
Noname manuscript No.
(will be inserted by the editor)

On Encoding Symbol Degrees of Array BP-XOR Codes

Maura B. Paterson · Douglas R. Stinson · Yongge
Wang

Received: May 28, 2014 / First Revised: November 14, 2014 / Second Revised: April 7, 2015

Abstract Low density parity check (LDPC) codes, LT codes and digital fountain techniques
have received significant attention from both academics and industry in the past few years.
By employing the underlying ideas of efficient Belief Propagation (BP) decoding process
(also called iterative message passing decoding process) on binary erasure channels (BEC)
in LDPC codes, Wang has recently introduced the concept of array BP-XOR codes and
showed the necessary and sufficient conditions for MDS [k+2, k] and [n, 2] array BP-XOR
codes. In this paper, we analyze the encoding symbol degree requirements for array BP-XOR
codes and present new necessary conditions for array BP-XOR codes. These new necessary
conditions are used as a guideline for constructing several array BP-XOR codes and for
presenting a complete characterization (necessary and sufficient conditions) of degree two
array BP-XOR codes and for designing new edge-colored graphs. Meanwhile, these new
necessary conditions are used to show that the codes by Feng, Deng, Bao, and Shen in IEEE
Transactions on Computers are incorrect.
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1 Introduction

Low-density parity-check (LDPC) codes were invented by Gallager [14] in his PhD thesis.
After being invented, they were largely forgotten and have been reinvented multiple times for
the next 30 years (see, e.g., [33,34,1,21,22,20,32,28,24,25,23,2]). For example, based on
expander graph results by Lubotzky, Phillips and Sarnak [19] and Margulis [27], Sipser and
Spielman [33], Spielman [34], Alon et al. [1], and others introduced asymptotically linear
LDPC error-correcting and erasure codes. Luby et al. [21,22] introduced LDPC Tornado
codes, Luby [20] introduced LT-code, and Shokrollahi [32] introduced Raptor codes.

Array codes have been studied extensively for burst error correction in communication
systems and storage systems (see, e.g., [4–7,10,18,42,43]). Array codes are linear codes
where information and parity data are placed in a two dimensional matrix array. We first
give a formal definition of the array BP-XOR codes. A b×n linear array code C over F2 is a
linear subspace of the vector space Fnb

2 . If we regard the code C as a code over the alphabet
F b
2 , where F b

2 denotes binary vectors of length b, then the minimum distance of C is defined
as the minimum Hamming distance of the length n code over F b

2 . A linear array code C
could be specified by a bk× bn matrix GC = [G1, G2, · · · , Gn] where each Gi is a bk× b
binary matrix. If we use (x1, · · · , xbk) to denote the binary information symbols, then we
regard (yi,1, · · · , yi,b) = (x1, · · · , xbk)Gi as the ith column of C. In other words, we could
consider Gi as the generator matrix for the ith column of C. By the above specification,
we can alternatively regard the code C as a b × n matrix C = [ai,j ]1≤i≤b,1≤j≤n where
ai,j ∈ {0, 1} are the encoding symbols and the ith column of C is generated by the generator
matrix Gi.

A b×n linear array code C is called t-erasure tolerating [n, k] array code if the informa-
tion symbols (x1, · · · , xbk) can be recovered from any n− t columns of encoding symbols
in the matrix C. For an encoding symbol ai,j = xi1 ⊕ · · · ⊕ xiσ , we call xij (1 ≤ j ≤ σ) a
neighbor of ai,j and call σ the degree of ai,j . A t-erasure tolerating [n, k] b× n array code
C is said to be maximum distance separable (MDS) if k = n− t.

The Belief Propagation decoding process (also called message passing iterative decod-
ing) for binary symmetric channels (BSC) is present in Gallager [14] and is also used in
artificial intelligence community [30]. The details of BP decoding process could be found in
Cassuto and Shokrollahi [9]. In particular, Cassuto and Shokrollahi [9] presented a detailed
discussion of BP decoding process for array codes. The reader is referred there for a formal
definition of BP decoding process. The following is a high level informal description.

(cited from [20]) “If there is at least one encoding symbol that has exactly one neigh-
bor then the neighbor can be recovered immediately. The value of the recovered
information symbol is XORed into any remaining encoding symbols that have this
information symbol as a neighbor. The recovered information symbol is removed as
a neighbor of these encoding symbols and the degree of each such encoding symbol
is decreased by one to reflect this removal.”

Wang [37,38] recently studied array codes that could be decoded using BP decoding
process: An [n, k] array code C = [ai,j ]1≤i≤b,1≤j≤n is called a t-erasure tolerating [n, k]
array BP-XOR code if all information symbols v1, · · · , vbk can be recovered from any n−t
columns of the matrix using the BP-decoding process on the BEC.

In this paper, we analyze the encoding symbol degree requirements for array BP-XOR
codes, present new necessary conditions for general array codes and array BP-XOR codes,
and give a complete characterization of degree two BP- XOR codes. These necessary con-
ditions are used as a guideline for constructing several array BP-XOR codes and the char-
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acterization of degree two BP-XOR codes are used to design new edge-colored graphs.
Meanwhile, these necessary conditions are used to show that the codes by Feng, Deng, Bao,
and Shen [11,12] are incorrect.

The structure of the paper is as follows. Section 2 establishes the degree requirements
for weakly systematic array codes. Section 3 proves necessary conditions for the existence
of array BP-XOR codes. Section 4 shows that the necessary conditions in Section 3 is suffi-
cient for degree two encoding symbol based array BP-XOR codes. Bounds for high degree
encoding symbol based array BP-XOR codes are briefly discussed in Section 5. Using the
results in Section 2, Section 6 shows that the codes in [11] are incorrect.

2 Degree requirements for weakly systematic array codes

Let C be an MDS b×n array code with the bk×bn generator matrixGC = [G1, G2, · · · , Gn].
An array code C is called systematic if there exist 1 ≤ i1, · · · , ik ≤ n such that [Gi1 , · · · , Gik ]
is the kb×kb identity matrix Ikb. An array code C is called weakly systematic if there exists
a kb × kb permutation matrix P such that GCP = [Ikb|AC] where AC is a kb × (n − k)b
binary matrix.

A bt × bn binary matrix matrix H is said to be a parity-check matrix of a b × n array
code C if we have HyT = 0 where y = (a1,1, · · · , ab,1, · · · , a1,n, · · · ab,n). By [26], we
have the following proposition.

Proposition 1 (MacWilliams and Sloane [26]) If GC = [Ikb|A] is the generator matrix for
a systematic array code C, then HC = [AT |I(n−k)b] is the parity check matrix for C.

By Proposition 1, it is straightforward to get the following proposition.

Proposition 2 If GC = [Ikb|A]P−1 is the generator matrix for a weakly systematic array
code C, then HC = [AT |I(n−k)b]P

T is the parity check matrix for C.

Next we present a theorem on the minimal number of nonzero elements in the generator
matrix of a weakly systematic array codes. It should be noted that Blaum and Roth [7, page
52, Proposition 3.4] presented similar results for systematic array codes.

Theorem 1 For a weakly systematic b×n MDS array code C with generator matrix GC =
[G1, G2, · · · , Gn] = [Ikb|A]P−1 and parity check matrix HC = [AT |I(n−k)b]P

T , each
row of A contains at least n − k nonzero elements and each column of A contains at least
k nonzero elements.

Proof. For a weakly systematic b × n MDS array code C with generator matrix GC =
[G1, G2, · · · , Gn] = [Ikb|A]P−1 and parity check matrix HC = [AT |I(n−k)b]P

T , the
information symbols could be recovered from any k columns of encoding symbols in the
array code C. For a contradiction, assume that there exists i ∈ [1, kb], such that the ith row
ofA contains at most n−k−1 nonzero elements. That is, the ith row of [Ikb|A] contains at
most n−k nonzero elements which are located inGj1 , · · · ,Gjn−k . In this case, the ith rows
of the matrices Gj′1

, · · · , Gj′k
with j′i 6= j1, · · · , jn−k are all zero rows. In other words, the

j′1, · · · , j′k-th columns of C contain no information about the information symbol xi which
means that C is not MDS. This is a contradiction.

The dual code of the weakly systematic b × n MDS array code C is a b × n MDS
array code CD with HC = [AT |I(n−k)b]P

T as the generator matrix and all the information
symbols could be recovered from any n− k columns of encoding symbols in the array code
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CD . Thus the similar argument as in the previous paragraph could be used to show that
each row of AT should have at least k nonzero elements. In other words, each column of A
should have at least k nonzero elements. 2

For a weakly systematic MDS b× n array code C = [ai,j ] with generator matrix GC =
[G1, G2, · · · , Gn] = [Ikb|A]P−1, we have ai,j = (x1, · · · , xbk)bij where (x1, · · · , xbk)
is the information symbol list and bij is a column vector from the matrixGC . Since bij con-
tains either one single nonzero element or at least k nonzero elements (following Theorem
1), the degree of the encoding symbol ai,j is either one or k′ ≥ k. Our examples in Table 8
of Section 4 show some linear array codes with encoding symbols having degree less than
k but larger than one.

3 Necessary Conditions on degrees of array BP-XOR codes

Wang [37,38] showed the equivalence between edge-colored graphs and array BP-XOR
codes with degree two encoding symbols. In particular, degree two encoding symbols are
sufficient to construct [n, 2] MDS b× n array BP-XOR codes. Generally, we are interested
in [n, k] MDS b× n array BP-XOR codes for any k < n.

For an [n, k] MDS b× n array BP-XOR code, we assume that there are bk information
symbols, each of which is a variable that takes value from M = {0, 1}l. The following
theorem provides a necessary condition for the existence of array BP-XOR codes.

Theorem 2 Let C = [ai,j ]1≤i≤b,1≤j≤n be an [n, k] MDS b× n array BP-XOR code such
that the degree of each encoding symbol ai,j is less than or equal to σ < k+(k−1)/(b−1).
Then we have

n ≤ k + σ − 1 +

⌊
σ(σ − 1)(b− 1)

(k − σ)b+ σ − 1

⌋
(1)

Proof. By the fact that there are n − k column erasures, each information symbol must
occur in at least n−k+1 columns. Since there are kb information symbols (data fragments)
to encode, the total number of information symbol occurrences in the array BP-XOR code
C is at least kb(n− k + 1).

In order for the BP decoding process to work, we must start from a degree one encoding
symbol. Thus we need to have at least n − k + 1 degree one encoding symbols in distinct
columns of C. This implies that we could use at most bn − (n − k + 1) entries of the
code to hold encoding symbols for degree two to σ. In other words, C contains at most
σ(bn− (n− k + 1)) + n− k + 1 occurrences of information symbols. By the above fact,
we must have

kb(n− k + 1) ≤ σ(bn− (n− k + 1)) + n− k + 1.

By rearranging the terms, we get

kbn− kb(k − 1) ≤ σbn− (σ − 1)(n− k + 1).

If we move all terms to the right hand side and rewrite the inequality in terms of b and n, we
get

k(k − 1)b− ((k − σ)b+ (σ − 1))n+ (σ − 1)(k − 1) ≥ 0.

That is,
n((k − σ)b+ σ − 1) ≤ (k − 1)(kb+ σ − 1). (2)



On Encoding Symbol Degrees of Array BP-XOR Codes 5

By σ < k + (k − 1)/(b− 1), we have (k − σ)b+ σ − 1 > 0. Since n must be an integer,
(2) implies (3)

n ≤
⌊
(k − 1)(kb+ σ − 1)

(k − σ)b+ σ − 1

⌋
=

⌊
(k − σ)kb+ k(σ − 1) + (σ − 1)kb− (σ − 1)

(k − σ)b+ σ − 1

⌋
= k +

⌊
(σ − 1)(kb− 1)

(k − σ)b+ σ − 1

⌋
= k +

⌊
(σ − 1)(kb− bσ + σ − 1 + bσ − σ)

(k − σ)b+ σ − 1

⌋
= k + σ − 1 +

⌊
σ(σ − 1)(b− 1)

(k − σ)b+ σ − 1

⌋

(3)

Thus (1) holds. 2

It is easy to see that the hypotheses of Theorem 2 are satisfied if k ≥ σ ≥ 2. So we have
the following corollary.

Corollary 1 Suppose that k ≥ σ ≥ 2. Then (1) holds.

Next, we observe that equation (1) can be strengthened if σ > 2.

Theorem 3 Suppose that (k−σ)b+σ− 1 > 0, σ > 2, and σ(σ− 1)(b− 1)/((k−σ)b+
σ − 1) is an integer. Then equality cannot hold in (1).

Proof. If equality holds in (1), then the following conditions must be satisfied:

– There are n−k+1 encoding symbols having degree 1 and the remaining bn−(n−k+1)
encoding symbols all have degree σ.

– The encoding symbols of degree 1 occur in n− k + 1 different columns of the array.

Suppose we choose k columns such that only one of these columns contains an encoding
symbol of degree 1. Then within these k columns, all but one of the encoding symbols have
degree 3 or greater. It therefore follows that the BP process cannot succeed. 2

When k = σ, (1) can be simplified.

Corollary 2 1. If k = σ = 2, then
n ≤ 2b+ 1. (4)

2. If k = σ > 2, then
n ≤ kb+ k − 2. (5)

Proof. The equation (4) follows from (1). The equation (5) follows from Theorem 3. 2

As an example, the code in Table 1 shows that the equality can hold in (4).

Table 1 array BP-XOR code for b = 2, n = 5, k = 2, σ = 2

v1 v2 v3 v4 v1 ⊕ v2
v2 ⊕ v3 v1 ⊕ v4 v2 ⊕ v4 v1 ⊕ v3 v3 ⊕ v4
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4 Degree two MDS array BP-XOR codes and edge-colored graphs

By Corollary 2 and Theorem 3, Table 2 lists the the necessary upper bounds of n for the ex-
istence of [n, k] MDS array BP-XOR codes with σ = 2. In this section, we give a complete

Table 2 Upper bounds of n for [n, k] MDS array BP-XOR codes with σ = 2

k 2 3 3 [4,∞]

n 2b+ 1 4 if b ≤ 2 5 if b ≥ 3 k + 1

characterization of degree two MDS array BP-XOR codes by showing that the bounds in Ta-
ble 2 are sufficient. We first describe the edge-colored graph model by Wang and Desmedt
[39,40]. The reader should be reminded that the edge-colored graph model in [39] is slightly
different from the edge-colored graph definition in most papers. In most papers, the color-
ing of the edges is required to meet the condition that no two adjacent edges have the same
color. This condition is not required in the definition of [39].

Definition 1 (Wang and Desmedt [39]) An edge-colored graph is a tupleG = (V,E,C, f),
with V the node set, E the edge set, C the color set, and f a map from E onto C. For any
set Z ⊆ E, let f(Z) = {f(e) : e ∈ Z}. The structure

ZC,t = {Z : Z ⊆ E and |f(Z)| ≤ t}.

is called a t-color adversary structure. LetA,B ∈ V be distinct nodes ofG.A,B are called
(t + 1)-color connected for t ≥ 1 if for any color set Ct ⊆ C of size t, there is a path p
from A to B in G such that the edges on p do not contain any color in Ct. An edge-colored
graph G is (t+ 1)-color connected if and only if for any two nodes A and B in G, they are
(t+ 1)-color connected.

In [37,38], Wang showed the equivalence of degree two encoding symbol based array
BP-XOR codes and edge-colored graphs. In the following, we use an example to show how
to convert an edge colored graph to an array BP-XOR codes. Figure 1 shows a 2-color
connected edge-colored graph G(V,E) with seven nodes, eight edges, and four colors. The

Fig. 1 2-color connected edge-colored graph (the colors of edges are also shown in Table 3
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edge-colored graph G(V,E) in Figure 1 is also represented by the Table 3 where the edges
with the same color are put in the same column. The Table 3 can be converted to a [4, 3] MDS
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Table 3 Table representation of edge-colored graph in Figure 1

red black blue green
(v0, v1) (v0, v2) (v0, v3) (v0, v4)

(v5, v4) (v5, v3) (v6, v2) (v6, v1)

array BP-XOR code in Table 4 by using each node variable to represent an information
symbol and by converting each edge as the exclusive-or of the adjacent two information
symbols (that is, the adjacent node variables). Note that to obtain the BP-decoding property,
we remove all occurrence of the information symbol v0 in the code of Table 4.

Table 4 Array BP-XOR code for b = 2, n = 4, k = 3 corresponding to edge-colored graph in Figure 1

v1 v2 v3 v4
v5 ⊕ v4 v5 ⊕ v3 v6 ⊕ v2 v6 ⊕ v1

4.1 [n, 2] MDS array BP-XOR codes with σ = 2 from [37,13]

By Corollary 2, a necessary condition for the existence of [n, 2] MDS array BP-XOR codes
with σ = 2 is n ≤ 2b+1. Wang [37,38] constructed [n, 2] MDS b×n array BP-XOR codes
with n = 2b+ 1 using edge-colored graphs based on perfect one-factorization of complete
graphs.

We first briefly review the construction of [n, 2] MDS array BP-XOR codes in Wang
[37,38]. Let p be a prime number with n ≤ p. Using perfect one-factorization of Kp+1,
Wang [37,38] constructed the (p− 1)-color connected edge-colored graph in Table 5 where
edges in the i-th column have the color ci.

Table 5 (p− 1)-color connected edge-colored graphs

(v1, vp−1) · · · (vp, vp−2)

(v2, vp−2) · · · (v1, vp−3)

· · · · · · · · ·
(v(p−1)/2, v(p+1)/2) · · · (v(p−3)/2, v(p−1)/2)

The edge-colored graph in Table 5 is converted to the b×p array BP-XOR code in Table
6 by mapping each edge to a degree two encoding symbol and removing the occurrence of
node vp, and the [n, 2] MDS b×n BP-XOR code is obtained by taking any of the n columns
in Table 6, where b = (p− 1)/2.

It should also be noted that the (p−1)/2×p array BP-XOR code in Table 6 is equivalent
to the code designed by Zaitsev, Zinov’ev, and Semakov [13] which was reformulated later
as the dual of B-code in [42] using perfect one-factorization of complete graphs.
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Table 6 (p− 1)/2× p BP-XOR code

v1 ⊕ vp−1 · · · vp−1 ⊕ vp−3 vp−2

v2 ⊕ vp−2 · · · vp−4 v1 ⊕ vp−3

· · · · · · · · · · · ·
vb ⊕ vb+1 · · · vb−2 ⊕ vb−1 vb−1 ⊕ vb

In the following sections, we show the construction of degree two [n, k] MDS array BP-
XOR codes and the corresponding edge-colored graphs for 2 < k < n when such kind of
codes exist.

4.2 [n, k] MDS array BP-XOR codes with σ = 2 and n = k + 1

Wang and Desmedt [39] constructed the 2-color connected edge-colored cycle graph as
described in the first row of Table 7. For n = k + 1, the edge-colored graph in the first row
of Table 7 could be used to obtain the [n, k] MDS array BP-XOR codes with σ = 2 in the
second row of Table 7.

Table 7 2-colored connected edge-colored graph and corresponding [k + 1, k] MDS array BP-XOR codes

(v0, v1) (v1, v2) · · · (vn−1, vn) (vn, v0)

v1 v1 ⊕ v2 · · · vn−1 ⊕ vn vn

Based on the construction in Wang and Desmedt [39], one can obtain general [k+ 1, k]
MDS b×n array BP-XOR codes with σ = 2 by gluing together the v0 nodes of b copies of
edge-colored cycle graphs. For the example of b = 2 and n = 4, the array code in Table 4
is a [4, 3] MDS array BP-XOR code and the corresponding edge-colored graph is shown in
Figure 1.

4.3 [n, 3] MDS array BP-XOR codes with σ = 2

By Theorem 1, there is no weakly systematic [n, 3] array BP-XOR codes for σ = 2. The-
orem 2 shows that a necessary condition for the existence of [n, 3] MDS array BP-XOR
codes with σ = 2 is n = 4, b ≥ 1 or n = 5, b ≥ 3.

For the case of n = 4, b ≥ 1, the codes in Section 4.2 show that there exist [4, 3] MDS
b× 4 array BP-XOR codes.

For the case of n = 5, b = 3, Table 8 contains two [5, 3] MDS 3 × 5 array BP-XOR
codes with σ = 2. The corresponding 3-color connected edge-colored graphs are shown in
Figure 2 (removal of any two colors will not disconnect the graph).

The first graph in Figure 2 contains a four node cycle (v4, v5, v9, v8) while the second
graph in Figure 2 does not contain any four node cycle. Thus the two [5, 3] MDS 3×5 array
BP-XOR codes in Table 8 are not isomorphic.
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Table 8 Two array BP-XOR codes for b = 3, n = 5, k = 3

v1 v1 ⊕ v2 v2 ⊕ v3 v7 v3
v3 ⊕ v4 v4 ⊕ v5 v5 ⊕ v6 v9 ⊕ v1 v2 ⊕ v6
v6 ⊕ v7 v7 ⊕ v8 v8 ⊕ v9 v4 ⊕ v8 v9 ⊕ v5

v1 v2 v3 v2 ⊕ v5 v5 ⊕ v8
v6 ⊕ v7 v1 ⊕ v4 v4 ⊕ v5 v3 ⊕ v7 v4 ⊕ v7
v3 ⊕ v8 v8 ⊕ v9 v2 ⊕ v6 v1 ⊕ v9 v6 ⊕ v9

Fig. 2 3-color connected edged-colored graphs (the colors of edges are also shown in Table 9)
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Table 9 Table representations of edge-colored graphs in Figure 2 with marked edge colors

brown red blue black green
(v0, v1) (v1, v2) (v2, v3) (v0, v7) (v0, v3)

(v3, v4) (v4, v5) (v5, v6) (v9, v1) (v2, v6)

(v6, v7) (v7, v8) (v8, v9) (v4, v8) (v9, v5)

red green black brown blue
(v0, v1) (v0, v2) (v0, v3) (v2, v5) (v5, v8)

(v6, v7) (v1, v4) (v4, v5) (v3, v7) (v4, v7)

(v3, v8) (v8, v9) (v2, v6) (v1, v9) (v6, v9)

For any integer u ≥ 1, the graphs in Figure 2 could be used to construct 3-color con-
nected edge-colored graphs with 9u+ 1 nodes, 5 colors, and 15u edges by gluing together
the v0 nodes of u copies of the graphs in Figure 2.

4.4 [n, k] MDS array BP-XOR codes with σ = 2 and k ≥ 4

By Theorem 1, there is no weakly systematic [n, k] array BP-XOR codes for σ = 2 and
k ≥ 4. Theorem 2 shows that a necessary condition for the existence of [n, k] MDS array
BP-XOR codes with σ = 2 and k ≥ 4 is n ≤ k + 1. Since we also have k < n, it must
be that n = k + 1. The codes in Section 4.2 show that there exist [n, k] MDS 1 × n array
BP-XOR codes with n = k + 1 and σ = 2.
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5 High degree MDS array BP-XOR codes

5.1 Upper bounds for higher degree MDS array BP-XOR codes

By Theorem 2, Theorem 3, and Corollary 2, Table 10 lists the upper bounds of n for the
existence of [n, k] MDS array BP-XOR codes with σ = 3, 4, 5. It should be noted that the
upper bounds in Table 10 are obtained without any constraint on the values of b. In other
words, we assume that b could take any values when necessary. When there are restrictions
on the largest values that b could take, then Theorem 2 could be used to get stronger upper
bounds on n. As an example, for σ = 3, k = 4, Theorem 2 gives n ≤ 12 − 18/(b + 2).
When b ≥ 17, this gives n ≤ 11 which is the bound in the table. However, for b < 17, the
upper bound on n will be smaller than 11. We should also mention that the bounds in Table
10 are upper bounds (necessary conditions). At present, it is not known whether any of these
bounds could be achieved.

Table 10 Upper bounds of n for [n, k] MDS array BP-XOR codes with σ = 3, 4, 5

σ = 3 σ = 4 σ = 5

k n k n k n

3 3b+ 1 4 4b+ 2 5 5b+ 3

4 11 5 19 6 29
5 9 6 14 7 20

[6, 8] k + 3 [7, 8] 13 8 18
[9,∞] k + 2 [9, 15] k + 4 9 17

[16,∞] k + 3 [10, 11] k + 7

[12, 13] k + 6

[14, 24] k + 5

[25,∞] k + 4

From Theorem 2, it is easy to show for any b and any k ≥ σ2 that the upper bound for
the existence of [n, k] MDS degree σ array BP-XOR codes is n ≤ k + σ − 1.

5.2 Comparison with bounds for linear MDS codes

As mentioned in [7, Introduction], each [n, k] MDS linear code over the finite field GF (2b)
could be considered as an MDS b × n array code (not necessarily array BP-XOR code).
However, the converse is not true (this follows the results in [18]). Table 11 lists some known
maximum value of n (see, e.g., [15,31]) for the existence of [n, k] MDS linear codes over
GF (2b) with b ≥ 2. For other values of 5 < k < 2b − 1, the well-known MDS conjecture

Table 11 Maximum value of n for [n, k] MDS linear codes over GF (2b)

k 2 3 4 5 [2b,∞]

n 2b + 1 2b + 2 2b + 1 2b + 2 k + 1



On Encoding Symbol Degrees of Array BP-XOR Codes 11

states that the maximum value for n is 2b + 1. For k = 2b − 1, the MDS conjecture states
that the maximum value for n is 2b + 2. This conjecture was proved to be true for b ≤ 4.
Furthermore, Bush [8] showed that n ≤ 2b + k − 1 for 2 ≤ k < 2b. This upper bound has
been improved to n ≤ 2b + k− 3 for k ≥ 4 in [17] (see also [29]). Comparing the analysis
in the previous sections and the values in Table 11, we see a big gap for the existence of
MDS b× n array BP-XOR codes over GF (2) and MDS linear codes over GF (2b).

6 MDS array codes with independent parity symbols

Blaum and Roth [6] introduced a general approach for constructing array codes using vari-
ous slop diagonal redundancy. Using horizontal redundancy and 45 degree diagonal redun-
dancy, Blaum, Brady, Bruck, and Menon [4] designed the celebrated EVEN-ODD codes
that can tolerate double disk failures. EVEN-ODD codes were extended to tolerate three
disk failures in Blaum, Bruck, and Vardy [5] and Huang and Xu [16]. One of the crucial
ideas in these constructions is the use of imaginary rows in the array codes. In particular,
Blaum, Bruck, and Vardy [5] gives a very good discussion on the roles of imaginary rows
for array code design. The reader may also refer to Blaum [3] for a good summary of MDS
array codes with minimal numbers of encoding operations.

Feng, Deng, Bao, and Shen [11,12] introduced extended Reed-Solomon MDS array
codes to tolerate three column faults [11] and multiple (≥ 4) column faults [12] respectively.
But the array codes in [11,12] cannot decode (thus they are not MDS) since they do not
satisfy the minimal degree requirements for weakly MDS array codes of our Theorem 1.

We first give the reason why the codes in [11,12] are not MDS and then show that
the example code in [11] cannot decode (thus it is not MDS). The following observation
was communicated to us by Zhiying Wang [41]. The construction in [11] is similar to the
construction in [5], where the symbols are not computed modulo the polynomial Mp(x) =
xp−1 + xp−2 + · · · + x + 1. Thus the constructed codes are not MDS. To address this
challenge, the authors in [5] used the following strategy:

(Blaum, Bruck, and Vardy [5]) “It is also convenient to assume that the array has an
imaginary row of zeros, which makes it a p × n array. A cyclic shift of a column
in such array, that is, a multiplication by x modulo xp − 1, can cause the bit corre-
sponding to the last row to be nonzero. However, in this case, the arithmetic modulo
Mp(x) forces to take the complement of the shifted column, restoring the zero in
the last position”.

That is, when a parity bit in the imaginary row is 1, the whole parity column takes its
complement. However, the authors of [11] simply throw away the parity bits in the imaginary
row, which makes their codes non-MDS. Authors of [11] provided a formal proof for their
MDS property. However, their decoding procedure does not take into account of the fact
that their matrix ĨT throws away the imaginary row of the parity columns. Thus when the
first parity and two information columns are erased, the code cannot be decoded. In order
to illustrate the role of imaginary rows in the above discussion, we briefly describe the
celebrated EVEN-ODD code which is sufficient for the reader to understand the critical role
of the imaginary rows.

An EVEN-ODD code is a (p− 1)× (p+ 2) array code C = [ai,j ] where p is a prime.
The first p columns of C are information symbols, the (p + 1)th column of C contains the
horizontal redundancy, and the (p+ 2)th column of C contains the diagonal redundancy. In
other words, for 1 ≤ i ≤ p − 1 and 1 ≤ j ≤ p, ai,j are information symbols. In order to
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describe the parity columns, we assume that there is an imaginary 0-row after the last row
in C. With this convention, the array C is now a p × (p + 1) array. We first introduce the
notation 〈·〉p where 〈i〉p = j if and only if i = j mod p and 1 ≤ j ≤ p. For each l,
1 ≤ l ≤ p− 1,

al,p+1 = al,1 ⊕ al,2 ⊕ · · · ⊕ al,p (6)
and

al,p+2 = S ⊕
(
⊕p

t=1a〈l+1−t〉p,t
)

(7)
where

S = ⊕p
t=2ap+1−t,t (8)

Note that in the above definition, the diagonal redundancies al,p+2 are obtained by adding
up the information symbols in various diagonals and then adding the bit S to it where S
is given by the parity of the diagonal (p − 1, 2), · · · , (1, p). In this example of EVEN-
ODD code, the imaginary 0-row and the symbol S are used to address the challenge that
we have mentioned in the previous paragraph. It is straightforward to check that if we drop
the imaginary 0-row and the symbol S in the equation (7), then the resulting “EVEN-ODD”
code cannot decode since when the (p+1)th parity column and any information column are
erased, then the code cannot decode.

In the following, we use the original example code in [11] to show this fact. In particular,
we show that their example codes simply do not satisfy the degree requirements in our
Theorem 1. Using circular permutation matrices as blocks, Vandermonde-like matrices are
constructed as parity check matrices for extended Reed-Solomon codes to tolerate three
column faults in [11]. In particular, the authors used a sequence of Example 2.1 [11, pages
1072-1073], Examples 2.2 [11, pages 1073], Examples 2.3 [11, pages 1074], Examples 3.1
[11, pages 1075], and Examples 3.2 [11, pages 1076] to show how to construct a 4×8 array
codes to tolerate three column erasure. After the detailed code is constructed, a general
decoding procedure is presented in [11, Section 4 on page 1076]. However, the authors in
[11] did not try to decode their example code using their decoding procedure. Our above
analysis shows their decoding process does not work. Thus it could not be used to decode
their example code in Examples 3.2. In the following, we show that the codes in Examples
3.2 [11, pages 1076] will not decode at all. Indeed, since all the codes in [11] do not meet
the degree requirements for general array codes in Theorem 1, these codes will not decode.

The parity check matrix in Examples 3.2 [11, pages 1076] is defined as H = [I|A]
where I is 4 · 3× 4 · 3 (i.e., 12× 12) identity matrix and A is the following 4 · 3× 4 · 5 (i.e.,
12× 20) matrix.

A =



1000 1000 1000 1000 1000
0100 0100 0100 0100 0100
0010 0010 0010 0010 0010
0001 0001 0001 0001 0001

1000 0000 0001 0010 0100
0100 1000 0000 0001 0010
0010 0100 1000 0000 0001
0001 0010 0100 1000 0000

1000 0001 0100 0000 0010
0100 0000 0010 1000 0001
0010 1000 0001 0100 0000
0001 0100 0000 0010 1000





On Encoding Symbol Degrees of Array BP-XOR Codes 13

For the 4 × 8 array coded defined by the parity check matrix H = [I|A], it is claimed
that the code distance equals 4 (that is, k = 5) in [11]. That is, it will tolerate 3 column
erasures. By Theorem 1, each column of H = [I|A] should contain at least 3 nonzero
elements. However, each of the columns in 7, 8, 9, 11, 14, 16, 17, 18 contains 2 non-zero
element. In other words, the code defined by the parity check matrix H = [I|A] could not
tolerate n− k = 3 erasure columns.

As an example, we show why the code could not be decoded. The code defined by the
above parity check matrix H = [I|A] could be represented in Table 12. It is straightforward
to check that the variable v7 only appears in columns 2, 6, 7. Thus if we remove columns
2, 6, and 7, then the variable v7 could not be recovered from the remaining 5 columns (i.e.,
columns 1, 3, 4, 5, 8). Similarly, each of the variables v8, v9, v11, v14, v16, and v17 only ap-
pears in three columns. Thus these variables could not be recovered when the corresponding
columns with their occurrences are missing.

Table 12 Array code for b = 4, n = 8, k = 5 in [11, Examples 3.2]

v1 v5 v9 v13 v17 v1 ⊕ v5 ⊕ v9 ⊕ v13 ⊕ v17
v2 v6 v10 v14 v18 v2 ⊕ v6 ⊕ v10 ⊕ v14 ⊕ v18
v3 v7 v11 v15 v19 v3 ⊕ v7 ⊕ v11 ⊕ v15 ⊕ v19
v4 v8 v12 v16 v20 v4 ⊕ v8 ⊕ v12 ⊕ v16 ⊕ v20

v1 ⊕ v12 ⊕ v15 ⊕ v18 v1 ⊕ v8 ⊕ v10 ⊕ v19
v2 ⊕ v5 ⊕ v16 ⊕ v19 v2 ⊕ v11 ⊕ v13 ⊕ v20
v3 ⊕ v6 ⊕ v9 ⊕ v20 v3 ⊕ v5 ⊕ v12 ⊕ v14
v4 ⊕ v7 ⊕ v10 ⊕ v13 v4 ⊕ v6 ⊕ v15 ⊕ v17

Similarly, the dual code of [11, Examples 3.2] in Table 12 is a 4 × 8 array code which
is shown in Table 13. It is also straightforward to check that the code in Table 13 could not
tolerate 5 column erasures. In other words, the original information symbols could not be re-
covered from any three columns. Specifically, each of the variables v5, v6, v7, v8, v9, v10, v11,
and v12 appears only in 5 columns. For example, v5 only appears in columns 2, 4, 6, 7, 8.
Thus v5 could not be recovered from columns 1, 3, 5.

Table 13 Dual array code of [11, Examples 3.2] with b = 4, n = 8, k = 3

v1 v5 v9 v1 ⊕ v5 ⊕ v9 v1 ⊕ v6 ⊕ v11
v2 v6 v10 v2 ⊕ v6 ⊕ v10 v2 ⊕ v7 ⊕ v12
v3 v7 v11 v3 ⊕ v7 ⊕ v11 v3 ⊕ v8
v4 v8 v12 v4 ⊕ v8 ⊕ v12 v4 ⊕ v9

v1 ⊕ v7 v1 ⊕ v8 ⊕ v10 v1 ⊕ v12
v2 ⊕ v8 ⊕ v9 v2 ⊕ v11 v2 ⊕ v5
v3 ⊕ v10 v3 ⊕ v5 ⊕ v12 v3 ⊕ v6 ⊕ v9

v4 ⊕ v5 ⊕ v11 v4 ⊕ v6 v4 ⊕ v7 ⊕ v10
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7 Conclusion

In this paper, we presented new upper bounds for the existence of [n, k] MDS array BP-XOR
codes and showed that these bounds could be achieved for k = 2. It is an open question to
show that these bounds are also achievable for other values of k ∈ [3, n).
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