

Information Processing Letters 69 (1999) 115-118

Information Processing Letters

A separation of two randomness concepts *

Yongge Wang 1

Department of Computer Science and Electrical Engineering, University of Wisconsin-Milwaukee, P.O. Box 784, Milwaukee, WI 53201, USA

Received 10 November 1997; received in revised form 10 December 1998 Communicated by P.M.B. Vitányi

Abstract

In this paper we give an affirmative answer to a conjecture by Lutz (1992). That is, we will show that there is a Schnorr random sequence which is not rec-random. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Randomness; Martingales

1. Introduction and notation

Schnorr [3] used the martingale concept to give a uniform description of various notions of randomness. In particular, he gave a characterization of Martin-Löf's randomness concept in these terms. Moreover, he criticized Martin-Löf's concept as being too strong and proposed a less restrictive concept as an adequate formalization of the notion of a random sequence. In addition Schnorr introduced an intermediate notion between Martin-Löf and Schnorr randomness which we call rec-randomness. Schnorr left open the question whether rec-randomness is a proper refinement of Schnorr randomness, which was conjectured to be true by Lutz [2]. We will show that rec-randomness is strictly stronger than Schnorr randomness, thereby proving Lutz's conjecture. This question was also mentioned by van Lambalgen [1].

For the most part our notation is standard. We assume that the reader is familiar with the basics of recursion theory.

 \mathbb{N}, \mathbb{Q}^+ and \mathbb{R}^+ are the set of natural numbers, the set of nonnegative rational numbers and the set of nonnegative real numbers, respectively. $\Sigma = \{0, 1\}$ is the binary alphabet, Σ^* is the set of (finite) binary strings, Σ^n is the set of binary strings of length n, and Σ^∞ is the set of infinite binary sequences. The length of a string x is denoted by |x|. λ is the empty string. For strings $x, y \in \Sigma^*$, xy is the concatenation of x and y. For a sequence $x \in \Sigma^* \cup \Sigma'^\infty$ and an integer number $n \ge -1$, x[0..n] denotes the initial segment of length n+1 of x (x[0..n] = x if $|x| \le n+1$) and x[i] denotes the ith bit of x, i.e.,

$$x[0..n] = x[0]...x[n].$$

Lower case letters ..., k, l, m, n, ..., x, y, z from the middle and the end of the alphabet will denote numbers and strings, respectively. The letter b is reserved for elements of Σ , and lower case Greek letters $\xi, \eta, ...$ denote infinite sequences from Σ^{∞} . A subset of Σ^* is called a language or simply a set. Italic capital letters are used to denote subsets of Σ^* .

[°] The work reported here is a part of the author's Ph.D. Thesis (Wang, 1996) under the direction of Professor Ambos-Spies at the University of Heidelberg, Germany.

I Email: wang@cs.uwm.edu.

2. Definitions

Definition 1. A *martingale* is a function $F: \Sigma^* \to \mathbb{R}^+$ such that, for all $x \in \Sigma^*$,

$$F(x) = \frac{F(x1) + F(x0)}{2}. (1)$$

A martingale F succeeds on an infinite sequence $\xi \in \Sigma^{\infty}$ if $\limsup_{n} F(\xi[0..n-1]) = \infty$.

Note that in the above definition, the martingales are defined as real-valued functions. In this paper we will mainly use rational-valued martingales unless specified explicitly.

Definition 2 (Schnorr [3]). A rec-test is a recursive martingale $F: \Sigma^* \to \mathbb{Q}^+$. An infinite sequence ξ does not withstand the rec-test F if F succeeds on ξ . A sequence ξ is rec-random if it withstands all rectests.

Definition 3 (Schnorr [3]). A Schnorr test is a pair (F,h) of functions such that $F: \Sigma^* \to \mathbb{Q}^+$ is a recursive martingale and $h: \mathbb{N} \to \mathbb{N}$ is an unbounded, nondecreasing, recursive function. A sequence ξ does not withstand the Schnorr test (F,h) if $F(\xi[0.n-1]) \geqslant h(n)$ i.o. A sequence ξ is Schnorr random if it withstands all Schnorr tests.

Theorem 4 (Schnorr [3]). Every rec-random sequence is also Schnorr random.

Proof. This follows immediately from the definitions. \Box

3. Separation of rec-randomness from Schnorr randomness

Theorem 5. There is a Schnorr random sequence which is not rec-random.

Proof. We start with some notation. Call a Schnorr test (F, h) standard if $F(\lambda) = 1$ and h(0) = 0. Let $(F_0, h_0), (F_1, h_1), \ldots$ be an effective enumeration of all pairs of partial recursive functions satisfying, for each $e \in \mathbb{N}$,

$$F_e: \Sigma^* \to \mathbb{Q}^+$$
 and $h_e: \mathbb{N} \to \mathbb{N}$,

and let $(M'_0, M''_0), (M'_1, M''_1), \ldots$ be the corresponding Turing machines computing those functions. Let n_0, n_1, \ldots be a sequence of numbers such that $(F_{n_0}, h_{n_0}), (F_{n_1}, h_{n_1}), \ldots$ is an enumeration (not effective) of all standard Schnorr tests among the sequence $(F_0, h_0), (F_1, h_1), \ldots$ For the sequence n_0, n_1, \ldots , define a "universal" martingale Φ by letting

$$\Phi(x) = \sum_{i=0}^{\infty} 2^{-n_i} F_{n_i}(x).$$

In what follows we will construct a recursive martingale F and a sequence ξ such that, for each e, the following requirements are satisfied.

R: F succeeds on ξ .

 N_e : If (F_e, h_e) is a standard Schnorr test, then there exists $c \in \mathbb{N}$ such that, for all n > c, $F_e(\xi[0..n-1]) < h_e(n)$.

Note that the requirement R ensures that ξ is not rec-random and the requirements N_e ensure that ξ is Schnorr random. Namely, if ξ is not Schnorr random, then there exists a standard Schnorr test (F_{e_1}, h_{e_1}) such that $F_{e_1}(\xi[0..n-1]) \ge h_{e_1}(n)$ i.o., which contradicts the requirement N_{e_1} .

Using the knowledge of the "universal" martingale Φ , it is easy to construct the Schnorr random sequence ξ . However, during our construction, we also want to construct a recursive martingale F which will succeed on ξ . And we cannot effectively decide whether (F_e, h_e) is a standard Schnorr test or not. Hence we cannot decide the construction of ξ recursively. In order to solve this problem, we will use some bits of ξ to code assumptions whether certain (F_{ℓ}, h_{ℓ}) 's are standard Schnorr tests or not. That is, in the construction, we define a partial recursive function $d: \Sigma^* \to \Sigma^*$ such that, for a string x on which d is defined, d(x) denotes the following assumptions: For e < |d(x)|, we assume that (F_e, h_e) is a standard Schnor test if and only if d(x)[e] = 1. Then ξ will be a "true path", that is, $d(\xi)[m] = 1$ if and only if $m = n_i$ for some $i \in \mathbb{N}$. So it suffices to construct the recursive martingale F in such a way that F succeeds on all sequences η such that there are infinitely many ones in $d(\eta)$.

Construction of ξ , F and d.

Stage 0. Let $F(\lambda) = 1$ and $d(\lambda) = \lambda$.

Stage 1. Let F(0) = F(1) = 1, d(0) = 0 and d(1) = 1. If (F_0, h_0) is a standard Schnorr test then let $\xi[0] = 1$ else let $\xi[0] = 0$.

Stage s+1 (s>0). For each string $x \in \Sigma^s$ such that neither F(x0) nor F(x1) has been defined before stage s+1, we distinguish the following two cases.

Case 1. d(x) has not been defined. Let F(x0) = F(x1) = F(x).

Case 2. $d(x) = b_0 \dots b_k$ has been defined. If, for each $j \le k$ satisfying $b_j = 1$, there exists $m_j \le |x|$ such that $M''_j(m_j)$ stops in s + 1 steps and

$$2^{j+|d(x)|+3}F(x) < h_j(m_j), \tag{2}$$

then go to Process 1, else go to Process 2.

Process 1. Let F(x0) = 0, F(x1) = F(x10) = F(x11) = 2F(x), d(x1) = d(x), d(x10) = d(x)0, d(x11) = d(x)1. If $\xi[0..s - 1] = x$, then let $\xi[0..s + 1] = \xi[0..s - 1]1b$, where b = 1 if (F_{k+1}, h_{k+1}) is a standard Schnorr test and b = 0 otherwise.

Process 2. Let F(x0) = F(x1) = F(x), d(x0) = d(x1) = d(x). If $\xi[0..s - 1] = x$, then let $\xi[0..s] = \xi[0..s - 1]b$, where b = 1 if $\Phi(x1) \le \Phi(x0)$ and b = 0 otherwise.

Note that it is clear by inspection that, prior to each stage s+1, F(x) is defined for all $|x| \leq s$, $d(\xi[0...s-1])$ and $\xi[0...s]$ are defined, and for all $e < |d(\xi[0...s-1])|$, $d(\xi[0...s-1])[e] = 1$ if and only if (F_e, h_e) is a standard Schnorr test. Thus F is a rec-test and d is monotone, so the sequence $d(\xi) \in \Sigma^* \cup \Sigma^\infty$ is well-defined.

It remains to verify that the above-constructed F and ξ satisfy the requirements. We establish this by proving a sequence of claims.

Claim 6. There are infinitely many stages s such that $F(\xi[0..s-1])$ is defined in Process 1 of Case 2.

Proof. We prove this by induction. Given s_0 , we have to show that there exists a stage $s > s_0$ such that $F(\xi[0..s-1])$ is defined in Process 1 of Case 2. For each $i < |d(\xi[0..s_0])|$ satisfying $d(\xi[0..s_0])[i] = 1$, (F_i, h_i) is a standard Schnorr test, hence h_i is an unbounded, nondecreasing, recursive function, which implies that there exists some $s > s_0$ such that, at stage s+1, the condition (2) holds for $s=\xi[0..s-1]$. Let s_1 be the least such s. Then $s=\xi[0..s-1]$ is defined in

Process 1 of Case 2. This completes the proof of the claim. \Box

Claim 7. $d(\xi)[e]$ is defined for all $e \in \mathbb{N}$, and $d(\xi)[e] = 1$ if and only if (F_e, h_e) is a standard Schnorr test. $m = n_i$ for some $i \in \mathbb{N}$.

Proof. This follows immediately from Claim 6 and the preliminary observation after the construction.

Claim 8. $\lim_{n} F(\xi[0..n-1]) = \infty$.

Proof. By Claim 7, $d(\xi[0..s])$ is defined for all $s \in \mathbb{N}$. Hence, at each stage s+1, $F(\xi[0..s])$ is defined in Case 2 of the construction. At stage s+1, if $F(\xi[0..s])$ is defined in Process 1 of Case 2, then $F(\xi[0..s]) = 2F(\xi[0..s-1])$; Otherwise $F(\xi[0..s]) = F(\xi[0..s-1])$. By Claim 6, there are infinitely many stages s such that $F(\xi[0..s-1])$ is defined in Process 1 of Case 2. This completes the proof. \square

Claim 9. For each $s \in \mathbb{N}$,

$$\Phi(\xi[0..s-1]) \leq 2^{|d(\xi[0..s-1])|+1} F(\xi[0..s-1]).$$

Proof. We prove the claim by induction on s. For s=0, since $\Phi(\lambda) \leq 2$, it is straightforward that $\Phi(\lambda) \leq 2^{0+1} F(\lambda)$. The case for s=1 is also similarly straightforward.

For the inductive step, we distinguish the following two cases.

Case 1. At stage s + 1, $\xi[0..s]$ is defined in Process 1. Then

$$\Phi(\xi[0..s]) \leq 2\Phi(\xi[0..s-1])
\leq 2^{|d(\xi[0..s-1])|+1} 2 \cdot F(\xi[0..s-1])
= 2^{|d(\xi[0..s])|+1} F(\xi[0..s])$$

and

$$\Phi(\xi[0..s+1]) \leq 2\Phi(\xi[0..s])
\leq 2^{|d(\xi[0..s])|+2} F(\xi[0..s])
\leq 2^{|d(\xi[0..s+1])|+1} F(\xi[0..s+1]).$$

Case 2. At stage s + 1, $\xi[0...s]$ is defined in Process 2. Then

$$\Phi(\xi[0..s]) \leq \Phi(\xi[0..s-1])
\leq 2^{|d(\xi[0..s-1])|+1} F(\xi[0..s-1])
= 2^{|d(\xi[0..s])|+1} F(\xi[0..s]). \quad \Box$$

Claim 10. For each e, if (F_e, h_e) is a standard Schnorr test, then

$$2^{e+|d(\xi[0..n-1])|+1}F\big(\xi[0..n-1]\big) < h_e(n) \quad a.e.$$

Proof. Let c_1 be large enough such that $|d(\xi[0..c_1-1])| > e$. By the construction, there exist $c_0 > m_e > c_1$ such that

$$2^{e+|d(\xi[0..c_0-1])|+3}F(\xi[0..c_0-1])$$

< $h_e(m_e) \le h_e(c_0).$

In the following we show by induction that the inequality of the claim holds for all $n > c_0$. For each $s + 1 > c_0$, we distinguish the following two cases.

Case 1. At stage s + 1, $\xi[0...s]$ is defined in Process 1. Then, by the construction, there exists $s_e < s + 1$ such that

$$2^{e+|d(\xi[0..s-1])|+3}F(\xi[0..s-1]) < h_e(s_e).$$

So

$$2^{e+|d(\xi[0..s])|+1}F(\xi[0..s])$$

$$= 2^{e+|d(\xi[0..s-1])|+2}F(\xi[0..s-1])$$

$$< h_e(s_e) \le h_e(s+1)$$

and

$$2^{e+|d(\xi[0..s+1])|+1}F(\xi[0..s+1])$$

$$=2^{e+|d(\xi[0..s+1])|+3}F(\xi[0..s-1])$$

$$< h_{e}(s_{e}) \leq h_{e}(s+2).$$

Case 2. At stage s + 1, $\xi[0..s]$ is defined in Process 2. Then

$$2^{e+|d(\xi[0..s])|+1}F(\xi[0..s])$$

$$=2^{e+|d(\xi[0..s-1])|+1}F(\xi[0..s-1])$$

$$< h_{\ell}(s) \leq h_{\ell}(s+1). \quad \Box$$

Claim 11. For each e, the requirement N_e is met.

Proof. If (F_e, h_e) is not a standard Schnorr test, then N_e is met trivially. Otherwise, by Claim 10, let c_0 be large enough so that $2^{e+|d(\xi[0..n-1])|+1}F(\xi[0..n-1]) < h_e(n)$ for all $n \ge c_0$.

Then for all $s \ge c_0$,

$$F_e(\xi[0..s-1]) \le 2^e \Phi(\xi[0..s-1])$$

 $\le 2^{e+|d(\xi[0..s-1])|+1} F(\xi[0..s-1])$ (by Claim 9)
 $< h_e(s)$.

These claims taken together complete the proof of Theorem 5. \Box

Acknowledgements

I would like to thank Professor K. Ambos-Spies, Professor S. Kautz, Professor J. Lutz and Professor E. Mayordomo for many useful discussions and for many useful remarks on a preliminary draft of this paper.

References

- M. van Lambalgen, Random sequences, Ph.D. Thesis, University of Amsterdam, 1987.
- [2] J.H. Lutz, Almost everywhere high nonuniform complexity, J. Comput. System Sci. 44 (1992) 220–258.
- [3] C.P. Schnorr, Zufälligkeit und Wahrscheinlichkeit, Lecture Notes in Math., Vol. 218, Springer, Berlin, 1971.
- [4] Y. Wang, Randomness and complexity, Ph.D. Thesis, Universität Heidelberg, 1996.