
Computational Aspects of Ideal (t, n)-Threshold
Scheme of Chen, Laing, and Martin

Mayur Punekar, Qutaibah Malluhi
KINDI Center for Computing Research,

Qatar University, Qatar.
Email: mayur.punekar@ieee.org,

qmalluhi@qu.edu.qa

Yvo Desmedt
The University of Texas at Dallas,

Richardson, TX, USA.
Email: yvo.desmedt@utdallas.edu

Yongge Wang
Dept. SIS, UNC Charlotte,

NC, USA.
Email: yongge.wang@uncc.edu

Abstract—In CANS 2016, Chen, Laing, and Martin proposed
an ideal (t, n)-threshold secret sharing scheme (the CLM scheme)
based on random linear code. However, in this paper we show
that this scheme is similar to the one proposed by Karnin, Greene,
and Hellman in 1983 (the KGH scheme). Further, the authors did
not analyzed memory or XOR operations required to either store
or calculate an inverse matrix needed for recovering the secret.
In this paper, we analyze computational aspects of the CLM
scheme and discuss various methods through which the inverse
matrix required during the secret recovery can be obtained. Our
analysis shows that for n ≤ 30 all the required inverse matrices
can be stored in memory whereas for 30 ≤ n < 9000 calculating
the inverse as and when required is more appropriate. However,
the CLM scheme becomes impractical for n > 9000. Another
method which we discuss to recover the secret is to obtain only the
first column of the inverse matrix using Lagrange’s interpolation
however, as we show, this method can be used with the KGH
scheme only. Some potential application of the CLM and KGH
schemes are also discussed.

I. INTRODUCTION

Secret sharing refers to procedures in which a secret is
split and shared among a group of participants or players. The
secret can be reconstructed only when sufficient number of
participants combine their shares together. However, individual
shares gives no information about the secret. A type of
secret sharing scheme, known as (t, n)-threshold secret sharing
scheme can be used to distribute secret k to n participants in
such a way that any t participants can uniquely recover the
secret and at the same time any set of t − 1 participants get
no information about the secret. A secret sharing scheme for
which the ratio of the size of the secret to the size of the largest
share is 1 is called ideal.

Shamir and Blakley independently introduced (t, n)-
threshold schemes in 1979 [1][2]. Blakley’s method is based
on linear projective geometry where each share specifies a
hyperplane and the secret k is the unique point of intersection
of the n hyperplanes. Shamir’s scheme relies on a polynomial
of degree t − 1 to generate n shares and use Lagrange’s
interpolation method to recover the secret from t participants.
However, Lagrange’s interpolation is computationally intensive
due to which efforts have been made to obtain schemes
that have same properties as Shamir’s scheme but can be
implemented using XOR operations only.

First such XOR based (t, n)-threshold scheme was pro-
posed by Kurihara et al. in [5] which was a generalization of

their earlier work on (3, n)-threshold scheme [6]. Some other
XOR based scheme were also proposed by Lv et al. [7][8],
Wang et al. [9], and Chen et al. [10].

In CANS 2016, Chen, Laing, and Martin [3] proposed a
(t, n)-threshold secret sharing scheme which is based on a
patent application by HP [10]. The scheme is defined over
GF (2λ) which can be generalized to any Galois field. It uses
random linear code and requires only XOR and shift operations
for distribution and recovery of the secret. The proof for
security of the scheme is also given and it has been proven
that the scheme is ideal.

However, we observe that the scheme by Chen et al. (the
CLM scheme) is very similar to the one proposed earlier by
Karnin, Grenne, and Hellman [4] in 1983 (the KGH scheme).
Further, the CLM scheme relies on decoding a random linear
code to recover the secret. The decoding method proposed
by the authors inverts a t × t matrix G′ which is derived by
selecting t columns of the t×n generator matrix G used during
distribution. Hence, the decoder either needs to calculate this
inverse on the fly or have to store all possible such inverse
matrices in memory. However, this important computational
aspect of the CLM scheme has not been discussed by the
authors in [3]. Their complexity analysis and comparison with
other secret sharing schemes in [3, Fig. 2] neither discuss the
memory required to store all inverse matrices nor the number
of XOR operations needed to obtain such an inverse.

In this paper, we analyse the CLM scheme and focus on
the computational aspects of it. First, four issues related to the
CLM scheme are discussed, namely, similarity of the CLM
with the KGH scheme, computational aspects related to the
inverse of G′, XOR operations required for vector and matrix
multiplication and inability of the CLM scheme to detect and
correct erroneous shares due to lack of efficient decoding
algorithm. Further, we suggest and discuss three ways in which
a inverse matrix can be obtained which is required in the CLM
scheme: 1) store all possible inverse matrices, 2) calculate the
inverse on the fly, 3) calculate only the first column of the
inverse matrix. We also give estimate of the memory required
to store all inverse matrices and the runtime required to invert a
matrix for different n. Some potential application of the CLM
scheme are also discussed.

The rest of the paper is structured as follows. In Sec. II we
discuss Shamir’s, the CLM and the KGH schemes. The CLM
scheme is analyzed in detail in Sec. III. Different approaches



for inverse of G′ are prosed and discussed in Sec. IV. Sec. V
discuss some potential applications of the CLM and KGH
schemes. We conclude the paper in Sec. VI.

II. BACKGROUND

A. Shamir’s Scheme

In Sharmir’s (t, n)-threshold secret sharing scheme the
secrets and shares are the elements of finite field GF (q)
for some prime-power q > n. n distinct non-zero elements
α1, α2, . . . , αn ∈ GF (q) are selected which are known to all
parties. Suppose a secret k ∈ GF (q) needs to be shared among
n parties. Then, t−1 random elements a1, . . . , at−1 ∈ GF (q)
are chosen independently with uniform distribution. The secret
along with the random numbers define a polynomial

P (x) = k +

t∑
i=1

aix
i (1)

The share of party vj = P (αj) where P (x) is evaluated using
the arithmetic of GF (q).

The Shamir’s scheme’s correctness and privacy properties
can be proved using the Lagrange’s interpolation theorem
which states that : for every field F, every t distinct values
x1, . . . , xt, and any t values y1, . . . , yt, there exists a unique
polynomial Q of degree at most t − 1 over F such that
Q(xj) = yj for 1 ≤ j ≤ t [17].

The secret k can be recovered from t shares vi1 , . . . , vit
using the following

Q(x) =

t∑
l=1

vil
∏

1≤j≤t,j≤l

αij − x
αij − αil

(2)

where the secret is given by k = P (0) = Q(0).

B. Karnin, Greene, and Hellman Scheme

Karnin, Greene, and Hellman proposed ideal secret sharing
scheme (KGH scheme) in [4]. The KGH scheme uses a vector
u of length t whose first element is same as the secret k ∈
GF (qλ) and rest of the t − 1 entries are generated randomly
from GF (qλ) where q is a prime. A t × n + 1 systematic
generator matrix G for some linear code whose entries are
from GF (qλ) is used for encoding the vector u. The selected
linear code must be MDS, i.e., any t × t submatrix derived
from G by selecting any t columns must be invertible. The
following relationship exit between the vector u and shares v
[4, (13)],

v = uG (3)

such that v0 = u1 = k which is secret to be protected and
v1, . . . , vn+1 are the n shares to be distributed. It has been
shown by the authors that the Shamir’s scheme [1] is a special
case of the proposed method.

The secret can be recovered when t shares are available
for which the t linear equation over GF (2λ) with t unknown
have to be solved.

C. Chen, Laing, and Martin Scheme

We now describe ideal (t, n)-threshold scheme proposed
by Karnin, Greene, and Hellman (CLM scheme) in [3].
This scheme uses two algorithms referred to as Share and
Recover.

The Share(k) algorithm [3, Fig. 1] takes a secret k ∈
{0, 1}λ and parse it into t words where each word consists of
dλt e bits. If λ is not divisible by t, then k is padded with
(−λ) mod t elements so that each word is an element in
F = GF (2d

λ
t e) and k ∈ F t. Then, r1, . . . , rt−1 ∈ GF (2λ)

dummy keys are randomly generated and again parsed into
t words of dλt e bits. These dummy keys are XORed with
secret k to produce k′. All dummy keys r1, . . . , rt−1 and
modified secret k′ are dispersed using ShareIDA algorithm
[3, Sec. 2.3]. This algorithm multiplies the input vector with
a systematic generator matrix G of an MDS linear code.
The vector K ′ is obtained by applying ShareIDA to K ′.
Similarly, R1, . . . ,Rt−1 are obtained from r1, . . . , rt−1 using
ShareIDA. A new t× n matrix M is created by using vectors
K ′ and R1, . . . ,Rt−1 as its rows. Then the elements of row
i, 0 ≤ i ≤ t are are shifted to the left by i places to
obtain a new matrix M ′. The elements in column i are then
concatenated and are used as shares.

The Recover algorithm [3, Fig. 1] is used to recover the
secret when at least t out of n shares are available. The
algorithm retrieves the secret k using RecoverIDA algorithm
which is essentially an algorithm to decode the MDS linear
code. However, before RecoverIDA is used, the i-th share is
shifted to the right by i places. RecoverIDA algorithm creates a
t-vector C ′ by using t pooled shares. Then, a t× t matrix G′
is formed which consists of the t rows of generator matrix
G corresponding to the t shares pooled. The matrix G′ is
then inverted and multiplied by the vector C ′ to obtain k′ and
r1, . . . , rk−1 from which the secret k can be obtained using
k = k′ ⊕ r1 ⊕ · · · ⊕ rt−1.

III. ANALYSIS OF CLM SCHEME

In this section we analyse the CLM scheme and explain
four issues which we observed.

First, we would like to point out that the CLM scheme is
very similar to the KGH scheme explained in Sec. II-B. The
only difference between these two schemes lies in the fact that,
Chen et al. [3] add randomly generated words r1, . . . rk−1 to
the secret k before encoding it with ShareIDA whereas this
step is not used by Karnin et al. [4]. Also, it is not clear as
to what advantage this additional step provides in terms of
security or efficiency.

The second problem we observed is related to the decoder
used in RecoverIDA algorithm. The decoder needs to either
compute the inverse of G′ on the fly or store all possible t×
t G′ matrices in memory. In the first case, the XOR operations
required to compute the inverse needs to be considered. For the
second case, the memory required to store all possible matrices
needs to be analysed. The comparison of the CLM scheme to
other schemes as given in [3, Fig. 3] neither includes memory
required to store all inverse matrices nor the number of XOR
operations required to invert a matrix on the fly.



The third issue is with the vector and matrix multiplication
used in RecoverIDA algorithm. The number of XOR operations
required for this multiplication has not been included in the
comparison of CLM scheme with other schemes in [3, Fig. 3].

The fourth problem is related to the connections between
the CLM and Shamir’s scheme. It has been shown by Karnin et
al. in [4] that if generator matrix G is chosen appropriately then
KGH scheme is equivalent to the Shamir’s scheme. However,
in the CLM scheme the secret k is XORed with random words
r1, . . . , rk−1 to generate first word k′ before encoding. This
process though reduce the number of random words required
in the CLM scheme has a downside that regardless of which
generator matrix is chosen, the scheme does not have any
relation to Shamir’s scheme anymore. As shown by McEliece
et al. in [11], Shamir’s scheme corresponds to Reed-Solomon
codes and hence Shamir’s scheme has error detection and
correction capability when more than t shares are available
and Reed-Solomon decoding algorithm [12] is used to retrieve
the secret. If one or more shares are modified by adversary or
due to storage error then such error detection and correction
capability can be used to retrieve the secret using the KGH
scheme. In particular, for the (t, n)-threshold KGH scheme,
more than b(n−t)/2c shares must be tampered with or in error
so that the legitimate user is unable to retrieve the secret [11].
On the other hand, CLM scheme does not have any relation
to Shamir’s scheme and consequently Reed-Solomon decoding
can not be used to detect and correct erroneous shares.

The CLM scheme like KGH scheme also uses a linear
code and due to that some decoding algorithm can be used
to detect and correct erroneous shares to retrieve the secret.
However, it has been shown by Berlekamp et al. in [18]
that, the decoding of an arbitrary code, e.g., codes with a
random generator matrix, is NP-complete. The CLM scheme
uses random generator matrix and the authors in [3] also did
not present any efficient decoding algorithm for the linear
code. Hence, even if more than t shares are available in the
CLM scheme, it is practically impossible to detect and correct
erroneous shares to recover the secret.

IV. COMPUTATIONAL APPROACHES FOR INVERSE OF G′

IN CLM SCHEME

We now discuss various approaches that can be used to
obtain inverse of G′ matrix which is required by RecoverIDA

algorithm to obtain secret k from t pooled shares. There are
mainly three ways in which this task can be performed: first,
the algorithm can store precomputed inverse of all possible
G′ matrices. Second, inverse of G′ can be calculated on the
fly and third, only the first column of the inverse of G′

can be calculated using a algorithm which do not invert the
whole matrix. These approaches are discussed in detail in the
following.

A. Precompute Inverse

The CLM (t, n)-threshold scheme can recover secret k
from any t pooled shares. The decoder used in RecoverIDA

algorithm needs a t × t matrix G′ which consists of the t
columns of generator matrix G corresponding to the available
t shares. In this approach, inverse of all possible G′ are
precomputed and stored so that RecoverIDA algorithm can use

Fig. 1. Memory required in Bytes to store inverse of all possible G′ for
different n, here t = bn/2c.

them as and when needed. For example, if n = 6, t = 3
then the decoder needs to store inverse of

(
6
3

)
= 20 3 × 3

G′ matrices. Since all the required inverse of matrices are
available to the algorithm, this approach is the fastest among
the three discussed here. However, the number of G′ matrices
increases exponentially as the maximum value of

(
n
t

)
grows

exponentially with n. The worst case occurs for t = n/2 when(
n
t

)
reach its maximum value. Even for moderate values of

n, e.g., for n = 30, t = 15 the decoder requires inverse of(
n
t

)
= 155, 117, 520 G′matrices ! Clearly, it would be very

difficult to store all matrices in this case. Hence, this scheme
becomes impractical even for moderate values of k and t.

On a positive side, for n = 6, t = 3 the algorithm needs
to store 20 matrices. Since each such matrix is of size 3× 3,
it has 9 entries in total. Let us assume that each entry from
a matrix is stored with 4 Bytes. Then, storage of an inverse
would require only 36 Bytes and in total 720 Bytes of RAM
is required to store 20 matrices. This memory requirement is
quite low and hence this approach is preferred when n is small
enough.

The memory required to store inverse of all possible G′

for (t, n) threshold scheme where t = bn/2c is shown
in Fig. 1. As can be observed, for n = 26, t = 13 the
memory requirement is already 13 Gigabytes which makes
this approach impractical for n ≥ 26, t = bn/2c.

Other possibility is to store inverse matrices in hard disk
drive (HDD) and read them as and when necessary from HDD.
HDDs are in general much slower than RAM and hence the
read time would increase. However, since large HDDs are
relative cheap, e.g., 1TB HDD cost around $ 40 US, it would
be possible to store all inverse matrices for n > 26 using HDD.
To estimate the memory required to store inverse matrices for
higher n value, we use following approximation of

(
n
t

)
[16](

n
n
2

)
∼
√

2

m

1√
n
2n (4)

where f(n) ∼ g(n) if and only if limn→∞
f(n)
g(n) = 1. The



Fig. 2. Estimate of the Memory required in Bytes to store inverse of all
possible G′ for different n, here t = bn/2c.

results of our calculation using (4) is shown in Fig. 2. As
can be observed, the estimated memory requirement continues
to grow exponentially for higher n values. For n = 36,
our estimate shows that the required memory is around 48
Terabyte. Hence, even when HDD is used to store all inverse
matrices, it is difficult to build a practical CLM scheme for
n > 36.

B. Computing Inverse on the Fly

The other possibility to obtain inverse of G′ is to calculate
it on the fly in RecoverIDA algorithm. Matrix inversion meth-
ods, e.g., Gaussian elimination, can be used for this purpose.
Gaussian elimination is known to have complexity of O(n3).
Other possibility is to use LU decomposition to obtain lower
and upper triangular matrices through which the inverse can
be obtained. The complexity of LU decomposition is given by
O(M(n)) [13] where M(n) is the time required to multiply
two matrices of order n and M(n) ≥ na for some a > 2.
Hence, if a faster matrix multiplication algorithm is used then
the complexity of the LU decomposition can be reduced. For
example, when a matrix multiplication is performed using the
Coppersmith-Winograd algorithm [14] then the complexity of
LU decomposition is given by O(n2.376).

To get an idea of time required to compute the inverse of
G′, we computed the inverse of t×t matrices over GF (24) for
different t values using NTL library [15] with a C++ program.
The time required to compute the inverse for different values
of t is given in Fig. 3. It can be observed that as the value
of t increases, the runtime required to invert the t × t matrix
increases rapidly. For t = 6000 the runtime required to invert
matrix is already close to 4 hours and should be more than 24
hours for t = 9000. Though much higher values of n can be
achieved through this method compared to storing of all inverse
matrices, due to its high runtime requirement this method is
also impractical for larger n. Further, the inversion algorithm
also requires significant memory, e.g., for n = 6000 the NTL
required about 2GB of RAM, which would also restrict the
use of this method in practice.

Fig. 3. Runtime in seconds to calculate inverse of t × t G′ over GF (24)
for different t.

C. Computing only the first column of the inverse

As mentioned before, the KGH scheme can be converted
to Shamir’s scheme by using appropriate generator matrix.
Shamir’s scheme has an advantage that the values of αij −αil
required in (2) can be precomputed and stored to accelerate
the recovery process. We show in the following that, the same
values can be used to calculate the first column of the inverse
of the matrix G′ which is derived from the t shares.

Let us assume that a secret k has been protected using KGH
scheme. When only t shares, i.e., vi1 , . . . , vit are available then
we get following from (3),

u = (vi1 , . . . , vit)G
′−1 (5)

As can be observed from the (5), the secret k = u1 can be
obtained from

u1 = (vi1 , . . . , vit)G
′
·,1
−1 (6)

where G′·,1
−1 is the first column of G′−1

Hence, in order to retrieve the secret k = v0 = u1 in
KGH scheme, all the columns of the G′−1 are not required
and instead only first column of the of G′−1 is enough.

As discussed in Sec. III, if G is chosen properly then KGH
scheme is equivalent to the Sharmir’s secret sharing scheme.
The structure of G has to be selected as follows,

G =


1 1 1 . . . 1

0 α α2 . . . αq
λ−1

0 α2 α4 . . . α(qλ−1)2

...
...

...
...

...
0 αk−1 α2k−1 . . . α(qλ−1)(k−1)

 (7)

Then the components of v in v = uG can also be evalued
as

vi = D(αi), i = 1, 2, . . . , n, (8)



where
D(x) = u1 + u2x+ u3x

2 + · · ·+ uk−1x (9)

and v0 = u1 = k. It can be observed from (9) that KGH
scheme using G from (7) is same as Shamir’s scheme.

If t out of n shares are available then (2) can be used to
retrieve the secret k. However, with some modifications a more
efficient method can be derived which is given below [17].

k =

t∑
l=1

vil · βl (10)

where vi1 , . . . , vit are the t shares and

βl =
∏

1≤j≤t,j 6=l

αij

αij − αil
(11)

Similarly, when t shares available in KGH scheme follow-
ing equation can be used to retrieve the secret,

u = v′ · G̃ (12)

where v′ = (vi1 , . . . , vit) is the vector derived from available
t shares and G̃ = G′

−1 is derived as per Sec. II-C. However,
we are interested in u0 only and hence it is sufficient to use
following equation instead,

u0 = v′ · G̃·,1 (13)

where G̃·,1 is the first column of G̃. The similarities between
(10) and (13) are easy to observe. The vector β = (β1, . . . , βt)
is same as the column G̃·,1. Hence, the first column of G̃ can be
calculated using (11). Further, the computations in (11) can be
accelerated by precomputing and storing αij

αij−αil in memory.
With such improvements, computation of the secret k can be
accelerated substantially.

However, we remark that the above mentioned improve-
ment can be used with KGH scheme only. On the other hand,
in order to apply this method to CLM scheme it is necessary
to skip the step in which XOR of secret k with random words
r1, . . . , rk−1 to produce k′ is calculated. Instead, secret k and
random words r1, . . . , rk−1 should be used directly. However,
as mentioned in Sec. III, with this change the CLM scheme is
same as KGH scheme.

V. APPLICATIONS

A. Sharing a Secret Among Board of Directors

Suppose an important document needs to be shared among
n board of directors of a company in such a way that
the document is accessible only when at least t members
collaborate to recover it. Some (t, n)-threshold scheme can
be applied to share a secret in such a scenario. According to
a report, the average size of publicly traded company’s board
in the United Sates is 9.2 and most board size range from
3 to 31 [19]. Since the average board size is small enough,
CLM scheme can be used to share the secret among board
members. In such a scenario the secret can be recovered by
either precomputing inverse of all possible t × t matrices G′
as given in Sec. IV-A. However, when the number of board
members is above 20, computing the inverse G′ on the fly as
discussed in Sec. IV-B may be more appropriate.

B. Boardroom Voting

Another possible use of CLM scheme is in boardroom
voting in which board of directors vote in yes or no (0 or 1)
on a specific proposal. Let us assume that n board members
are eligible to vote and all members also act as tallying
authority. Out of the total n members, at least t members
must collaborate in order to count the votes. Now, each voter
generates r1, . . . , rk−1 random numbers over GF (2) and use
the CLM scheme to generate n shares from their vote which
is the secret k. These n shares are then distributed among n
members out of which t must come together in order to recover
the vote casted by a board member. Since the number of
board members is limited, both approach of obtaining inverse
matrices during recover phase can be used in this case too.

C. Shareholder Voting

Each shareholder of a company has a right to vote in
corporate elections. Let us assume that the shareholders of
a company gather to vote on some important decision, e.g.,
takeover bid from another company, where they have to vote
in yes or no. Here again the CLM or the KGH secret sharing
scheme can be used to conduct elections. This application
is very similar to the previous one however, the number of
shareholders of a company are likely to be much higher
than board of directors. Hence, the number of shares, i.e.,
n, generated by each voter along with the minimum number
of shares, i.e., t required to recover a vote could be much
higher. If we assume n in order of several thousand then the
CLM scheme can be used along with recover algorithm which
calculates inverse of G′ on the fly.

In the above two examples if a member of tallying authority
modifies a share then as explained in Sec. III, it is practically
impossible to detect and correct such modified shares during
recovery phase using the CLM scheme. On the other hand, if
the KGH scheme is used along with an appropriate generator
matrix then Reed-Solomon decoding can be used to detect
and correct modified shares. Hence, the KGH scheme is more
appropriate in both the schemes when tallying authority can
not be trusted.

VI. CONCLUSION

In this paper, we analyzed the (t, n)-threshold secret shar-
ing scheme proposed by Chen et al. in CANS 2016. First, we
showed that this scheme is very similar to the one proposed
earlier by Karnin et al. in 1983. Then, we made three more
observations: 1) the authors in [3] did not consider the memory
and XOR operations needed for obtaining an inverse matrix
required during recovery of the secret, 2) XOR operations
needed to compute matrix and vector multiplication for the
secret recovery are also not considered in their analysis, 3)
since the CLM scheme lack efficient decoding algorithm, it
can not detect or correct erroneous shares whereas the KGH
scheme can be designed for the same. Further, we proposed
and discussed three methods to obtain inverse matrix. We
conclude that the CLM scheme is practical for n ≤ 30 when
all possible inverse matrices are stored in memory whereas up
to n = 9000 can be obtained if the inverse matrix is calculated
on the fly. The third method of obtaining only the first column
of the inverse matrix through Lagrange’s interpolation can be



used only with the KGH scheme. The CLM scheme becomes
impractical if n is of the order of tens of thousands.

REFERENCES

[1] A. Shamir, “How to share a secret,” Communications of ACM, 22(11),
pp. 612–613, 1979.

[2] G. Blakely, “Safeguarding cryptographic keys,” In Proc. of the National
Computer Conference, vol. 48, pp. 313–317, 1979.

[3] L. Chen, T. M. Laing, and K. M. Martin, “Efficient, XOR-Based,
Ideal (t, n)-threshold Schemes,” in Proc. International Conference on
Cryptology and Network Security, CANS 2016, pp. 467–483, Milan, Italy,
November 14-16, 2016.

[4] E. Karnin, J. Greene, and M. Hellman, “On secret sharing systems,”
IEEE Transactions on Information Theory, vol. 29, no. 1, pp. 35–41,
January 1983.

[5] J. Kurihara, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A new (k, n)-
threshold secret sharing scheme and its extension,” In : Wu, T.-C., Lei,
C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp.
455470. Springer, Heidelberg (2008).

[6] J. Kurihara, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A fast (3, n)-
threshold secret sharing scheme using exclusive-or operations,” IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. 91(1), pp. 127–138,
2008.

[7] Lv, C., Jia, X., Tian, L., Jing, J., Sun, M., “Efficient ideal threshold
secret sharing schemes based on exclusive-or operations,” In Proc. 4th
International Conference on Network and System Security (NSS), pp.
136–143, 2010.

[8] Lv, C., Jia, X., Lin, J., Jing, J., Tian, L., Sun, M., “Efficient secret
sharing schemes,” In: Park, J.J., Lopez, J., Yeo, S.-S., Shon, T., Taniar, D.
(eds.) Secure and Trust Computing, Data Management, and Application.
Communications in Computer and Information Science, vol. 186, pp.
114121. Springer, Heidelberg (2011).

[9] Y. Wang, Y. Desmedt, “Efficient secret sharing schemes achieving
optimal information rate,” In Proc. IEEE Information Theory Workshop
(ITW) 2014, pp. 516–520, Tasmania, Australia, November 2014.

[10] Chen, L., Camble, P.T., Watkins, M.R., Henry, I.J., “Utilizing
error correction (ECC) for secure secret sharing,” Hewlett
Packard Enterprise Development LP, World Intellectual
Property Organisation. Patent Number WO2016048297 (2016).
https://www.google.com/patents/WO2016048297A1?cl=en.

[11] R. J. McEliece, and D. V. Sarwate, “On sharing secrets and Reed-
Solomon codes,” Communications of the ACM, vol. 24, no. 9, pp. 583-
584, September 1981.

[12] E. R. Berlekamp, (1984) [1968], Algebraic Coding Theory (Revised
ed.), Laguna Hills, CA: Aegean Park Press, ISBN 0-89412-063-8.
Previous publisher McGraw-Hill, New York, NY.

[13] J. R. Bunch and J. E. Hopcroft, “Triangular Factorization and Inversion
by Fast Matrix Multiplication,” Mathematics of Computation, vol. 28,
no. 125, pp. 231–236, Jan., 1974.

[14] D. Coppersmith, S. Winograd, “Matrix multiplication via arithmetic
progressions,” vol. 9, no. 3, pp. 251–280, March 1990.

[15] NTL: A Library for doing Number Theory, http://www.shoup.net/ntl/
[16] T. Worsch, “Lower and Upper Bounds for

(Sums of) Binomial Coefficients,” available online,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.9677

[17] A. Beimelm, “Secret-Sharing Schemes: A Survey,” in Proc. Interna-
tional Conference on Coding and Cryptology (IWCC 2011), pp. 11–46,
Qingdao, China, May-June, 2011

[18] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems,” IEEE Transactions on Infor-
mation Theory, vol. 24, no. 3, May 1978.

[19] https://en.wikipedia.org/wiki/Board of directors#Size 2


