conformance with a primitive, a scheme, or a scheme operation. For a
scheme or scheme operation, conformance requirements for the selected primitive or primitives and for
additional techniques such as encoding methods or key derivation functions are also assumed. When
documenting conformance with a scheme, these scheme options shall be noted explicitly. In addition, the
documentation shall indicate whether the implementation includes key validation or domain parameter
validation and, if so, what is validated—i.e., what properties of keys and parameters are assured by the
validation. An implementation claiming conformance with a scheme shall satisfy the requirements for each
operation in the scheme.

The following is a template for a claim of conformance:

“Conforms with IEEE Std 1363.3-2013 (technique/options) over the region where (constraints on inputs).”

The “technique/options” component identifies the primitive, scheme, or scheme operation; any underlying
techniques such as the encoding method or hash function; and any additional choices such as whether and
how domain parameter or key validation is performed. The “constraints on inputs” component identifies the
conformance region. The method of expressing these components is left to the implementation. Some
examples are given in B.3. Table B.1 and Table B.2 list the primitives and schemes for which conformance
may be claimed.

Table B.1— Primitives for which conformance can be claimed

Primitive Subclauses
P-SK-G 7.2.1
P-SK-V 7.2.2
P-SK-E 7.2.3
P-SK-D 7.2.4
P-BB1-G 7.3.2
P-BB1-V 7.3.3
P-BB1-E 7.3.4
P-BB1-D 7.3.5
P-BF-G 7.4.2
P-BF-V 7.4.3
P-BF-E 7.4.4
P-BF-D 7.4.5
P-SCC-D1 7.5.1

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

124

Table B.2—Schemes for which conformance can be claimed

Scheme Operation Method Sections
SK KEM Setup SK-KEM-S 8.1.1
SK KEM Extract SK-KEM-EX 8.1.2
SK KEM Encapsulate SK-KEM-EN 8.1.3
SK KEM Decapsulate SK-KEM-DE 8.1.4
BB1 KEM Setup BB1-KEM-S 8.2.1
BB1 KEM Extract BB1-KEM-EX 8.2.2
BB1 KEM Encapsulate BB1-KEM-EN 8.2.3
BB1 KEM Decapsulate BB1-KEM-DE 8.2.4
BB1 IBE Setup BB1-IBE-S 8.3.1
BB1 IBE Extract BB1-IBE-EX 8.3.2
BB1 IBE Encrypt BB1-IBE-EN 8.3.3
BB1 IBE Decrypt BB1-IBE-DE 8.3.4
BF IBE Setup BF-IBE-S 8.4.1
BF IBE Extract BF-IBE-EX 8.4.2
BF IBE Encrypt BF-IBE-EN 8.4.3
BF IBE Decrypt BF-IBE-DE 8.4.4
BLMQ Signature Setup BLMQ-SIG-S 9.1.2
BLMQ Signature Extract BLMQ-SIG-EX 9.1.3
BLMQ Signature Create signature BLMQ-SIG-SI 9.1.4
BLMQ Signature Verify signature BLMQ-SIG-VE 9.1.5
BLMQ Signcryption Setup BLMQ-SC-S 10.1.1
BLMQ Signcryption Extract BLMQ-SC-EX 10.1.2
BLMQ Signcryption Sign and encrypt BLMQ-SC-SE 10.1.3
BLMQ Signcryption Decrypt and verify BLMQ-SC-DV 10.1.4
Wang key agreement Derive public key WKA-KA-D1 11.1.1
Wang key agreement Derive private key WKA-KA-D2 11.1.2
Wang key agreement Verification WKA-KA-V 11.1.3
Wang key agreement Derive secret value WKA-KA-D3 11.1.4
Wang key agreement Generate shared secrets WKA-KA-G 11.1.5
SCC Key agreement Generate shared secrets SCC-KA-G 11.2.1

B.3 Examples

This subclause gives some examples of claims of conformance with the primitives and scheme operations
in the standard.

B.3.1 BF IBE

A software module claims conformance with BF IBE. Its conformance claim is as follows:

⎯ Specification: BF IBE, as given in 8.4.

⎯ Conformance region: Parameters obey the following:

1) G1 and G3 are subgroups of order p of 2(())E GF q where p is a 160-bit prime, q is a 512-bit

prime with 2(mod3)q ≡ , and E is the elliptic curve 2 3: 1E y x= + .

2) 1 1 1 3:e G G G× → is the reduced, modified Tate pairing.

3) The hash function H1 is PHFSS.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

125

A module claiming conformance under these conditions may document its conformance as follows:

Conforms with IEEE P136.33-2013 BF IBE over the region where G1 and G3 are subgroups of order p of
2(())E GF q where p is a 160-bit prime, q is a 512-bit prime with 2(mod3)q ≡ , and E is the elliptic curve

2 3: 1E y x= + ; 1 1 1 3:e G G G× → is the reduced, modified Tate pairing, and the hash function H1 is PHFSS.

B.3.2 BB1 KEM

A software module claims conformance with BB1 KEM. Its conformance claim is as follows:

⎯ Specification: BB1 KEM, as given in 8.2.

⎯ Conformance region: Parameters obey the following:

1) G1 and G3 are subgroups of order p of 2(())E GF q where p is a 256-bit prime, q is a 1,536-bit

prime with 3(mod 4)q ≡ , and E is the elliptic curve 2 3:E y x x= + .

2) 1 1 1 3:e G G G× → is the reduced, modified Tate pairing.

A module claiming conformance under these conditions may document its conformance as follows:

Conforms with IEEE P1363.3-2013 BB1 KEM over the region where G1 and G3 are subgroups of order p of
2(())E GF q where p is a 256-bit prime, q is a 1,536-bit prime with 3(mod 4)q ≡ , and E is the elliptic curve

2 3:E y x x= + ; 1 1 1 3:e G G G× → is the reduced, modified Tate pairing.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

126

Annex C

(informative)

Rationale

This annex is presented in the form of questions and answers. Answers to many general questions that do
not deal with identity-based public-key cryptography using pairings can be found in Annex C of
IEEE Std 1363-2000.

C.1 General

C.1.1 Why are so many cryptographic techniques defined in this document?

Although not all the techniques defined in this document are established in the marketplace, all of them
offer some particular advantage in certain situations. Because it is useful for implementers to have access to
a wide range of techniques that can be used to solve a wide range of real-world problems, this document
included a wide range of techniques to make this possible.

C.1.2 How were the decisions made regarding the inclusion of individual schemes?

All the schemes that were submitted in the allowed time frame and were deemed to be acceptable to the
P1363 Working Group were included in this document.

C.1.3 What is the basis for believing that the schemes defined in this document are
secure?

Breaking the schemes defined in this document can be proven to be at least as difficult as solving one of
two problems. The first of these is the Computational Bilinear Diffie-Hellman Problem (BDHP). The
second in the Computational q-Bilinear Diffie-Hellman Inversion Problem (q-BDHIP).

The setting for both the BDHP and the q-BDHIP is the following. Let G1, G2, and GT be groups and
1 2 Te : G G G× → be a bilinear mapping, so that for 1 1g G∈ , 2 2g G∈ and integers a and b we have that

1 2 1 2(,) (,)a ae g g e g g= and 1 2 1 2(,) (,)b be g g e g g= . Let c be an additional integer.

The BDHP is the following: Given a
ig , b

jg , and c
kg , compute 1 2(,)abce g g , where

() () () () (){ }1 1 1 1 1 2 1 2 2 2 2 2i, j ,k , , , , , , , , , , ,∈ . This is assumed to be as difficult as calculating the discrete logs

in either Gi, Gj, Gk, or GT.

The q-BDHIP is the following. Given a
ig ,

2a
ig ,

3a
ig , …,

ka
ig , compute 1/

1 2(,) ae g g , where { }1 2i ,∈ . This is

assumed to be as difficult as calculating the discrete logs in Gi,.

The relationship between the size of the groups G1, G2, and GT and the security provided by the schemes in
this document is the same as that for other public-key schemes based on the intractability of calculating
discrete logarithms. More information on the details on the relationship between the size of the groups and
the difficulty of calculating discrete logarithms in them can be found in Annex D of IEEE Std 1363-2000.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

127

Annex D

(informative)

Security considerations

D.1 Introduction

In addition to the general comments from Annex D to IEEE Std 1363-2000, the following considerations
apply to the techniques for identity-based public-key cryptography that are defined in this document.

D.2 Cryptographic security

Subclause C.1.3 contains more information about the details of the basis for the cryptographic security of
the schemes defined in this standard.

D.3 Server secret protection

With the exception of the Wang key agreement scheme defined in 11.1, the cryptographic schemes defined
in this document require the use of a server secret that is used to calculate per-user private keys. To ensure
the security of the schemes, this server secret needs to be carefully protected because its compromise can
potentially allow an adversary to calculate any private key that he or she needs. This is analogous to the
requirement of protecting the private key that a certificate authority uses to create digital certificates in
X.509-based public-key infrastructure, and server secrets should be protected with the same level of
security as that of the private key of a certificate authority.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

128

Annex E

(informative)

Formats

E.1 Overview

As outlined in Clause 4, the specifications presented in this standard are functional specifications rather
than interface specifications. Therefore, this standard does not specify how the mathematical and
cryptographic objects (such as field elements, keys, or outputs of schemes) are to be represented for the
purposes of communication or storage. This informative annex provides references to other relevant
standards and defines some recommended primitives for that purpose. Although the use of this annex is
optional, it is recommended for interoperability.

As octet strings are arguably the most common way to represent data electronically for the purposes of
communication, this annex focuses on representing objects as octet strings. One way to accomplish this is
to represent data structures in Abstract Syntax Notation 1 (ASN.1—see ISO/IEC 8824-1:2002 [B77],
ISO/IEC 8824-2:2002 [B78], ISO/IEC 8824-3:2002 [B79], and ISO/IEC 8824-4:2002 [B80]) and then to
use encoding rules, such as Basic Encoding Rules, Distinguished Encoding Rules, or others (see ISO/IEC
8825-1:2002 [B81] and ISO/IEC 8825-2:2002 [B82]) to represent them as octet strings. This annex does
not specify ASN.1 constructs for use in this standard because the generality of this standard would make
such constructs very complex. It is likely that particular implementations only use a small part of the
options available in this standard and would be better served by simpler ASN.1 constructs. When the use of
ASN.1 is desired, ASN.1 constructs defined in the following standards or draft standards may be adapted
for use:

⎯ ANSI X9.42-2003 [B5] for DL key agreement

⎯ ANSI X9.63-2001 [B10] for EC key agreement and EC encryption for key transport

⎯ ANSI X9.57-1997 [B8] for DL DSA signatures

⎯ ANSI X9.62-2005 [B9] for EC DSA signatures

⎯ ANSI X9.31-1998 [B4] for IF signatures

⎯ ANSI X9.44-2007 [B6] for IF encryption for key transport

Additional examples of ASN.1 syntax can be found in documents such as PKCS #1 [B133] and SEC1
(Bleichenbacher [B23]). Alternatives to ASN.1 syntax are also available. In the digital signature
specification for the eXtensible Markup Language (XML) (Solo et al. [B152]), public keys and digital
signatures are represented as ASCII text strings, whereas in Transport Layer Security (TLS) (Dierks and
Rescorla [B52]), various cryptographic values are represented as octet strings with a syntax that is similar
to data structures in the C programming language.

Subclause E.2 gives recommendations on representing basic mathematical objects as octet strings.

E.2 Representing basic data types as octet strings

When integers, finite field elements, elliptic curve points, or binary polynomials need to be represented as
octet strings, it should be done as described in this subclause. Other primitives for converting between
different data types (including bit strings) are defined in Clause 5.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

129

E.2.1 Integers (I2OSP and OS2IP)

Integers should be converted to/from octet strings using primitives I2OSP and OS2IP, as defined in 5.6.3.

E.2.2 Finite field elements (FE2OSP and OS2FEP)

Finite field elements should be converted to/from octet strings using primitives FE2OSP and OS2FEP, as
defined in 5.6.4.

E.2.3 Elliptic curve points (EC2OSP and OS2ECP)

Elliptic curve points should be converted to/from octet strings using one of the pairs of primitives defined
in 5.6.6.2 or 5.6.6.3. The x-coordinate-only representation in 5.6.6.3 should be employed only if the
recipient does not need to resolve the ambiguity in the y coordinate or can do so by other means.

NOTE—In general, the elliptic curve signature schemes in this standard depend on the specific y coordinate, and the
elliptic curve key agreement and encryption schemes do not.

An elliptic curve point P (which is not the point at infinity O) can be represented in either compressed or
uncompressed form. (For internal calculations, it may be advantageous to use other representations, e.g.,
the projective coordinates of A.7. See A.7 also for more information on point compression.) The
uncompressed form of P is simply given by its two coordinates. The compressed form is presented in E.2.4.
The octet string format is defined to support both compressed and uncompressed points.

E.2.4 Polynomials over GF(p), p ≥ 2 (PN2OSP and OS2PNP)

Polynomials over GF(p), p prime (e.g., field polynomials, when represented as domain parameters) should
be converted to/from octet string using primitives PN2OSP and OS2PNP, defined in the subsequent
paragraph.

If p = 2, then the coefficients of a polynomial f(t) over GF(2) are elements of GF(2) and are, therefore,
represented as bits: The element zero of GF(2) is represented by the bit 0, and the element 1 of GF(2) is
represented by the bit 1 (see 5.6.4). If p ≥ 3, then the coefficients are represented as integers modulo p. Let
e be the degree of f(t) and

f(t) = ae t
 e + ae–1 t

 e–1 + … + a1 t + a0

where ae = 1. If p = 2, then to represent f(t) as an octet string, the bits representing its coefficients should be
concatenated into a single bit string: a = ae || ae–1 || … || a1 || a0. The bit string a should then be converted
into an octet string using BS2OSP (see 5.6.2). If p ≥ 3, then the integer

a = at–1p
t–1 + … + a2p

2 + a1p+ a0

should first be computed and then converted into an octet string using I2OSP (see 5.6.3).

The primitive that converts polynomials over GF(p) to octet strings is called Polynomial to Octet String
Conversion Primitive or PN2OSP. It takes a polynomial f(t) and a prime p as input and outputs an octet
string.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

130

The primitive that converts octet strings to polynomials over GF(p) is called Octet String to Polynomial
Conversion Primitive or OS2PNP. It takes the octet string and the prime p as inputs and outputs the
corresponding polynomial over GF(p). Let l be the length of the input octet string.

If p = 2, then OS2PNP should use OS2BSP (see 5.6.2) with the octet string and the length 8l as inputs. It
should output “error” if OS2BSP outputs “error.” The output of OS2BSP should be parsed into 8l
coefficients, one bit each. Note that at most seven leftmost coefficients may be zero. The leftmost zero
coefficients should be discarded.

If p ≥ 3, then OS2PNP should use OS2IP (see 5.6.3) to obtain the integer a defined previously. The
resulting polynomial can be obtained from this integer by successively dividing by p and keeping the
remainder as in 5.3.3.

NOTE—The representation defined in this subclause is intended for arbitrary polynomials. More compact
representations are possible for sparse polynomials; see Schroeppel and Eastlake [B144] for an example.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

131

Annex F

(informative)

Bibliography

Bibliographical references are resources that provide additional or helpful material but do not need to be
understood or used to implement this standard. Reference to these resources is made for informational use
only.

[B1] ANSI X9.17-1995, Financial Institution Key Management (Wholesale).

[B2] ANSI X9.30:1-1997, Public Key Cryptography for the Financial Services Industry: Part 1: The
Digital Signature Algorithm (DSA) (revision of X9.30:1-1995).

[B3] ANSI X9.30:2-1997, Public Key Cryptography for the Financial Services Industry: Part 2: The
Secure Hash Algorithm (SHA-1) (revision of X9.30:2-1993).

[B4] ANSI X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the Financial
Services Industry (rDSA).

[B5] ANSI X9.42-2003, Public Key Cryptography for the Financial Services Industry: Agreement of
Symmetric Keys Using Diffie-Hellman and MQV Algorithms.

[B6] ANSI X9.44-2007, Key Establishment Using Integer Factorization Cryptography.

[B7] ANSI X9.52-1998, Cryptography for the Financial Services Industry: Triple Data Encryption
Algorithm Modes of Operation.

[B8] ANSI X9.57-1997, Public Key Cryptography for the Financial Services Industry: Certificate
Management.

[B9] ANSI X9.62-2005, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA).

[B10] ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry: Elliptic Curve Key
Agreement and Transport using Elliptic Curve Cryptography.

[B11] ANSI X9.80-2005, Prime Number Generation, Primality Testing and Primalilty Certificates.

[B12] ANSI X9.TG-17, 1998, Public-Key Cryptography for the Financial Services Industry: Technical
Guideline on Elliptic Curve Arithmetic.

[B13] Adams, C., and M. Myers, “Certificate management message formats,” Internet Engineering Task
Force (IETF), PKIX working group, work in progress.6

[B14] Anderson, R., and M. Kuhn, “Soft tempest: Hidden data transmission using electromagnetic
emanations,” D. Aucsmith, Ed., Second International Workshop on Information Hiding—IH’98, Lecture
Notes in Computer Science, vol. 1525. New York: Springer-Verlag, 1998.

[B15] Ash, D. et al., “Low complexity normal bases,” Discrete Applied Mathematics, vol. 25, pp. 191-210,
1989.

[B16] Atkin, O., “Square roots and cognate matters modulo p = 8n + 5,” Internet communication to
Number Theory mailing list (11 Nov. 1992).7

6 Available at http://www.ietf.org/ids.by.wg/pkix.html.
7 Archived at http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

132

[B17] Bellare, M., and P. Rogaway, “Optimal asymmetric encryption—how to encrypt with RSA,” A. De
Santis, Ed., Advances in Cryptology—EUROCRYPT ‘94, Lecture Notes in Computer Science, vol. 950.
New York: Springer-Verlag, 1995, pp. 92–111.8

[B18] Bellare, M., and P. Rogaway, “The exact security of digital signatures: How to sign with RSA and
Rabin,” U. M. Maurer, Ed., Advances in Cryptology—EUROCRYPT ‘96, Lecture Notes in Computer
Science, vol. 1070. New York: Springer-Verlag, 1996, pp. 399–416.9

[B19] Bellare, M. et al., “Relations among notions of security for public-key encryption schemes,” H.
Krawczyk, Ed., Advances in Cryptology—CRYPTO ‘98, Lecture Notes in Computer Science, vol. 1462.
New York: Springer-Verlag, 1998, pp. 26–45.10

[B20] Berlekamp, E., Algebraic Coding Theory. New York: McGraw-Hill, 1968, pp. 36–44.

[B21] Blake-Wilson, S. et al., “Key agreement protocols and their security analysis,” M. Darnell, Ed.,
Cryptography and Coding: Sixth IMA International Conf., Lecture Notes in Computer Science, vol. 1355.
New York: Springer-Verlag, 1997, pp. 30–45.11

[B22] Blake-Wilson, S., and A. Menezes, “Unknown key-share attacks on the station-to-station (STS)
protocol,” H. Imai and Y. Zheng, Eds., Public Key Cryptography: Second International Workshop on
Practice and Theory in Public Key Cryptography, PKC’99, Lecture Notes in Computer Science, vol. 1560,
pp. 154–170, 1999.12

[B23] Bleichenbacher, D., “Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS #1,” H. Krawczyk, Ed., Advances in Cryptology—CRYPTO ‘98, Lecture Notes in Computer
Science, vol. 1462. New York: Springer-Verlag, 1998, pp. 1–12.

[B24] Blum, L. et al., “A simple unpredictable pseudo-random number generator,” SIAM Journal on
Computing, vol. 15, pp. 364–383, 1986.

[B25] Blum, M., and S. Micali, “How to generate cryptographically strong sequences of pseudo-random
bits,” SIAM Journal on Computing, vol. 13, pp. 850–864, 1984.

[B26] Boneh, D., and X. Boyen, “Efficient selective-ID secure identity based encryption without random
oracles,” Advances in Cryptology—EUROCRYPT 2004, vol. 3027 of Lecture Notes in Computer Science.
Berlin: Springer-Verlag, 2004, pp. 223–238.

[B27] Boneh, D., and G. Durfee, “Cryptoanalysis of RSA with private key d less than N0.292,” J. Stern, Ed.,
Advances in Cryptology—EUROCRYPT ‘99, Lecture Notes in Computer Science, vol. 1592. Berlin:
Springer-Verlag, 1999, pp. 1–11.

[B28] Boneh, D., and M. Franklin, “Identity based encryption from the Weil pairing,” Advances in
Cryptology - Crypto 2001, vol. 2139 of Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2001,
pp. 213–229.

[B29] Boneh, D., and R. Lipton, “Algorithms for black box fields and their application to cryptography,”
N. Koblitz, Ed., Advances in Cryptology—CRYPTO ‘96, Lecture Notes in Computer Science, vol. 1109.
Berlin: Springer-Verlag, 1996, pp. 283–297.

[B30] Boneh, D., and R. Venkatesan, “Breaking RSA may not be equivalent to factoring,” K. Nyberg, Ed.,
Advances in Cryptology—EUROCRYPT ‘98, Lecture Notes in Computer Science, vol. 1403. Berlin:
Springer-Verlag, 1998, pp. 59–71.

[B31] Boneh, D. et al., “An attack on RSA given a small fraction of the private key bits,” K. Ohta and D.
Pei, Eds., Advances in Cryptology – ASIACRYPT ’98, Lecture Notes In Computer Science, vol. 1514.
Berlin: Springer-Verlag, 1998, pp. 25–34.

8 Revised version appears in http://www-cse.ucsd.edu/users/mihir/papers/crypto-papers.html.
9 Revised version appears in http://www-cse.ucsd.edu/users/mihir/papers/crypto-papers.html.
10 Full version appears in http://www-cse.ucsd.edu/users/mihir/papers/crypto-papers.html.
11 A full version is available from http://www.cacr.math.uwaterloo.ca/.
12 Also available as technical report CORR 98-42 from http://www.cacr.math.uwaterloo.ca/.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

133

[B32] Boneh, D. et al., “On the importance of checking cryptographic protocols for faults,” W. Fumy, Ed.,
Advances in Cryptology—EUROCRYPT ‘97, Lecture Notes in Computer Science, vol. 1223. Berlin:
Springer-Verlag, 1997, pp. 37–51.

[B33] Boyen, X., “A promenade through the new cryptography of bilinear pairings,” Proc. Information
Theory Workshop—2006, Punta del Este, Uruguay, pp. 19–23, 2006.

[B34] Brillhart, J. et al., Factorizations of bn ± 1, b = 2,3, 5,6,7,10,11,12, up to High Powers, 2d ed.
Providence, RI: American Mathematical Society, 1988.

[B35] Buchmann, J., et al., “An implementation of the general number field sieve,” D. Stinson, Ed.,
Advances in Cryptology—CRYPTO ‘93, Lecture Notes in Computer Science, vol. 773. Berlin: Springer-
Verlag, 1994, pp. 159–165.

[B36] Buell, D., Binary Quadratic Forms: Classical Theory and Modern Computations. Berlin: Springer-
Verlag, 1989.

[B37] Buhler, J. et al., “Factoring integers with the number field sieve,” A. K. Lenstra and H.W. Lenstra,
Jr., Eds., The Development of the Number Field Sieve, Lecture Notes in Mathematics, vol. 1554. Berlin:
Springer-Verlag, 1993, pp. 50–94.

[B38] Burthe, R., Jr., “Further investigations with the strong probable prime test,” Mathematics of
Computation, vol. 65, pp. 373–381, 1996.

[B39] Chen, L. et al., “An efficient ID-KEM based on the Sakai-Kasahara key construction," IEE Proc.,
Information Security, vol. 153, pp. 19–26, 2006.

[B40] Chen, L., and C. Williams, “Public Key Sterilization,” unpublished draft, Aug. 1998.

[B41] Chen, L., and Z. Cheng, “Security proof of Sakai-Kasahara's identity-based encryption scheme,” N.
Smart, Ed., Proc. of the 10th IMA International Conf. on Cryptography and Coding, LNCS 3796. Berlin:
Springer-Verlag, 2005, pp. 442–459.

[B42] Chen, L. et al., “Identity-based key agreement protocols from pairings,” Int. Journal of Information
Security, vol. 6. Berlin: Springer, 2007, pp. 213–241.

[B43] Chen, M., and E. Hughes, “Protocol Failures Related to Order of Encryption and Signature:
Computation of Discrete Logarithms in RSA Groups,” C. Boyd and E. Dawson, Eds., Third Australian
Conf. on Information Security and Privacy—ACISP ’98, Lecture Notes in Computer Science, vol. 1438,
1998.

[B44] Chudnovsky, D. V., and G.V. Chudnovsky, “Sequences of numbers generated by addition in formal
groups and new primality and factorizations tests,” Advances in Applied Mathematics, vol. 7, pp. 385–434,
1987.

[B45] Coppersmith, D. et al., “ISO 9796-1 and the new forgery strategy (working draft).” Presented at the
rump session of CRYPTO ‘99.13

[B46] Coppersmith, D. et al., “Low-exponent RSA with related messages,” U. M. Maurer, Ed., Advances
in Cryptology—EUROCRYPT ‘96, Lecture Notes in Computer Science, vol. 1070. Berlin: Springer-Verlag,
1996, pp. 1–9.

[B47] Coron, J., and D. Naccache, “An accurate evaluation of Maurer’s universal test,” Selected Areas in
Cryptography—SAC ’98, Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1998.

[B48] Coron, J., et al., “On the security of RSA padding,” M. J. Wiener, Ed., Advances in Cryptology—
CRYPTO ‘99, Lecture Notes in Computer Science, vol. 1666. Berlin: Springer-Verlag, 1999, pp. 1–18.

[B49] Damgard, I. et al., “Average case error estimates for the strong probable prime test,” Mathematics of
Computation, vol. 61, pp. 177–194, 1993.

13 Available from http://grouper.ieee.org/groups/1363/contrib.html.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

134

[B50] Davis, D. et al., “Cryptographic randomness from air turbulence in disk drives,” Y. Desmedt, Ed.,
Advances in Cryptology—CRYPTO ‘94, Lecture Notes in Computer Science, vol. 839. Berlin: Springer-
Verlag, 1994, pp. 114–120.

[B51] Dhem, J. et al., “A Practical Implementation of the Timing Attack,” CARDIS ’98, Lecture Notes in
Computer Science, Springer Verlag, 1998.

[B52] Dierks, T., and E. Rescorla, “The Transport Level Security (TLS) Protocol Version 1.2,” August
2008, RFC 5246.14

[B53] Diffie, W., “The first ten years of public-key cryptology,” Proc. of the IEEE, vol. 76, pp. 560–577,
1988.

[B54] Diffie, W., and M. Hellman, “New directions in cryptography,” IEEE Transactions on Information
Theory vol. 22, pp. 644–654, 1976.

[B55] Diffie, W. et al., “Authentication and authenticated key exchanges,” Designs, Codes and
Cryptography, vol. 2, pp. 107–125, 1992.

[B56] Dobbertin, H. et al., “RIPEMD-160: A strengthened version of RIPEMD,” D. Gollmann, Ed., Fast
Software Encryption, Third Int. Workshop, Lecture Notes in Computer Science, vol. 1039. Berlin: Springer-
Verlag, 1996, pp. 71–82.15

[B57] Dodson, B., and A. Lenstra, “NFS with four large primes: An explosive experiment,” D.
Coppersmith, Ed., Advances in Cryptology—CRYPTO ‘95, Lecture Notes in Computer Science, vol. 963.
Berlin: Springer-Verlag, 1995, pp. 372–385.

[B58] Federal Information Processing Standards Publication 140-1, Security Requirements for
Cryptographic Modules, April 11, 1994 (supersedes FIPS PUB 140).16

[B59] Federal Information Processing Standards Publication 140-2, Security Requirements for
Cryptographic Modules, May 25, 2001 (supersedes FIPS PUB 140-1).17

[B60] Federal Information Processing Standards Publication 180-4, Secure Hash Standard, U.S.
Department of Commerce/National Institute of Standards and Technology, National Technical Information
Service, Springfield, Virginia, March, 2012.18

[B61] Federal Information Processing Standards Publication 186, Digital Signature Standard, 1994.19

[B62] Gallant, R. et al., “Improving the parallelized Pollard lambda search on binary anomalous curves,”
Mathematics of Computation, to appear.

[B63] Gennaro, R. et al., “An efficient non-interactive statistical zero-knowledge proof system for quasi-
safe prime products,” Proc. of the 5th ACM Conf. on Computer and Communications Security (CCS-5),
1998, pp. 67–72.20

[B64] Gilbert, H. et al., “Attacks on Shamir’s ‘RSA for paranoids.’” Information Processing Letters, vol.
68, pp.197–199, 1998.21

[B65] Goldwasser, S., and J. Kilian, “Almost all primes can be quickly certified,” Proc. of the 18th Annu.
ACM Symp. on Theory of Computing, 1986, pp. 316–329.

[B66] Goldwasser, S., and S. Micali, “Probabilistic encryption,” Journal of Computer and System Sciences,
vol. 28, pp. 270–299, 1984.

14 Available at http://tools.ietf.org/html/rfc5246.
15 A corrected and updated version is available from http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html.
16 Available at http://www.itl.nist.gov/div897/pubs/fip140-1.htm.
17 Available at http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.
18 Available at http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.
19 Available at http://www.itl.nist.gov/div897/pubs/fip186.htm.
20 Available from http://www.acm.org/pubs/articles/proceedings/commsec/288090/p67-gennaro/p67-gennaro.pdf.
21 Also available from http://www.research.att.com/~amo/doc/crypto.html.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

135

[B67] Goldwasser, S. et al., “A digital signature scheme secure against adaptive chosen-message attacks,”
SIAM Journal on Computing, vol. 17, pp. 281–308, 1988.

[B68] Gordon, D., “A survey of fast exponentiation methods,” Journal of Algorithms, vol. 27, pp. 129–
146, 1998.

[B69] Gordon, D., “Designing and detecting trapdoors for discrete log cryptosystems,” E. Brickell, Ed.,
Advances in Cryptology—CRYPTO ’92, Lecture Notes in Computer Science, vol. 740. Berlin: Springer-
Verlag, 1993, pp. 66–75.

[B70] Gordon, D., “Discrete logarithms in GF (p) using the number field sieve,” SIAM Journal on Discrete
Mathematics, vol. 6, pp. 124–138, 1993.

[B71] Gordon, D., and K. McCurley, “Massively parallel computations of discrete logarithms,” E. Brickell,
Ed, Advances in Cryptology—CRYPTO ’92, Lecture Notes in Computer Science, vol. 740. Berlin: Springer-
Verlag, 1993, pp. 312–323.

[B72] Goss, K., “Cryptographic Method and Apparatus for Public Key Exchange with Authentications,”
U.S. Patent no. 4,956,863, Sept. 11, 1990.

[B73] Guillou, C. et al., “Precautions taken against various potential attacks in ISO/IEC DIS 9796,” I.B.
Damgard, Ed., Advances in Cryptology—EUROCRYPT ‘90, Lecture Notes in Computer Science, vol. 473.
Berlin: Springer-Verlag, 1991, pp. 465–473.

[B74] Gunther, C., “An identity-based key-exchange protocol,” J. Quisquater and J. Vandewalle, Eds.,
Advances in Cryptology—EUROCRYPT ’89, Lecture Notes in Computer Science, vol. 434. Berlin:
Springer-Verlag, 1990, pp. 29–37.

[B75] Hafner, K., and J. Markoff, Cyberpunk: Outlaws and Hackers on the Computer Frontier, updated
edition. New York: Touchstone Books, 1995.

[B76] Hastad, J., “Solving simultaneous modular equations of low degree,” SIAM Journal on Computing,
vol. 17, pp. 336–341, 1988.

[B77] ISO/IEC 8824-1:2002, Information Technology—Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. Equivalent to ITU-T Rec. X.680 (2002).22

[B78] ISO/IEC 8824-2:2002, Information Technology—Abstract Syntax Notation One (ASN.1):
Information Object Specification. Equivalent to ITU-T Rec. X.681 (2002).

[B79] ISO/IEC 8824-3:2002, Information Technology—Abstract Syntax Notation One (ASN.1):
Constraint Specification. Equivalent to ITU-T Rec. X.682 (2002).

[B80] ISO/IEC 8824-4:2002, Information Technology—Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 Specifications. Equivalent to ITU-T Rec. X.683 (2002).

[B81] ISO/IEC 8825-1:2002, Information Technology—ASN.1 Encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).
Equivalent to ITU-T Rec. X.690 (2002).

[B82] ISO/IEC 8825-2:2002, Information Technology—ASN.1 Encoding Rules: Specification of Packed
Encoding Rules (PER). Equivalent to ITU-T Rec. X.691 (2002).

[B83] ISO/IEC 9796:1991, Information Technology—Security Techniques—Digital Signature Scheme
Giving Message Recovery.

[B84] ISO/IEC 9796-4-1998, Information Technology—Security Techniques—Digital Signature Schemes
Giving Message Recovery—Part 4: Methods Based on the Discrete Logarithm.

[B85] ISO/IEC DIS 14888-3-1998, Information Technology—Security Techniques—Digital Signature
with Appendix—Part 3: Certificate-Based Mechanisms.

22 ISO/IEC publications are available from the ISO Central Secretariat (http://www.iso.org/). ISO publications are also available in the
United States from the American National Standards Institute (http://www.ansi.org/).

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

136

[B86] Itoh, T., et al., “A Fast Algorithm for Computing Multiplicative Inverses in GF (2t) using normal
bases,” Journal of the Society for Electronic Communications (Japan), vol. 44, pp. 31–36, 1986.

[B87] ITU-T Recommendation X.509 (E 29041)-2005, Information Technology—Open Systems
Interconnection—The Directory: Public-key and Attribute Certificate Frameworks.23

[B88] Johnson, D., unpublished communication to ANSI X9F1 and IEEE P1363 working groups.

[B89] Johnson, D., and S. Matyas, “Asymmetric encryption: Evolution and enhancements,” CryptoBytes
vol. 2 no. 1 (Spring 1996), RSA Laboratories.24

[B90] Joye, M., and J. Quisquater, “Efficient computation of full Lucas sequences,” Electronics Letters,
vol. 32, pp. 537–538, 1996.25

[B91] Joye, M., and J. Quisquater, “On Rabin-type signatures (working draft).” Presented at the rump
session of CRYPTO ‘99.26

[B92] Kaliski, B., Jr., “Compatible cofactor multiplication for Diffie-Hellman primitives,” Electronics
Letters, vol. 34, pp. 2396–2397, 1998.

[B93] Kaliski, B., Jr., “MQV vulnerability,” Internet communication to ANSI X9F1 and IEEE P1363
mailing lists, June 17, 1998.

[B94] Kehoe, B., Zen and the Art of the Internet: A Beginner's Guide, 4th ed. Upper Saddle River, NJ:
Prentice Hall Computer Books, 1995.

[B95] Kelsey, J. et al., “Cryptanalytic attacks on pseudorandom number generators,” S. Vaudenay, Ed.,
Fast Software Encryption, Fifth International Workshop Proc., Lecture Notes in Computer Science, vol.
1372. Berlin: Springer-Verlag, 1998, pp. 168–188.

[B96] Kerckhoffs, A., “La cryptographie militaire,” Journal des Sciences Militaires, 9th Series, pp. 161–
191, 1883.

[B97] Knuth, D., The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, 2d ed. Boston,
MA: Addison-Wesley, 1981, p. 379.

[B98] Koblitz, N., A Course in Number Theory and Cryptography, 2d ed. Berlin: Springer-Verlag, 1994.

[B99] Koblitz, N., “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48, pp. 203–209,
1987.

[B100] Kocher, P., “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems,”
N. Koblitz, Ed., Advances in Cryptology—CRYPTO ‘96, Lecture Notes in Computer Science, vol. 1109.
Berlin: Springer-Verlag, 1996, pp. 104–113.

[B101] Kravitz, D., “Digital Signature Algorithm,” U.S. Patent no. 5,231,668, July 1993.

[B102] Law, L. et al., “An Efficient Protocol for Authenticated Key Agreement,” Technical Report CORR
98-05, Dept. of C&O, University of Waterloo, Canada, March 1998 (revised August 28, 1998).27

[B103] Lay, G., and H. Zimmer, “Constructing elliptic curves with given group order over large finite
fields,” Algorithmic Number Theory: First International Symp., Lecture Notes in Computer Science, vol.
877. Berlin: Springer-Verlag, 1994, pp. 250–263.

[B104] Lehmer, D., “Computer technology applied to the theory of numbers,” W. LeVeque, Ed., Studies in
Number Theory. Washington, D.C.: Mathematical Association of America, 1969.

[B105] Lenstra, H., Jr., “Factoring integers with elliptic curves,” Annals of Mathematics, vol. 126, pp. 649–
673, 1987.

23 ITU-T publications are available from the International Telecommunications Union (http://www.itu.int/).
24 Available at ftp://ftp.rsa.com/pub/cryptobytes/crypto2n1.pdf.
25 Corrected version available at http://www.dice.ucl.ac.be/crypto/publications.html.
26 Available from http://grouper.ieee.org/groups/1363/contrib.html.
27 Available from http://www.cacr.math.uwaterloo.ca/.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

137

[B106] Lim, C., and P. Lee, “A key recovery attack on discrete log-based schemes using a prime order
subgroup,” B. Kaliski, Jr., Ed, Advances in Cryptology—CRYPTO ‘97, Lecture Notes in Computer Science,
vol. 1294. Berlin: Springer-Verlag, 1997, pp. 249–263.

[B107] Liskov, M., and R. Silverman, “A statistical limited-knowledge proof for secure RSA keys,”
submitted to Journal of Cryptology, 1998.

[B108] MasterCard International, Inc. and Visa International Service Association, SET Secure Electronic
Transaction Specification, May 31, 1997.28

[B109] Matsumoto, T. et al., “On seeking smart public-key-distribution systems,” The Transactions of the
IECE of Japan, vol. E69, pp. 99–106, 1986.

[B110] Maurer, U., “A universal statistical test for random bit generators,” A. Menezes and S. Vanstone,
Eds., Advances in Cryptology—CRYPTO ‘90, Lecture Notes in Computer Science, vol. 537. Springer-
Verlag, 1991, pp. 409–420.

[B111] Maurer, U., “Fast generation of prime numbers and secure public-key cryptographic parameters,”
Journal of Cryptology, vol. 8, pp. 123–155, 1995.

[B112] Menezes, A., Ed., Applications of Finite Fields. Dordrecht, The Netherlands: Kluwer Academic
Publishers, 1993.

[B113] Menezes, A., “Elliptic curve cryptosystems,” CryptoBytes, vol. 1, no. 2, Summer 1995, RSA
Laboratories.29

[B114] Menezes, A., Elliptic Curve Public Key Cryptosystems. Dordrecht, The Netherlands: Kluwer
Academic Publishers, 1993.

[B115] Menezes, A. et al., Handbook of Applied Cryptography. Boca Raton, FL: CRC Press, 1996.

[B116] Menezes, A. et al., “Reducing elliptic curve logarithms to logarithms in a finite field,” IEEE
Transactions on Information Theory, vol. 39, pp. 1639–1646, 1993.

[B117] Menezes, A. et al., “Some new key agreement protocols providing implicit authentication,” in
Workshop Rec., 2nd Workshop on Selected Areas in Cryptography (SAC’95), Ottawa, Canada, May 18-19,
1995, pp. 22-32.

[B118] Micali, S., and C. Schnorr, “Efficient, perfect polynomial random number generators,” Journal of
Cryptology, vol. 3, pp. 157–172, 1991.

[B119] Micali, S. et al., “The notion of security for probabilistic cryptosystems,” SIAM Journal on
Computing, vol. 17, pp. 412–426, 1988.

[B120] Mihailescu, P., “Fast generation of provable primes using search in arithmetic progressions,” Y.
Desmedt, Ed., Advances in Cryptology—CRYPTO ‘94, Lecture Notes in Computer Science, vol. 839.
Berlin: Springer-Verlag, 1994, pp. 282–293.

[B121] Miller, V., “Use of elliptic curves in cryptography,” H. Williams, Ed., Advances in Cryptology—
Crypto ’85, Lecture Notes in Computer Science, vol. 218. Berlin: Springer-Verlag, 1986, pp. 417–426.

[B122] Miyaji, A. et al., “New explicit conditions of elliptic curve traces for FR-reduction,” IEICE
Transactions on Fundamentals, vol. E84-A, pp. 1234–1243, 2001.

[B123] Morain, F., “Building cyclic elliptic curves modulo large primes,” D. Davies, Ed., Advances in
Cryptology - EUROCRYPT ‘91, Lecture Notes in Computer Science, vol. 547. Springer-Verlag, 1991, pp.
328-336.

[B124] National Institute of Standards and Technology, “Recommended elliptic curves for federal
government use,” draft 1999.30

28 Available from http://www.setco.org/.
29 Available at ftp://ftp.rsa.com/pub/cryptobytes/crypto1n2.pdf.
30 Available from http://csrc.nist.gov/encryption/.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

138

[B125] National Institute of Standards and Technology, Special Publication 800-57: Recommendation for
Key Management—Part 1: General, revised 2011.

[B126] NIST Recommendation for Key Management, Part 1: General, NIST Special Publication 800-57,
Aug. 2005.31,32

[B127] Nyberg, K., and R. Rueppel, “A new signature scheme based on the DSA giving message
recovery,” 1st ACM Conf. on Computer and Communcations Security. New York: ACM Press, 1993, pp.
58–61.

[B128] Odlyzko, A., “The future of integer factorization,” CryptoBytes, vol. 1, no. 2, summer 1995. RSA
Laboratories.33

[B129] Oorschot, P. van, and M. Wiener, “Parallel collision search with applications to hash functions and
discrete logarithms,” 2nd ACM Conf. on Computer and Communications Security. Washington, D.C.:
ACM Press, 1994, pp. 210–218.

[B130] Pollard, J., “A Monte Carlo method for factorization,” BIT, vol. 15, pp. 331–334, 1975.

[B131] Pollard, J., “Monte Carlo methods for index computation (mod p),” Mathematics of Computation,
vol. 32, pp. 918–924, 1978.

[B132] Pollard, J., “Theorems on factorization and primality testing,” Proc. of the Cambridge Philosphical
Society, vol. 76, pp. 521-528, 1974.

[B133] Public Key Cryptography Standards (PKCS), PKCS #1 v1.5: RSA Encryption Standard, 1993.34

[B134] Public Key Cryptography Standards (PKCS), PKCS #1 v2.0: RSA Cryptography Standard, 1998.

[B135] Rabin, M., “Digitalized signatures and public-key functions as intractable as factorization,”
Massachusetts Institute of Technology Laboratory for Computer Science Technical Report 212
(MIT/LCS/TR-212), 1979.

[B136] RFC 1750, Randomness Recommendations for Security, Dec. 1994. 35

[B137] RFC 2311, S/MIME Version 2 Message Specification, March 1998.

[B138] RFC 2312, S/MIME Version 2 Certificate Handling, March 1998.

[B139] Rivest, R. et al., “A method for obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, pp. 120–126, 1978.

[B140] Sakai, R., and M. Kasahara, “ID based cryptosystems with pairing on elliptic curve," Cryptology
ePrint Archive, Report 2003/054, 2003.36

[B141] Satoh, T., and K. Araki, “Fermat quotients and the polynomial time discrete log algorithm for
anomalous elliptic curves,” Commentarii Mathematici Universitatis Sancti Pauli, vol. 47, pp. 81-92, 1998.
Errata: ibid. vol. 48, pp. 211–213, 1999.

[B142] Schirokauer, O., “Discrete logarithms and local units,” Philosophical Transactions of the Royal
Society of London A, vol. 345, pp. 409–423, 1993.

[B143] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2d ed. New
York: John Wiley and Sons, 1995.

[B144] Schroeppel, R., and D. Eastlake, Elliptic Curve Keys and Signatures in the DNS, Oct. 2005, Internet
draft.37

31 Available at http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf.
32 NIST publications are available from the National Institute of Standards and Technology (http://www.nist.gov/).
33 Available at ftp://ftp.rsa.com/pub/cryptobytes/crypto1n2.pdf.
34 Available from http://www.rsa.com/rsalabs/pubs/PKCS/.
35 RFC publications are available from Requests for Comments (http://www.rfc-editor.org/). See also http://www.ietf.org/html.
charters/smime-charter.html and http://www.ietf.org/ids.by.wg/smime.html for latest developments and drafts.
36 Available at http://eprint.iacr.org/2003/054.
37 Available at http://tools.ietf.org/html/draft-ietf-dnsext-ecc-key-08.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1363.3-2013
IEEE Standard for Identity-Based Cryptographic Techniques using Pairings

Copyright © 2013 IEEE. All rights reserved.

139

[B145] Schroeppel, R. et al., “Fast key exchange with elliptic curve systems,” Univ. of Arizona Comp. Sci.
Tech. Report 95-03 (1995). A version also appears in D. Coppersmith, ed., Advances in Cryptology—
CRYPTO ‘95, Lecture Notes in Computer Science, vol. 963. Berlin: Springer-Verlag, 1995, pp. 43–56.

[B146] Seroussi, G., “Compact representation of elliptic curve points over F2
n,” Research Manuscript. Palo

Alto, CA: Hewlett-Packard Laboratories, April 1998.

[B147] Shamir, A., “RSA for paranoids,” CryptoBytes, vol. 1, no. 3, 1995. RSA Laboratories.38

[B148] Shawe-Taylor, J., “Generating strong primes,” Electronics Letters, vol. 22, pp. 875–877, 1986.

[B149] Silverman, J., The Arithmetic of Elliptic Curves. Berlin: Springer-Verlag, 1986.

[B150] Silverman, R., “The multiple polynomial quadratic sieve,” Mathematics of Computation, vol. 48,
1987, pp. 329–339.

[B151] Smart, N., “Elliptic curve cryptosystems over small fields of odd characteristic,” Journal of
Cryptology, vol. 12, pp. 141–151, 1999.

[B152] Solo, D. et al., “(Extensible Markup Language) XML-Signature Syntax and Processing," March
2002, RFC 3275.39

[B153] Solo, D. et al., “Internet X.509 Certificate Request Message Format,” Internet Engineering Task
Force (IETF), PKIX working group, work in progress.40

[B154] Solo, D. et al., “Internet X.509 Public Key Infrastructure Certificate and CRL Profile,” Internet
Engineering Task Force (IETF), PKIX working group, work in progress.41

[B155] Stallings, W., Cryptography and Network Security: Principles and Practice, 2d ed. Upper Saddle
River, NJ: Prentice-Hall, 1998.

[B156] Standards for Efficient Cryptography Group (SECG), Recommended Elliptic Curve Domain
Parameters, GEC1, Sept. 1999.42

[B157] Stinson, D., Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 1995.

[B158] Vaudenay, S., “Hidden collisions on DSS,” N. Koblitz, Ed., Advances in Cryptology—CRYPTO
‘96, Lecture Notes in Computer Science, vol. 1109. Berlin: Springer-Verlag, 1996, pp. 83–88.

[B159] Wiener, M., “Cryptanalysis of short RSA secret exponents,” IEEE Transactions on Information
Theory, vol. 36, pp. 553–558, 1990.

[B160] Wiener, M., and R. Zuccherato, “Faster attacks on elliptic curve cryptosystems,” S. Tavares and H.
Meijer, Eds., Selected Areas in Cryptography—SAC ’98, Lecture Notes in Computer Science. Berlin:
Springer-Verlag, 1998.

[B161] Williams, H., “A modification on the RSA public-key encryption procedure,” IEEE Transactions of
Information Theory, vol. 26, pp. 726–729, 1980.

[B162] Williams, H., “A p + 1 method of factoring,” Mathematics of Computation, vol. 39, pp. 225–234,
1982.

[B163] Yao, A., “Theory and applications of trapdoor functions,” Proceedings of the IEEE 23rd Annual
Symposium on Foundations of Computer Science (FOCS ’92), 1992, pp. 80–91.

38 Available at ftp://ftp.rsa.com/pub/cryptobytes/crypto1n3.pdf.
39 Available at http://www.ietf.org/rfc/rfc3275.txt.
40 Available at http://www.ietf.org/ids.by.wg/pkix.html.
41 Available at http://www.ietf.org/ids.by.wg/pkix.html.
42 Available from http://www.secg.org/drafts.htm.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 20,2019 at 13:53:24 UTC from IEEE Xplore. Restrictions apply.

	IEEE Std 1363.3-2013 Front Cover
	Title Page
	Abstract/Keywords
	Important Notices and Disclaimers Concerning IEEE Standards Documents
	Participants
	Introduction
	Contents
	IMPORTANT NOTICE
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Organization of the document
	1.3.1 Structure of the main document
	1.3.2 Structure of the annexes

	2. Normative references
	3. Definitions
	4. Types of cryptographic techniques
	4.1 General model
	4.2 Primitives
	4.3 Schemes
	4.4 Table summary

	5. Mathematical conventions
	5.1 Mathematical notation
	5.2 Bit strings and octet strings
	5.3 Finite fields
	5.3.1 Prime finite fields
	5.3.2 Odd characteristic extension fields
	5.3.3 Binary finite fields
	5.3.4 Ternary finite fields
	5.3.5 Unitary extension fields

	5.4 Elliptic curves and points
	5.5 Pairings
	5.6 Data type conversion
	5.6.1 Converting between integers and bit strings: I2BSP and BS2IP
	5.6.2 Converting between bit strings and octet strings: BS2OSP and OS2BSP
	5.6.3 Converting between integers and octet strings: I2OSP and OS2IP
	5.6.4 Converting between finite field elements and octet strings: FE2OSP and OS2FEP
	5.6.5 Converting between finite field elements and integers: FE2IP and I2FEP
	5.6.6 Converting between elliptic curve points and octet strings
	5.6.6.1 Compressed elliptic curve points
	5.6.6.1.1 LSB compressed form
	5.6.6.1.2 SORT compressed form

	5.6.6.2 Two-coordinate point representations
	5.6.6.2.1 Uncompressed representation: EC2OSPXY and OS2ECPXY
	5.6.6.2.2 LSB compressed representation: EC2OSPXL and OS2ECPXL
	5.6.6.2.3 SORT compressed representation: EC2OSPXS and OS2ECPXS
	5.6.6.2.4 LSB hybrid representation: EC2OSPXYL and OS2ECPXYL
	5.6.6.2.5 SORT hybrid representation: EC2OSPXYS and OS2ECPXYS

	5.6.6.3 X-coordinate-only representation: EC2OSPX and OS2ECPX
	5.6.6.4 Summary of representations

	6. Hashing primitives
	6.1 Hashing to an integer
	6.1.1 The function of IHF1

	6.2 Hashing to a string
	6.2.1 Function of SHF1

	6.3 Hashing to a point in a subgroup
	6.3.1 General
	6.3.2 Function of PHF-SS
	6.3.3 Function of PHF-GFP
	6.3.4 Function of PHF-GF2
	6.3.5 Function of PHF-GF3

	6.4 Hashing to an element of a finite field
	6.4.1 Hashing to an element of a finite field: Function of BS2FQE

	7. Pairing-based primitives
	7.1 General
	7.2 SK primitives
	7.2.1 SK: Generation (P-SK-G)
	7.2.2 SK: Verification (P-SK-V)
	7.2.3 SK: Encryption (P-SK-E)
	7.2.4 SK: Decryption (P-SK-D)

	7.3 BB1 primitives
	7.3.1 General
	7.3.2 BB1: Generation (P-BB1-G)
	7.3.3 BB1: Verification (P-BB1-V)
	7.3.4 BB1: Encryption (P-BB1-E)
	7.3.5 BB1: Decryption (P-BB1-D)

	7.4 BF primitives
	7.4.1 General
	7.4.2 BF: Generation (P-BF-G)
	7.4.3 BF: Verification (P-BF-V)
	7.4.4 BF: Encryption (P-BF-E)
	7.4.5 BF: Decryption (P-BF-D)

	7.5 SCC key agreement primitives
	7.5.1 Pairing-based SCC key agreement: Derive secret value (P-SCC-D1)

	8. Identity-based encryption schemes
	8.1 SK KEM scheme
	8.1.1 SK KEM: Setup (SK-KEM-S)
	8.1.2 SK KEM: Extract (SK-KEM-EX)
	8.1.3 SK KEM: Encapsulate (SK-KEM-EN)
	8.1.4 SK KEM: Decapsulate (SK-KEM-DE)

	8.2 BB1 KEM scheme
	8.2.1 BB1 KEM: Setup (BB1-KEM-S)
	8.2.2 BB1 KEM: Extract (BB1-KEM-EX)
	8.2.3 BB1 KEM: Encapsulate (BB1-KEM-EN)
	8.2.4 BB1 KEM: Decapsulate (BB1-KEM-DE)

	8.3 BB1 IBE scheme
	8.3.1 BB1 IBE: Setup (BB1-IBE-S)
	8.3.2 BB1 IBE: Extract (BB1-IBE-EX)
	8.3.3 BB1 IBE: Encrypt (BB1-IBE-EN)
	8.3.4 BB1 IBE: Decrypt (BB1-IBE-DE)

	8.4 BF IBE scheme
	8.4.1 BF IBE: Setup (BF-IBE-S)
	8.4.2 BF IBE: Extract (BF-IBE-EX)
	8.4.3 BF IBE: Encrypt (BF-IBE-EN)
	8.4.4 BF IBE: Decrypt (BF-IBE-DE)

	9. Identity-based signature schemes
	9.1 BLMQ signature scheme
	9.1.1 General
	9.1.2 BLMQ signature: Setup (BLMQ-SIG-S)
	9.1.3 BLMQ signature: Extract (BLMQ-SIG-EX)
	9.1.4 BLMQ signature: Create signature (BLMQ-SIG-SI)
	9.1.5 BLMQ signature: Verify signature (BLMQ-SIG-VE)

	10. Identity-based signcryption schemes
	10.1 BLMQ signcryption scheme
	10.1.1 BLMQ signcryption: Setup (BLMQ-SC-S)
	10.1.2 BLMQ signcryption: Extract (BLMQ-SC-EX)
	10.1.3 BLMQ signcryption: Sign and encrypt (BLMQ-SC-SE)
	10.1.4 BLMQ signcryption: Decrypt and verify (BLMQ-SC-DV)

	11. Identity-based key agreement schemes
	11.1 Wang key agreement scheme
	11.1.1 Wang key agreement: Derive public key (WKA-KA-D1)
	11.1.2 Wang key agreement: Derive private key (WKA-KA-D2)
	11.1.3 Wang key agreement: Verification (WKA-KA-V)
	11.1.4 Wang key agreement: Derive secret value (WKA-KA-D3)
	11.1.5 Wang key agreement: Generate shared secrets (WKA-KA-G)

	11.2 SCC key agreement scheme
	11.2.1 SCC key agreement: Generate shared secrets (SCC-KA-G)

	Annex A (informative) Number-theoretic background
	A.1 Integer and modular arithmetic: Overview
	A.1.1 Modular arithmetic
	A.1.1.1 Modular reduction
	A.1.1.2 Integers modulo m
	A.1.1.3 Modular exponentiation
	A.1.1.4 GCDs and LCMs
	A.1.1.5 Modular division

	A.1.2 Prime finite fields
	A.1.2.1 Field GF(p)
	A.1.2.2 Orders
	A.1.2.3 Generators
	A.1.2.4 Exponentiation and discrete logarithms

	A.1.3 Modular square roots
	A.1.3.1 Legendre symbol
	A.1.3.2 Square roots modulo a prime

	A.2 Integer and modular arithmetic: Algorithms
	A.2.1 Modular exponentiation
	A.2.2 Extended Euclidean algorithm
	A.2.3 Evaluating Legendre symbols
	A.2.4 Generating Lucas sequences
	A.2.5 Finding square roots modulo a prime
	A.2.6 Finding square roots modulo a power of 2
	A.2.7 Computing the order of a given integer modulo a prime
	A.2.8 Constructing an integer of a given order modulo a prime

	A.3 Extension fields: Overview
	A.3.1 Finite fields
	A.3.2 Polynomials over finite fields
	A.3.2.1 Polynomial congruences

	A.3.3 Extension fields
	A.3.3.1 Addition
	A.3.3.2 Multiplication

	A.3.4 Polynomial basis representations
	A.3.5 Extension fields (continued)
	A.3.5.1 Exponentiation
	A.3.5.2 Division
	A.3.5.3 Orders
	A.3.5.4 Generators
	A.3.5.5 Exponentiation and discrete logarithms
	A.3.5.6 Field extensions

	A.4 Extension fields: Algorithms
	A.4.1 Exponentiation
	A.4.2 Division
	A.4.3 Squares
	A.4.4 Square roots
	A.4.5 Trace in binary field extension
	A.4.6 Half-trace in binary fields
	A.4.7 Solving quadratic equations over GF(2m)
	A.4.8 Trace in ternary field extensions
	A.4.9 The 1/3-trace in ternary fields
	A.4.10 Solving cubic equations over GF(3m)

	A.5 Polynomials over a finite field
	A.5.1 Exponentiation modulo a polynomial
	A.5.2 GCDs over a finite field
	A.5.3 Factoring polynomials over GF(p) (special case)
	A.5.4 Factoring polynomials over GF(2) (special case)
	A.5.5 Checking polynomials over GF(2r) for irreducibility
	A.5.6 Finding a root in GF(2m) of an irreducible binary polynomial
	A.5.7 Embedding in an extension field

	A.6 Elliptic curves: Overview
	A.6.1 Introduction
	A.6.1.1 The Weierstrass equation
	A.6.1.2 Orders
	A.6.1.3 Pairings
	A.6.1.4 Twists

	A.6.2 Operations on elliptic curves
	A.6.2.1 The point at infinity
	A.6.2.2 Full addition
	A.6.2.3 Scalar multiplication

	A.6.3 Curve orders
	A.6.3.1 Basic facts
	A.6.3.2 Near primality

	A.6.4 Representation of points
	A.6.4.1 Affine coordinates
	A.6.4.2 Coordinate compression
	A.6.4.3 Projective coordinates

	A.7 Elliptic curves: General algorithms
	A.7.1 Full addition and subtraction (prime case)
	A.7.2 Full addition and subtraction (binary case)
	A.7.3 Full addition and subtraction (supersingular curves in characteristic 2)
	A.7.4 Elliptic scalar multiplication
	A.7.5 Projective elliptic doubling (prime case)
	A.7.6 Projective elliptic addition (prime case)
	A.7.7 Projective elliptic doubling (binary case)
	A.7.8 Projective elliptic addition (binary case)
	A.7.9 Projective full addition and subtraction
	A.7.10 Projective elliptic scalar multiplication
	A.7.11 Decompression of y coordinates (prime case)
	A.7.12 Decompression of y coordinates (binary case)
	A.7.13 Decompression of y coordinates (ternary case)
	A.7.14 Finding a random point on an elliptic curve (prime case)
	A.7.15 Finding a random point on an elliptic curve (binary case)
	A.7.16 Finding a random point on an elliptic curve (ternary case)
	A.7.17 Finding a point of large prime order
	A.7.18 Curve orders over small binary fields
	A.7.19 Curve orders over extension fields
	A.7.20 Curve orders via subfields

	A.8 Class group calculations
	A.8.1 Overview
	A.8.2 Class group and class number
	A.8.3 Reduced class polynomials

	A.9 Complex multiplication
	A.9.1 Overview
	A.9.2 Finding a nearly prime order over GF(p)
	A.9.2.1 Congruence conditions
	A.9.2.2 Testing for CM discriminants (prime case)
	A.9.2.3 Finding a nearly prime order (prime case)

	A.9.3 Constructing a curve and point (prime case)
	A.9.3.1 Constructing a curve with prescribed CM (prime case)
	A.9.3.2 Choosing the curve and point (prime case)

	A.10 Pairings for cryptography
	A.10.1 Pairing-friendly elliptic curves
	A.10.2 Curve families
	A.10.2.1 Type 1 (E supersingular)
	A.10.2.2 Type 2 (E ordinary)
	A.10.2.3 Type 3 (E ordinary)

	A.10.3 The Miller loop
	A.10.4 Pairing calculations
	A.10.5 Pairings
	A.10.5.1 Tate
	A.10.5.2 Eta
	A.10.5.3 Ate
	A.10.5.4 R-Ate

	A.11 Elliptic curves for pairing-based cryptography
	A.11.1 Super-singular curves
	A.11.1.1 Super-singular curves with embedding degree 2

	Annex B (normative) Conformance
	B.1 General model
	B.2 Conformance requirements
	B.3 Examples
	B.3.1 BF IBE
	B.3.2 BB1 KEM

	Annex C (informative) Rationale
	C.1 General
	C.1.1 Why are so many cryptographic techniques defined in this document?
	C.1.2 How were the decisions made regarding the inclusion of individual schemes?
	C.1.3 What is the basis for believing that the schemes defined in this document are secure?

	Annex D (informative) Security considerations
	D.1 Introduction
	D.2 Cryptographic security
	D.3 Server secret protection

	Annex E (informative) Formats
	E.1 Overview
	E.2 Representing basic data types as octet strings
	E.2.1 Integers (I2OSP and OS2IP)
	E.2.2 Finite field elements (FE2OSP and OS2FEP)
	E.2.3 Elliptic curve points (EC2OSP and OS2ECP)
	E.2.4 Polynomials over GF(p), p (2 (PN2OSP and OS2PNP)

	Annex F (informative) Bibliography

