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Abstract. Dolev-Dwork-Waarts-Yung linked research on reliable point-to-point net-
works with privacy and authenticity. In their threat model the adversary can only
take over a number of nodes bounded by a threshold k. Hirt-Maurer introduced the
concept of an adversary structure (i.e. the complement of an access structure). Kumar-
Goundan-Srinathan-Rangan and Desmedt-Wang-Burmester generalized Dolev-Dwork-
Waarts-Yung scenarios to the case of a general adversary structure.
Burmester-Desmedt introduced a special adversary structure, now called a color based
adversary structure. Each platform in the network is given a color. The adversary can
control all nodes that have up to k different colors.
Although the family of color based adversary structures has a trivial representation
which size grows polynomial in the size of the graph, we will demonstrate in this paper
that deciding reliability issues and security issues are co-NP-complete.
We apply this result to study censorship, which for centuries often has been viewed
by authorities as an essential security tool. Authorities may require network design-
ers to demonstrate the capability to censor the internet. We present a zero-knowledge
interactive proof for the case of a color based adversary structure.
Keywords: network security, Byzantine threats, secret sharing, adversary structure,
censorship, unconditional security, zero-knowledge

1 Introduction

Censorship has been used extensively during centuries. The recently recovered
“Gospel of Judas” [16] has been used as an occasion to reflect back on how the
church censored “non-traditional” gospels [17]. Today in many countries books
remained censored. A well known example is Hitler’s “Mein Kampf.” Moreover
texts describing in details the construction of atomic bombs, or other classified
information, are also censored.

Whether censorship in a limited format is in the benefit of mankind or
not, is a non-scientific topic, and therefore not discussed. Information, such as
books, are passed on through a network, e.g. a distribution network, involv-
ing bookstores, etc. The communication of gossip can be modeled using social
networks [19]. Whether the edges in this network are virtual or physical com-
munication links seems irrelevant. However, as we now discuss, this conclusion
may be wrong.

In the classical model for communication networks nodes are treated equally.
So when a limited adversary (or a censor in our prior example) wants to un-
dermine communication, it is natural to assume that there is an upperbound
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k of the number of nodes the adversary (or censor) can control. The first to
dispute this homogeneous viewpoint was Hirt and Maurer [13]. Their paper in-
troduces the concept of an adversary structure (i.e. the complement of an access
structure [14]). An adversary structure is a list of subsets the adversary can
control. Before performing the attack the adversary must choose one of these
subsets. However, Hirt and Maurer do not specify how to choose such an adver-
sary structure. Burmester-Desmedt [3] introduced a method to address this, we
now discuss. Burmester-Desmedt partition the nodes in a network based on the
platform used to operate the node, e.g. the router. The mapping from node to
platform is modeled using a node coloring. To take into account the ease of auto-
mated attacks using computer viruses and worms, they view that the difficulty
for an adversary to control one node running one platform is approximately the
same as the difficulty to control all nodes running the same platform. A limited
adversary corresponds in their setting to one that can control all nodes that
have up to k different colors. The resulting adversary structure is called a color
based adversary structure.

We believe that color based adversary structures are worth studying in more
details for the following reasons:

1. it was revealed at the Blackhat 2005 conference that the operating system
used on Cisco routers has serious vulnerabilities [21] (note the paper in the
proceedings was pulled due to pressure by Cisco). So, a color based adversary
structure corresponds to reality.

2. the family of color based adversary structures has a representation which
size grows polynomial in the size of the graph. This is not the case for the
general case of adversary structures, making them completely impractical to
use on large graphs.

In this paper we will demonstrate that although the family of color based ad-
versary structures has a short representation, the complexity of deciding whether
a given colored graph allows to achieve reliability and/or privacy are co-NP-
complete problems. So, the question which colors to shut down to censor such a
priorly described colored network is NP-complete. As is well known, the equiv-
alent problem for the classical model is in P.

When a point-to-point network is built the designer may be asked by the
authorities whether it can be censored by controlling k platforms. This can be
achieved by building trapdoors in these k platforms (for a discussion on this
issue, see e.g. [18]). Evidently, it should be hard for an adversary to find these k
colors. To answer this question, we present a zero-knowledge interactive proof.

The paper is organized as following. In Section 2 we survey what is known
about security (privacy and authenticity) and reliability in point-to-point net-
works with a color based adversary structure. We also briefly survey the concept
of zero-knowledge interactive proof. In Section 3 we prove the computational
complexity. In Section 4 we give a zero-knowledge interactive proof for knowl-
edge of up to k colors that will cut the colored graph. Finally we conclude with
some remarks and open problems in Section 5.
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2 Background

We survey the work on colored networks with a color based adversary structure.
We also briefly discuss the concept of zero-knowledge interactive proof. We start
by some definitions.

2.1 Definitions

Definition 1. [13] Let V be a finite non-empty set. An adversary structure AV
for V is a subset of the power set 2V such that if B ∈ AV then subsets of B are
also in AV .

In our context, V will be vertices in a graph.

Definition 2. A vertex-colored graph is a tuple G = G(V,E,C, f), with V the
node set, E the edge set, C the color set, and f a map from V onto C. The
structure

ZC,k = {Z | Z ⊂ V and |f(Z)| ≤ k}.

is called a k-color adversary structure. Let A,B ∈ V be distinct nodes of G.
A,B are called (k + 1)-color connected for k > 1 if for any color set Ck ⊆ C of
size k, there is a path p from A to B in G such that the nodes on p does not
contain any color in Ck.

It should be noted that color connectivity is unrelated to the issue of vertex
disjoint paths. Indeed take the graph in Figure 1. A and 3-color connected, but
not 4-color connected, as is easy to verify using an exhaustive search. However,
the simple paths from A to B are not vertex disjoint. If one removes nodes to
make them vertex disjoint, the resulting graph is no longer 3-color connected.

Fig. 1. A 2-color connected graph

Definition 3. Let G(V,E) be a directed graph, A,B be nodes in G(V,E), and
Z be a an adversary structure on V \ {A,B}.
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– A,B are Z-separable in G, if there is a set Z ∈ Z such that all paths from
A to B go through at least one node in Z. We say that Z separates A and
B.

– A,B are (Z + 1)-connected if they are not Z-separable in G.

Definition 4. [5] If Z1 and Z2 are adversary structures for P , then Z1 +Z2 =
{Z1 ∪ Z2 : Z1 ∈ Z1, Z2 ∈ Z2}. 2Z and 3Z are the adversary structures Z + Z
and Z + Z + Z respectively.

Obviously, Z1 + Z2 is also an adversary structure for P .

2.2 Survey of the known results

We now survey the state of the art on the research of security and reliability in
point-to-point networks with a general adversary structure.

Theorem 5. A necessary and sufficient condition for A and B to privately com-
municate in a point-to-point network in the presence of a Byzantine adversary,
in the case all communication links (edges in the graph) are:

two-way is that A,B are (2Z + 1)-connected in G [15] 2002).
one-way without feedback, is that A,B are (3Z + 1)-connected in G [5].

The following theorem is about 100% guaranteed reliability.

Theorem 6. [5] Let G = G(V,E) be a directed graph, A,B be nodes in G,
and Z be an adversary structure on V \ {A,B}. We have Z-reliable message
transmission from A to B if, and only if, A,B are strongly (2Z + 1)-connected
in G.

Note that the issue of privacy without reliability will be addressed in the
final paper of [5].

The above results for the case of color based adversary structure trivially
become:

Corollary 7. Let G = G(V,E,C, f) be a vertex-colored graph and A,B ∈ V .
A necessary and sufficient condition for A and B to privately communicate in
a point-to-point network in the presence of a k-color adversary in the case all
communication links (edges in the graph) are:

two-way is that A,B are 2k + 1-color connected in G
one-way without feedback, is that A,B are 3k + 1-color connected in G.

Moreover, reliable message transmission from A to B with such an adversary is
possible if, and only if, A,B are 2k + 1-color connected in G.
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2.3 Zero-knowledge interactive proof

Interactive protocols. Following [12], an interactive Turing machine is a Tur-
ing machine with a public input tape, a public communication tape, a private
random tape and a private work tape. An interactive protocol is a pair of interac-
tive Turing machines sharing their public input tape and communication tape.
The transcript of an execution of an interactive protocol (P,V) is a sequence con-
taining the random tape of V and all messages appearing on the communication
tape of P and V.
Interactive proof systems. An interactive proof system for a language L is an
interactive protocol in which, on an input string x, a computationally unbounded
prover P convinces a polynomial-time bounded verifier V that x belongs to L.
The requirements are two: completeness and soundness. Informally, completeness
states that for any input x ∈ L, the prover convinces the verifier with very high
probability. Soundness states that for any x /∈ L and any prover, the verifier is
convinced with very small probability. A formal definition can be found in [12].
Zero-knowledge proof systems in the two-party model. A zero-knowledge
proof system for a language L is an interactive proof system for L in which, for
any x ∈ L, and any possibly malicious probabilistic polynomial-time verifier V′,
no information is revealed to V′ that he could not compute alone before running
the protocol. This is formalized by requiring, for each V′, the existence of an
efficient simulator SV′ which outputs a transcript “indistinguishable” from the
view of V′ in the protocol. There exists three notions of zero-knowledge, accord-
ing to the level of indistinguishability: computational, statistical, and perfect.
The reader is referred to [12] for the definitions of computational, statistical,
and perfect zero-knowledge proof systems. In this paper, we will only deal with
computational zero-knowledge proof systems.

3 Computational complexity

In this section we are interested in the computational complexity of deciding
whether a given vertex-colored graph can achieve privacy and reliability against
a k-color adversary structure. From Corollary 7 we know that the issue of k+ 1
(or 2k + 1, or 3k + 1)-color connectivity is essential.

So, from a computational problem it is sufficient to focus on the case of
k-connectivity. We now prove that this problem is co-NP-complete. We focus
on the complementary problem, which is trivial to see to correspond to the
following. We call it the color separable problem. We first define, as a special
case of Definition 3, the following.

Definition 8. Let G = G(V,E,C, f) be a vertex-colored graph and A,B be
nodes in G(V,E). A,B are k-color separable in G, if there is a set V ′ ⊆ V such
that all paths from A to B go through at least one node in V ′ and f(V ′) ≤ k.
We say that V ′ is a k-color separator of A and B.

INSTANCE: A vertex-colored network G = G(V,E,C, f), two nodes A,B ∈ V ,
and a positive integer k ≤ |C|.
QUESTION: Are A and B k-color separable?
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Theorem 9. The color separable problem is NP-complete.

Proof. It is straightforward to show that the problem is in NP. Thus it is suffi-
cient to show that it is NP-hard. The reduction is from the Vertex Cover (VC)
problem. The VC problem is as follows (definition taken from [10]):

INSTANCE: A graph G = (V,E) and a positive integer k ≤ |V |.
QUESTION: Is there a vertex cover of size k or less for G, that is, a subset
V ′ ⊆ V such that |V ′| ≤ k and, for each edge (u, v) ∈ E, at least one of u and
v belongs to V ′?

For a given instance G = (V,E) of VC, we construct a vertex-colored network
Gc = (Vc, Ec, f, C) as follows. First assume that the vertex set V is ordered as
in V = {v1, . . . , vn}. Let

Vc = {A,B} ∪
{
e1

(vi,vj)
, e2

(vi,vj))
: (vi, vj) ∈ E and i < j

}
Ec =

{
(A, e1

(vi,vj)
), (e1

(vi,vj)
, e2

(vi,vj)
), (e2

(vi,vj)
, B) : (vi, vj) ∈ E

}
C = {cv : v ∈ V }
f =

{
f(e1

(vi,vj)
) = cvi , f(e2

(vi,vj)
) = cvj : (vi, vj) ∈ E, i < j

}
In the following, we show that there is a vertex cover of size k in G if and only
if there is a k-color separator for Gc.

Without loss of generality, assume that V ′ = {v′1, . . . , v′k} is a vertex cover
for G. Then it is straightforward to show that C ′ = {cv′i : v′i ∈ V ′} is a color
separator for Gc since each incoming path for B in Gc contains both colors of
the corresponding edge’s end-vertices.

For the other direction, assume that C ′ = {cv′i : i = 1, . . . , k} is a k-color
separator for Gc. Let V ′ = {v′i : cv′i ∈ C ′}. By the fact that C ′ is a color
separator for Gc, for each edge (vi, vj) ∈ E in G, the path (A, e1

(vi,vj)
, e2

(vi,vj)
, B)

in Gc contains at least one color from C ′. Since this path contains only two colors
cvi and cvj , we know that vi or vj or both belong to V ′. In another word, V ′ is
a k-size vertex cover for G. This completes the proof of the Theorem.

4 Privacy preserving censorship

4.1 Introduction

As we discussed in the introduction, deciding whether one can censor a network
using limited resources is straightforward under the classical network problem.
However, it is no longer under the vertex-colored graph model. The problem is
NP-complete.

When a network is designed, the authority may want to ask whether it is
possibly to censor traffic in the network by only controlling nodes running on at
most k platforms (colors). To allow the network designer to prove this censoring
capability, the network designer will proof to the authority the existence of such
k platforms (colors). To avoid an outsider to take control of the network the
set of these k platforms (colors) should remain secret. Therefore we present a
zero-knowledge interactive proof for above problem. Inspired by [7] we present
a zero-knowledge interactive proof for above.
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4.2 A difficulty

Many zero-knowledge proofs for NP-complete problems [1,11,2] conists of com-
mitting in a first stage. Then the verifier asks a binary question. The prover then
either open all the commitments or reveals other information such that if both
questions would had been asked, the secret would leak.

The problem of designing an efficient zero-knowledge proof seems rather
trivial. Indeed, the prover could in the first step permute all the vertices, and
permute all the colors and commit to these. The verifier then asks a question. If
the question is 0, the prover opens all commitments, else reveals a set V ′ that
separates A and B in this isomomorphic graph. In the first case, the verifier
checks the commitment. In the else case, the verifier checks that the number of
colors in V ′ is at most k and checks V ′ indeed separates.

Unfortunately, above protocol is not zero-knowledge. Indeed, it leaks the size
of V ′, which it should not. The knowledge of the size of V ′ may help the verifier
to find the k colors. Moreover, it also leaks the multiplicity of each color, etc.

4.3 Avoiding this problem

To solve this problem, we prove the following lemma.

Lemma 10. Let Gc = Gc(V,E,C, f) be a vertex-colored graph. Let C ′ ⊆ C be
such that |C ′| = k and V ′ = {v′i : f(v′i) ∈ C ′} separate A and B. Let k′ be the
maximum number of vertex disjoint paths in (V,E) ignoring the colors. Let P1,
P2, . . . , Pk′ be these vertex disjoint paths. We then have that for each of these
path Pi: Pi ∩ V ′ 6= ∅. So, on each path Pi there exists a node of a color in C ′.

Proof. The proof follows trivially by contradiction.

We now use this lemma to provide a zero-knowledge interactive proof.

4.4 The protocol

Let G = G(V,E,C, f) be a vertex-colored graph and m = |C|. For simplicity we
assume C = (1, 2, . . . ,m). Let C ′ and V ′ be as in Section 4.3.

First the verifier and the prover (separetely) compute:

– k′, i.e. the maximum number of vertex disjoint paths ignoring colors.
– k′ vertex disjoint paths P1,P1, P2, . . . , Pk′ .

This can be done in polynomial time [4]. So both prover and verifier obtain the
same k′ vertex disjoint paths. Let li be the length of the path Pi minus one, and
let us call the vertices, except A and B, on this path v(i,1), v(i,2),. . . ,v(i,li).

Then they repeat the following steps n times, where n is specified later. The
randomness in each run is chosen independently.

Step 1 The prover chooses a permutation π of the colors, so π ∈R sym({1, . . . ,m}).
For each of the aforementioned paths Pi:
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– the prover chooses a permutation ρi ∈R sym({1, . . . , li}), permutes
the vertices (ignoring A and B) on the path Pi and sends the verifier
a commitment for the permuted coloring of the permuted vertices,
so formally, sends:

E(i,j) = commit(π(f(v(i,ρi(j)))), rij)for j = 1, . . . , li,

where rij is chosen independently uniformly random, and
– for each ch ∈ C ′ (h = 1, . . . , k) sends E ′h = commit(π(ch), r

′
h), where

r′h is chosen independently uniformly random.
Step 2 The verifier flips a coin q1 and also chooses randomly a value q2 ∈R

{1, . . . , k′} and sends the prover the query (q1, q2).
Step 3 If q1 = 0, then the prover reveals π, all ρi and opens all commitments

of the type E(i,j) (Note the prover does not open E ′h.),
else the prover decommits one (of the) permuted colors of the vertex set:
Pq2 ∩ V ′. This is done by opening:
– exactly one E(q2,j′), and
– exactly one E ′h

such that f(v(q2,ρq2 (j′))) = ch. (Note π is not opened, and neither is ρq2
Step 4 If q1 = 0, then the verifier verifies that π and all ρi are permutations

and all the decommitted values,
else the verifier checks that the two opened commitments and checks
that they correspond to the same color.

Theorem 11. When n is chosen such that ((k′ − 1)/k′)n is negligible, the pro-
tocol is a computational zero-knowledge interactive proof system for the color
separable problem assuming that the commitment function commit is secure.

Proof. (Sketch) We have perfect completeness, which is indeed trivial. We now
prove soundness. Suppose that the graph is not k-color separable. Then a separa-
tor will have at least k+ 1 different colors. However, the prover only commits to
k colors by using the commitments E ′h in the zero-knowledge proof. The prover
could try to commit incorrectly to E(i,j) or choose π and ρi that are not commit-
ments. However, the prover would be caught with probability 1/2 if this was the
case. Assume now that π, ρi and E(i,j) are correct. The best case for the dishon-
est prover occurs when we have that for all, except one, path Pi there is a color
on the path that is in the one of the k colors committed in E ′h. The conditional
probability the verifier does not catch this is 1/k′. Thus, the conditional proba-
bility the dishonest prover fools the honest verifier is (k′− 1)/k′. However, since
the protocol is repeated independently sufficiently many times, the probability
the dishonest prover convinces the verifier of an untruth is negligible.

We now prove zero-knowledge. The simulator first guesses a query (q′1, q
′
2)

with the same probability distribution as a honest verifier. We now explain the
simulation of Step 1. If q′1 = 0, the simulator chooses random permutation π′

and ρ′i and makes commitments for these. The simulator also chooses a subset
of k colors and commits to these. In the case q′1 = 1, the simulator chooses a
uniformly random color c′. Then the prover chooses k−1 other colors. He creates
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commitments for these k colors and call these E ′h. All the colors of the type E(i,j)

are chosen randomly, except for one j and for i = q′2 for which the color c′ is
chosen.

The commitments are presented to the verifier who sends (q1, q2). If (q1, q2) 6=
(q′1, q

′
2), then the simulator rewinds. Otherwise the simulator continues. He is able

to answer the query correctly, as is trivial to verify. Due to the assumption on
the commitment function, the zero-knowledge is computational.

This proved the theorem.

5 Conclusion

In practice the connectivity of a network may be small and then the research
has only theoretical value. However, when wifi technology is used, this may
no longer be true. Unfortunately, the results in this paper are for point-to-
point communication. The work by [9,8,20,6] has demonstrated that even for
an adversary bounded by a threshold, the problem of reliability and security
in partial broadcast communication is much more complex. We believe that
generalizing our results for a color based adversary structure to partial broadcast
networks is a true challenge.
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