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Abstract

In this paper we give an affirmative answer to a conjecture by Lutz (1992). That is, we will show that there is a Schnorr
random sequence which is not rec-random. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction and notation

Schnorr [3] used the martingale concept to give a
uniform description of various notions of randomness.
In particular, he gave a characterization of Martin-
Lot’s randomness concept in these terms. Moreover,
he criticized Martin-Lof’s concept as being too strong
and proposed a less restrictive concept as an adequate
formalization of the notion of a random sequence. In
addition Schnorr introduced an intermediate notion
between Martin-L.of and Schnorr randomness which
we call rec-randomness. Schnorr left open the question
whether rec-randomness is a proper refinement of
Schnorr randomness, which was conjectured to be
true by Lutz [2]. We will show that rec-randomness
is strictly stronger than Schnorr randomness, thereby
proving Lutz’s conjecture. This question was also
mentioned by van Lambalgen [1].
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For the most part our notation is standard. We
assume that the reader is familiar with the basics of
recursion theory.

N, Q% and R* are the set of natural numbers, the
set of nonnegative rational numbers and the set of
nonnegative real numbers, respectively. X = {0, 1} is
the binary alphabet, X* is the set of (finite) binary
strings, X" is the set of binary strings of length n, and
X% is the set of infinite binary sequences. The length
of a string x is denoted by |x[. A is the empty string.
For strings x, y € *, xy is the concatenation of x and
y. For asequence x € X*U X' and an integer number
n = —1, x[0..n] denotes the initial segment of length
n+1of x (x[0..n] = x if |x| < n+1) and x[i] denotes
the ith bit of x, i.e.,

x[0..n] =x[0]...x[n].

Lower case letters ..., k,I,m,n,...,x,y, z from the
middle and the end of the alphabet will denote num-
bers and strings, respectively. The letter b is reserved
for elements of ¥, and lower case Greek letters
&, 7, ... denote infinite sequences from X*°. A sub-
set of X is called a language or simply a set. Italic
capital letters are used to denote subsets of £*.
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2. Definitions

Definition 1. A martingale is a function F:X* —
R7 such that, for all x € £*,
F(x1) + F(x0)

> .

A martingale F succeeds on an infinite sequence & €
X iflimsup, F(£[0..n — 1]) = oo.

F(x)= 1)

Note that in the above definition, the martingales
are defined as real-valued functions. In this paper
we will mainly use rational-valued martingales unless
specified explicitly.

Definition 2 (Schnorr [3]). A rec-test is a recursive
martingale F : * — Q*. An infinite sequence & does
not withstand the rec-test F if F succeeds on £.
A sequence & is rec-random if it withstands all rec-
tests.

Definition 3 (Schnorr [3]). A Schnorr test is a pair
(F,h) of functions such that F:X* — Q% is a
recursive martingale and 4 :N — N is an unbounded,
nondecreasing, recursive function. A sequence & does
not withstand the Schnorr test (F, h) if F(§[0..n —
11 = h(n) i.0. A sequence & is Schnorr random if it
withstands all Schnorr tests.

Theorem 4 (Schnorr [3]). Every rec-random se-
quence is also Schnorr random.

Proof. This follows immediately from the defini-
tions. O

3. Separation of rec-randomness from Schnorr
randomness

Theorem 5. There is a Schnorr random sequence
which is not rec-random.

Proof. We start with some notation. Call a Schnorr
test (F, h) standard if F(A) = 1 and hA(0) = 0. Let
(Fo, ho), (F1, k1), ... be an effective enumeration of
all pairs of partial recursive functions satisfying, for
eache e N,

F.:2*—> Q" and h.,:N->N,

and let (Mg, M), (M}, M{), ... be the correspond-
ing Turing machines computing those functions. Let
ng,n1,... be a sequence of numbers such that
(Fng» ing), (Fuy» hny), - - . is an enumeration (not effec-
tive) of all standard Schnorr tests among the sequence
(Fy, ko), (F1, k), .... For the sequence ng,ny,...,
define a “‘universal” martingale @ by letting

oo
D(x) = Zz‘"f Fy, (x).
i=0
In what follows we will construct a recursive

martingale F and a sequence £ such that, for each e,
the following requirements are satisfied.

R: F succeedsoné&.

N,: It (F,, h,) is a standard Schnorr test, then
there exists ¢ € N such that, for all n > ¢,
Fo(£[0..n — 1]) < he(n).

Note that the requirement R ensures that & is not
rec-random and the requirements N, ensure that &
is Schnorr random. Namely, if & is not Schnorr
random, then there exists a standard Schnorr test
(Fe,, he,) such that F, (£[0.n — 1]) > h,, (n) i0.,
which contradicts the requirement N, .

Using the knowledge of the “universal” martin-
gale @, it is easy to construct the Schnorr random
sequence &. However, during our construction, we
also want to construct a recursive martingale F which
will succeed on £. And we cannot effectively decide
whether (F,, h,) is a standard Schnorr test or not.
Hence we cannot decide the construction of & recur-
sively. In order to solve this problem, we will use
some bits of & to code assumptions whether certain
(Fe, h¢)’s are standard Schnorr tests or not. That is,
in the construction, we define a partial recursive func-
tion d: X* — X* such that, for a string x on which
d is defined, d(x) denotes the following assumptions:
For e < |d(x)|, we assume that (F,, k,.) is a standard
Schnorr test if and only if d(x)[e] = 1. Then & will
be a “true path”, that is, d(¢)[m] = 1 if and only if
m = n; for some i € N. So it suffices to construct the
recursive martingale F in such a way that F succeeds
on all sequences n such that there are infinitely many
ones in d(n).

Construction of £, F and 4.
Stage 0. Let F(A)=1and d(}) = A.
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Stage 1. Let F(0) = F(1) =1, d(0) =0 and
d(1) = 1. If (Fy, ho) is a standard Schnorr test then
let £[0] =1 else let £[0] = 0.

Stage s + 1 (s > 0). For each string x € ¥* such
that neither F(x0) nor F(x1) has been defined before
stage s + 1, we distinguish the following two cases.

Case 1. d(x) has not been defined. Let F(x0) =
F(x1)=F(x).

Case 2. d(x) = bg...b; has been defined. If, for
each j < k satisfying b; = 1, there exists m; < |x|
such that M ;.’(m ;) stops in s + 1 steps and

27O p(xy < hj(m)), @

then go to Process 1, else go to Process 2.

Process 1. Let F(x0) = 0, F(x1) = F(x10) =
F(x1l) = 2F(x), d(x1) = d(x), d(x10) = d(x)0,
d(x11) =d(x)1. If £[0..s — 1] = x, then let £[0..s +
11 =£&[0..s — 1]1b, where b = 1 if (Fxy1,hi41) is a
standard Schnorr test and b = 0 otherwise.

Process 2. Let F(x0) = F(x1) = F(x), d(x0) =
d(x1) =d(x). If £]0..s — 1] = x, then let £[0..s] =
E[0..s—1])b,whereb=1if @ (x1) < ®(x0)and b =0
otherwise.

Note that it is clear by inspection that, prior to
each stage s + 1, F(x) is defined for all |x| <'s,
d(£[0..s — 1]) and £[0..s] are defined, and for all ¢ <
[d(&[0..s — 1]}, d(£[0..s — 1])[e] = 1 if and only if
(F,, h.) is a standard Schnorr test. Thus F is a rec-test
and d is monotone, so the sequence d(§) € X* U X
is well-defined.

It remains to verify that the above-constructed F
and & satisfy the requirements. We establish this by
proving a sequence of claims.

Claim 6. There are infinitely many stages s such that
F(&[0..s — 1]) is defined in Process 1 of Case 2.

Proof. We prove this by induction. Given sg, we have
to show that there exists a stage s > sg such that
F(&[0..s — 1]) is defined in Process 1 of Case 2. For
each i < [d(£[0..s0])| satistying d(£[0..so])[i] = 1,
(Fi,h;) 1s a standard Schnorr test, hence 4; is an
unbounded, nondecreasing, recursive function, which
implies that there exists some s > sq such that, at stage
s + 1, the condition (2) holds for x = £[0..s — 1]. Let
51 be the least such s. Then F(£[0..s1]) is defined in

Process | of Case 2. This completes the proof of the
claim. [J

Claim 7. d(§)[e] is defined for all e € N, and
d&)lel == 1 if and only if (F,, he) is a standard
Schnorr test. m = n; for some i € N.

Proof. This follows immediately from Claim 6 and
the preliminary observation after the construction. O

Claim 8. lim,, F(£[0..n — 1]) = oc.

Proof. By Claim 7, d(£[0..5s]) is defined for all s € N.
Hence, at each stage s + 1, F(£[0..5]) is defined in
Case 2 of the construction. At stage s + 1, if F(£[0..5])
is defined in Process 1 of Case 2, then F(£[0..s]) =
2F(£[0..s — 1]); Otherwise F(£[0..5]) = F(£[0..s —
1]). By Claim 6, there are infinitely many stages s such
that F(£[0..s — 1]) is defined in Process 1 of Case 2.
This completes the proof. O

Claim 9. Foreachs €N,
@ (£[0..5 — 1]) < 21E0-=DH g (10,5 — 1]).
Proof. We prove the claim by induction on s. For
s =0, since ®(A) < 2, it is straightforward that
@ (1) < 2°F1F (). The case for s = 1 is also similarly
straightforward.

For the inductive step, we distinguish the following
two cases.

Case 1. At stage s + 1, £[0..s] is defined in
Process 1. Then

®(£[0..5]) <20 (£[0..s — 1])
L 2ME0-s=IDIH . F(g[0..5 — 17)
- 2|d(5[0““])‘+]F(&[O..s])
and
®(£[0..5 -+ 1]) < 20 (£10..51)
< 2|d($[0”x1)|+2F(§[0..S])
< 2|d(5[0“‘v+l]]l+lF(E[O..S + 1])

Case 2. At stage s + 1, £[0..s] is defined in
Process 2. Then

@ (£00..5]) < @(£[0..5 — 1))
< 2ME0s—IDIH p(g10_s — 17)
=2MEOsDH pgf0.5]). O
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Claim 10. Foreache, if (Fe, h,) is a standard Schnorr
test, then

26+|d(§'[0.,n—1])|+1F(é:[onn — 1]) <h.(n) a..

Proof. Let ¢; be large enough such that |d(£{0..c; —
1])| > e. By the construction, there exist co > m, > ¢|
such that

2eHA -0~ 1D B (£[0..co — 1])
< he(m,) < he(co).

In the following we show by induction that the
inequality of the claim holds for all » > ¢¢. For each
s + 1 > ¢, we distinguish the following two cases.

Case 1. At stage s + 1, £[0..s] is defined in
Process 1. Then, by the construction, there exists s, <
s + 1 such that

2eHAEL0-s=IDIH3 F(£[0..5 — 11) < ho(se)-
So
260D (g[0_s])
— 2o 052 (£[0, 5 — 1])
<he(se) She(s +1)
and
2eHAE0SHDIH P (£]0.s 4 1)
— 20 HEI0s= D3 p(g10 s — 1])
< he(se) < he(s +2).

Case 2. At stage s + 1, £[0..s] is defined in
Process 2. Then

2eHMEDSDIH p (g0, 1)
— 26 HEDs— I B (g[0s — 1])
<he(s)<he(s+1). O

Claim 11. For each e, the requirement N, is met.

Proof. If (F,, h,) is not a standard Schnorr test, then
N, is met trivially. Otherwise, by Claim 10, let cp
be large enough so that 2¢+1¢¢E0-#=1DI+] p(go..n —
1]) < he(n) for all n > cp.

Then forall s > cg,

Fo(£10..s — 1]) < 2°®(£[0..5 — 1])

L 2¢tE0s=DIF pg[0.s = 1])  (by Claim 9)

< he(s). O

These claims taken together complete the proof of
Theorem 5. O
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