
A Critical Analysis of Models for Fault-Tolerant and Secure
Computation

Mike Burmester
�

Yvo Desmedt
�

Department of Computer Science
Florida State University

E-mail:
�
burmester, desmedt � @cs.fsu.edu

Yongge Wang
Department of Software and Information Systems

University of North Carolina at Charlotte
E-mail: yonwang@uncc.edu

ABSTRACT
We consider the problem of fault-tolerant dependable com-
putation with multiple inputs. Although the traditional
model assumes that the number of faults is relatively small
when the enemy has limited resources, this assumption is
unreasonable when some faults may be interdependent. In-
deed, a computation system may have several replicated
components and the adversary may exploit a common
weakness of these so as to cause simultaneous failure. In
this paper we introduce models for secure distributed com-
putation with multiple inputs that tolerate dependent faults.
In particular, we consider AND/OR graphs with colored
vertices and show that they can be used to model depend-
able computations with an appropriate level of abstraction.
We then apply this model to show that fault-tolerant de-
pendable computation with multiple inputs can only be
achieved if an appropriate number of color-disjoint solution
subgraphs is found. Finding such subgraphs is NP-hard.
This is in contrast to the problem of dependable computa-
tion with single inputs that requires finding vertex-disjoint
paths, for which there is a polynomial time algorithm.

KEY WORDS
Dependable computation, fault tolerance, security

1 Introduction

Redundancy (see for example, [4, 5]) has been used to
achieve reliability in the context of fault-tolerant computa-
tion, reliable communication, and reliable networks. While
reliability is solely concerned with accidental errors, sur-
vivability must deal with malicious faults (see for example,
[12, 13]). A redundant computation system consists, essen-
tially, of several linked processors, such as servers, hard-
ware units, software programs, etc. A basic requirement
is that the system should tolerate faults. Several models
can be used for such systems, but these usually deal with
faults that follow a random pattern and are not malicious.
It is not clear whether redundancy is sufficient in itself to
guarantee that a computation will be secure (even if con-
ventional cryptographic tools are used), and therefore it is
not clear whether these models are adequate to describe a
malicious scenario in its generality.�

This research supported by the National Science Foundation under
grant CCR-0209092.

In this paper we shall consider models for redundant
computation that will tolerate random faults and malicious
faults, using the traditional setting of computation theory.
These are high level models which allow for the most gen-
eral settings appropriate for such computations. The spe-
cific nature of the processors involved, or the nature of their
links is abstracted out. For example, the processors might
be servers, software modules, or even steel plants. A hard-
ware module might be linked to a software package, and so
on. These aspects will not concern us.

2 Background

In the context of survivable computer systems one can dis-
tinguish two types of malicious faults: independent and
dependent faults. As an illustration consider a redundant
computation system for which the hardware and software
components have been developed independently. For such
a system, a fault in one of its components will not neces-
sarily extend to the rest of the system. That is, indepen-
dent faults are (usually) restricted to subsystems. On the
other hand if software components have been replicated,
then (malicious) faults may be duplicated. Such faults are
dependent.

2.1 Independent faults

In the context of reliability, faults occur in a probabilistic
way and are independent of each other and of the overall
state of the system at their origin. A typical such fault in
a circuit occurs when the output of a gate is independent
of its input, for example when its output is a random string
(noise). The impact of such faults can be controlled by
using redundancy. However such an approach cannot deal
with strongly dependent faults.

2.2 Dependent faults

In the traditional faults model, the usual scenario is that
the adversary controls the faulty processors according to
some plan which may exploit the possible weakness of the
system. The adversary has at least as much power and
knowledge about the state of the system (excluding the se-
cret keys) as the non-faulty processors, and possibly more.
For example, the adversary may know the structure of the
system whereas the non-faulty processors may not. Such

an adversary might try to use this information and forward
misleading inputs to non-faulty processors in an attempt to
cause the system to fail.

It is reasonable to assume when dealing with an attack
with limited resources, that the number of faults will also
be limited. However this assumption is unreasonable for a
scenario in which the faults are strongly dependent. In par-
ticular, when the same faulty software has been replicated,
and the same component is used throughout the system (the
1988 Morris Internet Worm exploited the vulnerabilities in
UNIX).

2.3 The requirements for a model
Achieving processor cooperation in the presence of faults
is a major problem with distributed systems. Popular
paradigms such as Byzantine agreement (see for example,
[10]) have been studied extensively. Dolev [4] (see also,
Dolev et al. [5]) has shown that Byzantine agreement is
achievable only when the number of faulty processors in
the system is less than one-half of the connectivity of the
system’s network (for Byzantine agreement, the number of
faulty processors must be less than a third of the total num-
ber of processors). Hadzilacos [7] has shown that even in
the absence of malicious failures �����
	�� -connectivity is
required for agreement in the presence of � faulty proces-
sors. These results refer to processors with one type of in-
put, while in practice most processors have several types of
input (see Section 3.2.1 for details).

Modelling a scenario in which the adversary is ma-
licious should allow for a dynamic topology in which
changes in the system may take place without the (non-
faulty) processors being aware of these. It should allow for
the most general type of processor. This could be a sim-
ple gate, a software package, or even a powerful computer.
It should also allow for memory, and the ability to per-
form complicated operations. The model should describe
the structure of the system at the appropriate level of ab-
straction: it must distinguish those aspects that are relevant
to the computation and abstract out the aspects that are not
essential. Such a model should offer the maximum flexibil-
ity to the designer.

3 Current models
3.1 Models for fault-tolerant communication
Several models have been proposed in the literature for
authenticated communication in large-scale open systems
(see for example, Reiter and Stubblebine [17]). In this sec-
tion we overview these models. Each of these makes use of
a directed graph to capture the notion of “certification”.

We shall use the term entity to indicate someone or
something that possesses and makes use of a private/public
key pair. This could be a person, an authentication server,
or a certification authority. The user is the person applying
the model for the purpose of gaining assurance in the name-
to-key binding.
The Beth-Borcherding-Klein model [1] This uses a set
of trust relationships that can be represented by a directed

graph whose vertices are the entities. There are two types
of edges: “directed edges” denoted by
���� and “rec-
ommendation edges” denoted by
���� . Edge
����
indicates that entity
 believes it can authenticate (i.e., it
has the public key of) entity � . Edge
���� indicates
that entity
 trusts entity � to authenticate other entities,
or recommend other entities to authenticate, or further rec-
ommend.
The Mauer model [11] This also uses a directed graph. As
with the Beth-Borcherding-Klein model, the vertices are
entities and there are two types of edges, “directed” and
“recommendation”. However, there is a subtle difference
in the semantics for these edges. In the Mauer model, the
edges represent syntactic constructs, e.g., certificates. In
particular, the directed edge
�� � indicates that user
 “holds a certificate for user � ’s public key (allegedly)
issued and signed by
 ”, while a recommendation edge
���� indicates that the user
 possesses a recommen-
dation (recommending or authenticating) for � (allegedly)
signed by entity
 .
The Reiter-Stubblebine model [16] This model also
uses a directed graph, but again differs from the Beth-
Borcherding-Klein model and the Mauer model. In this
case, the vertices are public keys (actual keys, with no ref-
erences to any entities), and an edge ��������� indicates
that the user has a certificate signed with the private key
corresponding to � � (so � � can be used to verify the sig-
nature) that assigns attributes to � � . These attributes are
assumed to assert � � ’s owner (among other things, per-
haps) and are included as a label for edge � � ��� � .
The Zimmermann model [21] This is used in PGP [21].
Zimmermann’s model resembles (but precedes) the Reiter-
Stubblebine model. Its nodes are keys, and its edges ��� ���� are labeled by attributes and are represented by a cer-
tificate that binds the attributes to �!� and that can be ver-
ified with the key �"� . The graph differs from the Reiter-
Stubblebine graph in that the user can assign to each vertex
a trust value in the set

�
unknown, untrusted, marginally

trusted, fully trusted � .
The Franklin-Yung model [6] This uses hypergraphs (a
kind of special directed graphs) to model communications
in broadcast channels. In this model, the message of the
sender is received by all receivers designated by the sender
with authenticity and privacy.

3.2 Models for fault-tolerant computation
Our models are based on the traditional setting of compu-
tation theory. In particular all the entities and the adversary
have limited resources (polynomially bounded in the de-
scription of the application).

There are several models that can be used for fault-
tolerant computation systems. However as we shall see
from the analysis below, these are not adequate to de-
scribe fault-tolerant computation systems with multiple in-
puts. The theory of computing, following Turing, is based
on representing data by sequences of symbols, typically
bits, and performing operations selected from a small set

of primitive operations (such as ANDs, ORs, etc). Systems
which use such primitives can be modelled by circuits. This
is the classical model for fault-tolerant (VLSI) design with
redundancy (e.g., von Neuman restoring). Circuits are best
suited for Boolean type computations in which the structure
of the system is well defined, and usually are not suitable
for open settings. A somehow similar argument applies to
models based on finite state machines. These models are
not appropriate for distributed systems, and therefore are
not suitable for our purpose.

In programming languages, a function or a compu-
tation process is modelled by a flow graph. This model
allows one to characterize a computation with multiple in-
puts at an appropriate level of abstraction, although it does
not model the redundancy in fault-tolerant computations.
We can model a redundant computation system with one
type of input (see for example [15]) by a directed graph (or
multi-graph) in which the vertices are the processors and
the edges are the links. Incoming edges of a vertex indicate
which units can be used as alternative servers to provide the
input. This is a high level model and appropriate for some
applications, for example networks applications. However
it does not describe scenarios in which most computation
processes have more than one type of input.

3.2.1 Multiple inputs aspects
Our analysis above shows that none of the existing models
is appropriate for fault-tolerant computation system with
multiple inputs. Such systems include most of the na-
tional infrastructures whose components require computa-
tions with multiple inputs. To illustrate this let us consider
some examples.

In an electrical power distribution system, the gener-
ation stations, the transmission and distribution networks
must be integrated, and all the components must be reli-
able so as to achieve and maintain nominal functionality
for the end-user. Furthermore, the generation stations are
themselves systems that consist of components with multi-
ple inputs, e.g. the control systems of a generation station
need data from several sensors. Another example is an air
traffic control system. This also consists of several compo-
nents with multiple inputs. For example, the processors of
an aviation control system need data from several sources
such as the speed of the airplane, its position, etc. There
are many more examples of such applications. With most
of these, we often need the output of more than one sensor
as an input to a computation. In the next section, we will
present several models for such kinds of systems.

We have given a brief survey of models used in the
context of fault-tolerance and survivability. However as
we have seen, none of these are sufficient to model fault-
tolerant and secure distributed computation with multiple
inputs. The models for fault-tolerant communications do
not capture the multiple inputs aspect, while the the models
for fault-tolerant computations do not capture the redun-
dancy aspects. In the following section we shall describe
models for fault-tolerant and secure distributed computa-
tions with multiple inputs.

4 Models for independent faults
In this section, we discuss models for independent faults.

4.1 A directed multi-graph with colored
edges model

We model a redundant computation system with multiple
inputs by a directed multi-graph with colored edges. The
different colors of the edges indicate the different types of
inputs. The graph must have at least one input vertex and
one output vertex. There are several possible applications
for this model. For example, subroutines whose inputs have
the same color need only use one input (when there are no
faults). If the colors are different then the processor must
use one input for each of the input colors to carry out its
computation (or whatever it is supposed to do).

Definition 4.1 A directed multi-graph with colored edges# �%$'&)(+*-,/.10 , 2�354765354 ; 8 ; 9;:=<>:=?;@A� is a directed
graph with a set of vertices $, a set (B*-,/.=0 of input ver-
tices, one output vertex, and a set of colored directed edges8 . The input vertices have no incoming edges and the out-
put vertex has no outgoing edges.

This model is equivalent to the AND/OR graph model in-
troduced by Burmester, Desmedt, and Wang [2], which we
shall now describe.

4.2 An AND/OR graph model

AND/OR graphs have been used to model problem solving
processes in artificial intelligence (see, e.g., Nilsson [14]).
In [2], Burmester, Desmedt, and Wang used AND/OR
graphs to model fault-tolerant computations with multiple
inputs. An AND/OR graph is a directed graph with two
types of vertices, labelled C -vertices and D -vertices. The
graph must have at least one input (source) vertex and one
output (sink) vertex. The output vertex may be regarded as
an D -vertex (without loss of generality). More specifically,
we have the following definition.

Definition 4.2 [2] An AND/OR graph
�%$FE , $HG ,(+*-,/.10 , 2�354765354 ; 8/� is a directed graph with a set $FE

of C -vertices, a set $ G of D -vertices, a set (+*-,/.10 of in-
put vertices, an output vertex 2�354765354�IJ$ G , and a set of
directed edges 8 . The vertices with no incoming edges are
input vertices and the vertex with no outgoing edges is the
output vertex.

It can be shown that this model is equivalent to the directed
graph model with multi-colored edges considered in Sec-
tion 4.1, in the sense that there is a polynomial time reduc-
tion from one to the other. The application given in Sec-
tion 4.1 can also be used for this model. In this case, for
processors which need all their inputs in order to operate
are represented by C -vertices, whereas processors which
can choose (using some kind of voting procedure) one of
their “redundant” inputs are represented by D -vertices. In

the replicated agent computation with voting (see Schnei-
der [18]), a meet operation may be considered as an C -
vertex and the operation of choosing one agent from its
replicas may be considered as an D -vertex.

5 Models for dependent faults

Current computing platforms, as well as communica-
tions infrastructure and software, are largely homogeneous.
Computing platforms are quite uniform in the operating
system they run and the instruction-set architecture they
support. Furthermore, display, network interface, and disks
are made uniform by adherence to either government or
manufactures standards or are presented to application soft-
ware as common interfaces by operating systems software
in the form of device drivers and hardware adaptation lay-
ers. The similarity of the interfaces of a collection of ho-
mogeneous systems implies that these systems will share
vulnerabilities. A successful attack on one system is then
likely to succeed on other systems as well. This picture
is further complicated by the role of technical standards.
Standards enable interoperability of components, and at-
tacks that exploit the vulnerability of the components can
be reused in a variety of settings where standards prevail.
The models in the previous section do not reflect these finer
aspects of dependent faults.

5.1 An AND/OR graph with colored vertices

We can model a redundant computation system with de-
pendent faults by an AND/OR graph with colored vertices.

Definition 5.1 An AND/OR graph with colored vertices is
an array:

�%$FE , $HG , (+*-,/.10 , 2�354765354 ; 8 ; 9;:=<>:=?=@ ,9;� with the following properties:

1.
�%$HEK&L$5GM&)(+*-,/.10N&)2�3H476O3H4QP)8/� is an AND/OR
graph;

2. 9;:=<R:=?;@ is a set of colors;

3. 9TS+$HEVU>$5G��W9;:=<R:=?;@ is a function which assigns
a color for each vertex.

The main advantage of AND/OR graphs with colored ver-
tices is that they model the dependent faults at an appro-
priate level of abstraction and are a powerful mathematical
tool for the study of dependent faults.

They are several possible applications for this model.
For example, processors with the same standards can be
marked with the same color. We illustrate this by an ex-
ample of a simplified version of an aviation control sys-
tem. Assume that four computers
 , � , 9 , and X are used
to process data from the speed sensors of an airplane, and
four computers 8 , Y ,

#
, and Z are used to process data

from the position sensors of the airplane. The results from
the eight computers are fed to the computer (to compute
the next position of the airplane. In addition, assume that
 , � , 8 , and Y use Intel Pentium 3 processors and run
Microsoft Window 2000, 9 , X ,

#
, and Z use Pentium 4

processors and run Microsoft Window XP, and (is a Mac-
intosh computer which runs MacOS. The aviation control
system can be modelled by the AND/OR graph in Figure 1.
In this graph, @ and , represent the speed sensor and the
position sensor respectively. The data from the computers
 , � , 9 , and X is fed to one D -vertex and the data from the
computers 8 , Y ,

#
, and Z is fed to another D -vertex. The

colors of the vertices are as follows: 9[�%
\�-]^9[�_�`�-]9[�_8`�a]b9[�%Yc�
] � ,;dfeg4ihj35k�lm&)nohjeqpsrtrBru� , 9[�%9;�a]9[�_X��
]v9[� # �w]v9[�_Zx�
] � ,;dfeg4ihj3Hk�y5&znohjeg{|,}� ,
and 9[�%(+�[] ��~��t� rtrBrm& ~���� :;@�� . (The colors of the D -
vertices, the vertex @ , and the vertex , are defined accord-
ing to the systems used.) When a vertex fails due to one
of its colors, then all vertices with the same color will fail.
In a fault-tolerant computation system, all vertices with the
same colors will have the same failure probability. Indeed,
an operating system is a collection of correlated and in-
dependent components. One component failure does not
necessarily mean that all other components will fail at the
same time.

������������ ������ ������ ������ ������ ������
������ ������

������

���� � ��� �
� � ��
� � ���

���� �
��� �
� � ��
� � � ���

� � ���
������� � �� ���� �

���� �
� � � �Q� � � �� ��� �

���� �
 L¡

¢¢¢¢¢¢ £

¤ ¥

¦ § ¨ © ª « ¬ ­

®

�

Figure 1. The aviation control system AND/OR graph

5.2 An AND/OR graph with a partial order
on the colors of the vertices

The AND/OR graphs with colored vertices model depen-
dent faults in a natural way. However they do not describe
some of the finer aspects of dependent faults, such as weak
dependencies. In the previous model we identified differ-
ent types of vertices by a color. A color could correspond
to an operating system, or to the microprocessor used, etc.
The operating system could be replicated, with different
replications corresponding to different vertices. In many
instances there is a hierarchy for the type of failures. For
example, if the hardware of a computer has a design flaw,
all operating systems that use that hardware may also fail.
Furthermore, if the operating system fails, all application
programs requiring that operating system will fail. So one
has an hierarchy of types of vertices. This additional as-
pect can (more generally) be expressed by using a partial
order on the colors. We model such a redundant compu-
tation system by an AND/OR graph with colored vertices
which in addition has a partial order on the colors.

Definition 5.2 An AND/OR graph with a partial or-

der on the colors is an array:
�%$FE , $HGM&)(+*-,/.10 ,2�3H476O3H4QP)8¯PL9;:=<R:=?;@°&±9}P±,c:;� for which:

1.
�%$HEK&L$5GM&)(+*-,/.10N&)2�3H476O3H4QP)8¯PL9;:=<R:=?;@°&±9;� is an
AND/OR graph with colored vertices;

2. ,c: is a partial order (or a lattice structure) on9;:=<>:=?=@ .

For example, the IE6.0 for Windows XP must run on a
computer with Windows 2000 or Windows XP as one of
its operating system. When an AND/OR graph is used
to model computer systems, the IE6.0 for Windows XP
should be assigned a color whose order is less than that
of the color for Windows XP and that of the color for
Windows 2000. The applications given in Section 5.1
can also be used for this model. For example, in the
AND/OR graph of Figure 1, we may define a partial or-
der on the colors as follows: nohjeqpsrBrtr|²³,;dfeg4ihj35k�l andnohjeg{|,�²´,;dfeg4ihj35k"y . Note that generally we do not
have nohjeqpsrtrBrµ²¶nNh�eg{x, , since Window XP may have
bugs that Window 2000 does not have. In this case, when
a vertex with a certain color fails, all vertices with colors
“lower” than the failed processor’s color also fail. Indeed,
all models introduced in the previous sections are equiva-
lent in the sense that there is a polynomial time algorithm
that transforms one to the other.

As an example of this equivalence we show
how an AND/OR graph with colored vertices
can be simulated by an AND/OR graph. Let# �%$HEK&±$HGM&)(+*-,/.10o&±2�354765354QP±8¯P±9;:=<>:=?;@°&±9;� be an
AND/OR graph with colored vertices. It is straightforward
to show that the following AND/OR graph

#/·
is func-

tionally equivalent to the AND/OR graph
#

with colored
vertices. Define

· ��$ ·E &L$ ·G &)(+*-,/.10 · &)2�3H476O3H4QP)8 · � by
letting

1. (+*-,/.10 ·]¸(B*|,/.10¹U � (»ºi¼¾½¿¼zÀ�� ;
2. $ ·G]Á$5G}U ��Â º�S � I-9;:=<>:=?=@�� ;
3. $ ·E]Ã$5EÄU ��Â · S Â I��%$HGÄUÅ$HEF�NÆ"�_(+*-,/.10ÇU� 2�354765354L�È�L� ;
4. 8 · consists of the following edges:É For each

� I�9;:=<R:=?;@ , there is an edge(»ºi¼z½Ê¼zÀN� Â º ;É For each vertex
Â IË$ G U\$ E such that 9[� Â �'] � ,

there is an edge
Â º � Â ·

;É For each vertex
Â IÌ�_(+*-,/.10ÍU � 2�3H476O3H4L��� ,

there is an edge
Â � Â ·

;É For each edge �Î3-� Â �NI-8 , there is an edge in8 · : 3 · � Â
.

6 Models for general fault structures
More generally, the faults of a dependable system can be
modelled by an adversary structure Ï [8, 9]. This struc-
ture consists of a monotone family of subsets of the set of

components of the system. Formally, if { is the set of
components, then “ Ï^ÐÑptÒ such that, ÓÔIÁÏÕC^Ó · ÐÓÖ� Ó · I×Ï ”. If a graph is used to model the system
then {Ã]�$ is the node set (for multyparty computation
systems { is the set of parties, or “players”). The fault
sets Ó of Ï are precisely those sets of components that the
adversary can corrupt.

For the particular case AND/OR graphs with colored
vertices, the fault sets Ó consist of nodes that have the same
color. For AND/OR graphs with an order on the colors
of their vertices, the fault sets consist consist of nodes of
the same color, and nodes of a lower color. In general, the
adversary structure model can be used to describe the faults
of any colored graph (in this way). The converse is also
true if we allow for multicolored nodes (including nodes
with no color).

7 Applications
Redundancy plays a key role in achieving reliability. It
is used for reliable communications (with error-correcting
codes), for network reliability and for fault-tolerant compu-
tation. Assume that we use an AND/OR graph to model a
fault-tolerant computation. Then information (for example,
mobile codes) flows from the input vertices of the graph
to the output vertex. A valid computation in an AND/OR
graph can be described by a solution graph (the exact def-
inition will be given below). However, if insider vertices
are faulty or even malicious, then the output vertex cannot
be certain that the result will be authentic or correct. If we
assume that at maximum � vertices will be malicious, then
the theory of fault-tolerant computation (see, e.g., [4, 5])
tells us that, if there are �%pB�[�Ç	f� vertex-disjoint paths of
information flow then the output vertex will always succeed
in getting at least ���`�Á	f� identical results computed from
the input vertices through vertex-disjoint solution graphs,
provided that the output knows the layout of the graph. This
implies that if output vertex knows the layout of the graph
then it can use a majority vote to decide whether the result
is correct or not. It follows that in order to achieve depend-
able computation with redundancy, it is necessary to find an
appropriate number of vertex-disjoint solution graphs in a
given AND/OR graph. A path in the traditional sense is not
useful in our contexts, because we need all the inputs of anC -vertex to carry out the computation. We therefore give a
formal definition of solution graphs for AND/OR graphs.

Definition 7.1 Let
��$ E &±$ G &)(+*-,/.10 , 2�3H476O3H4 ; 8 ;9;:=<R:=?;@ , 9 ; ,c:;� be an AND/OR graph with a

partial order on its colored vertices. A solution graph,Ç]Í��$OØ &±8oØA� is a minimal subgraph of
#

with:

1. 2�3H476O3H4'I-$ Ø .

2. For each C -vertex
Â I|$ Ø , all incoming edges of

Â
in8 belong to 8 Ø .

3. For each D -vertex
Â IË$5Ø , there is exactly one incom-

ing edge of
Â

in 8NØ .

4. There is a sequence of vertices
Â �È&»Ù�Ù»Ù»& ÂsÚ I¹$OØ such

that
Â �cIx(B*-,/.=0o& ÂsÚ]Ç2�354765354 , and � ÂtÛ � ÂsÛÊÜ �»�\I8 Ø for each h'ÝÅe .

Moreover, two solution graphs , � and , � are color disjoint
if ��9[�%$ Ø+Þ �Vß�9[�%$ Øtà �z��áµ9[�_(+*-,/.10âU � 2�3H476O3H4L��� .
Note that every vertex of a solution graph may have some
outgoing edges due to the minimality of a solution graph.
Since an AND/OR graph without C -vertices may be con-
sidered as a normal digraph, the solution graphs in such
AND/OR graphs are the same as the standard paths in di-
graphs. It is easy to see that there is only one solution graph
in an AND/OR graph that has only one D -vertex (that is, the
output vertex) and in which the 2�354765354 vertex has only one
incoming edge.

Lemma 7.2 If two solution graphs , � and , � , in an
AND/OR graph with colored vertices, are color disjoint,
then there are vertex-disjoint, that is �)�%$FØ Þ �Mß-9[��$OØ à �)�=á�_(+*-,/.10âU � 2�3H476O3H4L��� .
Proof. This follows directly from the definitions. Q.E.D

Though there are polynomial time algorithms for find-
ing vertex-disjoint paths in networks of processors, the cor-
responding problem for computation systems with multiple
inputs is NP-hard.

Theorem 7.3 Given an AND/OR graph
#

with a partial
order on its colored vertices and a positive number � , it is
NP-hard to decide whether there are � color-disjoint solu-
tion graphs in

#
.

Proof. The results in [2] show that it is NP-hard to find a
vertex separator of a given AND/OR graph. This implies
that it is NP-hard to decide whether there are � vertex-
disjoint solution graphs in

#
. The result follows by ob-

serving that, a set of � color-disjoint solution graphs in
#

is also a set of � vertex-disjoint solution graphs. Q.E.D.

We foresee other applications. For example, these
models may be used to identify the most critical tasks in
redundant computations and to allocate the available re-
sources to the most critical tasks. These models may also
be used to analyze the flows in computation systems with
multiple inputs and may eventually be used to analyze the
performance of a manufacturing system.

References

[1] T. Beth, M. Borcherding, and B. Klein. Valuation of
trust in open networks. In: ESORICS 94, LNCS 875,
pp. 236–274, Springer Verlag, 1995.

[2] M. Burmester, Y. Desmedt and Y. Wang. Using
Approximation hardness to achieve dependable
computation. In: Proc. 2nd RAND, LNCS 1518, pp.
172–186, 1998.

[3] Y. Desmedt, Y. Wang, and M. Burmester. Complete
Characterization of Adversaries Tolerable in Secure
Message Transmissions. To appear.

[4] D. Dolev. The Byzantine generals strike again. J. of
Algorithms, 3, pp. 14–30, 1982.

[5] D. Dolev, C. Dwork, O. Waarts, and M. Yung.
Perfectly secure message transmission. J. of the
ACM, 40(1), pp. 17–47, 1993.

[6] M. Franklin and M. Yung. Secure hypergraphs:
privacy from partial broadcast. In: Proc. ACM STOC,
’95, pages 36–44, ACM Press, 1995.

[7] V. Hadzilacos. Issues of Fault Tolerance in Concur-
rent Computations. PhD thesis, Harvard University,
Cambridge, MA, 1984.

[8] M. Hirt and U. Maurer. Complete characterization of
adversaries tolerable in secure multi-party computa-
tion. In Proc. of the 16th ACM PODC, 1997.

[9] M. Hirt and U. Maurer. Player Simulation and
General Adversary Structures in Perfect Multiparty
Computation. Journal of Cryptology 13(1): 31-60
(2000)

[10] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. J. of the ACM, 32(2), pp. 374–382,
1982.

[11] U. Mauer. Modeling a public-key infrastructure. In:
Computer Security—ESORICS 96, Lecture Notes in
Computer Science 1146, Springer Verlag, 1996.

[12] P. G. Neumann. Are dependable systems feasible?
Commun. of the ACM, 36(2), pp. 146, 1993.

[13] V. F. Nicola, M. K. Nakayama, P. Heidelberger,
and A. Goyal. Fast simulation of highly dependable
systems with general failure and repair processes.
IEEE Trans. on Computers, 42(12):1440-1452, 1993.

[14] N. J. Nilsson. Principles of Artificial Intelligence.
Tioga, 1980.

[15] D. Pradhan. Fault-Tolerant Computing : Theory And
Techniques. Prentice Hall, 1986.

[16] M. Reiter and S. Stubblebine. Path independence for
authentication in large-scale systems. In: Proc. 4th
ACM Conference on Computer and Communication
Security, ACM Press, 1997.

[17] M. Reiter and S. Stubblebine. Towards acceptable
metrics of authentication. In: Proc. 1997 IEEE
Symposium on Security and Privacy, IEEE Press,
1997.

[18] F.B. Schneider. Towards fault-tolerant and secure
agentry. In: Proc. WDAG ’97, LNCS 1320, pp. 1–14,
Springer Verlag, 1997.

[19] Y. Wang and Y. Desmedt. Secure broadcast in
broadcast channels. In: Eurocrypt’99, pp. 443–455,
LNCS 1592.

[20] Y. Wang, Y. Desmedt, and M. Burmester. Models
for dependable computation with multiple inputs and
some hardness results. Fundamenta Informaticae,
42(1):61–73, 2000.

[21] P. Zimmermann. PGP User’s Guide, Volumes I and
II, 1994. Included in the PGP 8.0 distribution.

