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ABSTRACT
Traditionally, application software developers carry out their
tests on their own local development databases. However,
such local databases usually have only a small number of
sample data and hence cannot simulate satisfactorily a live
environment, especially in terms of performance and scala-
bility testing. On the other hand, the idea of testing appli-
cations over live production databases is increasingly prob-
lematic in most situations primarily due to the fact that
such use of live production databases has the potential to
expose sensitive data to an unauthorized tester and to in-
correctly update information in the underlying database.
In this paper, we investigate techniques to generate mock
databases for application software testing without reveal-
ing any confidential information from the live production
databases. Specifically, we will design mechanisms to create
the deterministic rule set R, non-deterministic rule set NR,
and statistic data set S for a live production database. We
will then build a security Analyzer which will process the
triplet 〈R,NR,S〉 together with security requirements (se-
curity policy) and output a new triplet 〈R′,NR′,S ′〉. The
security Analyzer will guarantee that no confidential infor-
mation could be inferred from the new triplet 〈R′,NR′,S ′〉.
The mock database generated from this new triplet can sim-
ulate the live environment for testing purpose, while main-
taining the privacy of data in the original database.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools ; H.1.1 [Models and Principles]: Systems and
Information Theory—information theory ; H.2.8 [Database
Management]: Database Applications—statistical databases

General Terms
Algorithms, performance, security, theory
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1. INTRODUCTION
The amount of sensitive information about citizens accu-

mulated in the databases of government agencies and pri-
vate organizations, such as Social Security Administration,
banks, and health care providers, has been increasing steadily
in the past decades. While it has long been realized that
there is a need to protect the information both in storage
and transition, it has recently become apparent that the in-
formation needs to be properly guarded from unauthorized
disclosure during the process of testing newly developed ap-
plications that employ the databases.

Testing is essential for database applications to function
correctly and with acceptable performance when deployed.
Currently, two approaches dominate database application
testing. With the first approach, application developers
carry out their tests on their own local development databases.
Obviously this approach can not fulfill the requirements of
all the testing phases, especially those pertinent to perfor-
mance and scalability, due to the limitation of relatively
small size of data and test cases. Furthermore, the data in
local development databases may not be accurate or close
to real data. With the second approach, new applications
are tested over live production databases. This approach
cannot be applied in most situations due to the high risks
of disclosure and incorrect updating of confidential informa-
tion.

In this paper, we investigate a novel method for database
application testing by generating mock databases based
on some a-priori knowledge about the current production
databases without revealing any confidential information. In
the mock databases, we will have almost identical structures
(table schema description, view, index etc.) and statistics to
production databases which contain live data and are used
by real applications. The generated data in mock databases
will be able to help organizations to arrive at a close esti-
mate of the performance of a database application, which
can be significant for organizations which need to quantify
the potential gain in performance.

The data in our mock databases will have three charac-
teristics: valid, resembling real data, privacy preserving. To
be valid, the generated data need to satisfy almost all the
constraints and business rules underlying the live data. To
resemble real data, the generated data need to have similar
statistical distributions or patterns to the live data in al-
most all possible levels (table, column, etc.), at least for the



purpose of database application testing. In testing the per-
formance of database applications, it will be imperative that
the data is realistic (valid and resembling real data) since
the statistical nature of the data determines query perfor-
mance. To be privacy preserving, the generated data should
not disclose any confidential information that the database
owner would not want to reveal. There are several kinds of
confidential information that a database owner would like
to protect. An incomplete list could include: the existence
of some fields in a table, some statistical data about the live
database, some deterministic or non-deterministic business
rules or constraints of the live database, and users’ records
in the tables. The mock database will be constructed in such
a way that none of these (database owner specified) confi-
dential information will be contained in it or can be inferred
from it. Since we will generate the mock database from ran-
dom values, the most important part of our techniques will
be concentrated on the protection of indirect information
leakage from the mock database.

Our approach is more feasible than other approaches. First,
our approach is to generate data specifically for the purpose
of testing and to run the tests in an isolated environment.
The databases can possibly be shared by all developers so
they can run their applications and see how it work with ei-
ther realistic amounts or any amounts of data, rather than
a handful of records in a local development database. Sec-
ond, the a-priori knowledge required is generally available
from detailed entity-relation diagram (ER) or schema defi-
nitions in data definition language (DDL) with complex data
integrity rules as well as statistical information as an organi-
zation implementing a complex database application usually
has clear understanding of the nature of the data on which
the system will operate. Third, our approach can achieve
better controllability, observability, and privacy. Using syn-
thetic data, we can put a database system into the desired
state before executing test cases (controllability) and ob-
serve its state after the execution of the test cases (observ-
ability). Two further potential threats, namely direct dis-
closure of individual data and indirect interpretation from
the disclosed data to confidential data, are prevented by us-
ing synthetic datasets. A further advantage over other ap-
proaches is that there is no need in our approach to access
the confidential live data. A formidable challenge that will
be addressed in this paper is to minimize indirect confiden-
tial information leakage (e.g., the inference of some deter-
ministic or non-deterministic business rules of the original
database).

Theoretically, there are two types of indirect confiden-
tial information leakage [26]: re-identification disclosure and
prediction disclosure. Re-identification disclosure occurs if
an attacker is able to deduce the values of a sensitive at-
tribute for a target individual after this individual has been
re-identified (see, e.g., [28]). Prediction disclosure occurs if
the data enable the attacker to predict the value of a sen-
sitive attribute for some target individual with some degree
of confidence. In this project, we will study mechanisms to
automatically delete or modify these statistical data which
may be used for re-identification or prediction.

Strong cryptographic techniques such as provable security,
indistinguishability, and perfect privacy [13, 14, 36] will be
extensively used in the design of mock database. A central
notion in modern cryptography is that of “effective simi-
larity” introduced by Goldwasser, Micali, and Yao [14, 36].

The underlying idea is that we do not care whether objects
are equal, all we care is whether or not a difference between
the objects can be observed by an efficient computing de-
vice. This notion has been used to define the simulation
paradigm on which the notions of provable security (such
as zero-knowledge protocols) and perfect privacy are based
(see, e.g., [12]). The simulation paradigm will be used to
define the requirements for our mock database security and
effectiveness.

There are two indistinguishable properties that we need
to consider. In order to achieve the best simulation environ-
ment for the testing, we will construct the mock database
such that for an honest database application test, the mock
database is indistinguishable from the live database (note
that for a malicious application tester which tries to get
some confidential information from the database, this mock
database could be distinguishable from the live database).
Secondly, in order to keep perfect privacy of the confidential
information in the live database, the knowledge about the
confidential information that a database application tester
learns from the mock database is indistinguishable from the
knowledge that he could have already learned without access
to the mock database. In other words, the database applica-
tion tester gains nothing substantial about any confidential
information on the live database from the mock database by
deviating from the behavior exhibited by an honest database
application tester.

We believe that this work represents the first application
of using synthetic data generation for privacy preserving
database applications testing. The rest of the paper is or-
ganized as follows. In Section 2 we review related work.
We present our method in Section 3. In Section 4 we draw
conclusions and describe directions for future work.

2. COMPARISON WITH RELATED
WORKS

In practice, it is often necessary for a database software
vendor to test their software on a live commercial database
before selling or integrating their package to the database
owner. The testing of database applications can be classified
as: functional testing, performance testing (load and stress,
scalability), environment and compatibility testing, and us-
ability testing. In this paper, we focus on performance test-
ing which identifies current bottlenecks in application and
verifies whether it meets or exceeds key performance mea-
sures. The crucial point here is how we can design the testing
environment so that all functions of the software package are
tested while no confidential information of the real database
is leaked.

One approach to testing database applications is to sim-
ply use live data. Wiederhold et al., in [33, 34], investigated
how to protect inappropriate release of data from realistic
databases. Figure 1 shows the architecture of modified live
testing by introducing a security filter to protect privacy.
The security filter lies between the tested applications and
production databases. The security filter regulates access
to database information by screening queries to databases
and contents of results to applications. The security filter
has one filter database, which stores the table description
of production tables, the rules table (containing the policy
rules that govern query and result screening), and the au-
dit table (a record of all transactions, including date, time,



queries, results, and possible rule violation statements). For
a read-only query, the security filter will forward the query
to real databases, combine the results with local records if
necessary (e.g., the query involves previous-updated values),
and transform query results (by mocking or distorting sensi-
tive information based on predefined rules) to applications.
For write queries, the security filter will update information
locally.

This approach has several disadvantages. The live data
may not reflect a sufficiently wide variety or possible situ-
ations that could occur. That is, testing would be limited
to, at best, situations that could occur given the current
DB state. It is also difficult to identify appropriate user
inputs to exercise them and to determine appropriate user
outputs. More importantly, testing with data that is cur-
rently in use may be dangerous since running tests may cor-
rupt the database so that it no longer accurately reflects the
real world. This may be difficult, particularly if the changes
are extensive or if other real modifications to the database
are being performed concurrently with testing.

It is also possible to duplicate the live production database
and build a security filter to protect database privacy. How-
ever, the security filter may reduce the effect of performance
testing since the filter could be complicated and slow.

Since using live data is problematic, our approach is to
generate data specifically for the purpose of testing and to
run the tests in an isolated environment. Although there
has been some prior investigations into data generation by
a limited number of researchers, the tools currently available
[24, 22, 29, 16] for synthetic data generation are built either
for testing data mining algorithms only and thus limited
to small data mining domains or for assessing the perfor-
mance of database management systems, rather than testing
database applications. In addition, they lack the required
flexibility to produce more realistic data needed for perfor-
mance testing or benchmarking databases in general.

Our approach addresses three problems: controllability,
observability, privacy preserving. The controllability and
observability are very important for database application
testing as the input and output spaces of testing program
include the database states as well as the explicit input and
output parameters of the application. The requirements of
complete application testing pose threats to the privacy of
underlying data. Some of these can be directly attributed
to the direct disclosure of some individual data. Others can
be attributed more to the interpretation, application and
actions taken from the disclosed data. These threats are
expected to increasingly raise concerns. The current state
of the art is that there has been little work dedicated to
privacy preserving application testing, although some ap-
proaches from the field of statistical databases could poten-
tially be extended and adapted to develop new techniques
to balance the rights to privacy and the needs for access-
ing the underlying data. The field of statistical databases
[1, 9, 8] has developed methods to prevent the disclosure of
confidential individual data while satisfying requests for ag-
gregate information (sum, count, average, maximum, min-
imum, pth percentile, etc.). Experience from this field in-
dicates that removing identifiers such as names, addresses,
telephone numbers and social security numbers satisfies only
a minimum requirement for privacy and hence is not ade-
quate. Re-identification based on remaining fields may still
be possible and removing identifiers is considered the weak-

est approach, and should never be used on its own. The
proposed advanced techniques can be broadly classified into
query restriction and data perturbation [2]. The query re-
striction family includes restricting the size of query result,
controlling the overlap amongst successive queries, keeping
audit trail of all answered queries and constantly checking
for possible compromise, suppression of data cells of small
size, and clustering entities into mutually exclusive atomic
populations. The perturbation family includes swapping
values between records, replacing the original database by a
sample from the same distribution, adding noise to the val-
ues in the databases, adding noise to the results of a query
and sampling the result of a query [1].

Recently, Malin, Sweeney, and Newton [28] have presented
several algorithms for learning the identities of individuals
from the trails of seemingly anonymous information they
leave behind. Since our mock database will be generated
from random values by using some modified rules and sta-
tistical dataset, these attacks are not applicable to our ap-
proach.

We should also point out that the privacy consideration in
the current literature for statistical database is not enough
for most environments. In most statistical database liter-
atures, the privacy concerned is about the re-identification
of some specific entries in the database. For example, when
Dinur and Nissim [8] examine the tradeoff between privacy
and usability of statistical databases, they have the follow-
ing definition of privacy (we present their idea informally,
the reader is referred to [8] for their original definition):
The scenario is modeled by a two-phase adversary. In the
first phase, the adversary is allowed to adaptively query the
database. At the end of this phase, the adversary commits
to a challenge–an index i of the entries in the database it
intends to guess. In the second phase, all the database en-
tries except the ith entry are revealed to the adversary. The
adversary succeeds if it outputs the ith entry correctly. In
most databases such as financial databases, some rules and
statistical data about the live production database is also
considered confidential information. As we have seen, sta-
tistical database approach does not try to protect this kind
of confidential information at all. In our mock database ap-
proach, we will develop techniques to protect all confidential
information that the database owner specifies.

Also related to our research is private information retrieval
and privacy preserving data mining [2]. The theoretical
work of private information retrieval [5] enables users to ob-
tain information from databases while keeping their queries
secret from the database managers. Symmetrically private
information retrieval [6] addresses the database’s privacy as
well by adding the requirement that the user, on the other
hand, cannot obtain any additional information about the
database in a single query except for a single physical value.
These schemes are generally theoretical and have high com-
plexity. The objective of privacy-preserving data mining [2,
3, 10] is to prevent the disclosure of confidential individ-
ual values while preserving general patterns and rules. As
most patterns rely on the statistics of some attributes which
have a high impact on the patterns and rules to be dis-
covered. The techniques used there include data distortion
approach (for decision tree [2], association rules [11, 25]),
cryptographic approach (decision tree over distributed data
[21], k-means clustering over vertically partitioned data [32],
association rule over horizontally partitioned data [17] and
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Figure 1: Architecture of live testing approach

vertically partitioned data [31]). The idea of data distortion
approach is that the distorted data, together with the dis-
tribution of the random data used to distort the data, can
be used to generate an approximation to the original data
values while the distorted data does not reveal private in-
formation, and thus is safe to use for mining. The idea of
cryptographic approach is to use multi-party computation
technique [35] compute the required aggregate information,
without each source revealing sensitive information.

3. OUR METHOD
When a database application software vendor wants to

test the performance of its software, it can generate a mock
database by simply synthesizing random data into the database
and then test its software on it. However, this approach
will not produce a close estimate on the software perfor-
mance. A much better approach that we will take is as
follows. In order to make the mock database look closely
to the live production database, we can extract some rules
and statistical data from the live database and then synthe-
size random data into the mock database according to these
rules. In particular, we extract the triplet set 〈R,NR,S〉
from the live database in such a way that it will guarantee
the generated synthetic data in mock databases valid and
close looking to real data. We use R, NR, and S to de-
note deterministic rule set, non-deterministic rule set, and
statistics set for a database respectively. The determinis-
tic rule set, R, includes deterministic rules (e.g., domain
constraint, uniqueness constraint, referential integrity con-
straint, functional dependencies, and semantic integrity con-
straint etc.) while non-deterministic rule set, NR, contains

non-deterministic information (e.g., association, correlation,
pattern etc.). Statistics set, S, contains the statistics about
the database instance (e.g., the cardinality of a table, value
sets or ranges of each column, the frequencies of column
values or statistical distributions etc.). Figure 2 shows the
architecture of our rule based mock database generation sys-
tem.

There are two major problems that need to be addressed:
1) some rules in the triplet set 〈R,NR,S〉 may be inac-
curate or conflict with another rule due to errors in design
or in domain knowledge; 2) some rules may contain sensi-
tive or confidential information about the database. Thus
the rule Analyzer component will be applied here to derive
an accurate and privacy preserving 〈R′,NR′,S ′〉 by hiding
or replacing some rules (or statistical data). The informa-
tion contained in the triplet 〈R′,NR′,S ′〉 is the same as
the information contained in the mock database. Thus it
is sufficient to guarantee that the triplet 〈R′,NR′,S ′〉 does
achieve the three characteristics: valid, resembling (to the
original triplet), and privacy preserving (i.e., no confidential
information could be inferred from this triplet). We give
the formal definitions of similarity and privacy-preserving
in Section 3.2. In Section 3.1 we focus on how to extract
the triplet set 〈R,NR,S〉 from live databases. We present
our rule analyzer and mock database generator in Section
3.3 and Section 3.4 respectively. In Section 3.5, we present
the implementation issues of our ongoing prototype system.

3.1 Rule-based data specification—generating
the triplet 〈R,NR,S〉

The specification of database testing involves character-
izing data values, distributions, and relations. Thus, to
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achieve the goal of generating valid, close looking data, we
expect the users to provide knowledge about the values, dis-
tribution, relations, and integrity constraints the data em-
bodies.

We assume databases are based on the relational model
in our paper. A database in relational model is a collection
of one or more relations, where each relation consists of a
relation schema and relation instance. A relation schema
R(A1, · · · , An) is a relation name along with a list of at-
tributes, each of which has a name Ai and a domain dom(Ai).
A relation instance is a set of tuples, each of which is an el-
ement of the Cartesian product dom(A1) × · · · × dom(An).
The integrity constraints restrict the possible values of the
database states so as to more accurately reflect the real-
world entity that is being modeled. The constraints in-
clude domain constraint, uniqueness constraint, referential
integrity constraint, functional dependencies, and semantic
integrity constraint such as business rules (e.g., current date
− date of birth = age, unit price × number of units = to-
tal expense etc.). It is desirable that the generated data in
mock databases also satisfy the constraints.

To derive the above deterministic rule set R, we take ad-
vantage of the database schema, which describes the do-
mains, the relations, and the constraints the database de-
signer has explicitly specified. The generated data need
to satisfy all the constraints and business rules. This pro-
cess leverages the fact that this information is expressed in
a formal language, SQL’s data definition language (DDL)
or can be derived from ER diagrams. Some information
(function dependencies, correlations, hierarchies etc.) can
be derived from database integrity constraints such as for-
eign keys, check conditions, assertions, and triggers.

In order to ensure that the data is close looking or sta-
tistically similar to real data, or at least from the point
of view of application testing, we need to have the statis-
tical descriptions, S, and non-deterministic rules, NR, of
real data in production databases. These two sets describe
the statistical distributions or patterns of underlying data
and may affect the size of relations derived as a result of
the evaluations of queries the application will need to exe-
cute. Hence, they are imperative for the statistical nature of
the data that determines the query performance of database
application. In this paper we extract the simple statistics
directly from database catalog. The complex statistics and
non-deterministic information need to either be provided by
expert or be discovered by other tools such as data mining
or statistical software.

Formally, each rule in R and NR can be represented as
a declarative rule and is generally of the form:

if <premise> then <conclusion> [with support s and
confidence c].

Both premise and conclusion are Boolean combinations
(that is, an expression using the logical connectives AND,
OR, and NOT) of conditions of the form <expression op
expression>, where op is one of the comparison operation
(<, >, ≤, ≥, 6=) and expression is a column name, a con-
stant, or an (arithmetic or string) expression. The rules may
include exact, strong, and probabilistic rules based on the
support and confidence. We note here that complex pred-
icates and external function references may be contained
in both the condition and action parts of the rule. Anyone



with subject matter expertise will be able to understand the
business logic of the data and can develop the appropriate
conditions and actions, which will then form the rule set.

The attribute list of relations can be classified as two sets:
independent attribute set and dependent attribute set. These
two sets are derived from the deterministic rules of R, where
each rule may be formed by composite attributes (special
handling will be needed for circular chains of referential in-
tegrity rules). Obviously, the value for dependent attribute
can be derived by the values of independent attribute fol-
lowing some rule.

It is possible that conflicts happen among the rules due to
error in design or in domain knowledge. The conflicts can
be seen as an optimization or constraint satisfaction prob-
lem. We need to resolve the rule conflicts. The advantage
of searching through the space of specifications rather than
that of data instances is that specifications can then be an-
alyzed to see how the conflict is resolved, and the user can
then improve the specification further if needed.

In practice it is possible that the user can not always pro-
vide details of rules or statistics. The user only has an ap-
proximate and possibly incorrect idea of how the data should
be, and can therefore give at most a partial or abstract spec-
ification. In this case, we evolve a complete, detailed speci-
fication from the user’s partial one by filling in the details at
random, testing their validity, and repeating this generating
and testing process until we obtain a complete specification
that most closely matches the original partial one. It may
also be true that the user knows little or nothing about the
properties of the data he wishes to generate, but can pro-
vide a sample of real data. In this case, we use different data
mining techniques on the data to essentially get a picture of
the properties and relationships of the data, and use this to
build a specification which can be used to produce synthetic
data with similar properties.

3.2 Formal approaches to database
close-lookingness and privacy

Two databases DB1 and DB2 are close-looking for appli-
cation performance testing if the application software can-
not tell the difference of the two databases in the sense of
performance testing. In another word, for a database ap-
plication software M, if we run M on both DB1 and DB2

using given test cases x and get the same performance re-
sults, then we say that DB1 and DB2 are close-looking for
application performance testing.

The above intuition about the database close-lookingness
can be expressed formally in the following definition.

Definition 3.1. Let DB1 and DB2 be two databases, x ∈
{0, 1}n is a binary string representing test cases given by
users, t(x) be a time function, and δ(n) be a negligible func-
tion 1. We say that DB1 and DB2 are (t, δ)-close-looking for
application performance testing with regard to an application
software M, we have

Prob [|T (M(DB1, x))− T (M(DB2, x))| ≥ t(x)] ≤ δ(n)

where T (M(DB, x)) is the running time of the applicaiton
software M on the inputs DB and x, and the probability is
taken over the choices of the input x and internal coin tosses
of the M.

1A function f(·) is called negligible if for any polynomial
p(·), we have f(n) ≤ 1

p(n)
for large enough n.

Intuitively, the above definition says that databases DB1

and DB2 are close-looking for application performance test-
ing if the following statement holds: for an application soft-
wareM and any external input test cases x (could be empty),
the running time of M(DB1, x) and M(DB2, x) are approx-
imately the same (with a difference of t(n)) with overwhelm-
ing probability. We say that an event happens with over-
whelming probability if the probability that it does not hap-
pen is negligible.

Let G be a random process (i.e., a nondeterministic Turing
machine) such that, for any consistent triplet 〈R,NR,S〉
and any random coin tosses r (i.e., a random binary se-
quence), G generates a mock database DB = G(〈R,NR,S〉, r)
which satisfies the deterministic rules, nondeterministic rules,
and statistical data in 〈R,NR,S〉.

Definition 3.2. A random process G is called a (t, δ)-
mock database generator if databases DB1 = G(〈R,NR,S〉, r1)
and DB2 = G(〈R,NR,S〉, r2) are (t, δ)-close-looking for ap-
plication performance testing with overwhelming probability,
where the probability is taken over all triplets 〈R,NR,S〉,
and all coin tosses r1 and r2.

Definition 3.3. Let G be a (t0, δ0)-mock database gen-
erator, 〈R,NR,S〉 and 〈R′,NR′,S ′〉 be two triplets, and
(t, δ) be a pair with t0(x) ≤ t(x) and δ0(n) ≤ δ(n) for all
x ∈ {0, 1}n. We say that 〈R,NR,S〉 and 〈R′,NR′,S ′〉
are (t, δ)-close-looking with respect to G for application per-
formance testing if mock databases G(〈R,NR,S〉, r1) and
G(〈R′,NR′,S ′〉, r2) are (t, δ)-close-looking for application
performance testing with overwhelming probability, where the
probability is taken over all coin tosses r1 and r2.

Note that in Definition 3.3, it is necessary that t0(x) ≤
t(x) and δ0(n) ≤ δ(n). Otherwise, we may not be able to
show that a triplet 〈R,NR,S〉 is (t, δ)-close-looking to itself.

After these formal definitions, one may wonder how can
we construct these generators and triplets? Indeed, the ma-
jor challenging problems for generating a mock database for
privacy preserving database application testing are:

1. Given function t(·) and δ(·), how to extract a triplet
〈R,NR,S〉 from a live production database such that
G(〈R,NR,S〉, r) and the live production database are
(t, δ)-close-looking for application performance testing
with overwhelming probability, where the probability
is taken over all random coin tosses r? The smaller t
and δ, the better. In Section 3.1, we have discussed
some practical ways to extract the triplets from a live
database.

2. How to exclude confidential information contained in a
triplet 〈R,NR,S〉? In the remaining part of this sec-
tion, we will discuss the formal definitions of confiden-
tial information contained in a triplet and in Section
3.3, we will design practical mechanisms to exclude
confidential information in a triplet.

3. Given function t(·) and δ(·), how to design a (t, δ)-
mock database generator? The smaller t and δ, the
better. In Section 3.4, we will discuss practical mech-
anisms to achieve this goal.

After extracting a triplet 〈R,NR,S〉 from a live produc-
tion database, one needs to construct a mock database for



application testing. It is straightforward that this triplet
may contain some confidential information or some confiden-
tial information could be inferred from this triplet. Thus we
need to exclude this confidential information from the triplet
before we generate a mock database. First, we give a formal
definition for the private information contained in a triplet
〈R,NR,S〉.

Definition 3.4. Let N be the set of positive integers and
X = {Xi}i∈N be a sequence of random variables each rang-
ing over binary strings. A private information property (pred-
icate) τ on X is not contained in a triplet 〈R,NR,S〉 if for
any Turing machine M, there is a negligible function δ(·)
such that for any i,

Prob[M(〈R,NR,S〉, Xi) = τ(Xi)] ≤ 1

|τ(Xi)| + δ(i),

where the probability is taken over all internal random coin
tosses of M and over all Xi.

In Definition 3.4, we use a predicate τ to model any informa-
tion that we want to protect. A predicate τ over a random
variable x ∈R Xi can be thought as a characteristic function

τ(x) =


1 if τ(x) holds,
0 otherwise.

Thus τ could be used to model any properties. The database
owner may specify a list of confidential information (e.g.,
some security policy) that he would like to protect against
database testing. It is relatively easy to convert these confi-
dential information to a list of private information predicates
(properties). Thus we can assume that the confidential in-
formation that the database owner wants to protect is a list
of predicates (properties).

Example 1. Consider the following confidential informa-
tion: “The average balance range of term deposits from Asian
people in a specific zip code area”. We translate this prop-
erty to a predicate τ . For a 90-bit binary string x, let
the first 20 bits x[1..20] represent the zip code, the next 10
bits x[21..30] represent the background of the people (e.g.,
0000000001 represent Asian background, and 0000000010
represent British background), the next 30 bits x[31..60] rep-
resent the term deposit average balance lower bound for the
people from x[21..30] background and x[1..20] zip code area,
and the last 30 bits x[61..90] represent the term deposit av-
erage balance upper bound for the people from x[21..30] back-
ground and x[1..20] zip code area. Thus the predicate τ could
be defined by letting τ(x) = 1 if and only if the people from
x[21..30] background and x[1..20] zip code area have average
balance of term deposit in the interval [x[31..60], x[61..90]].

It is straightforward to show that for all confidential in-
formation that we have interest to protect, they could be
translated into a predicate in the same way that we have
done for the specific information in the previous paragraph.
This shows that our definition is more general compared to
the privacy definitions in statistical databases such as in [8].
Indeed, if we restrict the property τ in Definition 3.4 to only
protect exact values of certain entries in the database, then
our definition is equivalent to that in Dinur and Nissim [8].
This fact could be shown by a similar proof as that in [12, 36]
for the equivalence of indistinguishability and unpredictabil-
ity. We will omit the details here.

Definition 3.5. Let τ1, . . . , τm be a list of private infor-
mation properties (predicates). We say that a triplet 〈R,
NR, S〉 contains no confidential information if for all i ≤
m, the private information property τi is not contained in
〈R, NR, S〉.

After the above formal definition of confidential informa-
tion contained in a triplet 〈R,NR,S〉, we need to design ef-
fective mechanisms to construct a new triplet 〈R′,NR′,S ′〉
from the original triplet 〈R,NR,S〉 (extracted from the
live production database) such that the following conditions
hold:

1. 〈R′,NR′,S ′〉 contains no confidential information about
τ1, . . . , τm;

2. 〈R′,NR′,S ′〉 and the live production database are
(t′, δ′)-close-looking for application performance test-
ing with some acceptable functions pair (t′, δ′).

When constructing a new triplet 〈R′, NR′, S ′〉 from 〈R,
NR, S〉, we have to modify or delete some rules or statisti-
cal data from the original triplet 〈R,NR,S〉. Thus the new
triplet may not be (t, δ)-close-looking to the live produc-
tion database any more (we assume that the original triplet
is (t, δ)-close-looking to the live production database). In-
stead the new triplet is only (t′, δ′)-close-looking to the live
production database. For example, a trivial approach could
be to delete all rules and statistical data from 〈R,NR,S〉
and to let the new triplet be the empty set. In this case,
absolutely no confidential information will be leaked. How-
ever, the new triplet will be (t′, δ′)-close-looking to the live
production database for some unacceptable function pair
(t′, δ′). A practical approach would be to design an opti-
mization mechanism so that one can gradually modify the
original triplet and get the new triplet with a desired func-
tion pair (t′, δ′). It could be very hard to find a new triplet
for the best function pair (t′, δ′), but some approximation
to it will be sufficient in practice. In the next section, we
will design effective mechanisms to construct an optimized
triplet 〈R′,NR′,S ′〉 which is (t′, δ′)-close-looking to the live
production database and this function pair (t′, δ′) is still ac-
ceptable for the application testing purpose.

3.3 Rule Analyzer
In this section, we discuss effective mechanisms to ex-

clude the confidential information τ1, . . . , τm from a triplet
〈R,NR,S〉 and to construct a new confidential-information-
free triplet 〈R′,NR′,S ′〉. In practice, some schema defini-
tions, statistical data, non-deterministic rules, or determin-
istic rules about the real database as well as domain values
for some attributes are considered as confidential informa-
tion by the database owner. In particular, the confidential
information property list τ1, . . . , τm may contain the follow-
ing scenarios about the disclosure of confidential informa-
tion:

1. Existence of certain fields and domain values. For
some tables in the live database, the existence of some
fields or the name of some fields is confidential infor-
mation. This is particularly true for some government
databases. For example, the existence of a field for the
National Security Agency in the government database
had been a secret to the public for many years. It is of-
ten the case that the existence of certain domain values



in a database is confidential (e.g., Alice is a customer
of Bank A or employee of FBI). Thus in the “Schema
and Domain Filter”, such kind of domain values should
be generated randomly.

2. Direct disclosure of some confidential rules or statis-
tics. In some applications, some deterministic rules,
non-deterministic rules, or statistics about the database
are confidential information. For example, in an FBI
or CIA database, some non-deterministic rules about
the US spy networks in other countries are certainly
high confidential information to FBI/CIA and they do
not want to share this information with anyone else ex-
cept among themselves. Or in a government database,
the statistical data on the average year budget for
army could be confidential in certain environments.

3. Indirect disclosure of confidential information. This
includes: 1) some non-deterministic rules can be used
to infer with high probability some deterministic rules
or some statistical data; 2) some statistical data can be
used to infer with high probability some deterministic
rules or non-deterministic rules. If the resulting rules
or statistical data are confidential, then some rules
or statistics should be deleted or revised so that no
information about the confidential deterministic rules
would be learned from them.

For scenario 1, we have two ways to protect such kinds
of privacy according to their nature: 1) Delete the corre-
sponding field in the scheme definition and appropriately
revise other related scheme definitions, rules, and statistical
data if necessary. 2) Replace the corresponding field in the
schema definition with a new field (e.g., a new scheme defi-
nition for a new field “comment”), and appropriately revise
other related scheme definitions, rules, and statistical data
if necessary. Note that it could be the case that no one ex-
cept the database owner knows the existence of such a field
in the corresponding table. Thus the database application
software vendors are not aware of the existence of this field
and the deletion of this field will not affect the test. How-
ever, it could also be the case that the database software
vendors are aware of the existence of such a field, but do
not know the name of the field or do not know the applica-
tion purpose of this field. In this case, it should be OK to
replace such a field with a new field named “comment” in
the mock database.

In order to protect against direct disclosure of confidential
rules or statistics as in scenario 2, the rule Analyzer will pro-
vide guidelines for database owners to decide whether each
rule or statistical data should be deleted completely from
the triplet 〈R,NR,S〉 or that a relaxed or completely differ-
ent one should be introduced. Generally, a confidential rule
or statistical data should be deleted from the triplet com-
pletely. However, in order to make the mock database more
close looking, they could also be replaced with some other
similar rules. In order to evaluate the different replacement
mechanisms, we need to analyze its detrimental impact on
the close-lookingness of the mock database and the infor-
mation leakage of the new rules or the new statistical data
if the new replacement mechanism is used. Optimization
mechanisms should be used to find out which replacement
to use.

Compared to scenarios 1 and 2, scenario 3 is relatively

hard to address. In scenario 1 and 2, one can easily find sub-
sets R̄, N̄R, and S̄ of the sets R, NR, and S respectively,
which leak confidential information in the list τ1, . . . , τm.
Then one can modify or delete entries in R̄, N̄R, and S̄
so that no information about τ1, . . . , τm is leaked. How-
ever, this simple solution of deleting these identified subsets
from the original triplet is not sufficient since some informa-
tion in τ1, . . . , τm could still be inferred from the remaining
rules and statistical data. Special optimization methods or
case specific optimization mechanisms should be designed
to (automatically or semi-manually) construct a new triplet
〈R′,NR′,S ′〉 from the original triplet 〈R,NR,S〉 so that
no information in 〈R̄, N̄R, S̄〉 is leaked in the new triplet
and the mock database generated from the new triplet is
(t′, δ′)-close-looking to the live production database and the
function pair (t′, δ′) is acceptable for application testing pur-
pose.

After the Analyzer generates the new triplet 〈R′,NR′,S ′〉,
this new triplet will be fed to a (t, δ)-mock database genera-
tor to generate the mock database. Since the mock database
generator will only use random data to generate data, the
view (see, e.g., [13, 12]) of any software tester (including
dishonest tester) on the mock database is essentially equiv-
alent to 〈R′,NR′,S ′〉 and 〈Schema′, Domain′〉. Since our
Analyzer will guarantee that no confidential information is
contained in the new triplet, our mock database is provably
“secure”.

3.4 (t, δ)-Mock database generator
The input to (t, δ)-mock database generator is the conflict-

free and secure triplet 〈R′,NR′,S ′〉. The output of the
generator is simply the data in a flat file format which can be
easily imported to databases by incorporating data schemes
and domain values. We outline our process as follows.

1. Collect domain values for each attribute from the user.
Those domain values such as listings of real world
names of people, companies etc. are helpful to make
the generated data similar to realistic. However, the
database owner will provide such kind of domain val-
ues only if they contains no confidential information.
Otherwise, these domain values should be generated
by some pseudorandom generators. For some confi-
dential attributes (such as names, ssn, address etc.),
pseudorandom generators should be used to generate
them.

2. Generate data from its statistical description for each
independent attribute. The values will depend on the
discovered probability distributions (e.g., uniform, gaus-
sian, zipf, etc.). Most distributions can be derived
from uniform distribution which a computer random
number generator always provides (See some source
code [23]). If one column has its own constraints (e.g.,
range constraint, key constraint, uniqueness constraint,
not null constraint etc), we need to ensure the gen-
erated value satisfies the constraints. The strategy
of handling single-attribute constraints was studied in
[4] and can be directly applied here. Special mention
should be pointed out for uniqueness constraint or key
constraint over a composite attribute which consists
of two or more attributes that occur together in some
constraint(e.g., the pair (employeeID, departmentID)
is unique in working table). We need to ensure that



each pair from the Cartesian product appears at most
once among the tuples generated.

3. Apply the multi-attribute constraints to derive the val-
ues for dependent attributes. One widely used multi-
attribute constraint is foreign key constraint (which
may across different tables). When generating a value
for attribute A in relation R, where this attribute ref-
erences attribute A′ in relation R′, we need to insure
the value for R′ is generated before that of R. The
other multi-attribute constraints are usually derived
from semantic or business rules. Some of them may
be explicitly included in the schema (e.g., functional
dependencies, check, assertion, trigger etc.) while the
other may come from applications. Special mecha-
nisms may be designed to automatically derive the val-
ues for dependent attributes by following an optimal
order of constraints.

4. Import data files to mock database by incorporating
filtered data schemes and domain values. As we dis-
cussed in Section 3.2, data schemes and domain values
may contain confidential information which needs to
be filtered before incorporating into data generator.

It is imperative that we generate data effectively which fol-
low all given rules and statistics. However, the above process
has one potential drawback that the generated data may
violate some non-deterministic rules which will make the
generated data not close looking to real data. In general, to
generate data which satisfy both constraints and statistics is
a combinatorial optimization problem. Heuristic techniques
such as iterative relaxation method, constraint solving tech-
niques [15], simulated annealing method [20] etc. could be
used to achieve this task.

In this paper we apply simulated annealing approach to
arrive an approximate optimal result. We include this be-
fore importing data to mock databases. The idea is to
swap attributes between tuples to satisfy all possible multi-
attribute rules (including non-deterministic rules). The gen-
eral principles we follow here include: applying the minimum
changes, satisfying as many as possible rules, and modifying
as less as possible the original frequency distribution of the
data. For each rule rj , we assign CF (rj), a cost function
which measures how far the data is from satisfying the rule
imposed on the data by a user. Our goal here is to minimizeP

rj∈R∪NR CF (rj). This method converges to the minimum

of cost function in a time polynomial in the size of the rela-
tion. It is no surprise that this new step involves scalability
issues for large data sets.

It is imperative that we generate data efficiently. Gray
and Sundaresan [16] investigated techniques how to quickly
generate a large database by using parallel algorithms and
execution given the statistical distribution of the underlying
data. Their approach can also be applied here. Our case
is more complex as the generated data need to satisfy both
the given rules as well as statistical distributions. Our in-
terest here is to efficiently generate reasonably close looking
data for all of the tables in database, representing all of the
important characteristics that have been identified.

3.5 System implementation
In response to a lack of existing tools specifically designed

for testing database applications, we are designing and im-
plementing a prototype system to automate the process of

creating and populating the mock database based on the
rules and statistics.

The input to our prototype system includes database schema
definition, along with additional information (e.g., rules,
statistics) from the user. The schema definition for the
database underlying the application to be tested is parsed
by an SQL parser while the rules are analyzed and parsed
by a rule Analyzer. There are several open-source SQL
parsers available (e.g., PostgreSQL [27]) and we will inte-
grate one into our prototype system to extract information
from schemes which are defined by DDL. The SQL parser
will create a parse tree that contains all the relevant informa-
tion about the tables, attributes, and constraints, etc. The
core part of our prototype system is Rule Analyzer which
contains two separate components: conflict resolution and
disclosure assessment.

This prototype system will also integrate many data per-
turbation methods and randomized functions ( e.g., uni-
form distribution, multi-dimensional Gaussian distribution)
which are used to generate synthetic data and data mining
methods which help to extract rules and statistics from data.
In our previous discussion, we assume that the (t, δ)-mock
database generator does not need to access the individual
data. However, if the generator can access the live data,
we may investigate the Perturbation approach where the
sensitive values in a user’s record will be perturbed using
a perturbation function so that they can not be estimated
with sufficient precision. For example, we can apply additive
noise approach [18, 19] for numerical attributes 2. The ad-
ditive noise approach is a very effective approach for mask-
ing multivariate normal data (the underlying real life data
are often assumed to be approximately multivariate normal)
that preserves confidentiality and can preserve some essen-
tial characteristics of the data such as means, variances, and
correlations. The noise can be done using gaussian or uni-
form distributions. One of the major advantages of the
approach is that it allows one to obtain precise subpopu-
lation estimates while keeping the correlation structures of
live data.

This prototype system will also provide a controlled envi-
ronment in which diverse data can be experimentally gen-
erated and diverse techniques can be evaluated. We aim to
investigate the interactions between the values used to pop-
ulate the database and the values the tester enters as inputs
to the application program. As the output of database ap-
plication includes the entire database instance which will
generally be large and complex, we need to develop compo-
nents of efficiently validating the output of test cases as they
are executed.

In order to evaluate our approach, we will do experiments
in the following directions and compare the results.

• Database application testing running on the original
database;

• Database application testing running on (t, δ)-close-
looking mock databases for various values of t and δ;

• Database application testing running on randomly gen-
erated databases; and

2For those sensitive non-numerical attributes such as SSN,
name, address etc., the lookup tables together with some
cryptography techniques can be applied here.



• Database application testing running on duplicated
live database with privacy preserving filters.

4. CONCLUSION AND ADDITIONAL RE-
SEARCH ISSUES

We presented a solution for privacy preserving database
application testing. Our solution consists of the following
steps.

1. Extract a triplet 〈R,NR,S〉 from the live produc-
tion database such that a mock database generated
from this triplet is close-looking to the live production
database for database application testing purpose;

2. Exclude confidential information from the triplet 〈R,
NR, S〉 and construct a new triplet 〈R′,NR′,S ′〉
such that this new triplet contains no confidential in-
formation about the live production database and a
mock database generated from this new triplet is also
close-looking (in a relaxed form) to the live production
database for database application testing purpose;

3. Use a mock database generator to generate a mock
database from the new triplet 〈R′,NR′,S ′〉.

Formal definitions to database close-lookingness and private
information leakage have been given and the relationship
among them have been studied.

There are some aspects of this work that merit further re-
search. The live production database is evolving all the time
and the privacy policies and rules may be changed over the
time. Thus the triplet 〈R,NR,S〉 for the live database is
changing all the time. In order to keep the mock database
update, we will study incremental building mechanisms so
that we do not need to rebuild the mock database com-
pletely. At any time that we need to update the mock
database, we collect the updated triplet for the live database
and construct an update new triplet 〈R′,NR′,S ′〉 for the
mock database. Another aspect that merits further research
is to build distributed mock databases for application soft-
ware testing as distributed databases occur in many scenar-
ios. How to extend approaches to such environment needs
further study.
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