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ABSTRACT
Current storage systems use RAID-5 and RAID-6 architectures

to provide protection against one and two disk failures, respec-

tively. However, as the size of storage system grows rapidly three

concurrent disk failures are becoming more frequent. To cope up

with three disk failure, we propose a new RAID level, i.e., RAID-7,

for which three-column-erasure tolerating MDS array codes are

needed. However, it is an open question as to which MDS array

codes should be used for RAID-7. In this paper, we compare differ-

ent array codes, which can be used in RAID-7 systems that require

storage efficiency (the ratio of number of information symbols to

encoding (or codeword) symbols) ≤ 0.5. The paper discusses three-

column-erasure tolerating MDS array codes proposed in the litera-

ture namely, [5,2] 2× 5 BP-XOR code, [6,3] 4× 6 lowest-density ar-

ray code, [6,3] 2×6 STAR code, [6,3] 4×6 generalized RDP code. The

paper introduces a new three-column-erasure tolerating [6,3] 2× 6

almost BP-XOR codes. We analyze annual failure rate, storage ef-

ficiency, worst case normalized encoding/update/repairing/read

complexity, repair bandwidth, and number of buffers required for

these codes. We also provide experimental results to understand

the average case encoding and repairing complexity of BP-XOR,

STAR, GRDP, and almost BP-XOR codes by implementing them in

software. From our analysis and experimental results, we conclude

that [6,3] 2 × 6 almost BP-XOR are best suited for RAID-7 systems

with storage efficiency ≤ 0.5.
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1 INTRODUCTION
Redundant arrays of inexpensive (or independent) disks (RAID) has

been widely used as an important building block for developing

reliable storage systems. Popular RAID architectures such as those

based on RAID-5, e.g., [1], use simple parity schemes to provide

protection against a single disk failure. However, it was already ob-

served in early 90’s that as disk arrays grow, the chances of double

disk failures increase significantly [2]. Hence, RAID-6 architecture

was proposed, which uses two parity blocks to provide protection

against two concurrent disk failures. Several MDS (maximum dis-

tance separable) array codes, e.g., EVENODD [3], Row-diagonal

parity (RDP) [4], etc., have been proposed for RAID-6 architecture.

One of the most important features of such codes is that they in

general require only XOR operations to encode and decode the data.

Hence, the encoding and decoding complexity is significantly less

compared to the RAID systems which use MDS codes over finite

fields, e.g., Reed-Solomon codes, to protect data against disk failure.

In [5], authors propose [n,2] and [n,n − 2] MDS BP-XOR codes

which are also suitable for use in RAID-6 architecture. BP-XOR

codes utilize ideas from efficient belief propagation (BP) decoding

process used in LT codes [6] and have substantially lower decoding

complexity compared to other two-column-erasure tolerating array

codes.

In 2005, Kryder’s law was reported in [7] which states that the

hard drive density will double annually. It has been observed in [2]

that this rate of doubling has not been maintained but it has been

close. On the other hand, hard disk throughput has been growing

rather slowly [2]. As Kryder’s law continues to hold and the hard

disk throughput not able to match its pace, RAID reconstruction

times factor more into reliability calculations than ever before [2].

Due to this, burden of providing reliability is increasingly shifting

from the hard drive manufacturers to the RAID systems that inte-

grate them [2]. It was predicted by Leventhal in [2] that by 2020,

RAID-6 will provide only the level of protection that was given by

RAID-5 system in previous decade.

Cloud data storage has received extensive interest in the past few

years from both business entities and individuals. More and more

business organizations are beginning to move their business critical

data to cloud data storage systems. Consequently, the capacity of

cloud storage systems is also increasing rapidly. However, according

to a Google report [8] 37% of failures in Google cloud storage are

https://doi.org/10.1145/3148055.3148056
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part of correlated burst failures of more than 2 nodes. Hence, if

such large scale cloud storage systems are protected using RAID-6

architecture then the risk of data loss is very high.

As the RAID-6 is increasingly unable meet the reliability require-

ments, a new RAID level which can tolerate three disk failures is

needed. A natural extension of RAID-6 would be RAID-7 however,

to the best of the authors knowledge such a system was discussed

only in [2]. The author in [2] did not propose any specific coding

scheme for RAID-7 and which array codes are suitable RAID-7 ar-

chitecture remains an open problem. Some work has already been

done to develop codes to tolerate three disk failure, e.g., a general-

ization of EVENODD is proposed in [9] and another generalization

known as STAR codes is given in [10], and generalized RDP codes

are proposed in [11]. Also the lowest density array codes were

proposed in [12] and proved to be MDS for appropriately selected

parameters in [13]. BP-XOR codes of [5] can also be designed to

provide protection against three disk failures. The authors in [27]

have analyzed some three-column-erasure tolerating codes includ-

ing STAR code. However, they also consider other codes which can

not be decoded using XOR operation only and half of their selected

codes are non-MDS which are not interesting from practical per-

spective. Also, they do not use optimized decoding algorithm for

STAR code to reduce repair complexity.

In this paper, we analyse and compare three-column-erasures

tolerating array codes which can be considered for future RAID-7

architectures. The rest of the paper is structured as follows. First,

reliability of RAID-6 and RAID-7 systems is compared in Sec. 2.

Notations and background is given in Sec. 3. Then, we discuss the

state-of-the art array codes, namely BP-XOR codes, lowest density

array codes, generalized EVENODD codes and generalized RDP

codes, which can tolerate three disk failures in Sec. 4. In Sec. 5,

we propose almost BP-XOR codes for tolerating three disk failures

which can be decoded using combination of pre-processing and

BP-XOR decoding. In Sec. 6, we compare various parameters, such

as, encoding/update/repair complexity, repair bandwidth etc. for

the array codes discussed in previous sections. The experimental

results for average encoding and repairing complexity for different

codes are provided in Sec. 7. We conclude the paper in Sec. 8.

2 MOTIVATION FOR NEW RAID LEVEL
As mentioned above, RAID-7 architecture needs to recover data

even when three simultaneous disk failures occur. However, it is

natural to ask how much reliability gain can be achieved using such

a system when compared to RAID-6? To address this question, we

give an example in which a fixed amount of data is stored using

RAID-6 and RAID-7 systems and compare theirMean Time To Data
Loss (MTTDL). MTTDL is one of the most important metric used

to assess RAID system’s reliability.

Let us analyse RAID-6 storage system with total capacity of 1

petabytes (PB) and 10 PB. MTTDL for RAID-6 and RAID-7 systems

can be calculated using equation (1) which has been adapted from

[14, eq. (6)] for t-column-erasure tolerating codes.

MTTDL =
MTTF (t+1)

N ∗ (N − 1) ∗ · · · ∗ (N − t ) ∗MTTRt
, (1)

where, N = total number of disks in a RAID array, t = maximum

number of column erasures that can be corrected,MTTF = mean

time to failure for a disk, andMTTR = mean time to repair a disk.

Now, we calculateMTTDL for RAID-6 storage systems using (1).

First, assume that RAID-6 array stores 1 PB of data using 1000 units

of 1 terabyte (TB) hard disks. We assume that the parity to stored-

data ratio is P/(D+P ) = 0.5whereD = number of information disks,

P = number of parity disks (e.g., if [4,2] EVENODD code is used

then the total number of information disks are 500 for 1 PB RAID-6

system). A reasonableMTTF value for 1 TB hard disk is 1,000,000

hours. For write speeds of 30MB/s,MTTR ≈ 9.71 hours. For RAID-

6 systems t = 2. Using these parameters we getMTTDL = 1214.4

years. However, if we now store 10 PB of data using 10000 units of 1

terabyte (TB) hard disks,MTTDL = 1.21 years! As can be observed,

a 10 fold increase in data size reduces MTTDL dramatically and

hence, risk of data loss significantly increases.

However, if we use a three-column-erasure tolerating (t = 3)

[6,3] 2 × 6 array code for RAID-7 architecture (which has the same

parity to stored-data ratio of 0.5) then for storage of 10 PB of data

using 10000 units of 1 terabyte (TB) hard disks, we getMTTDL =
12.48 years which is 10 times higher compared to RAID-6 system. As

can be observed, three-column-erasure tolerating RAID-7 system

improves reliability of the system significantly compared to RAID-6

system even when the parity to stored-data ratio is the same.

We remark that the above calculation ofMTTDL is presented to

give an idea of improvement in reliability that can be expected by

moving from RAID-6 to RAID-7 architecture. It may be possible to

improve MTTDL for RAID-6 using other techniques, e.g., declus-

tering, etc., but the effects of such improvements on MTTDL are

beyond the scope of this paper and hence not considered here.

3 BACKGROUND
Array codes have been used in storage systems that utilizes RAID-5

and RAID-6 architectures. Array codes are a type of linear code

in which a codeword is placed in a two dimensional matrix array.

Let n,k,t , and b be fixed numbers such that n > max{k,t } and
v1,v2, . . . ,vbk be variables taking values from the set M = {0,1}.
v1,v2, . . . ,vbk are referred to as information symbols. A t-erasure
tolerating [n,k] array code is a b × n matrix C = [αi,j ]1≤i≤b,1≤j≤n
such that each encoding symbol αi,j ∈ M is the exclusive-or (XOR)

of one or more information symbols from v1, . . . ,vbk such that the

symbols v1, . . . ,vbk can be recovered from any n − t columns of

the matrix. For an encoding symbol αi,j = vi1 ⊕ · · · ⊕ viσ , we call
vi j (1 ≤ j ≤ σ ) a neighbor of αi,j and call σ the degree of αi,j . If an
[n,k] b × n array code C can tolerate t column erasures such that

k = n − t hold then C is said to be maximum distance separable

(MDS) code.

An [n,k] array code C over the alphabet M can be considered

as a linear code over the extension alphabet Mb
of length n or a

linear code over the alphabet M of length bn. A bk × bn binary

matrix is said to be a generator matrix of a b × n array code C if

it is a generator matrix of C when C is considered as a length bn
linear code over the alphabetM . A bt × bn parity-check matrix for

array code C can be defined in a similar manner. The matrix H is a

parity-check matrix of the array code C if we have HyT = 0 where

y = (α1,1, . . . ,αb,1, . . . ,α1,n , . . . ,αb,n ),x = (v1, . . . ,vbk ), and the
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addition is defined as the XOR on bits. For the generator matrix G
we have y = xG.

We define annual failure rate (AFR) as the average number of

disks that fails in a year in a RAID system which is designed to

protect 1 PB data (we assume that a single disk has capacity of 1

TB). Formally,

AFR = 365 ∗ 24/MTTFR, (2)

whereMTTFR = MTTF/N , N = number of disks in RAID system.

We useMTTF = 1,000,000 hours throughout this paper. We define

storage efficiency as the ratio of number of information symbols to

encoding symbols for a given code. The Normalized encoding com-
plexity is defined as the ratio of number of XOR operations required

to generate all encoding symbols to the number of information

symbols. Similarly, normalized repairing complexity is defined as

the ratio of number of XOR operations required to decode all infor-

mation symbols and to reconstruct all missing encoding symbols

to the number of information symbols when three-column-erasure

occurs. The update complexity is the maximum number of encoding

symbols updated when an information symbol is changed. Similarly,

we define the read complexity as the maximum number of encoding

symbols that need to be read in order to retrieve an information

symbol. Please note that the read complexity is 1 for systematic

codes. Repair bandwidth [15] is given as βd where β is the number

of encoding symbols needed to reconstruct single column erasure

and d is the number of columns accessed to obtain them.

4 STATE-OF-THE ART
THREE-COLUMN-ERASURE TOLERATING
MDS ARRAY CODES

In this section, we discuss three-column-erasure tolerating MDS

array codes proposed in the literature which can be considered for

RAID-7 architecture. Two of these codes, namely, the [6,3] 2 × 6

STAR code and [6,3] 4 × 6 generalized RDP code, are selected as

they are generalization of popular two-column-erasure tolerating

EVENODD and RDP codes used in RAID-6 architectures. We also

discuss lowest density array codes as they have systematic genera-

tor and parity-check matrices with the smallest possible number

of nonzero entries [12]. [n,2] BP-XOR codes have been considered

here as their encoding and decoding complexity is claimed to be

significantly lower compared to other array codes [5].

As we show in the following, for t = 3 the BP-XOR code must

have n = 5. On the other hand, the STAR code, lowest density array

code and generalized RDP code can have multiple k and n values

for t = 3. However, as we compare these three codes with BP-XOR

code with n = 5 and the almost BP-XOR codes (proposed in Sec. 5)

with n = 6, we select k = 3 and n = 6 for these three codes.

Apart from XOR array codes, Reed-Solomon codes (RS codes)
[24] are also considered for RAID-6 architecture. It is also possible

to design three-column-erasure tolerating RS codes however, they

can not be decoded using XOR operations only. Due to this, it is

difficult to compare read/write and repair complexity of RS codes

with that of XOR array codes. Hence, we are not considering RS

codes in this paper.

We have selected three codes with parity to stored-data ratio of

0.5 which is same as data replication and higher than data triplica-

tion (i.e., each data symbol is repeated three times on 3 different

disks) 0.33 used in many modern storage arrays [25]. Since three-

column-erasure tolerating BP-XOR code can not have parity to

stored-data ratio of 0.5, we are using BP-XOR codes with the ratio

of 0.4 which is still higher than that of data triplication.

4.1 [5,2] 2 × 5 BP-XOR Code
A type of array codes, known as BP-XOR codes, were proposed

by Wang in [5]. A t-erasure tolerating [n,k] BP-XOR code C =
[αi,j ]1≤i≤b,1≤j≤n can recover all information symbols v1, . . . ,vbk
from any n− t columns of encoding symbols using the BP-decoding

process on the binary erasure channel.

It has been shown in [5] that, if each encoding symbol in C =
[αi,j ]1≤i≤b,1≤j≤n is restricted to degree σ = 2 then array BP-XOR

codes are equivalent to edge-colored graphs introduced by Wang

et al. in [16] for tolerating network homogeneous failures. In the

following we briefly discuss edge-colored graphs and their link to

[n,2] BP-XOR codes.

An edge-colored graph [16] is a tuple G (V ;E;C; f ), with V the

node set, E the edge set,C the color set, and f a map from E ontoC .
The structureZC,t = {Z : Z ⊆ E and | f (Z ) | ≤ t } is called a t-color
adversary structure. Let A,B ∈ V be distinct nodes of G. A,B are

called (t + 1)-color connected for t + 1 if for any color set Ct ⊆ C
of size t , there is a path p from A to B in G such that the edges

on p do not contain any color in Ct . An edge-colored graph G is

(t + 1)-color connected if and only if for any two nodes A and B in

G, they are (t + 1)-color connected.
A general construction of (t + 1)-color connected edge-colored

graphs using perfect one-factorizations of complete graphs has

been proposed in [5], which is then used to construct [n,2] BP-XOR
codes. A one-factor of complete graph Kn = (V ,E) with n nodes (n
is even) is a spanning 1-regular subgraph ofKn . A one-factorization

of Kn is a set of one-factors that partition the set of edges E. If the
union of every two distinct one-factors is a Hamiltonian circuit

then such an one-factorization is knowns as perfect (or P1F). If

p is a prime number then it is known (see [17]) that perfect one-

factorizations for Kp+1, K2p , and certain K2n exist and it has been

conjectured that P1F exist for allK2n . P1F forKp+1 andK2p is given

in [5, Example 2.2].

(n − 2)-erasure tolerating MDS [n,2] b × n array BP-XOR codes

can be designed with the help of a (n − 2 + 1)-color connected
edge-colored graphs with n colors. For this, the smallest p (or 2p)
such that n ≤ p (or n ≤ 2p − 1), where p is an odd prime is selected.

Then, as mentioned above, P1F of the complete graph Kp+1 can
be found. This edge-colored graph is then converted to an MDS

[n,2] b ×n, b = (p − 1)/2 BP-XOR code using the process described

in [5]. Using the same process we can design three-column-erasures

tolerating [5,2] BP-XOR code. For this, we select p = 5 and hence

we have b = 2 rows per codeword column. The resulting code is

given in Table 1.

As can be observed from Table 1, [5,2], 2 × 5 BP-XOR code is

systematic. Hence, its read complexity is 1 and if there is no disk

failure then the stored-data can be retrieved without any XOR op-

erations. A RAID-7 system designed using this code would require

2500 disks of 1 TB capacity to protect 1 PB of data. Hence, for such a

system AFR ≈ 22 disks/year. The storage efficiency for this code is

2/5 = 0.4. The encoding process requires 6 XOR operations which
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v1 ⊕ v4 v2 v3 ⊕ v1 v4 ⊕ v2 v3

v2 ⊕ v3 v3 ⊕ v4 v4 v1 v1 ⊕ v2

Table 1: [5,2] 2 × 5 BP-XOR Code Generated from P1F of K5.

gives normalized encoding complexity of 6/4 = 1.5. If one infor-

mation symbol changes then 4 encoding symbols stored on 3 disks

are updated due to which the update complexity is 4. For one and

two disk failures, 2 and 3 XOR operations are required, respectively.

Since β = 4 encoding symbols from d = 2 columns need to be

accessed to rebuild a single column, the repair bandwidth is 8. In

case of three disk failures, the decoder needs to calculate (in worst

case) 3 XOR operations to retrieve 4 information symbols and 4

XOR operations are needed to rebuild the parity symbols on three

disks. Hence, normalized repair complexity is 7/4 = 1.75.

4.2 [6,3] 2 × 6 STAR Code
A type of three-column-erasure tolerating MDS codes known as the

STAR codes were proposed by Huang et al. in [10]. STAR codes are

a generalization of the two-column-erasure tolerating EVENODD

codes [3] by adding a third parity column to it. In the following we

briefly describe the process of constructing a STAR code.

A [p+3,p] (p−1)×(p+3) STAR code consists ofp+3 columns (p is
a prime number) and each column hasp−1 rows. The firstp columns

contain information symbols (referred to as information columns)
whereas the last three contain parity symbols (parity columns). Let
us assume that ai,j (0 ≤ i ≤ p − 2,0 ≤ j ≤ p + 2) represent symbol

i in column j. The first two parity columns of STAR codes are

same as EVENODD codes. So first, we describe construction of the

these columns. A parity symbol in column p is computed as the

XOR of all information symbols in the same row. The computation

of column (p + 1) takes the following steps. First, the array is

augmented with an imaginary row p − 1, where all symbols are

assigned zero values. The XOR of all information symbols along

the same diagonal (a diagonal with slope 1) is then computed and

assigned to their corresponding parity symbol. Symbol ap−1,p+1
now becomes nonzero and is called the EVENODD adjuster S1.
To remove this symbol from the array, adjuster complement is

performed, which adds (XOR) the adjuster to all symbols in column

p + 1.
Now the third column of a STAR code p + 2 is computed very

similarly to the second column p + 1 however, the XOR operations

are along diagonals of slope −1 instead of slope 1 as in column p+1.
Due to this, the third parity column is also referred to as antidiagonal
parity. Like the second parity column, the generation of the third

parity column also involves an adjuster S2 which is the symbol

ap−1,p+2 in the imaginary row p − 1. The adjuster complement

operation is used to remove the adjuster symbol from the final

code.

The algebraic description of the encoding process for STAR codes

is given below. We assume 0 ≤ i ≤ p − 2 and ⟨x⟩p denotes x mod p.

ai,p =

p−1⊕
j=0

ai,j , (3)

ai,p+1 = S1 ⊕
*.
,

p−1⊕
j=0

a⟨i−j⟩p ,j
+/
-
, S1 =

p−1⊕
j=0

a⟨p−1−j⟩p ,j , (4)

ai,p+2 = S2 ⊕
*.
,

p−1⊕
j=0

a⟨i+j⟩p ,j
+/
-
, S2 =

p−1⊕
j=1

a⟨j−1⟩p ,j . (5)

We select p = 3 and derive [6,3] 2×6 STAR code using the above

mentioned procedure. The resultant code is given in Table 2. This

code, like the EVENODD code, is systematic. Similar to [6,3] 4 × 6

lowest density code, a RAID-7 system designed to protect 1 PB of

data using this code would also have AFR ≈ 18 disks/year. The

storage efficiency for this code is again 0.5 and since its a system-

atic code, the read complexity is 1. It requires 14 XOR operations

to encode 6 information symbols which results in the normalized

encoding complexity of 14/6 = 2.33. Since 4 encoding symbols are

updated when a single information symbol changes, the update

complexity is 4. To rebuild a single column, 6 encoding symbols

from 3 columns needs to be accessed which results in repair band-

width of 18.

The decoding procedure for this code is quite complex and com-

plete description of it is beyond the scope of this paper. For more

details reader is referred to [10, Sec. 4].

As explained in [10, Sec. 6.1], the total number of XOR operations

required to decode first three (i.e., information) column erasures

is given by (3k + 2ld + lh ) (p − 1) = 22 where ld = 1,lh = 0 are

chosen according to [10, Sec. 4.3]. Since the first three columns are

information columns, no XOR operation is required to rebuild them.

With this, the normalized repair complexity for the worst case is

22/6 = 3.67. Also, the decoder would require 13 buffers to store

intermediate values of syndromes and crosses.

However, we remark that with the optimization of decoding al-

gorithm for the first three-column-erasures, the maximum number

of XOR operations required to decode all information symbols is

upper bounded by 13. On the other hand, since we are considering

repair complexity instead of decoding complexity, the worst case

now occurs when columns 4 and 5 (or 4 and 6) are erased along

with an information column. Though only 6 XOR operations are

required to decode 2 missing information symbols for such erasure

patterns, 9 XOR operations are needed to rebuild columns 4 and

5 (or 4 and 6). Hence, even with optimized decoder the maximum

number of XOR operations required to rebuild three columns is

15. Due to this, the normalized repair complexity for this code is

15/6 = 2.5. Also, the optimized decoder requires only 4 buffers

instead of 13.

The STAR code as discussed above is very similar to the [6,3] 2×6

generalized EVENODD codes proposed earlier by Blaum et al. in
[9]. Both differ only in the slop of the diagonal used to calculate

parity column p + 2. The generalized EVENODD code uses the slop

of 2 to calculate XOR of information symbols for p + 2 and adjuster

S2 instead of −1 used by the STAR code. However, as explained in

[10, Sec. 7], the worst case normalized repairing complexity for this

code is 10. Hence, we do not use this code in our comparison.

Blaum et al. also proposed a generalization of EVENODD code in

[20] however, these code are not systematic and hence not discussed

in this paper.
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v1 v3 v5 v1 ⊕ v3 ⊕ v5 S1 ⊕ v1 ⊕ v6 S2 ⊕ v1 ⊕ v4
v2 v4 v6 v2 ⊕ v4 ⊕ v6 S1 ⊕ v2 ⊕ v3 S2 ⊕ v2 ⊕ v5

Table 2: [6,3] 2 × 6 STAR Code
(
S1 = v4 ⊕ v5, S2 = v3 ⊕ v6

)
.

4.3 [6,3] 4 × 6 Generalized RDP Code
Two-column-erasure tolerating RDP codes were introduced by Cor-

bett et al. in [4]. Like generalized EVENODD code, each codeword of

RDP code contains k information columns and two parity columns.

The encoding/decoding for RDP code requires only k + 1 XOR op-

erations for each encoding symbol when either k + 1 or k + 2 is

a prime number. There are two generalizations of the RDP codes

proposed in the literature, first by Blaum [21] and the other by Goel

et al. [11]. We describe construction of both codes in the following.

Let us assume that ai,j (0 ≤ i ≤ p − 2,0 ≤ j ≤ p + 1) represent
symbol i in column j. Then, the three parity columns for [p +
2,p − 1] p − 1 × p + 2 generalized RDP array codes (p is prime) are

constructed according to the following equations [11][21][22].

ai,p−1 =

p−2⊕
j=0

ai,j , (6)

ai,p =

p−1⊕
j=0

a⟨i−j⟩p ,j , (7)

ai,p+1 =

p−1⊕
j=0

a⟨i−s ·j⟩p ,j . (8)

The third parity column for the generalized RDP code of Blaum

[21] uses slop s = 2 in (8). On the other hand, for the generalized

RDP code of [11], s = −1. For the rest of the paper we use gen-

eralized RDP code with s = −1 from [11]. If we select p = 5 and

set all information symbols in the first column to 0 then from the

above equations we get [6,3] 4 × 6 generalized RDP code shown in

Table 3.

Similar to the previous two codes, AFR ≈ 18 disks/year for this

code too. The storage efficiency for this code, like the previous

two codes, is 0.5 and the read complexity is 1. The normalized

encoding complexity for the code in Table 3 is 24/12 = 2. The

update complexiy is again 4 for the code. Since 12 encoding sym-

bols from 3 columns needs to be read to rebuild a single parity

column, the repair bandwidth is 36. The decoding algorithm for

the RDP code from Table 3 is given in [11] however, an improved

decoding algorithm for the same code is proposed in [22]. This im-

proved decoding algorithm requires 6 XOR operations to calculate

syndromes. The code has only 3 information columns and hence

the decoding algorithm given in [22, Sec. III-B] can be used. The

number of XOR operations required to retrieve all 12 information

variables with this algorithm is [22, Sec. IV] 7p + k − 15 = 23. In

this case, no XOR operations are required to rebuild information

columns due to which, the normalized repair complexity for this

code is (23 + 6)/12 = 2.42. The decoder requires 12 buffers for

syndromes and 5 additional buffers for intermediate variables ([22,

eq. (16),(17)]). So the total number of buffers used are 17.

5 [6,3] 2 × 6 ALMOST BP-XOR CODES
[n,2] BP-XOR codes of [5] discussed in Sec. 4.1 are restricted to

k = 2. It is natural to think about their extension to the higher value

of k , e.g., k = 3, which can tolerate more than two-column-erasures.

As discussed previously, [n,2] BP-XOR codes requires 1-factors

of regular graph Kp . However, as explained in [23, Sec. 4], for

k = 3,t = 3 at least some encoding symbols must have degree

σ ≥ 3. Hence, [6,3] b × 6 BP-XOR codes can not be constructed

using 1-factors of a regular graph and instead 1-factors of regular

hypergraph K3

p need to be used. However, as we show in the fol-

lowing, there is no systematic MDS [6,3] 2 × 6 BP-XOR code. It

is an open question as to whether non-systematic [6,3] 2 × 6 or

systematic/non-systematic [6,3] b × 6,b > 2 BP-XOR codes exist

but we conjecture here that there is no [6,3] b × 6 BP-XOR code in

general.

Fact 1. There is no systematic MDS [6,3] 2 × 6 BP-XOR code for
σ = 3.

Proof. See Appendix A. □

We now introduce almost BP-XOR codes for the same parameters

as in Fact 1. Most of the three-column-erasure patterns for these

codes can be decoded using BP-XOR decoding. On the other hand

when BP-XOR decoding fails, the decoder for these codes can utilize

the inverse of a 6 × 6 submatrix G̃ derived from a generator matrix

G by deleting matrix columns related to erased codeword columns.

Due to this requirement, each 6× 6 submatrix G̃ (in which 3 groups

of two columns related to 3 codeword columns are selected) of the

code must be invertible.

An algorithm to generate almost BP-XOR codes is given in Algo-

rithm 1. An example [6,3] 2×6 almost BP XOR code generated using

this algorithm is given in Table 4. We now show that these codes are

able to correct all

(
6

3

)
= 20 combination of three-column-erasure

patterns. It can be observed that, for the almost BP-XOR codes gener-

ated using Algorithm 1 (e.g., almost BP-XOR code given in Table 4),

BP-XOR decoding can correct up to 14 out of 20 three-column-

erasure patterns. For the other three-column-erasure patterns, we

need to invert the submatrix G̃ to decode missing three information

symbols (three information symbols are directly available from

degree one encoding symbols of the available three columns). How-

ever, the decoder need not necessarily have to invert the submatrix

on-the-fly as the inverse of G̃ can be precomputed and buffered.

With this arrangement the decoder needs to buffer G̃−1 for several
erasure patterns. However, instead of storing all submatrices in

buffer, the decoder can store the solution for one of the information

symbol which is derived from the G̃. As an example, let us assume

that for a given three-column-erasure pattern, encoding symbols

available to the decoder are y1,y2, . . . ,y6 and information symbols

v4,v5,v6 need to be determined then a solution v4 = y1 ⊕ y2 ⊕ y4,
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v1 v5 v9 v1 ⊕ v5 ⊕ v9 v8 ⊕ v11 ⊕ (v2 ⊕ v6 ⊕ v10) v2 ⊕ v7 ⊕ v12

v2 v6 v10 v2 ⊕ v6 ⊕ v10 v1 ⊕ v12 ⊕ (v3 ⊕ v7 ⊕ v11) v3 ⊕ v8 ⊕ (v1 ⊕ v5 ⊕ v9)

v3 v7 v11 v3 ⊕ v7 ⊕ v11 v2 ⊕ v5 ⊕ (v4 ⊕ v8 ⊕ v12) v4 ⊕ v9 ⊕ (v2 ⊕ v6 ⊕ v10)

v4 v8 v12 v4 ⊕ v8 ⊕ v12 v3 ⊕ v6 ⊕ v9 v5 ⊕ v10 ⊕ (v3 ⊕ v7 ⊕ v11)

Table 3: [6,3] 4 × 6 Generalized RDP Code.

v1 v2 v3 v4 v5 v6
v2 ⊕ v3 ⊕ v5 v1 ⊕ v4 ⊕ v6 v1 ⊕ v5 ⊕ v6 v2 ⊕ v5 ⊕ v6 v1 ⊕ v3 ⊕ v4 v2 ⊕ v3 ⊕ v4

Table 4: An Example [6,3] 2 × 6 Almost BP-XOR Code.

Algorithm 1 Create a generator matrix G for systematic MDS

[6,3] 2 × 6 almost BP-XOR codes

1: Create 6 × 6 identity matrix I (each column in I corresponds to
a degree one encoding symbol).

2: FALG← 0

3: while FLAG , 1 do
4: Randomly generate 6 × 6 matrix P such that row degree

and column degree is 3 (each column in P corresponds to a

degree three encoding symbol).

5: for c ← 1 . . . 6 do {Check if a codeword column contains

same information symbol twice.}

6: if Pc,c , 0 then {Pi,j is the i-th element in j-th column}

7: goto 4.

8: end if
9: end for
10: Generate 6×12 generator matrixG by combining columns of

I and P . Odd columns Gi = Ij ,i ∈ {1,3, . . . ,11}, j = (i + 1)/2
and even columns Gi = Pj ,i ∈ {2,4, . . . ,12}, j = i/2.

11: FLAG_INVERSE← 0.

12: for erasure_counter ← 1 . . . 20 do {//there are

(
6

3

)
= 20

erasure patterns for three-column-erasures}

13: Build submatrix G̃ from G by deleting columns related to

three-column-erasure pattern.

14: if rank of G̃ < 6 then {//if G̃ is not invertible}

15: FLAG_INVERSE← 1.

16: end if
17: end for
18: if FLAG_INVERSE , 1 then {//if all G̃ are invertible}

19: FLAG← 1.

20: end if
21: end while
22: return G.

which is derived from the inverse of an appropriate submatrix G̃,
needs to be stored in a buffer. Such solutions can be precomputed

using G̃ for all three-column-erasure patterns where BP-XOR fails

and buffered by the decoder. The decoder can use this solution

to decode one of the information symbol and then the other two

information symbols can be decoded using BP-XOR decoder. We

note that, five out of six information symbols can be retrieved using

BP-XOR decoding and hence we refer to these codes as almost

BP-XOR codes. The proof for this fact is given below.

Fact 2. Almost BP-XOR codes built using Algorithm 1 can decode
five information symbols using BP-XOR decoding.

Proof. See Appendix B. □

From the above analysis it is clear that the [6,3] 2 × 6 almost

BP-XOR codes can correct any three-column-erasure pattern and

hence they are MDS codes.

As discussed, for some three-column-erasure patterns the de-

coder for almost BP-XOR codes need to buffer the solution for a

selected information symbol. Such a solution involves XOR of at

least three of the available encoding symbols but in the worst case

it may require XOR of all six available encoding symbols. However,

decoder can buffer a solution which requires least number of XOR

operations. With this, in worst case 5 XOR operations are required

to decode an information symbol using corresponding solution.

Like most of the codes discussed in previous section, AFR ≈ 18

disks/year, storage efficiency is 0.5 and read complexity is 1 for the

almost BP-XOR code. Encoding of almost BP-XOR codes require

12 XOR operations. Thus, the normalized encoding complexity is

12/6 = 2. When an information symbol is updated, 4 encoding

symbols are updated due to which the update complexity is 4. To

rebuild a column 6 encoding symbols from 3 disks are accessed

which gives repair bandwidth of 18.

Since almost BP-XOR codes are systematic codes, their read

complexity is 1 and also no XOR operations are required to retrieve

data if there is no disk failure. On the other hand, for one disk

failure, 4 XOR operations are required each to regenerate degree

three and degree one encoding symbols using BP-XOR. Similarly,

for 2 disk failures, minimum of 8 XOR operations are needed using

BP-XOR to regenerate two columns.

The decoding of almost BP-XOR codes require just 6 XOR op-

erations when for a given three-column-erasure pattern BP-XOR

decoding succeeds. However, when BP-XOR decoder fails, it has to

use the solution for a selected information symbol. Such a solution

may require up to 5 XOR operations. For other two information

symbol 4 XOR operations are needed using BP-XOR. Hence, total

9 XOR operations are needed to retrieve 6 information symbols
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[5,2] 2 × 5 [6,3] 2 × 6 [6,3] 4 × 6 [6,3] 2 × 6 [6,3] 4 × 6

BP-XOR code almost BP-XOR Lowest density STAR code Generalized

code array code RDP code

AFR (disks/year) 22 18 18 18 18

Storage efficiency 0.4 0.5 0.5 0.5 0.5

Read complexity 1 1 3 1 1

Normalized encoding 1.5 2 3 2.33 2

complexity

Update complexity 4 4 6 4 4

Repair bandwidth 8 18 36 18 36

Normalized repair 1.75 2.5 3 2.5 2.42

complexity

Additional buffers 0 6 2 4 17

Table 5: Comparison of Three-Column-Erasures Tolerating MDS Array Codes

in worst case. Further, 6 additional XOR operations are needed to

recalculate degree three encoding symbols. Consequently, 15 XOR

operations in total are needed to rebuild three columns with almost

BP-XOR codes. The normalized repairing complexity is 15/6 = 2.5.

The number of buffers required by the decoder is 6, which is used

to store solutions for three-column-erasure patterns for which BP-

XOR fails.

6 DISCUSSION
In this section we compare MDS array codes discussed in Sec. 4

and Sec. 5. Table 5 lists different parameters and their values for

different codes.

In almost all parameters [5,2] 2 × 5 BP-XOR code outperforms

the other codes. However, since this code require higher number

of storage disks to protect the same amount of data as other codes,

its AFR is higher compared to all other codes. Another problem

is with storage efficiency which is 0.4 for this code whereas for

other codes it is 0.5. Hence, in terms of AFR and storage efficiency

the other array codes are better. Between these four codes, almost

BP-XOR code and generalized RDP code are better in terms of

encoding complexity than other two codes. The update complexity

is same for almost BP-XOR, STAR and Generalized RDP codes.

Generalized RDP code has marginally lower (3.5%) normalized

repair complexity compared to almost BP-XOR code and STAR code.

The STAR and almost BP-XOR codes have lowest repair bandwidth

where as lowest density array code and generalized RDP code have

the worst. In terms of additional buffers, STAR code is the most

efficient where as the generalized RDP code is the worst.

Generally, array codes are divided in to two types depending on

how information and parity symbols are organized : horizontal and

vertical. If all symbols in all columns are either information or parity

symbols then such a code is referred to as the horizontal array code.

On the other hand, if all columns contain a mix of information

and parity symbols then such a code is known as the vertical array

code. It is easy to observe that BP-XOR, almost BP-XOR and lowest

density array codes are vertical array codes whereas STAR and

GRDP codes are horizontal array codes. Traditionally horizontal

codes preferred by RAID system designers due to ease of access of

information symbols. However, Jin et al. in [26] implemented RAID-

6 horizontal (RDP) and vertical (P-code) codes in software and their

test results show that both types of codes have similar read and

write performance. We leave the detailed study to compare read

and write performance of horizontal and vertical three-column-

erasure tolerating array codes as future work. However, we expect

the horizontal and vertical codes for RAID-7 to have similar read

and write performance.

From our analysis, we conclude that if a RAID-7 system has to be

efficient in terms of worst case encoding/update/repair complexity

and repair bandwidth, then [5,2] 2 × 5 BP-XOR codes are most

appropriate array codes. However, such a RAID-7 system has to

accept the lower storage efficiency of 0.4 and somewhat higher

AFR. On the other hand, if a RAID-7 system requires better storage

efficiency then [6,3] 2× 6 almost BP-XOR code or [6,3] 2× 6 STAR

code are more suitable for such a system.

7 EXPERIMENTAL RESULTS
In this section, we present simulation results obtained from the

software implementation of the XOR array codes discussed in Sec. 4

and Sec. 5. We implemented XOR array codes in software using C++

under Ubuntu distribution. We carry out simulations on PC with

Intel Xeon E5-2640 CPU clocked at 2.5GHz and 8GB of RAM. As

we are interested in write and repair complexity of the codes, we
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Figure 1: AverageRuntime required to Encode 240GBofData
for Three-Column-Erasure Tolerating Codes.

do not use file input-output operations and instead generate large

random data on the fly. This data is given as an input to the encoder

and output from the decoder is compared with the original random

data to test whether decoder is working or not. The random data

generated is of 240 Gigabyte. The decoder also performs repairing

of the failed columns. Repairing for each erasure pattern is repeated

5 times in order to obtain reliable results. Since 240GB of data can

not be processed at once, it is split into blocks of 180 Megabytes

(MB) and then each block is processed at a time by encoder and

decoder. Our software implementation use the double words of

64-bits as a single information symbol. Hence, all XOR and data

read/write operations are performed on 64-bit double words.

Figure 1 shows the average runtime required by encoder of differ-

ent codes to encode 240GB data. As can be observed, encoders for

almost BP-XOR, GRDP and STAR require similar runtime however,

almost BP-XOR is the best among all codes. As shown in Table 5,

BP-XOR has the lowest encoding complexity. However, it should

be noted that the BP-XOR code has storage efficiency of 0.4 and

hence it generates more parity data compared to other codes for

same amount of information. Due to this, it requires more time

compared to other codes.

The average runtime required to repair columns for different

code is shown in Fig. 2. For all types of column erasure patterns

(i.e., one, two and three column-erasures), almost BP-XOR requires

the least amount of time to decode and reconstruct erased columns.

Please note that, since we consider all possible erasure patterns for

one, two and three column-erasures, these results are representative

of average complexity whereas the normalized repair complexity

results given in Table 5 are based on worst case complexity for

three-column-erasure pattern. Further, the simulation results also

include time required for data read/write from/to memory which

may vary from code to code. Hence, though almost-BP XOR, STAR

and GRDP codes have similar normalized repair complexity in

Table 5, the results in Fig. 2 show that the almost BP-XOR code is

the best among them.

BP-XOR code has the lowest repair complexity among all the

codes considered in this paper however, they have the worst storage

efficiency. Hence, BP-XOR decoder has to process more data com-

pared to other codes. As mentioned earlier, the results in Fig. 2 also

includes the time required for data read/write from/to memory. We

believe that the additional data processing required during BP-XOR

decoding and reconstruction process is responsible for higher time

required for repairing erased columns for BP-XOR codes compared

to almost BP-XOR code.

8 CONCLUSION
In this paper, we proposed a new [6,3] 2 × 6 almost BP-XOR code

and analyzed its performance together with existing three-column-

erasure tolerating MDS array codes for future RAID-7 systems. For

our analysis, we selected four state-of-the art array codes : [5,2] 2×5

BP-XOR code, [6,3] 4 × 6 lowest density array code, [6,3] 2 × 6

STAR code, [6,3] 4 × 6 generalized RDP code. We analyzed AFR,

storage efficiency, encoding/update/repair/read complexity, and

repair bandwidth for these codes. Further, we implemented BP-

XOR, STAR, GRDP and almost BP-XOR codes in software to obtain

experimental results for average encoding and repairing complexity.

Through our analysis and experimental results we conclude that

the [6,3] 2 × 6 almost BP-XOR codes are best suited for RAID-7

system that requires storage efficiency of 0.5.

A PROOF OF THE FACT 1
We observe that, since the code is systematic and b · k = 6, at least

6 encoding symbols in n = 6 columns must have degree one. Let

us assume without loss of generality (w.l.o.g) that the first row of

the code has degree one encoding symbols whereas the encoding

symbols in second row has degree three.

Since we want to construct an MDS array code, BP-XOR decoder

must be able to recover all information symbols from any three

columns of the code. Now for a given three columns, we have the

following condition that must be satisfied for the BP-XOR decoder

to start : at least two of the three degree one encoding symbols must

occur simultaneously in at least one degree three symbol. However,

as shown in the following, this necessary condition is not satisfied

for the code with parameters n = 6,k = 3,b = 2,σ = 3.

We try to construct a BP-XOR code in the following such that the

above mentioned necessary condition is fulfilled for all set of three

columns. We start by selecting the first row of the code as follows

while the rest of the entries are selected in subsequent iterations.

The resulting BP-XOR code is shown in Table 6 where λi ,µi ,ϕi ,i ∈
{1,2, . . . ,6} represents the first, second and third variable in degree

three encoding symbol of the i-th column, respectively.

For the ease of exposition, we represents each column of the

code as a set with 4 elements where the first element corresponds

to the entry from first row and the rest of the elements corresponds

to the variables of second row.

{v1, {λ1,µ1,ϕ1}}, {v2, {λ2,µ2,ϕ2}}, {v3, {λ3,µ3,ϕ3}},
{v4, {λ4,µ4,ϕ4}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

W.l.o.g (by symmetry), we may put v1 in the columns 2,3,4 that

is, the code is partially filled as:

{v1, {λ1,µ1,ϕ1}}, {v2, {v1,µ2,ϕ2}}, {v3, {v1,µ3,ϕ3}},
{v4, {v1,µ4,ϕ4}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

Since the first three tuple should recoverv4,v5,v6 the code could
be further filled as (this is one candidate, for other candidates, it

could be analyzed similarly)
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(a) Single-Column-Erasure (b) Two-Column-Erasure (c) Three-Column-Erasure

Figure 2: Average RuntimeRequired to Decode andReconstruct Erased Columns for Three-Column-Erasure Tolerating Codes.

v1 v2 v3 v4 v5 v6

λ1 ⊕ µ1 ⊕ ϕ1 λ2 ⊕ µ2 ⊕ ϕ2 λ3 ⊕ µ3 ⊕ ϕ3 λ4 ⊕ µ4 ⊕ ϕ4 λ5 ⊕ µ5 ⊕ ϕ5 λ6 ⊕ µ6 ⊕ ϕ6

Table 6: Construction of [6,3], 2 × 6 BP-XOR Code.

{v1, {v6,µ1,ϕ1}}, {v2, {v1,v4,ϕ2}}, {v3, {v1,v5,ϕ3}},
{v4, {v1,µ4,ϕ4}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

Now in order to make the first 3-tuple BP-decodable, we need to

fill it as (one candidate, other candidate could be analyzed similarly):

{v1, {v6,µ1,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,ϕ3}},
{v4, {v1,µ4,ϕ4}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

If we consider {v2, {v1,v4,v3}}, {v3, {v1,v5,ϕ3}}, {v4, {v1,µ4,ϕ4}},
it is clear that ϕ3 = v6 or µ4 = v6. In the following, we show that for

either case, BP decoding can not work. First assume that ϕ3 = v6 ,
i.e., we have

{v1, {v6,µ1,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,v6}},
{v4, {v1,µ4,ϕ4}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

Nowwe consider {v2, {v1,v4,v3}}, {v3, {v1,v5,v6}}, {v6, {λ6,µ6,ϕ6}}.
Simple analysis shows that {λ6,µ6,ϕ6} = {v2,v3,v4} or {λ6,µ6,ϕ6} =
{v2,v3,v5}.

Assume that {λ6,µ6,ϕ6} = {v2,v3,v4} (the other case analysis is
similar) then we have

{v1, {v6,µ1,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,v6}},
{v4, {v1,µ4,ϕ4}}, {v5, {λ5,µ5,ϕ5}}, {v6, {v2,v3,v4}}.

If we consider the tuples {v1, {v6,µ1,ϕ1}}, {v2, {v1,v4,v3}},
{v6, {v2,v3,v4}}, then we have µ1 = v5. However, for any value ϕ1,
the code will not decode.

Note that for the case {λ6,µ6,ϕ6} = {v2,v3,v5}, we must have

λ5 = v6, that is, we have
{v1, {v6,µ1,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,v6}},
{v4, {v1,µ4,ϕ4}}, {v5, {v6,µ5,ϕ5}}, {v6, {v2,v3,v5}}.

In this case, we consider the tuples:

{v2, {v1,v4,v3}}, {v3, {v1,v5,v6}}, {v5, {v6,µ5,ϕ5}}. Simple analysis

shows that {µ5,ϕ5} = {v2,v3}, i.e., we have
{v1, {v6,µ1,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,v6}},
{v4, {v1,µ4,ϕ4}}, {v5, {v6,v2,v3}}, {v6, {v2,v3,v5}}.

Now we got a contradiction that we can not put v4 in 4 different

column which is necessary for this code to be an MDS code.

In the following, we consider the case for µ4 = v6 for which we

have

{v1, {v6,µ1,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,ϕ3}},
{v4, {v1,v6,ϕ4}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

Since v6 must appears 4 times in 4 columns, we have

{v1, {v6,µ1,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,ϕ3}},
{v4, {v1,v6,ϕ4}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

Consider tuples {v1, {v6,µ1,ϕ1}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.
Since v1 cannot show up anymore, we must have µ1 = v5, that is,
the code is:

{v1, {v6,v5,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,ϕ3}},
{v4, {v1,v6,ϕ4}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

Now let us consider the tuple {v1, {v6,v5,ϕ1}}, {v3, {v1,v5,ϕ3}},
{v4, {v1,v6,ϕ4}} for which we must select ϕ3 = v4 or ϕ4 = v3.

For ϕ3 = v4, we have
{v1, {v6,v5,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,v4}}
{v4, {v1,v6,ϕ4}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

Since v6 must appears 4 times, we have

{v1, {v6,v5,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,v4}},
{v4, {v1,v6,ϕ4}}, {v5, {v6,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

Now the tuple {v2, {v1,v4,v3}}, {v3, {v1,v5,v4}}, {v5, {v6,µ5,ϕ5}}
have trouble to decode.

If we select ϕ4 = v3 then
{v1, {v6,v5,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,ϕ3}},
{v4, {v1,v6,v3}}, {v5, {λ5,µ5,ϕ5}}, {v6, {λ6,µ6,ϕ6}}.

Since v5 must appear 4 times, we have

{v1, {v6,v5,ϕ1}}, {v2, {v1,v4,v3}}, {v3, {v1,v5,ϕ3}},
{v4, {v1,v6,v3}}, {v5, {λ5,µ5,ϕ5}}, {v6, {v5,µ6,ϕ6}}.

But with this placement of v5, tuple {v2, {v1,v4,v3}},
{v4, {v1,v6,v3}}, {v6, {v5,µ6,ϕ6}} can not decode.

In a summary, we observe from the above that when we try to

fulfil the necessary condition for BP-XOR decoding to start for a

selected group of three columns, the same condition is not fulfilled
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for other set of three columns. Hence, we conclude that there is no

BP-XOR code for n = 6,k = 3,b = 2,σ = 3.

B PROOF OF THE FACT 2
For any three-column-erasure pattern, three information symbols

are available directly through three degree one encoding symbols.

Further, due to construction of the code using Algorithm 1, all infor-

mation symbols appear in three degree three encoding symbols and

once in degree one encoding symbol (but no information symbol

can occur in same column twice). The worst case scenario occurs

when for a given three-column-erasure pattern, an information

symbol occurs only once in a degree one encoding symbol out of

the six available encoding symbols (such combinations, one for

each information symbol and hence six in total, in general causes

BP-XOR decoder to fail for such codes). For such erasure patterns,

the three unknown information symbols may appear together in

degree three encoding symbol (following analysis is still valid if

all the available degree three encoding symbols have at least one

information symbol directly available through degree one encoding

symbol). Since all degree three encoding symbols are different (as

otherwise generator matrix can not be full rank), the other two

degree three encoding symbols must contain at least one known

information symbol (which is available through a degree one encod-

ing symbol). Hence, solving one of the two unknown information

symbol in such a degree three encoding symbol using the cor-

responding solution (derived from the inverse of the submatrix

mentioned above), allows the BP-XOR decoder to decode the other

unknown information symbol. Now the remaining degree three en-

coding symbol can contain only one unknown information symbol

which can again be decoded using BP-XOR. Hence, in any pattern

of three-column-erasures, only one unknown information symbol

needs to be determined through the corresponding solution and rest

of the information symbols can be decoded using BP-XOR decoder.
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