
Fundamenta Informaticae 33 (1998) 1–13 1

IOS Press

Models For Dependable Computation with Multiple Inputs

and Some Hardness Results∗

Yongge Wang
Department of Combinatorics and Optimization
University of Waterloo, ON, N2L 3G1, Canada
ygwang@cacr.math.uwaterloo.ca

Yvo Desmedt
Department of Computer Science
Florida State University, Tallahassee, FL 32306-4530, USA
desmedt@cs.fsu.edu and
Information Security Group
Royal Holloway – University of London

Mike Burmester
Information Security Group
Royal Holloway – University of London
Egham, Surrey TW20 OEX, UK
m.burmester@rhbnc.ac.uk

Abstract. We consider the problem of dependable computation with multiple inputs. The
goal is to study when redundancy can help to achieve survivability and when it cannot. We
use AND/OR graphs to model fault tolerant computations with multiple inputs. While there
is a polynomial time algorithm for finding vertex disjoint paths in networks, we will show
that the equivalent problem in computation systems with multiple inputs is NP-hard. Our
main results are as follows. (1) We present a general model for fault tolerant computation
systems with multiple inputs: AND/OR graphs. (2) We show that it is NP-hard to find
two vertex disjoint solution graphs in an AND/OR graph. It follows that in the general case
redundancy cannot help to achieve survivability, assuming P 6=NP.

∗Research supported by DARPA F30602-97-1-0205. Part of this work was done while the authors were at the

University of Wisconsin–Milwaukee.

2 Wang, Desmedt, Burmester/Introduction

Keywords: Dependable computation, complexity theory, NP-hardness.

1. Introduction

Redundancy has been utilized to achieve reliability, for example to achieve fault tolerant com-
putation and to achieve reliable communication in networks (see e.g., [1, 3, 4]). The goal in this
paper is to study when redundancy can help to achieve survivability and when it cannot. The
techniques to achieve reliable networks (see e.g., [1, 3, 4]) immediately extend to computations
solely based on one input functions in which redundant hardware or software (servers) are used
to compute intermediate and end results. However, from this result we cannot conclude that
the techniques to achieve redundant computation will extend under similar circumstances to the
general case. Indeed, a computation does not need to be based on one input functions. Many
computation systems require multiple inputs. For example, an intelligent agent in a mobile code
program (see e.g., [9, 16, 19]) must meet other agents to carry out the computation. Similarly, a
financial institution may need both the input of its computer system and its communication sys-
tem to function properly. In general large-scale infrastructures (telecommunications networks,
power plants, control systems, etc) have multiple inputs. For a discussion on dependable infras-
tructure systems with multiple inputs, the reader may consult the 1997 interim report of the
National Academy of Sciences [9].

In this paper we focus on the following problem: does redundancy in the general case help
to achieve dependability (and survivability) or does it not? A computation (or a system) is
dependable (see, e.g., [12, 13]) if it can tolerate both accidental and malicious (Byzantine) faults.
We consider a special type of computation systems which can be modeled by AND/OR graphs
(defined below). While there are polynomial time algorithms for finding vertex disjoint paths in
networks, we will show that the equivalent problem in computation systems with multiple inputs
is NP-hard. It follows that the use of redundancy for dependable computation will generally
fail, assuming P 6=NP.

The organization of this paper is as follows. In Section 2 we discuss the background and use
the AND/OR graphs to model fault tolerant computations with multiple inputs. In Section 3
we prove our main result, that is, that the problem of finding two vertex disjoint solution graphs
in an AND/OR graph is NP-hard.

2. Background and models

Faults in the context of reliability occur in a probabilistic way and are, at their origin, indepen-
dent of each other and of the overall state of the system. A typical such fault in a circuit occurs
when the output of a gate is independent of its input, for example when the gate is stuck at 0, or
when its output is a random string (noise). The impact of such faults can be controlled by using
redundancy. Malicious (or Byzantine) faults are controlled by an adversary according to some
plan which may exploit the possible weakness of the system. The adversary has at least as much

Wang, Desmedt, Burmester/Models 3

power and knowledge about the structure of the system as the processors of the system have,
and possibly more. For example the adversary may know the structure of the system whereas
the processors may not. Such an adversary might try to use this information in an attempt to
force the system to fail.

Dependability (see, e.g., [12, 13]) is a basic requirement for survivability. It stipulates that
the system should survive in the presence of a malicious adversary.

Models

We can model some redundant computation systems by a directed graph (or multi-graph) in
which the vertices are the processors and the edges are the links. Incoming edges of a vertex
correspond to the inputs of the processor and outgoing edges to its outputs. The graph has at
least one input (source) vertex and at least one output (sink) vertex. This is a high level model
and is appropriate for many applications. However it is inadequate if processors need different
types of inputs, e.g., from different sensors. Also subroutines often have more than one input.

2.1. A model based on directed multi-graphs with colored edges

We can model a redundant computation system with multiple inputs by a directed multi-graph
with colored edges. The different colors indicate the different types of inputs. The graph must
have at least one input vertex and one output vertex.

There are several possible applications for this model. For example, subroutines whose inputs
have the same color need only use one input (when there are no faults). If the colors are different
then the processor must use one input for each of the input colors to carry out its computation
(or whatever it is supposed to do).

Definition 2.1. A directed multi-graph with colored edges G(V, INPUT, output;E) is a di-
rected graph with a set of vertices V , a set INPUT ⊂ V of input vertices, one output vertex,
and a set of colored directed edges E. The input vertices have no incoming edges and the output
vertex has no outgoing edges.

2.2. AND/OR graphs

AND/OR graphs have been used to model problem solving processes in artificial intelligence
(see e.g., Nilsson [14]). In this paper, we will use AND/OR graphs to model fault tolerant
computations with multiple inputs. An AND/OR graph is a directed graph with two types
of vertices, labeled ∧-vertices and ∨-vertices. The graph must have at least one input (source)
vertex and one output (sink) vertex. The output vertex may be regarded as an ∨-vertex (without
loss of generality). More specifically, we have the following definition.

Definition 2.2. An AND/OR graph G(V∧, V∨, INPUT, output;E) is a directed graph with a
set V∧ of ∧-vertices, a set V∨ of ∨-vertices, a set INPUT of input vertices, an output vertex
output ∈ V∨, and a set of directed edges E. The vertices with no incoming edges are input
vertices and the vertex with no outgoing edges is the output vertex.

4 Wang, Desmedt, Burmester/Models

It should be noted that our definition of AND/OR graphs is different from the standard defini-
tions in artificial intelligence (see e.g., [14]), in that the directions of the edges are opposite. The
reason is that we want to use the AND/OR graphs to model redundant computation systems.

It can be shown that this AND/OR graph model is equivalent to the directed graph model
with multi-colored edges in the sense that there is a polynomial time reduction from each model
to the other (which will preserve the semantics of the AND/OR graph and the directed graph
with multi-colored edges, where semantics means the function that the model computes and the
redundancy of each unit). However an AND/OR graph seems to be a more powerful mathemat-
ical tool for the study of redundant computation systems.

The application given in Section 2.1 can also be used for this model. In this case, for proces-
sors which need all their inputs in order to operate could be represented by ∧-vertices, whereas
processors which can choose (using some kind of voting procedure) one of their “redundant”
inputs could be represented by ∨-vertices. In the replicated agent computation with voting
(see Schneider [19]), a meet operation may be considered as an ∧-vertex and the operation of
choosing one agent from its replicas may be considered as an ∨-vertex.

2.3. Solution graphs

As mentioned earlier, redundancy plays a key role in achieving reliability. It is used in reli-
able communications (with error-correcting codes), in network reliability and in fault tolerant
computation. Assume that we use the AND/OR graph to model a fault tolerant computation.
Then, information (for example, mobile codes) must flow from the input vertices to the output
vertex, and a valid computation can be described by a solution graph (the exact definition will
be given below). However, if some insider vertices are faulty or even malicious, then the output
vertex cannot be certain that the result will be correct. If we assume that at maximum k ver-
tices are malicious, then the theory of fault tolerant computation (see e.g., Beimel and Franklin
[1], Dolev [3], and Dolev et al. [4]) tells us that, if there are 2k + 1 vertex disjoint paths of
information flow from the inputs to the output then the output will always succeed in getting
the correct result by taking a majority vote on the results computed via 2k + 1 vertex disjoint
solution graphs from the inputs, provided that the output knows the layout of the graph. It
follows that in order to achieve dependable computation with redundancy, it is necessary to find
an appropriate number of vertex disjoint solution graphs in a given AND/OR graph.

A path in the traditional sense is not useful in our contexts, since for an ∧-vertex we need
all the inputs to carry out the computation. We therefore give a formal definition of a solution
graph in an AND/OR graph.

Definition 2.3. Let G(V∧, V∨, INPUT, output;E) be an AND/OR graph. A solution graph
P = (VP , EP) is a minimum subgraph of G satisfying the following conditions.

1. output ∈ VP .
2. For each ∧-vertex v ∈ VP , all incoming edges of v in E belong to EP .
3. For each ∨-vertex v ∈ VP , there is exactly one incoming edge of v in EP .

Wang, Desmedt, Burmester/Models 5

4. There is a sequence of vertices v1, . . . , vn ∈ VP such that v1 ∈ INPUT, vn = output, and
(vi→vi+1) ∈ EP for each i < n.

Moreover, two solution graphs P1 and P2 are vertex disjoint if (VP1∩VP2) ⊆ (INPUT∪{output}).

Note that every vertex in a solution graph has some outgoing edges due to the minimum property
of a solution graph. Since an AND/OR graph without ∧-vertices may be considered as a normal
digraph, the solution graphs in such AND/OR graphs are exactly the same as the standard
paths in digraphs. It is also easy to see that there is only one solution graph in an AND/OR
graph which has only one ∨-vertex (that is, the output vertex) and in which the output vertex
has only one incoming edge.

If we would have an efficient way to find the vertex disjoint solution graphs in a given
AND/OR graph then redundancy would help us to achieve dependable computation with multi-
ple inputs as follows: carry out the computation through all vertex disjoint solution graphs and
let the output vertex decide whether the result is correct or not by majority vote. However, our
results in this paper show that it is NP-hard to compute the vertex disjoint solution graphs in
AND/OR graphs.

2.4. Related works

Finding disjoint paths in a graph is a classical problem in graph theory. A fundamental char-
acterization was found in 1927 by K. Menger: the maximum number of pairwise disjoint paths
between a given “source” and a given “sink” in a graph is equal to the minimum size of a “cut”
separating source and sink. In 1956, Ford and Fulkerson [5] published a direct labeling method
for the more general problem of finding the maximum flows in a graph. This result implies the
max-flow min-cut theorem, which has been used to find vertex disjoint paths between one source
and one sink in a graph. Lynch proved in 1975 that the following problem is NP-complete:
given a planar graph and pairs (r1, s1), . . . , (rk, sk) of vertices, find k pairwise vertex disjoint
paths connecting ri and si for i = 1, . . . , k respectively. Robertson and Seymour [18] have shown
that if the number k is fixed (that is, k is not a part of the input), then there is a polynomial time
algorithm which solves this problem (when the graph is planar, here is a linear time algorithm,
see Wagner and Weihe [20]). In the case of digraphs, Fortune, Hopcroft and Wyllie [6] have
shown that this problem is NP-complete even for k = 2 pairs of vertices.

There have been also many results in disjoint path and tree methods for the design of very
large-scale integrated (VLSI) circuits (see, e.g., Korte, Lovasz, Prömel, and Schrijver [10]). Many
problems in VLSI circuits design reduce to finding vertex disjoint trees (Steiner trees) in a graph,
each spanning a given set of vertices. If each such set consists of just two vertices, we have a
vertex disjoint paths problem. It has been shown that the general problem of finding vertex
disjoint Steiner trees in a graph is NP-complete. Note that our results, though different, are
related to these vertex disjoint paths problems.

Achieving processor cooperation in the presence of faults is a major problem in distributed
systems. Popular paradigms such as Byzantine agreement have been studied extensively. Dolev

6 Wang, Desmedt, Burmester/NP-hardness

[3] (see also, Dolev et al. [4]) showed that Byzantine agreement is achievable only if the number
of faulty processors in the system is less than one-half of the connectivity of the system’s network.
Hadzilacos [8] has shown that even in the absence of malicious failures, k + 1 connectivity is
required to achieve agreement in the presence of k faulty processors. All these results assume
that the processors have one type of input, while our approach is more general in this respect.

3. Finding vertex disjoint solution graphs in an AND/OR graph

is NP-hard

3.1. A brute-force algorithm for finding vertex disjoint solution graphs

We first present a general algorithm for finding k vertex disjoint solution graphs in an AND/OR
graph, and show that for a certain subclass of AND/OR graphs, this algorithm is efficient.

Definition 3.1. For an AND/OR graph G(V∧, V∨, INPUT, output;E), a directed line l from
v1 to vm in G is a sequence of vertices v1, . . . , vm such that (vi→vi+1) ∈ E for all i < m. For a
directed line l : (v1, . . . , vm) in G, we have the following definitions.

#∨(l) = |{vi : i < m, vi ∈ V∨}|

#∧(l) = |{vi : i > 1, vi ∈ V∧}|
#∨(G) = max{#∨(l) : l is from an input vertex to the output vertex in G},
and
#∧(G) = max{#∧(l) : l is from an input vertex to the output vertex in G}.
We also define degin(G) to be the maximum of the indegrees of all vertices (except the output)
in G.

Given an AND/OR graph G and an edge v→ output, the following algorithm outputs the
set of all solution graphs in G which pass through the edge v→output.

Algorithm I

Input: An AND/OR graph G and an edge v→output.
Output: The set PATHv of all solution graphs in G which pass through the edge v→output.

1. Let V1 = {output, v}, E1 = {v→output}, and Vi = Ei = ∅ for i > 1.
2. Set i = 1.
3. For each u ∈ Vi \ INPUT such that u has no incoming edges in Ei, we distinguish the

following two cases.

Case 1. u ∈ V∧. If u1 → u, . . . , us → u are the incoming edges of u in E, then let
Vi = Vi ∪ {ui : i = 1, . . . , s} and Ei = Ei ∪ {ui→u : i = 1, . . . , s}.

Case 2. u ∈ V∨. If u1 → u, . . . , us → u are the incoming edges of u in E, then let
Vi = Vi ∪ {u1}, Ei = Ei ∪ {u1 → u}, Vi0+j = Vi ∪ {uj+1}, and Ei0+j = Ei ∪ {uj+1 → u},
where j = 1, . . . , s− 1 and i0 = max{t : Vt 6= ∅}.

Wang, Desmedt, Burmester/NP-hardness 7

4. If there exists a positive integer i0 and v ∈ Vi0 \ INPUT such that v has no incoming
edges in Ei0 , then let i = i0 and go to Step 3.

5. Let PATHv = {(Vi, Ei) : Vi 6= ∅ and (Vi, Ei) is a solution graph}. 2

The following lemma gives an upper bound on the size of PATHv.

Lemma 3.1. |PATHv| ≤ degin(G)#∨(G)·degin(G)#∧(G)
.

Proof:
The search process in Algorithm I can be considered as a search on a tree (the tree can be
constructed while the search is going on) with depth at most #∨(G) + #∧(G). Each node on
the tree has at most degin(G) sons. Some nodes are marked as ∨-nodes if they correspond to
the ∨-vertices of the AND/OR graph, and others marked as ∧-nodes. If we consider this tree
as an AND/OR graph with the root node as the output vertex and with the leaves as the input

vertices, then it is clear that |PATHv| is less than or equal to the number of solution graphs in
this AND/OR tree corresponding to the original AND/OR graph. Whence it suffices to show
that there are at most degin(G)#∨(G)·degin(G)#∧(G)

solution graphs in such kind of AND/OR tree.
We define the root of the tree to be the node of depth 0, and inductively we define the depth of
a node to be greater by one than the depth of its parent. An AND/OR tree is called regular if
it satisfies the following properties:

1. The depth of the tree is #∧(G) + #∨(G).
2. Each node has degin(G) sons.
3. All nodes with depth less than or equal to #∧(G) are ∧-nodes.
4. All nodes with depth greater than #∧(G) are ∨-nodes.

It is straightforward to see that a regular AND/OR tree has exactly degin(G)#∨(G)·degin(G)#∧(G)

solution graphs. Whence it suffices to show that a regular AND/OR tree has the largest number
of solution graphs. This can be proved by induction on the depth of the AND/OR tree. That
is, we can inductively move all ∧-vertices from high depth to low depth. The following Claim
guarantees that the “movement” will not decrease the number of solution graphs. For conve-
nience, if v is a node on an AND/OR tree Gt we let sub(v) denote the subtree of Gt rooted at
v.

Claim 3.1. Let Gt be an AND/OR tree and v be an ∨-vertex on Gt with the following prop-
erties:

1. The sons of v are: u1, . . . , un.
2. The sons of ui (i ≤ n) are: ui,1, . . . , ui,m.
3. For each i ≤ n and j ≤ m, there are pi,j ≥ 1 solution graphs in sub(ui,j) of Gt.

Furthermore let G′
t be an AND/OR tree constructed from Gt and v by replacing the subtree

sub(v) on Gt with a subtree sub(v′) with the following properties:

1. v′ is an ∧-vertex.

8 Wang, Desmedt, Burmester/NP-hardness

2. The sons of v′ are the ∨-vertices: u′1, . . . , u
′
m, where u′i (i ≤ m) is the father of the subtrees:

sub(u1,i), . . . , sub(un,i).

Then the number of solution graphs in Gt is less than or equal to the number of solution graphs
in G′

t.

Proof of Claim: It is clear that there are exactly
∏

j

∑
i pi,j solution graphs in sub(v′) of G′

t,
and it is straightforward to check that there are at most

∏
j

∑
i pi,j solution graphs in sub(v) of

Gt (the details are omitted here). The Claim is thus proved.
This completes the proof of the lemma. 2

Let PATH = ∪(v→output)∈EPATHv. Then it follows that, for an AND/OR graph G with
degin(G) = 2, #∧(G) = k0, #∨(G) = blog nc, and degin(output) = m, we have

|PATH| =
∑

(v→output)∈E

|PATHv| ≤ m(22k0blog nc) ≤ mn2k0
.

The following algorithm will tell us whether an AND/OR graph G has k vertex disjoint
solution graphs.

Algorithm II

Input: An AND/OR graph G and a number k.
Output: k vertex disjoint solution graphs in G, if such solution graphs exist.

Let v1→ output, . . . , vm→ output be an enumeration of all incoming edges of output. For each
k-tuple vi1 → output, . . . , vik → output from the incoming edges of output, check whether there
exist vertex disjoint solution graphs P1 ∈ PATHvi1

, . . . , Pk ∈ PATHvik
, where PATHvij

can
be computed using the Algorithm I. If the search succeeds, output the k vertex disjoint solution
graphs. 2

Since output ∈ V∨, it is easy to check that the Algorithm II uses at most(
m

k

) ∏
v→output

|PATHv| (1)

steps. Hence for an AND/OR graph G and a number k, if the value in (1) is smaller than
a given polynomial, then there is a polynomial time algorithm to compute k vertex disjoint
solution graphs in G, if such solution graphs exist.

Lemma 3.2. Let G be an AND/OR graph such that degin(G) = 2, #∧(G) = k0, and #∨(G) =
bc log nc for some constants k0 and c. Then, for a constant k, there is a polynomial time
algorithm to compute k vertex disjoint solution graphs in G, if such solution graphs exist.

After having described the above exhaustive search algorithm, one may wonder whether there
are more efficient algorithms for finding vertex disjoint solution graphs in AND/OR graphs. In
the next section, we will show that this problem is NP-hard.

Wang, Desmedt, Burmester/NP-hardness 9

3.2. NP-completeness

We have shown in Section 3.1 that, if both
(m

k

)
and

∏
(v→output)∈E |PATHv| are bounded by

polynomials then there is a polynomial time algorithm to find k vertex disjoint solution graphs
in the AND/OR graph G, if such solution graphs exist. The result in this section will show that
if we do not impose any of these conditions, then the problem is NP-complete. We first define
two problems on which at least one of the two conditions fails.

AOG1∨ (AND/OR Graphs with 1 ∨-vertex).
Instance: A number k and an AND/OR graph G with #∨(G) = 0.
Question: Do there exist k vertex disjoint solution graphs in G?

AOG2D (AND/OR Graphs with 2 Disjoint solution graphs).
Instance: An AND/OR graph G.
Question: Do there exist 2 vertex disjoint solution graphs in G?

Note that
∏

(v→output)∈E |PATHv| = 1 for AOG1∨ and
(m

k

)
is a polynomial for AOG2D. The

following two theorems show that both AOG1∨ and AOG2D are NP-complete.

Theorem 3.1. AOG1∨ is NP-complete.

Proof:
It is clear that AOG1∨ ∈ NP. Whence it suffices to reduce the NP-complete problem CLIQUE
to AOG1∨. The CLIQUE problem is defined as follows.
Instance: A graph G and a number k.
Question: Does there exist a clique of size k in G? (A clique is a complete subgraph of G.)

The input G = (VG, EG), to CLIQUE, consists of a set of vertices VG = {v1, . . . , vn} and a set
of edges EG. In the following we construct an AND/OR graph f(G) = MG(V∧, V∨, INPUT, output;E)
with #∨(f(G)) = 0 (the input to AOG1∨) such that there is a clique of size k in G if and only
if there are k vertex disjoint solution graphs in f(G).

Let INPUT = {Ii, Ii,j : i, j = 1, . . . n}, V∨ = {output}, V∧ = INPUT ∪ {ui,j : i, j =
1, . . . n} ∪ {ui : i = 1, . . . , n}, and E be the set of the following edges.

1. For each i = 1, . . . , n, there is an edge Ii→ui.

2. For each pair i, j = 1, . . . , n, there is an edge Ii,j→ui,j .

3. For each pair i, j = 1, . . . , n, such that the unordered pair (vi, vj) /∈ EG, there are four
edges ui,j→ui, ui,j→uj , uj,i→ui, and uj,i→uj .

4. For each i, there is an edge ui→output.

Figure 1 shows the structure of the AND/OR graph f(G).
It is clear that two solution graphs P1 and P2 in f(G) which go through ui and uj respectively

are vertex disjoint if and only if there is an edge (vi, vj) in EG. Hence there is a clique of size k

in G if and only if there are k vertex disjoint solution graphs in f(G). 2

10 Wang, Desmedt, Burmester/NP-hardness

Figure 1. The AND/OR graph f(G)

���� ���� ����
���� ���� ���� ����

�������� ����
...................

.................................
.....

..............
.....

.................................
.....

..............
.....

.................................
.....

..............
.....

.................................
.....

..............
.....

.................................
.....

..............
.....

...................

.................................
.....

..............
.....

.................................
.....

..............
.....

.................................
.....

..............
.....

.................................
.....

..............
.....?

?

? ?

? ?

? ?...................
.................................

.....

..............
.....

??

H
HHH

HHH
HHH

HHHHj

�
�

�
�

�
�

�
�

�
�

�+

@
@

@
@

@
@

@R

����

A
A
A
A
A
A
AU

In,n

���
����

Z
Z

ZZ~

�
�

�
�

�
�

�	

out

I1 I2 Ii Ij In

· · · · · · · · · · · · · · · · · ·In,1

u1 u2 ui uj
un· · · · · · · · · · · · · · ·

un,nun,1ui,jui,1u1,1

I1,1 Ii,1 Ii,j

In order to prove that AOG2D is NP-complete, we first define the NP-complete problem
3SAT as follows. Let X = {x1, x2, . . . , xn} be a finite set of variables. A literal is either a
variable xi or its complement x̄i. Thus the set of literals is L = {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}.
A clause C is a 3-element subset of L. We are given a set of clauses C1, C2, . . . , Cm, each of
which consists of 3 literals. The question is whether the set of variables can be assigned values
T (true) or F (false), so that each clause contains at least one literal with a T value. A clause
is satisfied under an assignment if the clause contains at least one literal with a T value. The
concise statement of 3SAT is, therefore, the following:

Instance: A set of clauses.
Question: Is there an assignment of the literals such that all the clauses are satisfied.

Theorem 3.2. AOG2D is NP-complete.

Proof:
It is clear that AOG2D ∈ NP. Whence it suffices to reduce the NP-complete problem 3SAT

to AOG2D.
The input C, to 3SAT , consists of clauses C1, C2, . . . , Cm, each a 3-element subset of the set

of literals L = {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}. In the following we construct an AND/OR graph
f(C) (the input to AOG2D) such that f(C) has two vertex disjoint solution graphs if and only
if C is satisfiable.

For each variable xi we construct two ∨-vertices vi and v̄i and one ∨-vertex ui, as shown in
Figure 2. For the reason of convenience, we use hexagons to denote ∧-vertices and rectangles

Wang, Desmedt, Burmester/NP-hardness 11

to denote ∨-vertices. There is an input vertex in which is connected by two edges to u0 and
w respectively. u0 is connected by three edges to the vertices v1, v̄1 and u respectively, and w

is connected by 2n edges to v1, v̄1, . . . , vn, v̄n. The vertices for variables are connected in series:
for i < n, both vi and v̄i are connected by edges to ui, and ui is connected by edges to vi+1 and
to v̄i+1. un is connected by an edge to the ∧-vertex u which is again connected to the output
vertex. In addition, there are ∨-vertices c1, c2, . . . , cm and an edge from each to the ∧-vertex uc.
For each occurrence of xi (x̄i), there is an edge from vi (v̄i) to the vertex cj , the clause in which
it occurs. Lastly, there is one edge from uc to the output vertex output.

Figure 2. The AND/OR graph f(C)

�
�

�/

J
J
Ĵ

�

���1
�

��>

�
�

�
��

HHHj

�
��3

H
HHH

HHH
HHj

�
�

�
�

�
�

�
�

��	

��*

�
��3

�
�

�
�

�
�

��+

�

�
�
�
�
�
�
�
�
���

@
@

@
@

@
@

@
@

@@R

""

bb""

bb

-

?

?

Z
Z~

""

bb""

bb

""

bb""

bb
C
CW BBN ?��

?

?

""

bb""

bb

PPPq

��*

HHj

XXXz���1XXz

""

bb""

bb

�
��

PPq

v̄1

v1

u1

v̄2

v2

u2
· · ·

v̄n

vn

un

in

u0

w

c1 · · · cm

uc

· · ·

output

u

It is easy to see that if there are two vertex disjoint solution graphs P1 and P2 in f(C), then
we can assume that the first solution graph P1 goes from in through u0 and u to output, and
that the second solution graph P2 goes from in through w and uc to output. Also it is clear that
P1 must use un and vi or v̄i for each i ≤ n, but not both.

For the second solution graph P2, there is exactly one edge entering cu (u ≤ m) since uc is
an ∧-vertex. If this edge comes from vi for i ≤ n, then P1 must use v̄i.

Thus if the answer to f(C) with respect to AOG2D is positive, then we can use the paths P1

and P2 to assign a satisfying assignment of the literals as follows: if P1 goes through vi, assign

12 Wang, Desmedt, Burmester/NP-hardness

xi = F , and if through v̄i, xi = T . In this case the answer to C with respect to 3SAT is also
positive.

Conversely, assume there is a satisfying assignment of the variables. If xi = T , let P1 use v̄i;
if xi = F , use vi. Now, let ξ be a ‘true’ literal in Cu. If ξ = xi then vi is free of the solution
graph P1 and we can use it to find a solution graph from w to cu; if ξ = x̄i, use v̄i. Finally, use
the m edges entering uc and the edge from uc to output to form the solution graph P2. 2

Acknowledgment

The authors would like to thank an anonymous referee for valuable comments.

References

[1] Beimel, A. and Franklin, M.: Reliable communication over partially authenticated net-
works. In: Proceedings of the WDAG ’97, Lecture Notes in Computer Science 1320, Springer
Verlag, 1997, 245–259.

[2] Burmester, M. and Desmedt, Y. and Wang, Y.: Using approximation hardness to achieve
dependable computation. In: Proceedings of Second International Conference on Random-
ization and Approximation Techniques in Computer Science, Lecture Notes in Computer
Science 1518, Springer Verlag, 1998, 172–186.

[3] Dolev, D.: The Byzantine generals strike again. J. of Algorithms, 3, 1982, 14–30.

[4] Dolev, D. and Dwork, C. and Waarts, O. and Yung, M.: Perfectly secure message trans-
mission. J. of the ACM, 40(1), 1993, 17–47.

[5] Ford, L. and Fulkerson, D: Flows in Networks. Princeton, NJ: Princeton University Press,
1962.

[6] Fortune, S. and Hopcroft, J. and Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoret. Comput. Sci., 10, 1980, 111–121.

[7] Garey, M. and Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. San Francisco: W. H. Freeman and Company, 1979.

[8] Hadzilacos, V.: Issues of Fault Tolerance in Concurrent Computations. PhD thesis, Harvard
University, Cambridge, MA, 1984.

[9] Information Systems Trustworthiness – Interim Report. Computer Science and Telecommu-
nications Board Commission on Physical Sciences, Mathematics, and Applications National
Research Council. April 1997.

[10] Korte, B. and Lovasz, L. and Prömel, H. and Schrijver A. (Eds.): Paths, Flows, and VLSI
Layout. Springer-Verlag, 1990.

[11] Lamport, L. and Shostak, R. and Pease M.: The Byzantine generals problem. J. of the
ACM, 32(2), 1982, 374–382.

[12] Neumann, P.: Are dependable systems feasible? Commun. of the ACM, 36(2), 1993, 146.

Wang, Desmedt, Burmester/NP-hardness 13

[13] Nicola, V. and Nakayama, M. and Heidelberger, P. and Goyal, A.: Fast simulation of
highly dependable systems with general failure and repair processes. IEEE Transactions on
Computers, 42(12), 1993, 1440-1452.

[14] Nilsson, N.: Principles of Artificial Intelligence. Tioga, 1980.
[15] Perl, Y. and Shiloach, Y.: Finding two disjoint paths between two pairs of vertices in a

graph. J. of the ACM, 25(1), 1978, 1–9.
[16] Riecken, D.: Intelligent agents. Commun. of the ACM, 37(7), 1994, 19–21.
[17] Reiter, M. and Stubblebine, S.: Path independence for authentication in large-scale systems.

In: Proceedings of the 4th ACM Conference on Computer and Communication Security,
ACM Press, 1997.

[18] Robertson, N. and Seymour, P: Graph minors XIII: The disjoint paths problem. J. Comb.
Theory, Ser. B, 63(1), 1995, 65–110.

[19] Schneider, F.: Towards fault-tolerant and secure agentry. In: Proceedings of the WDAG
’97, Lecture Notes in Computer Science 1320, Springer Verlag, 1997, 1–14.

[20] Wagner, D. and Weihe, K.: A linear time algorithm for multicommodity flow in planar
graphs. Proc. First European Symposium on Algorithms, 1993, 384–395.

