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Abstract

In this paper, we briefly review the improvement that DeepSeek has made on Transformer.

1 Neural networks and Transformers

First we define the ReLU(rectified linear unit) function:

ReLU(x) =

{
x if x > 0
0 otherwise

Then a single neuron can be described as follows:

f(x) = ReLU(w1x+ w0)

Here, the ReLU function introduces non-linearity to the linear expression w1x+w0 and w0 is often referred
as the bias. A single neuron with multi-variables can be described as

f(x) = ReLU(wT · (x, 1))

softmax function: The softmax function is a frequently used tool for the normalization of probability
distributions. For an N -dimension input vector x, the function transform this vector into a probability
distribution, where each probability is directly proportional to the exponential of the corresponding input
number. To clarify, prior to applying the softmax function, some components of the input vector may be
negative or greater than 1. As a result, the components may not collectively sum up to 1, rendering them
unsuitable for interpretation as probabilities. However, after the application of the softmax function, every
component of the vector will be confined within the (0, 1) interval, and they will sum up to precisely 1, making
them amenable to interpretation as probabilities. Notably, the larger input values will yield correspondingly
higher probabilities. More formally, for a vector x = (x1, · · · , xN ), the softmax transformation is defined as

softmax(x) = (x̄1, · · · , x̄N ) with each x̄i calculated as
exi∑N
j=1 e

xj

.

To achieve effective natural language processing (NLP), one crucial objective is the development of a
system enabling computers to grasp the meaning of individual words. The significant breakthrough in this
realm came from the pioneering concept introduced by Firth [5] in 1957, suggesting that a word’s meaning
is shaped by the context in which it appears. This idea is often expressed as “a word is characterized by the
company it keeps”. This is generally accomplished through word embeddings, which involve the mapping of
a vocabulary into numerical vectors in the real number space. These real-valued vectors effectively encode
the essence of a word in such a way that when two word representations are closer in the vector space, they
are expected to share a similar meaning.

The transformer architecture employs the encoder-decoder structure. The encoder takes an input se-
quence of symbol representations x = (x1, · · · , xn) and transforms it into a sequence of continuous represen-
tations z = (z1, · · · , zn). Once we have the sequence z, the decoder produces an output sequence (y1, · · · , ym)
by generating one symbol at a time. At each step in the decoding process, the decoder incorporates the
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Figure 1: The Transformer - model architecture (from [15])

previously generated symbols as additional input when generating the next symbol. A visual representation
of the transformer architecture can be seen in Figure 1, with Nx being 6, indicating that the block labeled
Nx is repeated 6 times.

The transformer model, as described in Vaswani et al.’s paper [15], utilizes a word embedding size of
dmodel = 512. In this model, the input sentence x is initially broken down into a sequence of tokens (words)
denoted as x = (x1, · · · , xn). Each word is associated with a dmodel-dimensional real-number vector, and
this representation is subject to updates during the learning process. As a result, the input sequence can be
transformed into a sequence of real-number vectors: ux1 , · · · , uxn .

To incorporate positional information into the input vector sequence ux1 , · · · , uxn , we require a series
of position vectors. Consider posi = (pi,1 · · · , pi,dmodel

), a dmodel-dimensional real-number vector defined as
follows:

pi,j =


sin i

10000

j
dmodel

if j is even

cos i

10000

j−1
dmodel

if j is odd

The input vectors are augmented with position vectors by letting ūx1 = ux1 +pos1, · · · , ūxn = uxn +posn. It’s
important to note that these position vectors remain constant throughout the transformer model’s operation
and are not updated during the learning process.

The sequence of augmented input vectors, denoted as ūx1 , · · · , ūxn , can be converted into a matrix A
with dimensions n × dmodel. We can set Q = A, K = A, and V = A as the query, key, and value matrices,
respectively. Then the dot-product based self-attention can be computed as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

where dk represents the dimension of the input vectors, which in this case is dmodel. It’s worth mentioning
that QKT forms an n× n matrix which serves as a representation of the connections between these words.
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The matrix QKT is divided by
√
dk and then the softmax is applied to each row. The n×dmodel-dimensional

attention matrix Attention(Q,K,V) is expected to encode information about each word and its relationships
with all other words, with each row capturing such associations. To elaborate, the element at the (i, j)
position in the matrix QKT is determined by qi · kj = |qi||kj | cos(θ), where qi represents the ith row of
matrix Q, kj is the jth row of matrix K, and θ is the angle between them. In essence, the element at the
(i, j) position of the matrix QKT is larger if and only if the ith word and the jth word are closer in meaning.

Instead of employing a single attention mechanism, the transformer model subdivides the dmodel-dimensional
vector into h = 8 segments and employs h separate attention heads. This approach enables us to use indi-
vidual heads to capture various facets of a word’s meaning and its attention to other words simultaneously.
Now, let’s define dk as dmodel/h = 512/8 = 64. For i ranging from 1 to h, we have weight matrices

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dk , and WO ∈ Rdmodel×dmodel for the query matrix

Q, key matrix K, and value matrix V , and output matrix, respectively. These weight matrices are subject
to learning during the training process. For each i = 1, · · · , 8, we have

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ).

Then we can concatenate these heads to obtain the multi-head attention sub-layer output

MultiHead(Q,K, V ) = [head1, · · · ,headh]WO

After the application of the multi-head attention operation to the augmented input vectors ūx1 , · · · , ūxn ,
we proceed to the “Add & Norm” operation. In this “Add” operation which is also called residual connectoin,
the output of the multi-head attention is summed with the input to the multi-head attention operation. In
other words, we have x+ f(x), where f(x) represents the multi-head attention operation. This concept was
originally introduced in the context of residual learning building blocks by He et al. [6]. For the normalization

operation, as described by Ba et al. [1], we first compute two values: µ =
∑N

i=1 ai
N , which is the average of all

values ai in the layer to be normalized, and σ =

√∑N
i=1(ai−µ)2

N , which is the standard deviation calculated
from these values. Then, we normalize each ai as follows:

āi =
ai − µ
σ + ε

where ε is a small added value so that āi are not too large when σ is very small. To reduce the computational
cost of re-centering in layer normalization, one can use Root Mean Square Layer Normalization (RMSNorm)
as proposed by Zhang and Sennrich [16]. In RMSNorm, the normalization is defined as:

āi =
ai

RMS(a)
where RMS(a) =

√∑N
i=1 a

2
i

N
.

RMSNorm is employed in Meta AI’s LLaMA model [14], where it is used to normalize the input of each
transformer sub-layer instead of the output.

The outcome of the preceding procedure, referred to as the “Add & Norm” operation, serves as the input
to a fully connected feed-forward network. This network is individually and consistently applied to every
word position, corresponding to each row within the n×dmodel matrix. It involves two linear transformations
separated by a ReLU activation function:

FFN(x) = max(0, xW1 + b1)W2 + b2

where W1 is of dimension dmodel×dff and W2 is of dimension dff ×dmodel. The paper [15] used a parameter
of dff = 2048. The FFN’s output is directed into the “Add & Norm” operation to derive a sub-layer output,
concluding the operations within the Nx box for one iteration. To obtain the final output z for the Encoder,
these operations in the Nx box must be repeated six times.

The output z from the Encoder serves as an input for the Decoder’s “Multi-Head Attention”. To elab-
orate, the sequence z is transformed into the matrices Q and K, which are subsequently provided as input
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to the Decoder’s “Multi-Head Attention”. The matrix V input for the Decoder’s “Multi-Head Attention”
is sourced from the “Masked Multi-Head Attention” and the “Add & Norm” operation within the Decoder
module. The operations within the Decoder are quite similar to those within the Encoder, with one notable
exception being the “Masked Multi-Head Attention”. The Decoder enables each position, in other words,
each row of the m×512 dimensional output matrix, to attend to all positions within the Decoder, up to and
including that specific position. This constraint is crucial to prevent the flow of information in a leftward
direction within the Decoder and thereby preserve its auto-regressive nature. To achieve this, Transformer
implement a masking process in the scaled dot-product attention mechanism. During this process, we set
all values in the input of the softmax corresponding to illegal connections to −∞.

2 Mixture of Experts (MoE)

One of the techniques utilized in DeepSeek [4] was the incorporation of the Mixture of Experts (MoE) (see,
e.g. Baldacchino et al [2]) to replace the single Feed-Forward Neural Network (FFN) within each Transformer
layer. In the original Transformer architecture, the FFN processes all positions in the sequence uniformly,
which becomes increasingly computationally expensive as the model size scales up.

To address the challenge of scaling models with extremely large parameters while maintaining efficiency,
the Mixture of Experts (MoE) paradigm was introduced. MoE is a technique that dynamically assigns parts
of the model to process different inputs based on their characteristics, effectively partitioning the problem
space into homogeneous regions.

An MoE layer consists of multiple “experts” (sub-networks), and only a subset of these experts is activated
for any given input. The activation is controlled by a gating network, which determines the expert(s) to use
for each input token. The output of an MoE layer can be mathematically expressed as:

MoE(x) =

N∑
i=1

gi(x) · Experti(x),

where N is the total number of experts, Experti(x) represents the i-th expert’s computation on input x, and
gi(x) is the gating function, which assigns a weight to each expert based on the input.

The gating function g(x) is typically implemented as a softmax function over the expert scores:

gi(x) =
exp(si(x))∑N
j=1 exp(sj(x))

,

where si(x) is the score assigned to expert i by the gating network. To ensure computational efficiency, only
the top k experts (e.g., k = 1 or k = 2) with the highest scores are activated for each input, reducing the
overall computation. The advantages of MoE include:

• Parameter Efficiency: By activating only a subset of experts, the model can scale to billions of param-
eters without linearly increasing computational costs.

• Specialization: Each expert can specialize in a specific subset of the input space, improving performance
on diverse tasks.

• Dynamic Computation: The gating mechanism enables adaptive computation, where different inputs
are processed by different parts of the model.

While MoE provides substantial benefits, it also introduces challenges:

• Load Balancing: Ensuring that all experts are utilized equally to prevent some experts from becoming
bottlenecks.

• Training Stability: The sparsity and dynamic nature of the gating mechanism can lead to instability
during training.

• Memory Overhead: Storing large numbers of experts requires significant memory resources.
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To tackle these challenges, DeepSeek [4] introduced specific techniques, including fine-grained expert
segmentation, shared expert isolation, and load-balancing mechanisms, to enhance the effectiveness and
efficiency of their implementation.

3 Multi-Head Latent Attention

Transformer models rely on Multi-Head Attention (MHA) during generation, but the substantial Key-Value
(KV) cache associated with MHA often becomes a bottleneck, limiting inference efficiency. To address this
issue, DeepSeek V2 [7] and DeepSeek V3 [8] introduced Multi-Head Latent Attention techniques, which
effectively reduce the size of the K,V cache and improve inference performance.

In the transformer multi-head attention (MHA) model, we use three weight matrices: WQ
i ,W

K
i ,W

V
i ∈

Rdmodel×dk for the query, key, and value matrices, respectively, and WO ∈ Rdmodel×dmodel for the output
matrix. Specifically, for each head i = 1, · · · , 8, the attention for head i is defined as:

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ) = softmax

(
QWQ

i (KWK
i )T√

dk

)
VWV

i .

To compute the encoding of the j-th output token, we must determine the j-th row of each attention
head. Specifically, for the j-th row oij of headi, we compute:

oij = softmax

(
qjW

Q
i (KWK

i )T√
dk

)
VWV

i (1)

where qj is the j-th row of Q, representing the word embedding of the j-th input token.
To optimize computation, all keys and values must be cached, allowing for efficient reuse. However, this

caching requirement incurs significant memory overhead, as the model must store all entries of K and V .
During model deployment, this memory burden becomes a critical bottleneck, restricting both the maximum
batch size and the processable sequence length.

DeepSeek [7, 8] introduces two key innovations to optimize the size of K,V value caches in the transformer
model: Low-Rank Key-Value Joint Compression and Decoupled Rotary Position Embedding (RoPE). These
advancements aim to reduce memory usage while preserving performance, addressing challenges in scaling
transformers to larger tasks.

Low-Rank Key-Value Joint Compression: This method factorizes the key-value (K,V ) matrices into
low rank matrices. This reduces storage requirements and accelerates inference, while still enabling effective
recovery of the original information. We illustrate the Low-Rank Key-Value Joint Compression method with
an example. Suppose the word-embedding dimension is dmodel = 4096 and the latent dimension is dc = 1024.
Instead of storing dmodel-dimensional vectors for the rows of the Key and Value matrices, we use compressed
dc-dimensional representations. To achieve this, we introduce a down-projection matrix WDKV ∈ Rdmodel×dc

and two up-projection matrices, WUK and WUV , where WUK ,WUV ∈ Rdc×dkh, for reconstructing the keys
and values.

For each input token vector wi, which corresponds to the i-th row of the matrix Q, we compute the
compressed representation:

cKVi = wiW
DKV

This vector cKVi serves as the compressed i-th row for both the K and V matrices. As a result, the KV
cache requires only ldc elements instead of ldmodel, where l represents the number of layers.

During inference, the i-th rows of K and V are reconstructed as:

(kCi,1, · · · ,kCi,h) = kCi = cKVi WUK ,

(vCi,1, · · · ,vCi,h) = vCi = cKVi WUV .

Notably, we can reformulate equation (1) as:

oij = softmax

(
qjW

Q
i (KWK

i )T√
dk

)
VWV

i = softmax

(
qjW

Q
i (KCWUKWK

i )T√
dk

)
V CWUVWV

i , (2)
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where KC and V C are the compressed versions of K and V , respectively. This formulation allows WUK to
be absorbed into WK

i and WUV into WV
i , eliminating the need to explicitly compute the keys and values

for attention, thereby reducing computational overhead.
Furthermore, to reduce activation memory during training, DeepSeek employs two matrices, WDQ and

WUQ, to compress the query matrix Q from dmodel-dimensional vectors to d′c-dimensional representations.
That is,

cQi = wiW
DQ,

qCi = cQi W
UQ.

(3)

where cQi ∈ Rd′c is the compressed latent vector for the query wi, d
′ denotes the query compression dimension;

and WDQ ∈ Rdmodel×d
′
c , WUQ ∈ Rd′c×dmodel .

In summary, a key technique in DeepSeek is the joint approximation of the key and value matrices using
matrix factorization, rather than treating them separately. Specifically, we have:

K ≈WDKVWUK ,

V ≈WDKVWUV .

The low-rank matrices WDKV ,WUK ,WUV are learned during training through backpropagation. In prac-
tical implementaitons, choosing the optimal rank dc is critical for balancing compression and accuracy. A
rank that is too low may lose important information, while a rank that is too high may negate memory
savings.

Decoupled Rotary Position Embedding (RoPE): For a query q and a key k, with their position-
coded vectors qm (at position m) and kn (at position n), Su et al. [12] emphasized that, for an effective
position embedding method, the inner product qmkTn should be expressible as a function g, which only takes
the word embeddings q and k, along with their relative position m− n, as input variables. Specifically, this
relationship should be formulated as:

qmkTn = g(q,k,m− n) (4)

In contrast, the original Transformer model incorporates positional information by directly adding it to the
word embeddings, which does not satisfy the requirement (4).

Su et al. [12] introduced the RoPE, which can be intuitively understood using two-dimensional vectors.
For a two-dimensional word-embedding vector, the vector at position m is rotated by an angle of mθ, where
θ is a fixed angle. This is equivalent to multiplying the vector by eimθ.

For a general dmodel-dimensional word-embedding space, the space is divided into dmodel/2 sub-spaces,
and the position encoding is applied to each sub-space. Specifically, for a vector x = [x1, x2, . . . , xdmodel

],
each pair of coordinates (x2i, x2i+1) is rotated as follows:[

x′2i
x′2i+1

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x2i
x2i+1

]
,

where θ is determined by the position index. In other words, the positioned vector (x′2i, x
′
2i+1) is derived by

rotating the original vector (x2i, x2i+1) by an angle θ.
If RoPE is directly applied to DeepSeek, it becomes coupled with position-sensitive weight matrices. As

a result, WUK can no longer be absorbed into WK
i because the RoPE matrix corresponding to the currently

generated token will lie between WUK and WK
i , and matrix multiplication is not commutative. This forces

the recomputation of the keys for all prefix tokens during inference, leading to inefficiency. To resolve this,
the DeepSeek team introduces a decoupled RoPE strategy. This method employs additional multi-head

query qRi,j ∈ RdRh and shared key kRi ∈ RdRh to carry the RoPE information separately from the compressed

keys and queries, where dRh denotes the per-head dimension of the decoupled queries and key. The decoupled
RoPE queries and keys are then concatenated with the up-projected queries and keys.

Let WQR ∈ Rd′c×hdRh and WKR ∈ Rdmodel×d
R
h be the matrices used to produce the decoupled queries and

keys, respectively. Additionally, let cQi ∈ Rd′c represent the compressed latent vector corresponding to the
encoding wi of the i-th token, as defined in (3). Then, we define:
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(qRi,1, . . . ,q
R
i,h) = qRi = RoPE(cQi W

QR)

kRi = RoPE(wiW
KR)

qi,j = [qCi,j ,q
R
i,j ]

ki,j = [kCi,j ,k
R
i ]

Then in the attention calculation, we compute

qi,jk
T
i,j = qCi,j(k

C
i,j)

T + qRi,j(k
R
i )T

instead of only qCi,j(k
C
i,j)

T . It should be noted that, during inference, the decoupled key should also be
cached.

The decoupled RoPE approach enhances long-range dependency modeling by separating positional and
content information. This separation prevents distortions caused by entangled representations, resulting in
more precise long-range attention.

4 KV -Cache saving comparison

In this section, we present a comparative analysis of cache savings using DeepSeek techniques. Our evalu-
ation focuses on ChatGPT 3.5, ChatGPT 4, and ChatGPT 4 Turbo. Table 1 provides an overview of the
Transformer parameters for these models, highlighting potential cache savings achieved through multi-head
latent attention (MLA).

The parameter estimates for ChatGPT 3.5, ChatGPT 4, and ChatGPT 4 Turbo were obtained using
ChatGPT itself; however, their accuracy is not guaranteed©. It is important to note that both K and V are
matrices of size n× dmodel, requiring a total storage of 2ndmodelnlayers for caching. Furthermore, we assume
that the real numbers are represented using 32-bits (4 bytes).

By contrast, when utilizing multi-head latent attention, the storage requirement is reduced to ndcnlayers
for MLA and an additional ndmodel elements for the decoupled RoPE scheme.

For reference, NVIDIA’s A100 GPU offers either 40GB or 80GB of VRAM, delivering 19.5 TFLOPs
(trillion floating-point operations per second) in FP32 mode. However, its GPU memory bandwidth is
constrained to approximately 2 TB/s, which can become a limiting factor in memory-intensive computations.

Table 1: KV-value size comparison for GPTs and GPTs with DeepSeek MLA with dc = 1024

Model Name n nlayers dmodel nheads KV -size DeepSeek MLA cache
GPT-3.5 4096 96 4096 32 12.88GB 1.61B
GPT-4 8192 120-128 8192 64 64.40GB 4.00GB

GPT-4 Turbo 128K 128? 8192 64 1.07TB 67.12GB
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