
1

Byzantine Fault Tolerance For Distributed Ledgers Revisited

YONGGE WANG, UNC Charlotte, USA

The problem of Byzantine Fault Tolerance (BFT) has received a lot of attention in the last 30 years. Due to the

popularity of Proof of Stake (PoS) blockchains in recent years, several BFT protocols have been deployed in the

large scale of Internet environment. We analyze several popular BFT protocols such as Capser FFG / CBC-FBC

for Ethereum 2.0 and GRANDPA for Polkadot. Our analysis shows that the security models for these BFT

protocols are slightly different from the models commonly accepted in the academic literature. For example,

we show that, if the adversary has a full control of the message delivery order in the underlying network,

then none of the BFT protocols for Ethereum blockchain 2.0 and Polkadot blockchain could achieve liveness

even in a synchronized network. Though it is not clear whether a practical adversary could actually control

and re-order the underlying message delivery system (at Internet scale) to mount these attacks, it raises an

interesting question on security model gaps between academic BFT protocols and deployed BFT protocols

in the Internet scale. With these analysis, this paper proposes a Casper CBC-FBC style binary BFT protocol

and shows its security in the traditional academic security model with complete asynchronous networks. For

partial synchronous networks, we propose a multi-value BFT protocol BDLS based on the seminal DLS protocol

and show that it is one of the most efficient practical BFT protocols at large scale networks in the traditional

academic BFT security model. The implementation of BDLS is available at https://github.com/yonggewang/bdls.

Finally, we propose a multi-value BFT protocol XP for complete asynchronous networks and show its security

in the traditional academic BFT security model.

CCS Concepts: • Theory of computation → Cryptographic protocols; • Security and privacy → Dis-
tributed systems security; •Applied computing→ Electronic commerce; •Computingmethodologies
→ Distributed algorithms.

Additional Key Words and Phrases: Byzantine Fault Tolerance; distributed computing; partial synchronous

networks; security models; blockchain

ACM Reference Format:
Yongge Wang. 2022. Byzantine Fault Tolerance For Distributed Ledgers Revisited. Distrib. Ledger Technol. 1, 1,
Article 1 (April 2022), 28 pages. https://doi.org/10.1xxx/1xxxx.1xxxxx

1 INTRODUCTION
Consensus is hard to achieve in open networks such as partial synchronous networks or complete

asynchronous networks. Several practical protocols such as Paxos [11] and Raft [13] have been

designed to tolerate ⌊𝑛−1

2
⌋ non-Byzantine faults. For example, Google, Microsoft, IBM, and Amazon

have used Paxos in their storage or cluster management systems. Lamport, Shostak, and Pease [12]

and Pease, Shostak, and Lamport [14] initiated the study of reaching consensus in face of Byzantine

failures and designed the first synchronous solution for Byzantine agreement. Dolev and Strong [7]

proposed an improved protocol in a synchronous network with 𝑂 (𝑛3) communication complexity.

By assuming the existence of digital signature schemes and a public-key infrastructure, Katz and

Author’s address: Yongge Wang, yonwang@uncc.edu, UNC Charlotte, 9201 University City Blvd., Charlotte, NC, USA,

28223-0001.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

2769-6472/2022/4-ART1 $15.00

https://doi.org/10.1xxx/1xxxx.1xxxxx

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 1 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

HTTPS://ORCID.ORG/0000-0002-1403-2922
https://github.com/yonggewang/bdls
https://doi.org/10.1xxx/1xxxx.1xxxxx
https://orcid.org/0000-0002-1403-2922
https://doi.org/10.1xxx/1xxxx.1xxxxx

1:2 Yongge Wang

Koo [10] proposed an expected constant-round BFT protocol in a synchronous network setting

against ⌊𝑛−1

2
⌋ Byzantine faults.

Fischer, Lynch, and Paterson [9] showed that there is no deterministic protocol for the BFT

problem in face of a single failure. Several researchers have tried to design BFT consensus protocols

to circumvent the impossibility. The first category of efforts is to use a probabilistic approach

to design BFT consensus protocols in completely asynchronous networks. This kind of work

was initiated by Ben-Or [2] and Rabin [15] and extended by others such as Cachin, Kursawe,

and Shoup [5]. The second category of efforts was to design BFT consensus protocols in partial

synchronous networks which was initiated by Dwork, Lynch, and Stockmeyer [8]. Though the

network communication model could be different for these protocols, the assumption on the

adversary capability is generally same. That is, there is a threshold 𝑡 such that the adversary could

coordinate the activities of the malicious 𝑡 participating nodes. Furthermore, it is also assumed that

the adversary could re-order messages on communication networks.

In recent years, many practical BFT protocols have been designed and deployed at the Internet

scale. For example, Ethereum foundation has designed a BFT finality gadget for their Proof of Stake

(PoS) blockchain. The current Ethereum 2.0 beacon network uses Casper Friendly Finality Gadget

(Casper FFG) [4] and Ethereum foundation has been advocating the “Correct-by-Construction”

(CBC) family consensus protocols [23, 24] for their future release of Ethereum blockchain. Similarly,

the Polkadot blockchain deployed their home-brew BFT protocol GRANDPA [18]. The analysis

in this paper shows that these protocols have an assumption that the adversary cannot control

the message delivery order in the underlying networks. Our examples (as noted in the extended

abstract [22]) show that if the adversary could control the the message delivery order, then these

blockchains could not achieve liveness property. This brings up an interesting question to the

research community: what kind of models are appropriate for the Internet scale BFT protocols?

Does an adversary have the capability to co-ordinate/control one-third of the participating nodes

and to reschedule message delivery order for a blockchain at Internet scale?

Before we have a complete understanding about the impact of the new security assumptions for

these blockchain BFT protocols (i.e., the adversary cannot control the message delivery order on

the underlying networks), we should still design practical large-scale BFT protocols that are robust

in the traditional academic security model. For complete asynchronous networks, we present an

Casper CBC-FBC style binary BFT protocol and a multi-value BFT protocol XP and prove their

security in the traditional security model. For partial synchronous networks, we re-investigate

the seminal DLS BFT protocol by Dwork, Lynch, and Stockmeyer [8]. In the DLS protocol, the

protocol continues until every node decides on the same message. This is obviously inefficient.

In a practical deployment, after one honest node decides on a message, it is more efficient for

the decided participant to reliably broadcast his decision together with the proof. Each node that

receives this decision can decide on the message instead of continuing the DLS protocol negotiation

process. Since the traditional academic security model for BFT protocols assumes that even though

the adversary controls the entire network, the message by an honest participant should be delivered

to other honest participants eventually. Thus the revised DLS protocol does not break its security

assumption and achieves liveness and safety in the same security model with both reduced round

complexity and reduced communication complexity. We call this revised DLS protocol BDLS. When

threshold digital signature schemes are used, BDLS achieves linear authenticator complexity with

4 rounds. It is noted that Facebook’s HotStuff BFT/LibraBFT protocol achieves linear authenticator

complexity with 7 rounds using threshold digital signature schemes.

The structure of the paper is as follows. Section 2 introduces system models and Byzantine

agreement. Section 3 briefly discusses reliable broadcast communication channels. Section 4 shows

that Ethereum blockchain 2.0’s BFT protocol Casper FFG could not achieve liveness if the adversary

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 2 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:3

can re-order messages in the network. Section 5 shows that Ethereum blockchain’s candidate

BFT protocol Casper FBC for future deployment could not achieve liveness if the adversary can

re-order messages in the network. Section 5 also proposes a Casper FBC style binary BFT protocol

that achieves both safety and liveness in the traditional academic security model for complete

asynchronous networks. Section 6 reviews the Polkadot’s GRANDPA BFT protocol and shows that

it cannot achieve liveness if the adversary is allowed to reschedule the message delivery order in

the underlying networks. Section 7 presents the multi-value BDLS-BFT protocol design for partial

synchronous networks and proves its security in the traditional academic security model. Section 8

discusses BLDS implementation details and presents the evaluation results. Section 9 proposes a

multi-value BFT protocol XP for complete asynchronous networks and proves its security.

2 SYSTEMMODEL AND BYZANTINE AGREEMENT
For the Byzantine general problem, there are 𝑛 participants and an adversary that is allowed to

corrupt up to 𝑡 of them. The adversary model is a static one wherein the adversary must decide

whom to corrupt at the start of the protocol execution. For the network setting, we consider three

kinds of networks: synchronous networks, partial synchronous networks by Dwork, Lynch, and

Stockmeyer [8], and complete asynchronous networks by Fischer, Lynch, and Paterson [9].

(1) In a synchronous network, the time is divided into discrete units called slots 𝑇0, 𝑇1, 𝑇2, · · ·
where the length of the time slots are equal. Furthermore, we assume that: (1) the current time

slot is determined by a publicly-known and monotonically increasing function of current

time; and (2) each participant has access to the current time. In a synchronous network, if an

honest participant 𝑃1 sends a message𝑚 to a participant 𝑃2 at the start of time slot 𝑇𝑖 , the

message𝑚 is guaranteed to arrive at 𝑃2 at the end of time slot 𝑇𝑖 .

(2) In partial synchronous networks, the time is divided into discrete units as in synchronous

networks. The adversary can selectively delay or re-order any messages sent by honest

parties. In other words, if an honest participant 𝑃1 sends a message𝑚 to an honest participant

𝑃2 at the start of time slot 𝑇𝑖1 , 𝑃2 will receive the message𝑚 eventually at time 𝑇𝑖2 where

𝑖2 = 𝑖1 + Δ. Based on the property of Δ, we can distinguish the following two scenarios:

• Type I partial synchronous network: Δ < ∞ is unknown. That is, there exists a Δ but

participants do not know the exact (or even approximate) value of Δ.
• Type II partial synchronous network: Δ < ∞ holds eventually. That is, the participant

knows the value of Δ. But this Δ only holds after an unknown time slot𝑇 = 𝑇𝑖 . Such a time

𝑇 is called the Global Stabilization Time (GST).

For Type I partial synchronous networks, the protocol designer supplies the consensus

protocol first, then the adversary chooses her Δ. For Type II partial synchronous networks,
the adversary picks the Δ and the protocol designer (knowing Δ) supplies the consensus
protocol, then the adversary chooses the GST.

(3) In a complete asynchronous network, we make no assumptions about the relative speeds of

processes or about the delay time in delivering a message. We also assume that processes do

not have access to synchronized clocks. Thus algorithms based on time-outs cannot be used.

In all of the network models, we assume that the adversary has complete control of the network.
That is, the adversary may schedule/reorder the delivery of messages as he wishes, and may insert

messages as he wishes. The honest participants are completely passive: they simply follow the

protocol steps and maintain their internal state between protocol steps.

The computations made by the honest participants and the adversary are modeled as polynomial-

time computations. We assume that public key cryptography is used for message authentications.

In particular, each participant should have authentic public keys of all other participants. This

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 3 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:4 Yongge Wang

means that if two participants 𝑃𝑖 and 𝑃 𝑗 are honest and 𝑃 𝑗 receives a message from 𝑃𝑖 over the

network, then this message must have been generated by 𝑃𝑖 at some prior point in time. A Byzantine

agreement protocol must satisfy the following properties:

• Safety: If an honest participant decides on a value, then all other honest participants decides

on the same value. That is, it is computationally infeasible for an adversary to make two

honest participants to decide on different values.

• Liveness (termination): There exists a function 𝐵(·) such that all honest participants should

decide on a value after the protocol runs at most 𝐵(𝑛) steps. It should be noted that 𝐵(𝑛)
could be exponential in 𝑛. In this case, we should further assume that 2

𝑛
is significantly

smaller than 2
𝜅
where 𝜅 is the security parameter for the underlying authentication scheme.

In other words, one should not be able to break the underlying authentication scheme within

𝑂 (𝐵(𝑛)) steps.
• Non-triviality (Validity): If all honest participants start the protocol with the same initial

value, then all honest participants that decide must decide on this value.

3 RELIABLE AND STRONGLY RELIABLE BROADCAST COMMUNICATION
PRIMITIVES

For the BFT protocol design, it is important to understand what kind of communication channels

are required. If a BFT protocol assume a reliable broadcast channel then the implementation must

use a reliable broadcast primitive to achieve this channel since our Internet does not provide a

robust broadcast channel. If the broadcast is not reliable, then Wang [21] showed that some other

popular BFT protocols (such as Tendermint-BFT) cannot achieve liveness and the blockchain would

go to deadlock. The similar attack also holds for Facebook’s HotStuff BFT/LibraBFT (see Wang

[21]).

The difference between point-to-point communication channels and broadcast communication

channels has been extensively studied in the literature. A reliable broadcast channel requires that

the following two properties be satisfied.

(1) Correctness: If an honest participant broadcasts a message𝑚, then every honest participant

accepts𝑚.

(2) Unforgeability: If an honest participant does not broadcast a message 𝑚, then no honest

participant accepts𝑚.

By the above definition, a broadcast channel is unreliable if an honest participant broadcasts a

message𝑚 to all participants and only a proper subset of honest participants receives this message

𝑚. That is, some honest participants receive the message𝑚 while other honest participants receive

nothing at all (this could happen if the time is before GST in Type II networks). Thus we need to

assume that the broadcast channel is unreliable before GST in Type II partial synchronous networks.

The above definition does not say anything about dishonest participants. In practice, a dishonest

participant may send different messages to different participants or send the message only to a

proper subset of honest participants even after GST in Type II networks. In order to defeat dishonest

participants from carrying out these attacks, Bracha [3] designed a strongly reliable broadcast
primitive (see Appendix for details) with the following additional requirement by assuming that all

messages are delivered eventually in the network:

• If a dishonest participant 𝑃𝑖 broadcasts a message, then either all honest participants accept

the identical message or no honest participant accepts any value from 𝑃𝑖 .

One should take precautions for using reliable or strongly reliable broadcast primitives since

these primitives generally have assumptions about the underlying network topology. For example,

Bracha’s primitive [3] assumes that the underlying network is a complete network. Indeed, it is

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 4 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:5

sufficient to assume that there is a reliable point-to-point communication channel for each pair

of participants in Bracha’s primitive. For a given integer 𝑘 , a network is called 𝑘-connected if

there exist 𝑘-node disjoint paths between any two nodes within the network. In non-complete

networks, it is well known that (2𝑡 +1)-connectivity is necessary for reliable communication against

𝑡 Byzantine faults (see, e.g., Wang and Desmedt [20] and Desmedt-Wang-Burmester [6]). On the

other hand, for broadcast communication channels, Wang and Desmedt [19] showed that there

exists an efficient protocol to achieve probabilistically reliable and perfectly private communication

against 𝑡 Byzantine faults when the underlying communication network is (𝑡 + 1)-connected. The
crucial point to achieve these results is that: in a point-to-point channel, a malicious participant 𝑃1

can send a message𝑚1 to participant 𝑃2 and send a different message𝑚2 to participant 𝑃3 though,

in a broadcast channel, the malicious participant 𝑃1 has to send the same message𝑚 to multiple

participants including 𝑃2 and 𝑃3. If a malicious 𝑃1 sends different messages to different participants

in a reliable broadcast channel, it will be observed by its neighbors.

Though broadcast channels at physical layers are commonly used in local area networks, it is

not trivial to design reliable broadcast channels over the Internet infrastructure since the Internet

connectivity is not a complete graph and some direct communication paths between participants

are missing (see, e.g., [12, 20]). In addition to Bracha’s strongly reliable broadcast primitive [3],

quite a few alternative broadcast primitives have been proposed in the literature using message

relays (see, e.g., Srikanth and Toueg [17] and Dwork-Lynch-Stockmeyer [8]). In the message relay

based broadcast protocol, if an honest participant accepts a message signed by another participant,

it relays the signed message to other participants.

4 CASPER THE FRIENDLY FINALITY GADGET (FFG)
Buterin and Griffith [4] proposed the BFT protocol Casper the Friendly Finality Gadget (Casper

FFG) as an overlay atop a block proposal mechanism. Casper FFG has been deployed in the Proof of

Stake Based Ethereum 2.0. In Casper FFG, weighted participants validate and finalize blocks that are

proposed by an existing proof of work chain or other mechanisms. To simplify our discussion, we

assume that there are 𝑛 = 3𝑡 +1 validators of equal weight. The Casper FFG works on the checkpoint

tree that only contains blocks of height 100 ∗ 𝑘 in the underlying block tree. Each validator 𝑃𝑖 can

broadcast a signed vote ⟨𝑃𝑖 : 𝑠, 𝑡⟩ where 𝑠 and 𝑡 are two checkpoints and 𝑠 is an ancestor of 𝑡 on the

checkpoint tree. For two checkpoints 𝑎 and 𝑏, we say that 𝑎 → 𝑏 is a supermajority link if there

are at least 2𝑡 + 1 votes for the pair. A checkpoint 𝑎 is justified if there are supermajority links

𝑎0 → 𝑎1 → · · · → 𝑎 where 𝑎0 is the root. A checkpoint 𝑎 is finalized if there are supermajority

links 𝑎0 → 𝑎1 → · · · → 𝑎𝑖 → 𝑎 where 𝑎0 is the root and 𝑎 is the direct son of 𝑎𝑖 . In Casper FFG, an

honest validator 𝑃𝑖 should not publish two distinct votes

⟨𝑃𝑖 : 𝑠1, 𝑡1⟩ AND ⟨𝑃𝑖 : 𝑠2, 𝑡2⟩

such that either

ℎ(𝑡1) = ℎ(𝑡2) OR ℎ(𝑠1) < ℎ(𝑠2) < ℎ(𝑡2) < ℎ(𝑡1)
where ℎ(·) denotes the height of the node on the checkpoint tree. In other words, an honest validator
should neither publish two distinct votes for the same target height nor publish a vote strictly within
the span of its other votes. Otherwise, the validator’s deposit will be slashed. The authors [4] claimed

that Casper FFG achieves accountable safety and plausible liveness where

(1) achieve accountable safety means that two conflicting checkpoints cannot both be finalized

(assuming that there are at most 𝑡 malicious validators), and

(2) plausible liveness means that supermajority links can always be added to produce new

finalized checkpoints, provided there exist children extending the finalized chain.

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 5 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:6 Yongge Wang

In order to achieve the liveness property, [4] proposed to use the “correct by construction” fork

choice rule: the underlying block proposal mechanism should “follow the chain containing the
justified checkpoint of the greatest height”.
The authors in [4] proposed to defeat the long-range revision attacks by a fork choice rule to

never revert a finalized block, as well as an expectation that each client will “log on” and gain a

complete up-to-date view of the chain at some regular frequency (e.g., once per month). In order

to defeat the catastrophic crashes where more than 𝑡 validators crash-fail at the same time (i.e.,

they are no longer connected to the network due to a network partition, computer failure, or the

validators themselves are malicious), the authors in [4] proposed to slowly drains the deposit of

any validator that does not vote for checkpoints, until eventually its deposit sizes decrease low

enough that the validators who are voting are a supermajority. Related mechanism to recover from

related scenarios such as network partition is considered an open problem in [4].

No specific network model is provided in [4]. In the implementation of the Casper FFG (see

GO-Ethereum implementation), a participating node broadcasts his message as soon as he receives

a sufficient number of messages to move forward. In other words, even if the network is a synchro-

nized network, a participant may just make his decision on the first 2𝑡 + 1 messages and ignore the

remaining messages if these first 2𝑡 + 1 messages are sufficient for him to move forward. This is

reasonable and necessary since the remaining 𝑡 nodes could be malicious ones and will never send

any message at all. Based on this observation, we show that if the adversary could reschedule the

message delivery order on the underlying networks, Casper FFG cannot achieve liveness property

even in synchronized networks.

Fig. 1. Casper FFG cannot achieve liveness

As an example, assume that, at time𝑇 , the checkpoint 𝑎 is finalized where there is a supermajority

link from 𝑎 to its direct child 𝑏 (that is, 𝑏 is justified) and no vote for 𝑏’s descendant checkpoint

has been broadcast by any validator yet (see Figure 1). Now assume that the underlying block

production mechanism produces a fork starting from 𝑏. That is, 𝑏 has two descendant checkpoints

𝑐 and 𝑑 . The adversary who controls the network can arrange 𝑡 honest validators to receive 𝑐 first

and 𝑡 + 1 honest validators to receive 𝑑 first where ℎ(𝑐) = ℎ(𝑑). Thus 𝑡 honest validators vote for
𝑏 → 𝑐 , 𝑡 + 1 honest validators vote for 𝑏 → 𝑑 , and 𝑡 malicious validators vote randomly so that both

𝑏 → 𝑐 and 𝑏 → 𝑑 receives same number of votes. This means that 𝑐 and 𝑑 could not be finalized

since neither the link 𝑏 → 𝑐 nor the link 𝑏 → 𝑑 could get a supermajority vote. It should be noted

that by the two slashing rules in Casper FFG, an honest validator who voted for 𝑏 → 𝑐 is allowed to

vote for 𝑏 → 𝑓 later since the two votes on 𝑏 → 𝑐 and 𝑏 → 𝑓 are not slashable. Next assume that

the adversary schedules the message delivery order so that 𝑡 honest validators receive 𝑒 first and

𝑡 + 1 honest validators receive 𝑓 first (without loss of generality, we may assume that ℎ(𝑒) = ℎ(𝑓)).
Thus 𝑡 honest validators vote for 𝑏 → 𝑒 , 𝑡 + 1 honest validators vote for 𝑏 → 𝑓 , and 𝑡 malicious

validators vote randomly so that both 𝑏 → 𝑒 and 𝑏 → 𝑓 receives same number of votes. Thus 𝑒 and

𝑓 could not be finalized since neither the link 𝑏 → 𝑒 nor the link 𝑏 → 𝑓 could get a supermajority

vote. This process continues forever and no checkpoint after 𝑎 could be finalized. That is, Casper

FFG could not achieve liveness with this kind of message delivery schedule by the adversary.

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 6 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:7

5 CBC CASPER THE FRIENDLY BINARY CONSENSUS (FBC)
The network model for Casper FFG is not clearly defined. In order to make Ethereum blockchain

robust in complete asynchronous networks, Ethereum foundation has been advocating the “Correct-

by-Construction” (CBC) family of Casper blockchain consensus protocols [23, 24] for their future

release of Ethereum blockchain. The CBC Casper the Friendly Ghost emphasizes the safety property.

But it does not try to address the liveness requirement for the consensus process. Indeed, it explicitly

says that [23] “liveness considerations are considered largely out of scope, and should be treated in
future work”. Thus in order for CBC Casper to be deployable, a lot of work needs to be done since the

Byzantine Agreement Problem becomes challenging only when both safety and liveness properties

are required to be satisfied at the same time. It is simple to design BFT protocols that only satisfy

one of the two requirements (safety or liveness). The Ethereum foundation community has made

several efforts to design safety oracles for CBC Casper to help participants to make a decision when

an agreement is reached (see, e.g., [16]). However, this problem is at least as hard as coNP-complete

problems. So no satisfactory solution has been proposed yet.

CBC Casper has received several critiques from the community. For example, Ali et al [1]

concluded that “the definitions and proofs provided in [24] result in neither a theoretically sound
nor practically useful treatment of Byzantine fault-tolerance. We believe that considering correctness
without liveness is a fundamentally wrong approach. Importantly, it remains unclear if the definition of
the Casper protocol family provides any meaningful safety guarantees for blockchains”. Though CBC

Casper is not a deployable solution yet and it has several fundamental issues yet to be addressed, we

think these critiques as in [1] may not be fair enough. Indeed, CBC Casper provides an interesting

framework for consensus protocol design. In particular, the algebraic approach proposed by CBC

Casper has certain advantages for describing Byzantine Fault Tolerance (BFT) protocols. The

analysis in this section shows that the current formulation of CBC Casper could not achieve

liveness property. However, if one revises the CBC Casper’s algebraic approach to include the

concept of “waiting” and to enhance participant’s capability to identify more malicious activities

(that is, to consider general malicious activities in addition to equivocating activities), then one can

design efficiently constructive liveness concepts for CBC Casper even in complete asynchronous

networks.

5.1 Casper FBC protocol description
CBC Casper contains a binary version and an integer version. In this paper, we only consider Casper

the Friendly Binary Consensus (FBC). Our discussion can be easily extended to general cases. For

the Casper FBC protocol, each participant repeatedly sends and receives messages to/from other

participants. Based on the received messages, a participant can infer whether a consensus has been

achieved. Assume that there are 𝑛 participants 𝑃1, · · · , 𝑃𝑛 and let 𝑡 < 𝑛 be the Byzantine-fault-

tolerance threshold. The protocol proceeds from step to step (starting from step 0) until a consensus

is reached. Specifically the step 𝑠 proceeds as follows:

• LetM𝑖,𝑠 be the collection of validmessages that 𝑃𝑖 has received from all participants (including

himself) from steps 0, · · · , 𝑠 − 1. 𝑃𝑖 determines whether a consensus has been achieved. If a

consensus has not been achieved yet, 𝑃𝑖 sends the message

𝑚𝑖,𝑠 = ⟨𝑃𝑖 , 𝑒𝑖,𝑠 ,M𝑖,𝑠⟩ (1)

to all participants where 𝑒𝑖,𝑠 is 𝑃𝑖 ’s estimated consensus value based on the received message

setM𝑖,𝑠 .

In the following, we describe how a participant 𝑃𝑖 determines whether a consensus has been

achieved and how a participant 𝑃𝑖 calculates the value 𝑒𝑖,𝑠 fromM𝑖,𝑠 .

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 7 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:8 Yongge Wang

For a message𝑚 = ⟨𝑃𝑖 , 𝑒𝑖,𝑠 ,M𝑖,𝑠⟩, let 𝐽 (𝑚) = M𝑖,𝑠 . For two messages𝑚1,𝑚2, we write𝑚1 ≺𝑚2

if𝑚2 depends on𝑚1. That is, there is a sequence of messages𝑚′
1
, · · · ,𝑚′

𝑣 such that

𝑚1 ∈ 𝐽 (𝑚′
1
)

𝑚′
1
∈ 𝐽 (𝑚′

2
)

· · ·
𝑚′

𝑣 ∈ 𝐽 (𝑚2)
For a message𝑚 and a message setM = {𝑚1, · · · ,𝑚𝑣}, we say that𝑚 ≺ M if𝑚 ∈ M or𝑚 ≺𝑚 𝑗

for some 𝑗 = 1, · · · , 𝑣 . The latest message𝑚 = 𝐿(𝑃𝑖 ,M) by a participant 𝑃𝑖 in a message set M is a

message𝑚 ≺ M satisfying the following condition:

• There does not exist another message𝑚′ ≺ M sent by participant 𝑃𝑖 with𝑚 ≺𝑚′
.

It should be noted that the “latest message” concept is well defined for a participant 𝑃𝑖 if 𝑃𝑖 has

not equivocated, where a participant 𝑃𝑖 equivocates if 𝑃𝑖 has sent two messages𝑚1 ≠𝑚2 with the

properties that “𝑚1 ⊀ 𝑚2 and𝑚2 ⊀ 𝑚1”.

For a binary value 𝑏 ∈ {0, 1} and a message setM, the score of a binary estimate for 𝑏 is defined

as the number of non-equivocating participants 𝑃𝑖 whose latest message voted for 𝑏. That is,

score(𝑏,M) =
∑︁

𝐿 (𝑃𝑖 ,M)=(𝑃𝑖 ,𝑏,∗)
𝜆(𝑃𝑖 ,M) (2)

where

𝜆(𝑃𝑖 ,M) =
{

0 if 𝑃𝑖 equivocates inM,

1 otherwise.

To estimate consensus value: Now we are ready to define 𝑃𝑖 ’s estimated consensus value 𝑒𝑖,𝑠
based on the received message setM𝑖,𝑠 as follows:

𝑒𝑖,𝑠 =

0 if score(0,M𝑖,𝑠) > score(1,M𝑖,𝑠)
1 if score(1,M𝑖,𝑠) > score(0,M𝑖,𝑠)
𝑏 otherwise, where 𝑏 is coin-flip output

(3)

To infer consensus achievement: For a protocol execution, it is required that for all 𝑖, 𝑠 , the

number of equivocating participants in M𝑖,𝑠 is at most 𝑡 . A participant 𝑃𝑖 determines that a

consensus has been achieved at step 𝑠 with the received message set M𝑖,𝑠 if there exists 𝑏 ∈ {0, 1}
such that

∀𝑠 ′ > 𝑠 : score(𝑏,M𝑖,𝑠′) > score(1 − 𝑏,M𝑖,𝑠′). (4)

5.2 Efforts to achieve liveness for CBC Casper FBC
From CBC Casper protocol description, it is clear that CBC Casper is guaranteed to be correct

against equivocating participants. However, the “inference rule for consensus achievement” requires

a mathematical proof that is based on infinitely many message setsM𝑖,𝑠′ for 𝑠
′ > 𝑠 . This requires

each participant to verify that for each potential set of 𝑡 Byzantine participants, their malicious

activities will not overturn the inequality in (4). This problem is at least co-NP hard. Thus even if

the system reaches a consensus, the participants may not realize this fact. In order to address this

challenge, Ethereum community provides three “safety oracles” (see [16]) to help participants to

determine whether a consensus is obtained. The first “adversary oracle” simulates some protocol

execution to see whether the current estimate will change under some Byzantine attacks. As

mentioned previously, this kind of problem is co-NP hard and the simulation cannot be exhaustive

generally. The second “clique oracle” searches for the biggest clique of participant graph to see

whether there exist more than 50% participants who agree on current estimate and all acknowledge

the agreement. That is, for each message, the oracle checks to see if, and for how long, participants

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 8 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:9

have seen each other agreeing on the value of that message. This kind of problem is equivalent to

the complete bipartite graph problem which is NP-complete. The third “Turan oracle” uses Turan’s

Theorem to find the minimum size of a clique that must exist in the participant edge graph. In a

summary, currently there is no satisfactory approach for CBC Casper participants to determine

whether finality has achieved. Thus no liveness is guaranteed for CBC Casper. Indeed, we can show

that it is impossible to achieve liveness in CBC Casper.

5.3 Impossibility of achieving liveness in CBC Casper
In this section, we use a simple example to show that without a protocol revision, no liveness could

be achieved in CBC Casper. Assume that there are 3𝑡 + 1 participants. Among these participants,

𝑡 − 1 of them are malicious and never vote. Furthermore, assume that 𝑡 + 1 of them hold value 0

and 𝑡 + 1 of them hold value 1. Since the message delivery system is controlled by the adversary,

the adversary can let the first 𝑡 + 1 participants to receive 𝑡 + 1 voted 0 and 𝑡 voted 1. On the other

hand, the adversary can let the next 𝑡 + 1 participants to receive 𝑡 + 1 voted 1 and 𝑡 voted 0. That is,

at the end of this step, we still have that 𝑡 + 1 of them hold value 0 and 𝑡 + 1 of them hold value 1.

This process can continue forever and never stop.

In CBC Casper FBC [23, 24], a participant is identified as malicious only if he equivocates.

This is not sufficient to guarantee liveness (or even safety) of the protocol. For example, if no

participant equivocates and no participant follows the equation (3) for consensus value estimation,

then the protocol may never make a decision (that is, the protocol cannot achieve liveness property).

However, the protocol execution satisfies the valid protocol execution condition of [23, 24] since

there is zero equivocating participant.

5.4 Revising CBC Casper FBC
CBC Casper does not have an in-protocol fault tolerance threshold and does not have any timing

assumptions. Thus the protocol works well in complete asynchronous settings. Furthermore, it does

not specify when a participant 𝑃𝑖 should broadcast his step 𝑠 protocol message to other participants.

That is, it does not specify when 𝑃𝑖 should stop waiting for more messages to be includedM𝑖,𝑠 . We

believe that CBC Casper authors do not specify the time for a participant to send its step 𝑠 protocol

messages because they try to avoid any timing assumptions. In fact, there is a simple algebraic

approach to specify this without timing assumptions. First, we revise the message setM𝑖,𝑠 as the

collection of messages that 𝑃𝑖 receives from all participants (including himself) during step 𝑠 − 1.

That is, the message setM𝑖,𝑠 is a subset of 𝐸𝑠 where 𝐸𝑠 is defined recursively as follows:

𝐸0 = ∅
𝐸1 = {⟨𝑃 𝑗 , 𝑏, ∅⟩ : 𝑗 = 1, · · · , 𝑛;𝑏 = 0, 1}
𝐸2 = {⟨𝑃 𝑗 , 𝑏,M 𝑗,1⟩ : 𝑗 = 1, · · · , 𝑛;𝑏 = 0, 1;M 𝑗,1 ⊂ 𝐸1}
· · ·
𝐸𝑠 = {⟨𝑃 𝑗 , 𝑏,M 𝑗,𝑠−1⟩ : 𝑗 = 1, · · · , 𝑛;𝑏 = 0, 1;M 𝑗,𝑠−1 ⊂ 𝐸𝑠−1}
· · ·

Then we need to revise the latest message definition 𝐿(𝑃 𝑗 ,M𝑖,𝑠) accordingly:

𝐿(𝑃 𝑗 ,M𝑖,𝑠) =
{
𝑚 if ⟨𝑃 𝑗 , 𝑏,𝑚⟩ ∈ M𝑖,𝑠

∅ otherwise

(5)

As we have mentioned in the preceding section, CBC Casper FBC [23, 24] only considers equivocat-

ing as malicious activities. This is not sufficient to guarantee protocol liveness against Byzantine

faults. In our following revised CBC Casper model, we consider any participant that does not follow

the protocol as malicious and exclude their messages:

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 9 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:10 Yongge Wang

• For a message setM𝑖,𝑠 , let 𝐼 (M𝑖,𝑠) be the set of identified malicious participants fromM𝑖,𝑠 .

Specifically, let

𝐼 (M𝑖,𝑠) = 𝐸 (M𝑖,𝑠) ∪ 𝐹 (M𝑖,𝑠)
where 𝐸 (M𝑖,𝑠) is the set of equivocating participants withinM𝑖,𝑠 and 𝐹 (M𝑖,𝑠) is the set of
participants that does not follow the protocols withinM𝑖,𝑠 . For example, 𝐹 (M𝑖,𝑠) includes
participants that do not follow the consensus value estimation process properly or do not

wait for enough messages before posting his own protocol messages.

With the definition of 𝐼 (M𝑖,𝑠), we should also redefine the score function (2) by revising the

definition of 𝜆(𝑃𝑖 ,M) accordingly:

𝜆(𝑃𝑖 ,M) =
{

0 if 𝑃𝑖 ∈ 𝐼 (M),
1 otherwise.

5.5 Secure BFT protocol in the revised CBC Casper
With the revised CBC Casper, we are ready to introduce the “waiting” concept and specify when a

participant 𝑃𝑖 should send his step 𝑠 protocol message:

• A participant 𝑃𝑖 should wait for at least 𝑛 − 𝑡 + |𝐼 (M𝑖,𝑠) | valid messages𝑚 𝑗,𝑠−1 from other

participants before he can broadcast his step 𝑠 message𝑚𝑖,𝑠 . That is, 𝑃𝑖 should wait until

|M𝑖,𝑠 | ≥ 𝑛 − 𝑡 + |𝐼 (M𝑖,𝑠) | to broadcast his step 𝑠 protocol message.

• In case that a participant 𝑃𝑖 receives 𝑛 − 𝑡 + |𝐼 (M𝑖,𝑠) | valid messages 𝑚 𝑗,𝑠−1 from other

participants (that is, he is ready to send step 𝑠 protocol message) before he could post his

step 𝑠 − 1 message, he should wait until he finishes sending his step 𝑠 − 1 message.

• After a participant 𝑃𝑖 posts his step 𝑠 protocol message, it should discard all messages from

steps 𝑠 − 1 or early except decision messages that we will describe later.

It is clear that these specifications does not have any restriction on the timings. Thus the protocol

works in complete asynchronous networks.

In Ben-Or’s BFT protocol [2], if consensus is not achieved yet, the participants autonomously toss

a coin until more than
𝑛+𝑡

2
participant outcomes coincide. For Ben-Or’s maximal Byzantine fault

tolerance threshold 𝑡 ≤ ⌊𝑛
5
⌋, it takes exponential steps of coin-flipping to converge. It is noted that,

for 𝑡 = 𝑂 (
√
𝑛), Ben-Or’s protocol takes constant rounds to converge. Bracha [3] improved Ben-Or’s

protocol to defeat 𝑡 < 𝑛
3
Byzantine faults. Bracha first designed a reliable broadcast protocol with

the following properties (Bracha’s reliable broadcast protocol is briefly reviewed in the Appendix):

If an honest participant broadcasts a message, then all honest participants will receive the same

message in the end. If a dishonest participants 𝑃𝑖 broadcasts a message, then either all honest

participants accept the identical message or no honest participant accepts any value from 𝑃𝑖 . By

using the reliable broadcast primitive and other validation primitives, Byzantine participants can be

transformed to fail-stop participants. In the following, we assume that a reliable broadcast primitive

such as the one by Bracha is used in our protocol execution and present Bracha’s style BFT protocol

in the CBC Casper framework. At the start of the protocol, each participant 𝑃𝑖 holds an initial

value in his variable 𝑥𝑖 ∈ {0, 1}. The protocol proceeds from step to step. The step 𝑠 consists of the

following sub-steps.

(1) Each participant 𝑃𝑖 reliably broadcasts ⟨𝑃𝑖 , 𝑥𝑖 ,M𝑖,𝑠,0⟩ to all participants whereM𝑖,𝑠,0 is the

message set that 𝑃𝑖 has received during step 𝑠 − 1. Then 𝑃𝑖 waits until it receives 𝑛 − 𝑡 valid

messages inM𝑖,𝑠,1 and computes the estimate 𝑒𝑖,𝑠 using the value estimation function (3).

(2) Each participant 𝑃𝑖 reliably broadcasts ⟨𝑃𝑖 , 𝑒𝑖,𝑠 ,M𝑖,𝑠,1⟩ to all participants and waits until it

receives 𝑛 − 𝑡 valid messages in M𝑖,𝑠,2. If there is a 𝑏 such that score(𝑏,M𝑖,𝑠,2) > 𝑛
2
, then let

𝑒 ′𝑖,𝑠 = 𝑏 otherwise, let 𝑒 ′𝑖,𝑠 =⊥.

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 10 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:11

(3) Each participant 𝑃𝑖 reliably broadcasts ⟨𝑃𝑖 , 𝑒 ′𝑖,𝑠 ,M𝑖,𝑠,2⟩ to all participants and waits until it

receives 𝑛 − 𝑡 valid messages inM𝑖,𝑠,3. 𝑃𝑖 distinguishes the following three cases:

• If score(𝑏,M𝑖,𝑠,2) > 2𝑡 + 1 for some 𝑏 ∈ {0, 1}, then 𝑃𝑖 decides on 𝑏 and broadcasts his

decision together with justification to all participants.

• If score(𝑏,M𝑖,𝑠,2) > 𝑡 + 1 for some 𝑏 ∈ {0, 1}, then 𝑃𝑖 lets 𝑥𝑖 = 𝑏 and moves to step 𝑠 + 1.

• Otherwise, 𝑃𝑖 flips a coin and let 𝑥𝑖 to be coin-flip outcome. 𝑃𝑖 moves to step 𝑠 + 1.

Assume that 𝑛 = 3𝑡 + 1. The security of the above protocol can be proved be establishing a

sequence of lemmas.

Lemma 5.1. If all honest participants hold the same initial value 𝑏 at the start of the protocol, then
every participant decides on 𝑏 at the end of step 𝑠 = 0.

Proof. At sub-step 1, each honest participant receives at least 𝑡 + 1 value 𝑏 among the 2𝑡 + 1 received

values. Thus all honest participants broadcast 𝑏 at sub-step 2. If a malicious participant 𝑃 𝑗 broadcasts

1 − 𝑏 during sub-step 2, then it cannot be justified since 𝑃 𝑗 could not receive 𝑡 + 1 messages for

1 − 𝑏 during sub-step 1. Thus 𝑃 𝑗 will be included in 𝐼 (M). That is, each honest participant receives

2𝑡 + 1 messages for 𝑏 at the end of sub-step 2 and broadcasts 𝑏 during sub-step 3. Based on the

same argument, all honest participants decide on 𝑏 at the end of sub-step 3. □

Lemma 5.2. If an honest participant 𝑃𝑖 decides on a value 𝑏 at the end of step 𝑠 , then all honest
participants either decide on 𝑏 at the end of step 𝑠 or at the end of step 𝑠 + 1.

Proof. If an honest participant 𝑃𝑖 decides on a value 𝑏 at the end of sub-step 3, then 𝑃𝑖 receives 2𝑡 + 1

valid messages for the value 𝑏. Since the underlying broadcast protocol is reliable, each honest

participant receives at least 𝑡 + 1 these valid messages for the value 𝑏. Thus if a participant 𝑃𝑖 does

not decide on the value 𝑏 at the end of sub-step 3, it would set 𝑥𝑖 = 𝑏. That is, all honest participants

will decide during step 𝑠 + 1. □

The above two Lemmas show that the protocol is a secure Byzantine Fault Tolerance protocol

against ⌊𝑛−1

3
⌋ Byzantine faults in complete asynchronous networks. The above BFT protocol may

take exponentially many steps to converge. However, if a common coin such as the one in Rabin

[15] is used, then the above protocol converges in constant steps. It should be noted that Ethereum

2.0 provides a random beacon which could be used as a common coin for the above BFT protocol.

Thus the above BFT protocol could be implemented with constant steps on Ethereum 2.0.

6 POLKADOT’S BFT PROTOCOL GRANDPA
The project Polkadot (https://github.com/w3f) proposed an algebraic approach based BFT finality

gadget protocol GRANDPA which is similar to Casper FBC in some sense. By May 2021, Polkadot

has a global market cap of 28.821 billion US dollar and ranks No. 8 among the entire cryptography

currency market (after: Bitcoin, Ethereum, BNB, USDT, XRP, ADA, DOGE). There are different

versions of GRANDPA protocol. In this paper, we refer to the most recent one [18] dated on June 19,

2020. Specifically, Polkadot implements a nominated proof-of-stake (NPoS) system. At certain time

period, the system elects a group of validators to serve for block production and the finality gadget.

Nominators also stake their tokens as a guarantee of good behavior, and this stake gets slashed

whenever their nominated validators deviate from their protocol. On the other hand, nominators

also get paid when their nominated validators play by the rules. Elected validators get equal voting

power in the consensus protocol. Polkadot uses BABE as its block production mechanism and

GRANDPA as its BFT finality gadget. Here we are interested in the finality gadget GRANDPA

(GHOST-based Recursive ANcestor Deriving Prefix Agreement) that is implemented for the Polkadot

relay chain. GRANDPA contains two protocols. The first protocol works in partially synchronous

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 11 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

https://github.com/w3f

1:12 Yongge Wang

networks and tolerates 1/3 Byzantine participants. The second protocol works in full asynchronous

networks (requiring a common random coin) and tolerates 1/5 Byzantine participants. The first

GRANDPA protocol assumes that the underlying network is a Type I partial synchronous network.

In the following paragraphs, we will show that GRANDPA cannot achieve liveness property in

partial synchronous networks if the adversary is allowed to reschedule the message delivery order.

Assume that there are 𝑛 = 3𝑡 + 1 participants 𝑃0, · · · , 𝑃𝑛−1 and at most 𝑡 of them are malicious.

Each participant stores a tree of blocks produced by the block production mechanism with the

genesis block as the root. A participant can vote for a block on the tree by digitally signing it.

For a set 𝑆 of votes, a participant 𝑃𝑖 equivocates in 𝑆 if 𝑃𝑖 has more than one vote in 𝑆 . A set 𝑆 of

votes is called safe if the number of participants who equivocate in 𝑆 is at most 𝑡 . A vote set 𝑆 has

supermajority for a block 𝐵 if

|{𝑃𝑖 : 𝑃𝑖 votes for 𝐵∗} ∪ {𝑃𝑖 : 𝑃𝑖 equivocates}| ≥ 2𝑡 + 1

where 𝑃𝑖 votes for 𝐵∗ mean that 𝑃𝑖 votes for 𝐵 or a descendant of 𝐵.

In GRANDPA, the 2/3-GHOST function 𝑔(𝑆) returns the block 𝐵 of the maximal height such that

𝑆 has a supermajority for 𝐵 or a “nil” if no such block exists. If a safe vote set 𝑆 has a supermajority

for a block 𝐵, then there are at least 𝑡 + 1 voters who do vote for 𝐵 or its descendant but do not

equivocate. Based on this observation, it is easy to check that if 𝑆 ⊆ 𝑇 and 𝑇 is safe, then 𝑔(𝑆) is an
ancestor of 𝑔(𝑇).

The authors in [18] defined the following concept of possibility for a vote set to have a superma-

jority for a block: “We say that it is impossible for a set 𝑆 to have a supermajority for a block 𝐵 if at

least 2𝑡 + 1 voters either equivocate or vote for blocks who are not descendant of 𝐵. Otherwise it is

possible for 𝑆 to have a supermajority for 𝐵”. Then they claimed (the second paragraph above Lemma

2.6 in [18]) that “a vote set 𝑆 is possible to have a supermajority for a block 𝐵 if and only if there

exists a safe vote set 𝑇 ⊇ 𝑆 such that 𝑇 has a supermajority for 𝐵”. Unfortunately, this claim is not

true in practice if the adversary selects a non-equivocating strategy which may introduce deadlock

to the system (on the other hand, this claim is true if all 𝑡 malicious voters MUST equivocate).

Example 6.1. Assume that the underlying block production mechanism BABE has produced

blocks 𝐶 and 𝐷 that are inconsistent (that is, 𝐶 is not an ancestor of 𝐷 and 𝐷 is not an ancestor of

𝐶). The adversary who controls the message delivery system may arrange the block 𝐶 to reach the

adversary-selected 𝑡 + 1 voters first and let the block 𝐷 to reach these 𝑡 + 1 voters after these voters

have voted for 𝐶 . Similarly, the adversary can arrange the block 𝐷 to reach the remaining 2𝑡 + 1

voters first and let the block 𝐶 to reach them after they have voted for 𝐷 . In a summary, the vote

set 𝑆 will now contain the following votes:

(1) 𝑡 + 1 voters vote for 𝐶 .

(2) 2𝑡 voters vote for 𝐷 .

(3) no voter equivocates.

By the fact that 2𝑡 votes in 𝑆 do “either equivocate or vote for blocks who are not descendant of 𝐶”

and by the following definition from GRANDPA

“We say that it is impossible for a set 𝑆 to have a supermajority for a block 𝐵 if at

least 2𝑡 + 1 voters either equivocate or vote for blocks who are not descendant of 𝐵.

Otherwise it is possible for 𝑆 to have a supermajority for 𝐵”

The GRANDPA system concludes that 𝑆 is possible to have a supermajority for the block𝐶 . Further-

more, the malicious voters (controlled by the adversary) decide not to equivocate at all during the

protocol run. Since all 3𝑡 + 1 votes have been cast already in 𝑆 and no one equivocates in potential

supersets of 𝑆 , for all semantically valid safe vote set 𝑇 ⊇ 𝑆 , we have 𝑆 = 𝑇 . In other words, no

semantically valid safe vote set 𝑇 ⊇ 𝑆 could have a supermajority for 𝐶 . Similarly, by the above

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 12 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:13

definition, 𝑆 is possible to have a supermajority for a block 𝐷 and no semantically valid safe vote

set 𝑇 ⊇ 𝑆 could have a supermajority for 𝐷 . In a summary, in the GRANDPA protocol, “possible”
does not really means it is possible.

In the following sections, we will use Example 6.1 to show that the GRANDPA protocol will

enter deadlock and cannot achieve the liveness property if the adversary is allowed to reschedule

the message delivery order.

6.1 GRANDPA protocol
The GRANDPA protocol starts from round 1. For each round, one participant is designated as the

primary and all participants know who is the primary. Each round consists of two phases: prevote
and precommit. Let𝑉𝑟,𝑖 and𝐶𝑟,𝑖 be the sets of prevotes and precommits received by 𝑃𝑖 during round

𝑟 respectively. Let 𝐸0,𝑖 be the genesis block and 𝐸𝑟,𝑖 be the last ancestor block of 𝑔(𝑉𝑟,𝑖) that is
possible for 𝐶𝑟,𝑖 to have a supermajority. If either 𝐸𝑟,𝑖 < 𝑔(𝑉𝑟,𝑖) or it is impossible for 𝐶𝑟,𝑖 to have a

supermajority for any children of 𝑔(𝑉𝑟,𝑖), then we say that 𝑃𝑖 sees that round 𝑟 is completable. Let Δ
be a time bound such that it suffices to send messages and gossip them to everyone. The protocol

proceeds as follows.

(1) 𝑃𝑖 starts round 𝑟 > 1 if round 𝑟 − 1 is completable and 𝑃𝑖 has cast votes in all previous rounds.

Let 𝑡𝑟,𝑖 be the time 𝑃𝑖 starts round 𝑟 .

(2) The primary voter 𝑃𝑖 of round 𝑟 broadcasts 𝐸𝑟−1,𝑖 .

(3) prevote: 𝑃𝑖 waits until either it is at least time 𝑡𝑟,𝑖 + 2Δ or round 𝑟 is completable. 𝑃𝑖 prevotes
for the head of the best chain containing 𝐸𝑟−1,𝑖 unless 𝑃𝑖 receives a block 𝐵 from the primary

with 𝑔(𝑉𝑟−1, 𝑖) ≥ 𝐵 > 𝐸𝑟−1,𝑖 . In this case, 𝑃𝑖 uses the best chain containing 𝐵.

(4) precommit: 𝑃𝑖 waits until 𝑔(𝑉𝑟,𝑖) ≥ 𝐸𝑟−1,𝑖 and one of the following holds

(a) it is at least time 𝑡𝑟,𝑖 + 4Δ
(b) round 𝑟 is completable

Then 𝑃𝑖 broadcasts a precommit for 𝑔(𝑉𝑟,𝑖)
At any time after the precommit step of round 𝑟 , if 𝑃𝑖 sees that 𝐵 = 𝑔(𝐶𝑟,𝑖) is descendant of the last
finalized block and 𝑉𝑟,𝑖 has a supermajority, then 𝑃𝑖 finalizes 𝐵.

6.2 GRANDPA cannot achieve liveness in partial synchronous networks
In this section, we show that GRANDPA BFT protocol cannot achieve liveness property in partial

synchronous networks. Assume that 𝐸𝑟−1,0 = · · · = 𝐸𝑟−1,𝑛−1 = 𝐴 and all 3𝑡 + 1 voters prevote and

precommit to 𝐴 during round 𝑟 − 1 and 𝐴 is finalized by all voters during round 𝑟 − 1. Also assume

that no voter will ever equivocate. During round 𝑟 , the block production mechanisms produces a

fork of of 𝐴. That is, we get two children blocks 𝐶 and 𝐷 of 𝐴.

Counter-example 1: By adjusting the message delivery schedule (this could happen before GST

in partial synchronous networks), 𝑡 + 1 voters only receive the block 𝐶 before time 𝑡𝑟,𝑖 + 2Δ and 2𝑡

voters only receive the block 𝐷 before time 𝑡𝑟,𝑖 + 2Δ. However, all voters will receive both blocks 𝐶

and 𝐷 before time 𝑡𝑟,𝑖 + 3Δ.
At step 2 of round 𝑟 , the primary voter broadcasts 𝐴 = 𝐸𝑟−1,𝑖 . At step 3, both 𝑉𝑟,𝑖 and 𝐶𝑟,𝑖 are

empty initially, the round 𝑟 cannot be completable until time 𝑡𝑟,𝑖 + 2Δ. Thus voter 𝑃𝑖 waits until
time 𝑡𝑟,𝑖 + 2Δ to submit its prevote. The 𝑡 + 1 voters that received block 𝐶 would prevote for 𝐶 and

the other 2𝑡 voters that received block 𝐷 would prevote for 𝐷 . The adversary allows all prevotes

of Step 3 to be delivered to all voters synchronously before time 𝑡𝑟,𝑖 + 4Δ. During Step 4, each

voter 𝑃𝑖 receives 𝑡 + 1 prevotes for 𝐶 and 2𝑡 prevotes for 𝐷 . Since 𝐶𝑟,𝑖 is empty until it receives any

precommit, round 𝑟 is not completable until time 𝑡𝑟,𝑖 + 4Δ. That is, each voter 𝑃𝑖 waits until 𝑡𝑟,𝑖 + 4Δ
to precommit 𝑔(𝑉𝑟,𝑖) = 𝐴. The adversary allows all voters to receive all precommit votes for𝐴. Now

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 13 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:14 Yongge Wang

each voter 𝑃𝑖 estimates 𝐸𝑟,𝑖 = 𝑔(𝑉𝑟,𝑖) = 𝐴. By the fact that𝐶𝑟,𝑖 = {3𝑡 + 1 precommit votes for 𝐴}, we
have 𝑔(𝐶𝑟,𝑖) = 𝐴. Since 𝐴 has already been finalized, 𝑃𝑖 will not finalize any block during round 𝑟 .

In order for the round 𝑟 to be completable, we need “either 𝐸𝑟,𝑖 < 𝑔(𝑉𝑟,𝑖) or it is impossible for

𝐶𝑟,𝑖 to have a supermajority for any children of 𝑔(𝑉𝑟,𝑖)”. However, we have 𝐸𝑟,𝑖 = 𝑔(𝑉𝑟,𝑖) = 𝐴 and

𝐶𝑟,𝑖 = {3𝑡 + 1 precommit votes for 𝐴}. That is, by definition of “possibility”, it is “possible” for 𝐶𝑟,𝑖

to have a supermajority for both children 𝐶 and 𝐷 of 𝑔(𝑉𝑟,𝑖) = 𝐴. In other words, the round 𝑟 is

NOT “completable” and GRANDPA cannot start Step 1 of round 𝑟 + 1.

Fig. 2. Counter-example 2 for GRANDPA

Counter-example 2: This example is more involved than counter-example 1 and an example with

𝑡 = 1 is shown in Figure 2. By adjusting the message delivery schedule (this could happen before

GST in partial synchronous networks), by time 𝑡𝑟,𝑖 + 2Δ, we have 𝑡 voters received block 𝐶 and

2𝑡 + 1 voters received block 𝐷 . Furthermore, all voters will receive both blocks𝐶 and 𝐷 before time

𝑡𝑟,𝑖 + 3Δ.
At step 2 of round 𝑟 , the primary voter broadcasts 𝐴 = 𝐸𝑟−1,𝑖 . At step 3, both 𝑉𝑟,𝑖 and 𝐶𝑟,𝑖 are

empty initially, the round 𝑟 cannot be completable until time 𝑡𝑟,𝑖 + 2Δ. Thus voter 𝑃𝑖 waits until
time 𝑡𝑟,𝑖 + 2Δ to submit its prevote. The 𝑡 voters that received block 𝐶 would prevote for 𝐶 and

the other 2𝑡 + 1 voters that received block 𝐷 would prevote for 𝐷 . Durng Step 4, the adversary

schedules the message delivery in such a way that, by time 𝑡𝑟,𝑖 + 4Δ, 𝑡 voters receive “2𝑡 + 1 prevotes

for 𝐷” and 2𝑡 + 1 voters receive “𝑡 prevotes for 𝐶 and 𝑡 + 1 prevotes for 𝐷”. Since 𝐶𝑟,𝑖 is empty until

it receives any precommit, round 𝑟 is not completable until time 𝑡𝑟,𝑖 + 4Δ. That is, each voter 𝑃𝑖
waits until 𝑡𝑟,𝑖 + 4Δ to precommit 𝑔(𝑉𝑟,𝑖). At time 𝑡𝑟,𝑖 + 4Δ, 𝑡 voters precommit for 𝐷 = 𝑔(𝑉𝑟,𝑖), 2𝑡

voters precommit for 𝐴 = 𝑔(𝑉𝑟,𝑖), and one malicious voter does not precommit. The adversary let

all precommit messages to be delivered to all voters synchronously.

Now 𝑡 voters estimates 𝐸𝑟,𝑖 = 𝑔(𝑉𝑟,𝑖) = 𝐷 and 2𝑡 + 1 voters 𝑃𝑖 estimates 𝐸𝑟,𝑖 = 𝑔(𝑉𝑟,𝑖) = 𝐴. By the

fact that

𝐶𝑟,𝑖 = {𝑡 precommit votes for 𝐷 and 2𝑡 precommit votes for 𝐴},

we have 𝑔(𝐶𝑟,𝑖) = 𝐴. Since 𝐴 has already been finalized, 𝑃𝑖 will not finalize any block during round

𝑟 . In order for the round 𝑟 to be completable, we need “either 𝐸𝑟,𝑖 < 𝑔(𝑉𝑟,𝑖) or it is impossible for𝐶𝑟,𝑖

to have a supermajority for any children of 𝑔(𝑉𝑟,𝑖)”. However, we have 𝐸𝑟,𝑖 = 𝑔(𝑉𝑟,𝑖) for all voters
and, by Example 6.1, it is “possible” for 𝐶𝑟,𝑖 to have a supermajority for all children of 𝑔(𝑉𝑟,𝑖). In
other words, the round 𝑟 is NOT “completable” and GRANDPA cannot start Step 1 of round 𝑟 + 1.

Paper [18, page 7] mentions that “𝐶𝑟,𝑖 and 𝑉𝑟,𝑖 may change with time and also that 𝐸𝑟−1,𝑖 , which
is a function of 𝑉𝑟−1,𝑖 and 𝐶𝑟−1,𝑖 , can also change with time if 𝑃𝑖 sees more votes from the previous
round”. However, this has no impact on our preceding examples since after an honest voter pre-

votes/precommits, the honest voter cannot change his prevote/prevommit votes anymore (otherwise,

it will be counted as equivocation).

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 14 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:15

7 A SECURE BFT PROTOCOL IN PARTIAL SYNCHRONOUS NETWORKS
We have showed that BFT protocols for Ethereum and Polkadot blockchains cannot achieve liveness

property in partial synchronous networks if the adversary is allowed to reschedule the message

delivery order. Section 5.5 proposes a secure BFT protocol for complete asynchronous networks

that requires a common random beacon for efficiency purpose. In this section, we propose a secure

and efficient BFT protocol that achieves safety and liveness properties in partial synchronous

networks that does not require a common random beacon. Though our protocol could be used

in other scenarios such as State Machine Replication (SMR), we present the protocol as a finality

gadget for blockchains. Assume that there is a separate block proposal mechanism that produces

children blocks for finalized blocks by our BFT finality gadget. Let 𝐵0, · · · , 𝐵ℎ−1
be the blockchain

where 𝐵0
is the genesis block and 𝐵ℎ−1

is the most recently finalized head block. The block proposal

mechanism may produce several child blocks 𝐵ℎ
0
, 𝐵ℎ

1
, · · · , 𝐵ℎ𝑛0−1

of the current head block 𝐵ℎ−1
.

These child blocks are strictly ordered. For example, in proof of stake blockchain applications, each

participant has a stake value for the chain height ℎ and these child blocks may be ordered using

proposer’s stake values. However, it is beyond the scope of this paper to specify how these child

blocks are ordered for general blockchains. It is the task for the BFT finality gadget to select the

maximal block among these ordered candidate child blocks as the next block 𝐵ℎ . Though the goal

of the BFT protocol is to select the maximal child block as the final version of block 𝐵ℎ , this may

not be true in certain scenarios. For example, if 𝑡 + 1 honest participants have seen the child block

𝐵ℎ𝑛0−2
and have not seen the maximal block 𝐵ℎ𝑛0−1

at the start of the protocol (at the same time,

we may assume that the other 𝑡 honest participants have seen the maximal block 𝐵ℎ𝑛0−1
), then our

BFT protocol BDLS will finalize 𝐵ℎ𝑛0−2
instead of 𝐵ℎ𝑛0−1

(assuming that the 𝑡 malicious participants

submit the block 𝐵ℎ𝑛0−2
to the leader). Secondly, our BFT protocol leverages the fact that a candidate

block is self-certified. That is, the validity of a candidate child block can be verified by using the

information contained in the candidate block itself against the currently finalized blockchain.

7.1 The BFT protocol BDLS
Our BFT protocol is based on the original DLS protocol in Dwork, Lynch, and Stockmeyer [8] and

we call it a Blockchain version of DLS (BDLS). The DLS protocol is inefficient since the protocol

proceeds until all honest participants decides on a value. BDLS employs a reliable broadcast channel

so it stops as soon as one honest participants decides on a message. This reduces the complexity by

a factor of 𝑂 (𝑛).
For each blockchain height ℎ, BDLS protocol runs from round to round until it reaches an

agreement for the height ℎ. Then the protocol moves to the next blockchain height ℎ + 1. Let

𝑃0, · · · , 𝑃𝑛−1 be the 𝑛 = 3𝑡 + 1 participants of the protocol. Assume that there are 𝑛0 valid candidate

proposals 𝐵ℎ
0
≺ 𝐵ℎ

1
≺ · · · ≺ 𝐵ℎ𝑛0−1

for the block 𝐵ℎ . During the protocol run, each participant 𝑃𝑖

maintains a local variable BLOCK𝑖 ⊆ {𝐵ℎ
0
, 𝐵ℎ

1
, · · · , 𝐵ℎ𝑛0−1

} that contains the candidate blocks that it
has learned so far. Participant 𝑃𝑖 prefers the maximal block in BLOCK𝑖 to be selected as the final

block for 𝐵ℎ . The goal of the BDLS protocol is for participants 𝑃0, · · · , 𝑃𝑛−1 to reach a consensus on

the finalized block 𝐵ℎ .

Generally, we can use a robust threshold signature scheme to achieve linear authenticator

complexity. For simplicity, the following protocol description is based on a standard digital signature

scheme. It could be easily revised to use a threshold signature scheme. Following Dwork, Lynch,

and Stockmeyer [8], we assume that all messages after the unknown GST (Global Stabilization

Time) is delivered in the same round with any order chosen by the adversary and messages before

round GST could get lost. Furthermore, though all participants have a common numbering for the

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 15 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:16 Yongge Wang

round, they do not know when the round GST occurs. A candidate block 𝐵′
is acceptable to 𝑃𝑖 if 𝑃𝑖

does not have a lock on any value except possibly 𝐵′
. There is a public function 𝑙𝑒𝑎𝑑𝑒𝑟 (ℎ, 𝑟) that

returns the round leader for a given round 𝑟 of the height ℎ. For each height ℎ, the BDLS protocol

proceeds from round to round (starting from round 0) until the participant decides on a value. The

round 𝑟 of the height ℎ starts when at least 2𝑡 + 1 participants submit a round-change message to

the leader participant. The round 𝑟 proceeds as follows where 𝑃𝑖 = 𝑙𝑒𝑎𝑑𝑒𝑟 (ℎ, 𝑟) is the leader for
round 𝑟 :

(1) Each participant 𝑃 𝑗 (including 𝑃𝑖) sends the signed message (⟨ℎ, 𝑟 ⟩𝑗 , ⟨ℎ, 𝑟, 𝐵′
𝑗 ⟩𝑗) to the leader

𝑃𝑖 where 𝐵
′
𝑗 ∈ BLOCK𝑗 is the maximal acceptable candidate block for 𝑃 𝑗 . The message ⟨ℎ, 𝑟 ⟩𝑗

is considered as a round-change message. After sending the round-change message, 𝑃 𝑗 will

not accept messages for round 𝑟 ′ < 𝑟 anymore except a “decide” message from a previous

round.

(2) If 𝑃𝑖 receives at least 2𝑡 + 1 round-change messages (including himself), it enters round 𝑟 .

In these round-change messages, if there are at least 2𝑡 + 1 signed messages from 2𝑡 + 1

participants with the same candidate block 𝐵′ ≠ 𝑁𝑈𝐿𝐿, then 𝑃𝑖 broadcasts the following

signed message (6) to all participants

⟨lock, ℎ, 𝑟, 𝐵′, proof⟩𝑖 (6)

where proof is a list of at least 2𝑡 + 1 signed messages showing that 𝐵′
is the candidate blocks

for at least 2𝑡 + 1 participants (the proof also shows that round-change request has been

authorized by at least 2𝑡 +1 participants). If 𝑃𝑖 does not receive such a block 𝐵
′
, then 𝑃𝑖 adds all

received candidate blocks to its local variable BLOCK𝑖 and broadcasts ⟨select, ℎ, 𝑟, 𝐵′′, proof⟩
where 𝐵′′

is the candidate block 𝐵′′ = max{𝐵 : 𝐵 ∈ BLOCK𝑖 } and proof is a list of at least 2𝑡+1

round-change messages. It should be noted that in order to achieve linear communication

complexity when a threshold signature scheme employed, the “proof” in the lock-message

and select-message are different: In the lock-message, the “proof” contains an assembled

digital signature on the message ⟨ℎ, 𝑟, 𝐵′⟩ while, in the select-message, the “proof” contains

an assembled digital signature on the message ⟨ℎ, 𝑟 ⟩. See Remark 3 for details.

(3) If a participant 𝑃 𝑗 (including 𝑃𝑖) receives a valid ⟨select, ℎ, 𝑟, 𝐵′′, proof⟩ from 𝑃𝑖 during Step

2, then it adds 𝐵′′
to its BLOCK𝑗 . If a participant 𝑃 𝑗 (including 𝑃𝑖) receives a valid message

⟨lock, ℎ, 𝑟, 𝐵′, proof⟩𝑖 from 𝑃𝑖 in Step 2, then it does the following:

(a) releases any potential lock on 𝐵′
from previous round, but does not release locks on any

other potential candidate blocks

(b) locks the candidate block 𝐵′
by recording the valid lock (6)

(c) sends the following signed commit message to the leader 𝑃𝑖 .

⟨commit, ℎ, 𝑟, 𝐵′⟩𝑗 . (7)

(4) If 𝑃𝑖 receives at least 2𝑡 + 1 commit messages (7), then 𝑃𝑖 decides on the value 𝐵′
and strongly

reliable broadcast (e.g., using Bracha’s strongly reliable broadcast primitive in Section 3) the

following decide message to all participants

⟨decide, ℎ, 𝑟, 𝐵′, proof⟩𝑖 . (8)

where proof is a list of at least 2𝑡 + 1 commit messages (7).

(5) If a participant 𝑃 𝑗 (including 𝑃𝑖) receives a decide message (8) from Step 4 or from its neighbor,

it decides on the block 𝐵′
for 𝐵ℎ and moves to the next height ℎ + 1 (that is, run the Step 1

of height ℎ + 1 by sending the round-change message). Otherwise, it goes to the following

lock-release step:

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 16 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:17

• (lock-release) If a participant 𝑃 𝑗 (including 𝑃𝑖) has some locked values, it broadcasts all of its

locked values with proofs. A participant releases its lock on a value ⟨lock, ℎ, 𝑟 ′′, 𝐵′′, proof⟩𝑖′′
if it receives a lock ⟨lock, ℎ, 𝑟 ′, 𝐵′, proof⟩𝑖′ with 𝑟 ′ ≥ 𝑟 ′′ and 𝐵′ ≠ 𝐵′′

.

• Move to the next round 𝑟 + 1 (i.e., run the Step 1 of height ℎ with 𝑟 + 1).

(6) height synchronization: At any time during the protocol, if 𝑃 𝑗 receives a finalized bock of

height ℎ (e.g., a decide message (8)), 𝑃 𝑗 decides for height ℎ and moves to height ℎ + 1.

(7) round synchronization: At any time during the protocol, if 𝑃 𝑗 receives a valid “lock” or “select”

or “decide” message for a round 𝑟 ′ > 𝑟 , 𝑃 𝑗 moves to round 𝑟 ′ and processes the “lock” or

“select” or “decide” message.

(8) timeout: For each step, 𝑃 𝑗 should set an appropriate timeout counter. If 𝑃 𝑗 does not receive

enough messages to move forward before timeout counter expires, it moves to the next step.

Remark 1: In the BDLS protocol, the lock-release step is a mesh network broadcast. In some

applications, one may prefer a star network to reduce the total number of messages from 𝑛2
to 𝑛

(achieving linear communication complexity). One may achieve this kind of needs by replacing

the “lock-release” step with the following additions to the protocol. At the Step 1 of round 𝑟 , each

participant 𝑃 𝑗 sends the message

all-locked-values, ⟨ℎ, 𝑟, 𝐵′
𝑗 ⟩𝑗

instead of only sending the message ⟨ℎ, 𝑟, 𝐵′
𝑗 ⟩𝑗 to 𝑃𝑖 , where “all-locked-values” is the set of candidate

blocks that 𝑃 𝑗 has locks on. During Step 2, if 𝑃𝑖 cannot lock a candidate block during round 𝑟 , then it

broadcasts the candidate block 𝐵′′ = max{𝐵 : 𝐵 ∈ BLOCK𝑖 } together with a best locked candidate

block from all received locks (the “best lock” is defined according to the lock-release process in Step

5). It is straightforward to check that our security analysis in the next section remains unchanged

for this protocol revision.

Remark 2: During Step 5, BDLS strongly reliable broadcast (see, e.g., Section 3) the decide message.

Alternatively, one may use the regular broadcast primitive and each participants who receives a

decide message keeps propagating/broadcasting the decide message to its neighbors regularly

until it receives at least 2𝑡 broadcasts of the decidemessage for height ℎ from other 2𝑡 participants.

Remark 3: To achieve linear communication/authenticator complexity with threshold digital

signature schemes, participant 𝑃 𝑗 sends the signed message (⟨ℎ, 𝑟 ⟩𝑗 , ⟨ℎ, 𝑟, 𝐵′
𝑗 ⟩𝑗) to the leader 𝑃𝑖

during step 1. It should be noted that if there are 2𝑡 + 1 participants that send the same 𝐵′
𝑗 to the

leader, then the leader 𝑃𝑖 can assembly a signature for ⟨ℎ, 𝑟, 𝐵′
𝑗 ⟩. If there is no such value 𝐵′

𝑗 , then

the leader can only assembly a digital signature for ⟨ℎ, 𝑟 ⟩ which can be used for the selectmessage.

In the security proof for BDLS in the next section, the leader does not need to assemble a digital

signature for 𝐵′
𝑗 if it only broadcasts a select message.

7.2 Liveness and Safety
The security of BDLS protocol is proved by establishing a series of Lemmas. The proofs for Lemmas

7.1, 7.2, 7.3 and Theorem 7.4 follow from straightforward modifications of the corresponding

Lemmas/Theorem in [8]. For completeness, we include these proofs here also.

Lemma 7.1. It is impossible for two candidate blocks 𝐵′ and 𝐵′′ to get locked in the same round 𝑟 of
height ℎ.

Proof. In order for two blocks 𝐵′
and 𝐵′′

to get locked in one round 𝑟 of height ℎ, the leader

𝑃𝑖 = 𝑙𝑒𝑎𝑑𝑒𝑟 (ℎ, 𝑟) must send two conflict lock messages (6) with different proofs. This can only

happen if there exist at least 𝑡 + 1 participants 𝑃 𝑗 each of whom equivocates two messages ⟨ℎ, 𝑟, 𝐵′⟩𝑗
and ⟨ℎ, 𝑟, 𝐵′′⟩𝑗 to 𝑃𝑖 . This is impossible since there are at most 𝑡 malicious participants. □

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 17 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:18 Yongge Wang

Lemma 7.2. If the leader 𝑃𝑖 decides a block value 𝐵′ at round 𝑟 of height ℎ and 𝑟 is the smallest
round at which a decision is made. Then at least 𝑡 + 1 honest participants lock the candidate block 𝐵′

at round 𝑟 . Furthermore, each of the honest participants that locks 𝐵′ at round 𝑟 will always have a
lock on 𝐵′ for round 𝑟 ′ ≥ 𝑟 .

Proof. In order for 𝑃𝑖 to decide on 𝐵′
, at least 2𝑡 + 1 participants send commit messages (7) to 𝑃𝑖

at round 𝑟 of height ℎ. Thus at least 𝑡 + 1 honest participants have locks on 𝐵′
at round 𝑟 . Assume

that the second conclusion is false. Let 𝑟 ′ > 𝑟 be the first round that the lock on 𝐵′
is released. In

this case, the lock is released during the lock-release step of round 𝑟 ′ if some participant has a lock

on another block 𝐵′′ ≠ 𝐵′
with associated round 𝑟 ′′ where 𝑟 ′ ≥ 𝑟 ′′ ≥ 𝑟 . Lemma 7.1 shows that it

is impossible for a participant to have a lock on 𝐵′′
ar round 𝑟 . Thus the participant acquired the

lock on 𝐵′′
in round 𝑟 ′′ with 𝑟 ′ ≥ 𝑟 ′′ > 𝑟 . This implies that, at the step 1 of round 𝑟 ′′, more than

2𝑡 + 1 participants send signed messages ⟨ℎ, 𝑟 ′′, 𝐵′′⟩ to the leader participant. That is, at least 2𝑡 + 1

participants have not locked 𝐵′
at the step 1 of round 𝑟 ′′. This contradicts the fact that at least 𝑡 + 1

participants have locked 𝐵′
at the start of round 𝑟 ′′. □

Lemma 7.3. Immediately after any lock-release step at or after the round GST, the set of candidate
blocks locked by honest participants contains at most one value.

Proof. This follows from the lock-release step. □

Theorem 7.4. (Safety) Assume that there are at most 𝑡 malicious participants. It is impossible for
two participants to decide on different block values.

Proof. Suppose that an honest participant 𝑃𝑖 decides on 𝐵 at round 𝑟 and this is the smallest

round at which the decision is made. Lemma 7.2 implies that at least 𝑡 + 1 participants will lock 𝐵′

in all future rounds. Consequently, no other block values other than 𝐵′
will be acceptable to 2𝑡 + 1

participants. Thus no participants will decide on any other values than 𝐵′
. □

Theorem 7.5. (Liveness) Assume that there are at most 𝑡 malicious participants and valid candidate
child blocks for 𝐵ℎ are always produced by the block proposal mechanism before the start of first round
for height ℎ for all ℎ. Then BDLS protocol will finalize blocks for each height ℎ. That is, the BDLS
protocol will not reach a deadlock.

Proof.We consider two cases. For the first case, assume that no decision has been made by any

honest participants and no honest participant locks a candidate block at round 𝑟 where 𝑟 ≥ GST is

the first round after GST that the leader participant is honest. In this case, if 𝑃𝑖 receives 2𝑡 + 1 signed

messages for a candidate block 𝐵′
in step 1 of round 𝑟 , then all honest participants will decides on

𝐵′
by the end of round 𝑟 . Otherwise, 𝑃𝑖 broadcasts the maximal candidate block 𝐵′′

during step 2 of

round 𝑟 . Thus all honest participants will receive this maximum block and this candidate block

becomes the maximum acceptable candidate block for all honest participants. Then, in round 𝑟 ′ > 𝑟

where 𝑟 ′ is the smallest round after 𝑟 that the leader participant is honest, all honest participants

decide on a maximal block.

For the second case, assume that no candidate block is locked at the start of round GST and some

participants hold a lock on a candidate block 𝐵′
. By Lemma 7.3, there is at most one value locked by

honest participants at the end of round GST. Furthermore, at the end of round GST, all the honest

participants either decide on 𝐵′
or obtain a lock on 𝐵′

. Thus if no decision is made during round

GST, the decision will be made during round GST+1. □

7.3 Complexity/Efficiency analysis
In this section, we compare the performance of BDLS against commonly deployed BFT protocols

such as PBFT, Tendermint BFT, and LibraBFT (HotStuff BFT). Three kinds of primitives are used

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 18 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:19

Table 1. Comparison of BFT protocols with honest leader after GST

Steps PBFT Tendermint BFT LibraBFT BDLS
1

2

3

4

5

6

7

message complexity 2𝑛2 + 𝑛 2𝑛2 + 𝑛 7𝑛 4𝑛

authenticator complexity 𝑂 (𝑛2) 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)

in these protocol design: (1) broadcast from the leader to all participants; (2) all participants send

messages to the leader; and (3) all participants broadcast. We use the following symbols to denote

these primitives.

• : leader broadcasts

• : all participants send messages to the leader

• : all participants broadcast

For the comparison, we focus on the performance of these protocols after the network is synchro-

nized (that is, after GST) and when the round has an honest leader. For all of these protocols, they

will reach agreement within one run of the protocol assuming all participants have all the necessary

input values at the start of the protocol and the leader is honest. Table 1 lists the steps of one run

of these protocols. Furthermore, for BDLS, we use the approaches discussed in the Remarks after

the BDLS protocol description to embed the lock-release step into Steps 1 and 2. For each or

step, there is a total of 𝑛 messages communicated in the network. For each step, there is a total

of 𝑛2
messages communicated in the network. The row “message complexity” of Table 1 lists the

total number of messages communicated in the network for each run of the protocol. That is, in

the ideal synchronized network, this is the total number of messages that are needed to achieve a

consensus. These numbers show that BDLS has the smallest number of messages for a consensus

in the synchronized network. Another way to compare the performance of BFT protocols is to

compare the number of authenticator operations (signing and verifying) that are needed to achieve

a consensus. Assume that all these schemes (except PBFT) use threshold digital signature schemes,

then the row “authenticator complexity” of Table 1 lists the total number authenticator operations

needed for each run of the protocol.

8 IMPLEMENTATION AND PERFORMANCE EVALUATION
8.1 Chained BDLS and other implementation related issues
In order to improve efficiency, several blockchain BFT protocols (e.g., Ethereum Casper FFG,

and LibraBFT/HotStuff BFT) adopt the chaining paradigm where the BFT protocol phases for

commitment are spread across rounds. That is, every phase is carried out in a round and contains

a new proposal. The same techniques could be used to construct a chained BDLS. For chained

BFT protocol implementation, the BFT protocol participants for various rounds/heights should be

relatively static. If the BFT protocol participants change from rounds to rounds or from heights

to heights, it is not realistic to implement chained BFT protocols. Thus chained BFT protocol

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 19 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:20 Yongge Wang

implementation is suitable for permissioned blockchains such as Libra blockchain while it is not

suitable for permissionless blockchains where BFT protocol participants change frequently.

In most distributed BFT protocols, when the participants could not reach an agreement in

one round, participants move to a new round by submitting round-change request. Thus BFT

participants may be in different status and receive different messages. It is important to maximize

the period of time when at least 2𝑡 + 1 honest participants are in the same round. PBFT protocol

achieves round synchronization by exponentially increasing the timeout length for each round.

That is, if the round 0 of height ℎ has a timeout length of Δ, then the round 𝑟 of height ℎ will have

a timeout length of 2
𝑟Δ. On the other hand, Tendermint BFT achieves round synchronization by

linearly increasing the timeout length for each round. That is, the round 𝑟 has a timeout length of

𝑟Δ where Δ is the timeout length for round 0 of height ℎ. HotStuff proposes a functionality called

PaceMaker to achieve round synchronization without details on how to implement the PaceMaker.

LibraBFT implemented the PaceMaker functionality as follows: When a participant gives up on a

certain round 𝑟 , it broadcasts a timeout message carrying a certificate for entering the round. This

brings all honest participants to 𝑟 within the transmission delay bound. When timeout messages

are collected from a quorum of participants, they form a timeout certificate.

8.2 BDLS with Pacemaker
Though BDLS may use the PBFT mechanism to keep round synchronization (that is, the timeout

period for round 𝑟 is 2
𝑟Δ), it seems to be more efficient to use Pacemaker for BDLS round synchro-

nization. Similar to LibraBFT, the advancement of rounds in BDLS is governed by a module called

Pacemaker. The Pacemaker keeps track of votes and of time. We revise BDLS slightly so that a

Pacemaker could be seamlessly integrated into the protocol without extra workload. The major

change is Step 1 where Pacemaker timeout messages are combined with round-change requests for

efficiency. The round 𝑟 of the height ℎ for a participant 𝑃 𝑗 starts when (1) its Pacemaker receives

round-change messages from at least 2𝑡 + 1 participants, or (2) if its timeout for round 𝑟 − 1, or (3) if

it receives a valid Resyncmessage for round 𝑟 while it is still in round less than 𝑟 , or (4) if it receives

a “lock” or a “select” or a “decide” message for round 𝑟 . At the beginning of the protocol, each

participant sets Resync(0) = NULL. In the protocol, each time when a timeout counter expires, the

participant will broadcast its current Resync variable to all participants and we will not explicitly

mention this. The round 𝑟 proceeds as follows where 𝑃𝑖 = 𝑙𝑒𝑎𝑑𝑒𝑟 (ℎ, 𝑟) is the leader for round 𝑟 :

(1) (If 𝑟 > 0, this is done at the end of round 𝑟 − 1 of height ℎ. If 𝑟 = 0, this is done after a decision

for height ℎ − 1 is made) The Pacemaker of each participant 𝑃 𝑗 (including 𝑃𝑖) broadcasts the

signed message (⟨ℎ, 𝑟 ⟩𝑗 , ⟨ℎ, 𝑟, 𝐵′
𝑗 ⟩𝑗) and Resync variable where 𝐵′

𝑗 ∈ BLOCK𝑗 is the maximal

acceptable candidate block for 𝑃 𝑗 of height ℎ. The message ⟨ℎ, 𝑟 ⟩𝑗 is considered as a round-

change message for round 𝑟 . After 𝑃 𝑗 broadcasts the round-change message for round 𝑟 , it will

set a timeout message Δ0 and enters roundchanging status. During roundchanging status,
a participant will not accept any messages except the following messages: (1) round-change

messages of rounds ≥ 𝑟 . (2) “decide” messages for the height ℎ of any round, and (3) valid

Resyncmessage. Furthermore, if 𝑟 > 0, then each participant 𝑃 𝑗 (including 𝑃𝑖) initializes all of

its variables except the locked block variable. If 𝑟 = 0, then each participant 𝑃 𝑗 (including 𝑃𝑖)

initializes all of its variables including the locked block variable. For any participant 𝑃 𝑗 who

is in roundchanging status, if it does not enter the lock status of Step 2 before Δ0 expires, it

resends the round-change message, its Resync value, and resets its Δ0.

(2) During any time of the protocol, if 𝑃 𝑗 (including 𝑃𝑖) receives a Resync(𝑟) or at least 2𝑡+1 round-

change messages (including round-change message from himself) for round 𝑟 (which is larger

than its current round status), it enters lock status of round 𝑟 and sets Resync=Resync(𝑟)

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 20 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:21

where Resync(𝑟) is a set of 2𝑡 + 1 valid round-change messages for round 𝑟 . If 𝑃 𝑗 has not

broadcast the round-change message yet, it broadcasts now. Then 𝑃 𝑗 sets the timeout counter

Δ1 for lock status
1
. Furthermore, as soon as the leader 𝑃𝑖 enters lock status of round 𝑟 , it

starts a timeout counter Δ′
1
< Δ1 concurrently

2
. The leader 𝑃𝑖 stops the time counter Δ′

1
as

soon as he receives 𝑛 round-change requests or as soon as he receives 2𝑡 + 1 round-change

requests with an identical proposed block. As soon as the time counter Δ′
1
expires or the

leader 𝑃𝑖 stops the time counter Δ′
1
, 𝑃𝑖 distinguishes the following two cases:

(a) Among all round-change messages that 𝑃𝑖 has received, if there are at least 2𝑡 + 1 signed

messages from 2𝑡 + 1 participants with the same candidate block 𝐵′ ≠ 𝑁𝑈𝐿𝐿, then 𝑃𝑖
broadcasts the following signed message (6) to all participants

⟨lock, ℎ, 𝑟, 𝐵′, proof⟩𝑖 (9)

where proof shows that at least 2𝑡 + 1 participants singed 𝐵′
(the proof also shows that

round-change request has been authorized by at least 2𝑡 + 1 participants).

(b) If 𝑃𝑖 does not receive such a block 𝐵′
, then 𝑃𝑖 adds all received candidate blocks to its local

variable BLOCK𝑖 and broadcasts

⟨select, ℎ, 𝑟, 𝐵′′, proof⟩ (10)

where 𝐵′′
is the candidate block 𝐵′′ = max{𝐵 : 𝐵 ∈ BLOCK𝑖 } and proof shows that

round-change request has been authorized by at least 2𝑡 + 1 participants from Step 1.

(3) If a participant 𝑃 𝑗 (including 𝑃𝑖) does not receive a valid message from the leader 𝑃𝑖 during

Step 2 and the timeout counter Δ1 expires, 𝑃 𝑗 enters commit status of round 𝑟 and sets the

timeout counter Δ2 for commit status
3
. Otherwise, if a participant 𝑃 𝑗 (including 𝑃𝑖) receives

a valid message (9) or (10) from 𝑃𝑖 before Δ1 expires, 𝑃 𝑗 stops the time counter Δ1 and

distinguishes the following two cases:

• If 𝑃 𝑗 receives a valid ⟨select, ℎ, 𝑟, 𝐵′′, proof⟩ from 𝑃𝑖 during Step 2, then it adds 𝐵′′
to its

BLOCK𝑗 and enters lock-release status of round 𝑟 and sets the timeout counter Δ3 for

lock-release status.
• If 𝑃 𝑗 (including 𝑃𝑖) receives a valid message ⟨lock, ℎ, 𝑟, 𝐵′, proof⟩𝑖 from 𝑃𝑖 in Step 2, then it

does the following and enters commit status by setting the timeout counter Δ2:

(a) releases any potential lock on 𝐵′
from previous round, but does not release locks on any

other potential candidate blocks

(b) locks the candidate block 𝐵′
by recording the valid lock (9)

(c) sends the following signed commit message to the leader 𝑃𝑖 .

⟨commit, ℎ, 𝑟, 𝐵′⟩𝑗 . (11)

1
The lock status timeout counters could be set as follows: For round 𝑟 = 0, the timeout counter Δ1 = Δ1,0 should be at least

4 network transmission delays plus some time for each participant to process the messages. For round 𝑟 > 0, the timeout

counter could be defined as 𝑟Δ1,0.

2
Though it is sufficient for a non-leader participant to collect only 2𝑡 + 1 round-change requests, the leader should collect as

many round-change messages as possible. In particular, the leader should try to collect all round-change messages from all

participants. It is recommended that after the leader 𝑃𝑖 collects 2𝑡 + 1 round-change requests and starts the lock status
timeout counter Δ1, it initiates another timeout counter Δ′

1
< Δ to collect as many as possible round-change requests if

more round-change requests still arrive. Generally, we can set Δ1 as two network transmission delays. This mechanism is

used to avoid the following attack: the malicious 𝑡 participants may send random round-change messages to the leader.

If the leader only checks the first 2𝑡 + 1 messages (among them, 𝑡 could be malicious), then the system may never reach

an agreement. However, the leader should not wait forever since the 𝑡 malicious participants may choose not to send

round-change request at all.

3
The commit status timeout counters could be set as follows: For round 𝑟 = 0, the timeout counter Δ2 = Δ2,0 should be

at least 2 network transmission delays plus some time for each participant to process the messages. For round 𝑟 > 0, the

timeout counter could be defined as 𝑟Δ2,0.

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 21 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:22 Yongge Wang

Table 2. Deciding time for various number of participants

No. nodes 20 30 50 80 100

deciding time 1.48s 1.54s 1.87s 3.56s 4.7s

(4) If 𝑃𝑖 receives at least 2𝑡 + 1 commit messages (11) for the round 𝑟 of height ℎ with the locked

value 𝐵′
of (9) before Δ2 expires, then 𝑃𝑖 decides on the value 𝐵′

and strongly reliable broadcasts
(e.g., using Bracha’s strongly reliable broadcast primitive) the following decide message to all

participants

⟨decide, ℎ, 𝑟, 𝐵′, proof⟩𝑖 . (12)

where proof is a list of at least 2𝑡 + 1 commit messages (11).

(5) If a participant 𝑃 𝑗 (including 𝑃𝑖) receives a decide message (12) from Step 4 or from its

neighbor before the timeout counter Δ2 expires, it decides on the block 𝐵′
for 𝐵ℎ and the

Pacemaker of 𝑃 𝑗 goes to Step 1 of height ℎ+1. At the same time, the participant 𝑃 𝑗 propagates

(broadcasts) the decide message (12) to all of its neighbors if it has not done so yet. Otherwise,

if 𝑃 𝑗 (including 𝑃𝑖) does not receive a decide message from the leader 𝑃𝑖 or its neighbors

before the timeout counter Δ2 expires, 𝑃 𝑗 enters lock-release status of round 𝑟 and sets

the timeout counter Δ3 for lock-release status
4
.

(6) (lock-release) If a participant 𝑃 𝑗 (including 𝑃𝑖) has some locked values, then 𝑃 𝑗 calculates

𝑟1 = max{𝑟 ′ : 𝑃 𝑗 holds a lock ⟨lock, ℎ, 𝑟 ′, 𝐵′, proof⟩𝑖′}.

𝑃 𝑗 releases all locks ⟨lock, ℎ, 𝑟 ′′, 𝐵′′, proof⟩𝑖′′ with 𝑟 ′′ ≠ 𝑟1. 𝑃 𝑗 then broadcasts the following

lock-release message

⟨lock-release, ℎ, 𝑟, ⟨lock, ℎ, 𝑟1, 𝐵
′, proof⟩𝑖1⟩. (13)

If 𝑃 𝑗 receives a lock-release message ⟨lock-release, ℎ, 𝑟, ⟨lock, ℎ, 𝑟 ′
1
, 𝐵′′′, proof⟩𝑖′

1

⟩ with 𝑟 ′
1
> 𝑟1

from another participant before the timeoutΔ3 expires, then 𝑃 𝑗 releases its lock ⟨lock, ℎ, 𝑟1, 𝐵
′, proof⟩𝑖1

and records the lock ⟨lock, ℎ, 𝑟 ′
1
, 𝐵′′′, proof⟩𝑖′

1

. After the timeout Δ3 expires, the Pacemaker of

𝑃 𝑗 goes to Step 1 for round 𝑟 + 1 of height ℎ.

(7) height synchronization: At any time of the protocol run, if 𝑃 𝑗 receives a finalized bock of

height ℎ (e.g., a decide message (12)), 𝑃 𝑗 decides for height ℎ and moves to height ℎ + 1.

(8) round synchronization: At any time of the protocol run, if 𝑃 𝑗 receives a valid “lock” or “select”

or “decide” or “Resync” message for a round 𝑟 ′ > 𝑟 , 𝑃 𝑗 moves to round 𝑟 ′ and processes the

“lock” or “select” or “decide” or “Resync” message. Furthermore, at any time, if 𝑃 𝑗 receives

from more than 𝑡 + 1 participants valid messages for round 𝑟 ′ > 𝑟 (including round-change

messages for round 𝑟 ′), 𝑃 𝑗 goes to Step 1 for round 𝑟 ′ of height ℎ.

8.3 Performance evaluation
The BDLS consensus algorithm with pacemaker in Section 8.2 has been implemented using Go

Programming Language. The implementation is based on the flowchart in Figure 3 and the source

codes are available at https://github.com/yonggewang/bdls. We tested the BDLS on AWS EC2 with

globally distributed nodes. Table 2 shows the average deciding (reaching agreement) time for 20,

30, 50, 80, and 100 nodes respectively.

4
The lock-release status timeout counters could be set as follows: For round 𝑟 = 0, the timeout counter Δ3 = Δ3,0 should

be at least 2 network transmission delays plus some time for each participant to process the messages. For round 𝑟 > 0, the

timeout counter could be defined as 𝑟Δ3,0.

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 22 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

https://github.com/yonggewang/bdls

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:23

9 MULTI-VALUE BFT PROTOCOLS FOR ASYNCHRONOUS NETWORKS
Section 5.5 proposed a binary BFT finality gadget in complete asynchronous networks and Section 7

proposed a multi-value BFT finality gadget for partial synchronous networks. Furthermore, the BFT

protocol in Section 5.5 requires a strongly reliable broadcast channel. In this section, we present a

constant round multi-value BFT protocol XP for complete asynchronous networks that does not

require strongly reliable broadcast channels. The XP protocol is motivated by the probabilistic

binary BFT protocol in Cachin, Kursawe, and Shoup [5]. For a probabilistic BFT protocol, the

randomness could be local coin flips or commonly shared random bits. Similar to the protocol in [5],

our BFT XP protocol uses a commonly shared random sequence. This commonly shared random

sequence is generally modelled as a random beacon in blockchains. For example, the Ethereum 2.0

provides a random beacon protocol.

Similar to Section 7, we assume that there is a partial order on the list of candidate blocks to

be finalized: B = {𝐵 𝑗 : 1 ≤ 𝑗 ≤ 𝜏} where 𝐵1 ≺ 𝐵2 ≺ · · · ≺ 𝐵𝜏 . During the protocol run, each

participant 𝑃𝑖 maintains a list of known candidate blocks in its local variable 𝑋𝑖 ⊆ B. At the start

of the protocol run, 𝑋𝑖 contains the list of candidate blocks that the participant 𝑃𝑖 has learned and

could be empty. During the protocol run, we assume that there is a random coin shared by all

participants. For example, for the Ethereum 2.0, one may use the existing random beacon protocol

as a common coin. Let 𝜎 be the random string shared by all participants for step 𝑠 . Then participant

𝑃𝑖 sets the “common” block 𝑋𝜎
𝑖
as a block 𝐵 𝑗 ∈ 𝑋𝑖 such that 𝐻 (𝐵 𝑗 , 𝑠) and 𝐻 (𝜎, 𝑠) has the maximal

common prefix within 𝑋𝑖 , where 𝐻 (·) is a hash function. If there are two candidate blocks 𝐵 𝑗1 ≺ 𝐵 𝑗2

such that

commonPrefix(𝐻 (𝐵 𝑗1 , 𝑠), 𝐻 (𝜎, 𝑠)) = commonPrefix(𝐻 (𝐵 𝑗2 , 𝑠), 𝐻 (𝜎, 𝑠)),
then 𝑃𝑖 sets 𝑋

𝜎
𝑖
= 𝐵 𝑗2 . It is easy to observe that if 𝑋𝑖1 = 𝑋𝑖2 , then 𝑋𝜎

𝑖1
= 𝑋𝜎

𝑖2
. However, if 𝑋𝑖1 ≠ 𝑋𝑖2 ,

then 𝑋𝜎
𝑖1
and 𝑋𝜎

𝑖2
may be different.

The protocol proceeds from step to step until an agreement is achieved and the protocol does

not have any assumption on the time setting. Each participant waits for at least 𝑛 − 𝑡 justified

messages from participants (including himself) to proceed to the next sub-step. The step 𝑠 ≥ 0 for

a participant 𝑃𝑖 consists of the following sub-steps:

• lock: If 𝑠 = 0, then let 𝐵 be the maximal element in 𝑋𝑖 . If 𝑠 > 0 then wait for 𝑛 − 𝑡 justified

commit-votes from step 𝑠 − 1 and let

𝐵 =

{
𝐵′ 𝑃𝑖 receives a commit-vote for 𝐵′

in step 𝑠 − 1

𝑋𝜎
𝑖

𝑃𝑖 receives 2𝑡 + 1 commit-votes for ⊥ and 𝜎 is common coin

(14)

Then 𝑃𝑖 sends the following message to all participants.

⟨𝑃𝑖 , lock, 𝑠, 𝐵, justification⟩ (15)

where justification consists of messages to justify the selection of the value 𝐵.

• commit: 𝑃𝑖 collects 𝑛 − 𝑡 justified lock messages (15) and lets

𝐵 =

{
𝐵 if there are 𝑛 − 𝑡 locks for 𝐵

⊥ otherwise

(16)

Then 𝑃𝑖 sends the following message to all participants

⟨𝑃𝑖 , commit, 𝑠, 𝐵, 𝑋𝑖 , justification⟩ (17)

where justification consists of messages to justify the selection of the value 𝐵.

• check-for-decision: Collect 𝑛 − 𝑡 properly justified commit votes (17) and lets 𝑋𝑖 = 𝑋𝑖 ∪(
∪𝑗𝑋 𝑗

)
where 𝑋 𝑗 are from messages (17). Furthermore, if these are 𝑛 − 𝑡 commit-votes for a

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 23 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:24 Yongge Wang

block 𝐵, then 𝑃𝑖 decides the block 𝐵 and continues for one more step (up to commit sub-step).

Otherwise, simply proceed.

Assume that 𝑛 = 3𝑡 + 1. The security of the above protocol can be proved by establishing a

sequence of lemmas.

Lemma 9.1. If an honest participant 𝑃𝑖 decides on the value 𝐵 at the end of step 𝑠 (but no honest
participant has ever decided before step 𝑠), then all honest participants either decide on 𝐵 at the end of
step 𝑠 or at the end of step 𝑠 + 1.

Proof. If an honest participant 𝑃𝑖 decides on the value 𝐵 at the end of step 𝑠 , then at least 𝑡 + 1

honest participants commit-vote for 𝐵. Thus each participant (including malicious participant)

receives at least one commit-vote for 𝐵 at the end of step 𝑠 . This means that a malicious participant

cannot create a justification that she has received a commit-vote for another block 𝐵 ≠ 𝐵 or has

received 2𝑡 + 1 commit-votes for ⊥ during step 𝑠 . In other words, if a participant broadcasts a lock

message for a block 𝐵 ≠ 𝐵 during step 𝑠 + 1, it cannot be justified and will be discarded by honest

participants. This means that, all honest participants will commit-vote for the block 𝐵 during step

𝑠 + 1 and any commit-vote for other blocks cannot be justified. Thus, all honest participants will

collect 𝑛 − 𝑡 justified commit-vote for the block 𝐵 and decide on block 𝐵 at the end of step 𝑠 + 1. □

Lemma 9.2. Block 𝐵 in equation (14) is uniquely defined for each honest participant.

Proof. It is sufficient to show that each participant 𝑃𝑖 (including both honest and dishonest par-

ticipants) can not receive commit-votes for two different blocks 𝐵1 and 𝐵2 during step 𝑠 . For a

contradiction, assume that 𝑃𝑖 receives commit-vote for both 𝐵1 and 𝐵2 during step 𝑠 . Then there

are 2𝑡 + 1 participants who submit lock messages for 𝐵1 and 2𝑡 + 1 participants who submit lock
messages for 𝐵2. This means that at least 𝑡 + 1 participants (thus at least one honest participant)

submit lock messages for both 𝐵1 and 𝐵2 which is impossible. □

Lemma 9.3. During step 𝑠 , if participants 𝑃𝑖 and 𝑃 𝑗 receive commit votes for 𝐵1 and 𝐵2 respectively,
then 𝐵1 = 𝐵2.

Proof. For a contradiction, assume that 𝐵1 ≠ 𝐵2. Then there are 2𝑡 + 1 lock messages for 𝐵1 and

2𝑡 + 1 lock messages for 𝐵2 during step 𝑠 . This means that at least 𝑡 + 1 participants (thus at least

one honest participant) submit lock messages for both 𝐵1 and 𝐵2 which is impossible. □

Lemma 9.4. If all honest participants hold the the same local value 𝑋𝑖 = B at the start of step 𝑠 ,
then with high probability, every participant decides by the end of step 𝑠 + 𝜏 .
Proof. The Lemma is proved by distinguishing the following two cases:

(1) 𝑠 = 0: At step 0, each honest participant broadcasts the lock for 𝐵𝜏 though dishonest partici-

pant may broadcast a lock for another block. At the commit phase, each honest participant

𝑃𝑖 broadcasts B and a commit message for ⊥ or 𝐵𝜏 depending on what he receives. If some

participant decides at the end of Step 0, by Lemma 9.1, all honest participants decide by the

end of Step 1. Assume that no participant decides by the end of Step 0. During Step 1, when a

participant broadcasts a lock for a block, he needs to include 2𝑡 + 1 commit messages from

Step 0 as the justification. Among these 2𝑡 + 1 commit messages, at least 𝑡 + 1 come from

honest participants which contain B. Thus from now on, each participant must include its

local variable 𝑋𝑖 = B in its justification message. In other words, if a participant broadcasts

a lock for a block based on the common coin, this locked block must be identical for all

participants who use the common coin. Therefore, from Step 1 on, a participant can only

broadcast a lock for a block committed in the immediate previous step (cf. Lemma 9.3) or a

lock for a block determined by the common coin. With probability
1

𝜏
, the block determined

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 24 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:25

by the common coin is identical to the committed block from the previous step. Thus all

honest participants are expected to decide by Step 𝜏 .

(2) 𝑠 > 0: for this case, we distinguish the following three cases:

(a) By the end of step 𝑠 −1, at least one participant (including dishonest participant) can legally

decide on a block (this means at least one honest participant receives a commit-vote for a

block 𝐵 ≠⊥ during step 𝑠 − 1): By Lemma 9.1, all honest participants decides by the end of

step 𝑠 .

(b) By the end of step 𝑠 − 1, no participant (including dishonest participant) can legally decide

on a block: From Step 𝑠 and on, each honest participant broadcasts a lock message for the

unique block 𝑋𝜎
𝑖
determined by the common coin or a unique block that was committed in

the immediate previous Step (cf. Lemma 9.3). With probability
1

𝜏
, the block determined by

the common coin is identical to the committed block from the immediate previous Step.

Thus all honest participants are expected to decide by Step 𝑠 + 𝜏 .
This completes the proof of the Lemma. □

Lemma 9.5. All honest participant decides in constant steps.

Proof. If no participant decides by the end of Step 𝑠 + 𝜏 , then, by Lemma 9.4, with high probability,

at least one honest participant 𝑃𝑖 revises its local variable 𝑋𝑖 to include at least one more element

during the Steps from 𝑠 to 𝑠 + 𝜏 . Since there are at most 𝜏 candidate blocks, this process continues

until no honest participant revises its local variable 𝑋𝑖 . Then, by Lemma 9.4, all honest participants

hold the same candidate block and the consensus will be reached. □

The above five Lemmas show that the protocol XP is a secure Byzantine Fault Tolerance protocol

against ⌊𝑛−1

3
⌋ Byzantine faults in complete asynchronous networks.

REFERENCES
[1] M. Ali, J. Nelson, and A. Blankstein. Peer review: CBC Casper. available at: https://medium.com/@muneeb/peer-

review-cbc-casper-30840a98c89a, December 6, 2018.

[2] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended abstract). In

Proc. 2nd ACM PODC, pages 27–30, 1983.
[3] G. Bracha. An asynchronous [(𝑛 − 1)/3]-resilient consensus protocol. In Proc. 3rd ACM PODC, pages 154–162. ACM,

1984.

[4] V. Buterin and V. Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437v4, 2019.
[5] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantinople: Practical asynchronous byzantine agreement

using cryptography. Journal of Cryptology, 18(3):219–246, 2005.
[6] Yvo Desmedt, Yongge Wang, and Mike Burmester. A complete characterization of tolerable adversary structures for

secure point-to-point transmissions without feedback. In International Symposium on Algorithms and Computation,
pages 277–287. Springer, 2005.

[7] D. Dolev and H.R. Strong. Polynomial algorithms for multiple processor agreement. In Proc. 14th ACM STOC, pages
401–407. ACM, 1982.

[8] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. JACM, 35(2):288–323, 1988.

[9] M.J. Fischer, N. A Lynch, and M.S. Paterson. Impossibility of distributed consensus with one faulty process. JACM,

32(2):374–382, 1985.

[10] J. Katz and C.-Y. Koo. On expected constant-round protocols for byzantine agreement. Journal of Computer and System
Sciences, 75(2):91–112, 2009.

[11] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS), 16(2):133–169, 1998.
[12] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on Programming Languages

and Systems (TOPLAS), 4(3):382–401, 1982.
[13] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In 2014 USENIX Annual Technical

Conference, pages 305–319, 2014.
[14] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. JACM, 27(2):228–234, 1980.

[15] M.O. Rabin. Randomized byzantine generals. In 24th IEEE FOCS, pages 403–409. IEEE, 1983.

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 25 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

https://medium.com/@muneeb/peer-review-cbc-casper-30840a98c89a
https://medium.com/@muneeb/peer-review-cbc-casper-30840a98c89a

1:26 Yongge Wang

[16] Ethereum Research. CBC Casper FAQ. available at: https://github.com/ethereum/cbc-casper/wiki/FAQ, November 27,

2018.

[17] TK Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distributed
Computing, 2(2):80–94, 1987.

[18] A. Stewart and E. Kokoris-Kogia. GRANDPA: a byzantine finality gadge https://github.com/w3f/consensus/blob/

master/pdf/grandpa.pdf, June 19, 2020.

[19] Y. Wang and Y. Desmedt. Secure communication in multicast channels: the answer to Franklin and Wright’s question.

Journal of Cryptology, 14(2):121–135, 2001.
[20] Y. Wang and Y. Desmedt. Perfectly secure message transmission revisited. Information Theory, IEEE Tran., 54(6):2582–

2595, 2008.

[21] YonggeWang. Byzantine fault tolerance in partially connected asynchronous networks. http:// eprint.iacr.org/2019/1460,
2019.

[22] Yongge Wang. The adversary capabilities in practical byzantine fault tolerance. In Proc. 17th International Workshop
on Security and Trust Management, STM 2021, LNCS 13075, pages 1–20, 2021.

[23] V. Zamfir. Casper the friendly ghost: A correct by construction blockchain consensus protocol. Whitepaper: https:
//github.com/ethereum/research/ tree/master/papers, 2017.

[24] V. Zamfir, N. Rush, A. Asgaonkar, and G. Piliouras. Introducing the minimal cbc casper family of consensus protocols.

DRAFT v1.0: https://github.com/cbc-casper/ , 2018.

A BRACHA’S STRONGLY RELIABLE BROADCAST PRIMITIVE
Assume 𝑛 > 3𝑡 . Bracha [3] designed a broadcast protocol for asynchronous networks with the

following properties:

• If an honest participant broadcasts a message, then all honest participants accept the message.

• If a dishonest participant 𝑃𝑖 broadcasts a message, then either all honest participants accept

the same message or no honest participant accepts any value from 𝑃𝑖 .

Bracha’s broadcast primitive runs as follows:

(1) The transmitter 𝑃𝑖 sends the value ⟨𝑃𝑖 , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝑣⟩ to all participants.

(2) If a participant 𝑃 𝑗 receives a value 𝑣 with one of the following messages

• ⟨𝑃𝑖 , initial, 𝑣⟩
• 𝑛+𝑡

2
messages of the type ⟨echo, 𝑃𝑖 , 𝑣⟩

• 𝑡 + 1 message of the type ⟨ready, 𝑃𝑖 , 𝑣⟩
then 𝑃 𝑗 sends the message ⟨echo, 𝑃𝑖 , 𝑣⟩ to all participants.

(3) If a participant 𝑃 𝑗 receives a value 𝑣 with one of the following messages

• 𝑛+𝑡
2

messages of the type ⟨echo, 𝑃𝑖 , 𝑣⟩
• 𝑡 + 1 message of the type ⟨ready, 𝑃𝑖 , 𝑣⟩
then 𝑃 𝑗 sends the message ⟨ready, 𝑃𝑖 , 𝑣⟩ to all participants.

(4) If a participant 𝑃 𝑗 receives 2𝑡 + 1 messages of the type ⟨ready, 𝑃𝑖 , 𝑣⟩, then 𝑃 𝑗 accepts the

message 𝑣 from 𝑃𝑖 .

Assume that 𝑛 = 3𝑡 + 1. The intuition for the security of Bracha’s broadcast primitive is as follows.

First, if an honest participant 𝑃𝑖 sends the value ⟨𝑃𝑖 , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝑣⟩, then all honest participant will

receive this message and echo the message 𝑣 . Then all honest participants send the ready message

for 𝑣 and all honest participants accept the message 𝑣 .

Secondly, if honest participants 𝑃 𝑗1 and 𝑃 𝑗2 send ready messages for 𝑢 and 𝑣 respectively, then we

must have 𝑢 = 𝑣 . This is due to the following fact. A participant 𝑃 𝑗 sends a ⟨ready, 𝑃 𝑗 , 𝑢⟩ message

only if it receives 𝑡 + 1 ready messages or 2𝑡 + 1 echo messages. That is, there must be an honest

participant who received 2𝑡 + 1 echo messages for 𝑢. Since an honest participant can only send one

message of each type, this means that all honest participants will only sends ready message for the

value 𝑢.

In order for an honest participant 𝑃 𝑗 to accept a message 𝑢, it must receive 2𝑡 + 1 ready messages.

Among these messages, at least 𝑡 + 1 ready messages are from honest participants. An honest

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 26 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

https://github.com/ethereum/cbc-casper/wiki/FAQ
https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf
https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf
http://eprint.iacr.org/2019/1460
https://github.com/ethereum/research/tree/master/papers
https://github.com/ethereum/research/tree/master/papers
https://github.com/cbc-casper/

Byzantine Fault Tolerance For Distributed Ledgers Revisited 1:27

participant can only send one message of each type. Thus if honest participants 𝑃 𝑗1 and 𝑃 𝑗2 accept

messages 𝑢 and 𝑣 respectively, then we must have 𝑢 = 𝑣 . Furthermore, if a participant 𝑃 𝑗 accepts a

message 𝑢, we just showed that at least 𝑡 + 1 honest participants have sent the ready message for 𝑢.

In other words, all honest participants will receive and send at least 𝑡 + 1 ready message for 𝑢. By

the argument from the preceding paragraph, each honest participant sends one ready message for

𝑢. That is, all honest participants will accept the message 𝑢.

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 27 of 28 Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

1:28 Yongge Wang

FRXQWRI
�UF!

IRU
P
�U

�W��
"

%URDGFDVW
�URXQGFKDQJH!

LIKDVQ
W

7LP
HU

<HV

6HWV
3
L

WLP
HRXWIRU

�
5
72

FROOHFW7LP
HRXW

ǻ�

U6HW
ORFN7LP

HRXW
ǻ�

1
R

DWOHDVW
�W��

�UF!
IRU%
		

%

�

1
8
//

EURDFDVW
�ORFN�K�U�%

�SURRI!

<HV

DGG
DOO

UHFHLYHG
EORFN

WR
%
ORFNM

<HV

EURDGFDVW
�VHOHFW�%

�SURRI!
%

 P

D[�%
ORFNM�

<HV

HQWHUV
3
MVWDWXV

&
2
0
0
,7

	
	

FRP
P
LW7LP

HRXW
ǻ�

LIKDVQ
W

DGG
IURP

%

�%

�SURRI!

WR
%
ORFNM

<HV

UHOHDVH
SUHYLRXV

ORFN
RQ

%

VHW

�ORFN�K�U
�%
�SURRI!L

<HV
VHQG

WR
3
L

�FRP
P
LW�K�U�%

!M

�FRP
P
LW!

<HV
DWOHDVW
�W��

FRP
P
LWV

<HV
<HV

<HV

<HV

EURDGFDVW
ORFNHG

YDOXHV
�ORFN�UHOHDVH�

�URXQGFKDQJH!
<HV

DGG
�URXQGFKDQJH!
WR
URXQG

P
�U

ORFN7LP
HRXW

ǻ�

FROOHFW7LP
HRXW

ǻ�

FRP
P
LW7LP

HRXW
ǻ�

,V
/HDGHU
"

EURDGFDVW
�GHFLGH�K�U�%

�SURRI!L

3MVHWV
ORFN5

HOHDVH
7LP

HRXW
�

VWDWXV
/2

&
.
5
(/($

6(

<HV
ORFN5

HOHDVH
7LP

HRXW
ǻ�

<HV

<HV

<HV

P
�U!

U

P
RYHV

WR
3
M

P
�U

�Z
LOOFOHDURXW

DOOWLP
HRXWV�

VWDWH

&
2
0
0
,7

"

VWDWH

/2
&
.

5
(/($

6(
" <HV

U
!
U

		
%
� %

"

UHOHDVH
�ORFN�K�U

�%

�SURRI!L

ORFN

�ORFN�K�U
�%
�SURRI!L

�URXQGFKDQJH!
U

U��

�VHOHFW!

�ORFN!

�GHFLGH!

P
�U U
		

P
�% %

<HV

,V
/HDGHU

"

%'/6�&RQVHQVXV�$OJRULWKP
�)ORZFKDUW

5
HFHLYH

0
HVVDJH�P

�
Z
KHUH

P
�K

K

<HV

<HV

%K
%

KHLJKW��
VWDWXV

5
2
8
1
'
&
+
$
1
*
,1
*

EURDGFDVW
�GHFLGH�K�U�%

�SURRI!L

P
�U!

U
"

<HV

1
R

P
�U!

U
"

<HV
1
R

P
RYHV

WR
3
M

P
�U

�Z
LOOFOHDURXW

DOOWLP
HRXWV�

1
R

P
�KHLJKW
!

KHLJKW
"

<HV

VWRSV
FROOHFW7LP

HRXW
ǻ
�

EURDGFDVW
�URXQGFKDQJH�K��!

W
VH

UF7LP
HRXW

ǻ�

UF7LP
HRXW

ǻ�
EURDGFDVW

�URXQGFKDQJH�K��!

W
VH

UF7LP
HRXW

ǻ�

HQWHUV
VWDWXV
U/2

&
.

Fig. 3. BDLS Consensus Algorithm Flowchart

Distrib. Ledger Technol., Vol. 1, No. 1, Article 1. Publication date: April 2022.

Page 28 of 28Distributed Ledger Technologies

https://mc.manuscriptcentral.com/dlt

