

Reducing Garbled Circuit Size While Preserving Circuit Gate Privacy

Yongge Wang^{1(⊠)}[™] and Qutaibah M. Malluhi^{2,3}

¹ Department of SIS, UNC Charlotte, Charlotte, NC 28223, USA yongge.wang@uncc.edu

² Department of Computer Science and Engineering, Qatar University, Doha, Qatar qmalluhi@qu.edu.qa

³ KINDI Center for Computing Research, Qatar University, Doha, Qatar

Abstract. This paper investigates efficient and confidential circuit garbling techniques. The primary contribution of this research is the introduction of GPGRR2 (Gate Privacy preserving Garbled Row Reduction), a technique aimed at constructing garbled circuits using at most two ciphertexts per garbled gate while ensuring gate privacy preservation. When compared to the state-of-the-art gate-privacy-preserving garbling scheme GRR3, GPGRR2 shows a remarkable reduction in the size of garbled circuits by at least 33%. Another significant achievement is the development of a linear garbling scheme for odd gates, enabling the garbling of a single gate to one ciphertext. Furthermore, leveraging the GPGRR2 scheme facilitates a substantial decrease in the number of ciphertexts in non-universal-circuit based PFE protocols by a factor of 25%.

Keywords: garbled circuit \cdot privacy preserving garbled circuit \cdot secure function evaluation \cdot private function evaluation

1 Introduction

Yao [18] introduced the garbled circuit concept which allows computing a function f on an input x without leaking any information about the input x or individual circuit gate functionality used for the computation of f(x). Since then, garbled circuit based protocols have been used in numerous places and it has become one of the fundamental components of secure multi-party computation (SMC), secure function evaluation (SFE), and private function evaluation (PFE) protocols. In a PFE protocol, one participant P_1 holds a circuit C and a private input x_1 and every other participant P_i ($i \ge 2$) holds a private input x_i . The PFE protocol's goal is that a subset (or all) of the participants learns the circuit output $C(x_1, \dots, x_n)$ but nothing beyond this. In particular, the participant P_i ($i \ge 2$) should not learn anything else except the size of C and, optionally, the output. Note that a PFE protocol is different from standard SMC/SFE protocols where the circuit C is publicly known to all participants in SMC/SFE protocols.

This work was supported by the Qatar National Research Fund (Member of the Qatar Foundation) under Grant NPRP X-063-1-014.

An earlier version of this paper appeared as a technical report in [17].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 S. Vaudenay and C. Petit (Eds.): AFRICACRYPT 2024, LNCS 14861, pp. 149–173, 2024. https://doi.org/10.1007/978-3-031-64381-1_7 Bellare et al. [3] provides a rigorous definition of circuit garbling schemes and analyzed garbling scheme security from aspects of privacy, obliviousness, and authenticity. Specifically, Bellare et al. [3] pointed out that garbling schemes that are secure for Φ_{circ} (that is, it does not conceal the circuit) is sufficient for the design of SFE/SMC protocols. However, for a PFE protocol, one needs a garbling scheme that is secure for Φ_{size} (that is, it only leaks the circuit size). Though Yao's circuit garbling scheme is only secure for Φ_{topo} (that is, it only reveals the circuit topology) and not secure for Φ_{size} , one can use universal circuit to convert a Φ_{topo} -secure garbling scheme to a Φ_{size} -secure garbling scheme (see, e.g., Bellare et al. [3]).

We first review Yao's garbled circuit construction using Beaver, Micali, and Rogaway's point-permute (or called external index) technique [2]. Note that the external index technique makes it possible to design garbled circuits without using CPAsecure encryption schemes. Unless stated otherwise, throughout the paper we will use lower case letters u, v, w, x, y, z etc. to denote wires within a circuit and use b_u , b_v , b_w , b_x , b_y , $b_z \in \{0, 1\}$ as variables to denote the values on the wires u, v, w, x, y, z respectively. For a given number t that is dependent on the security parameter κ , the circuit owner assigns two random values k_x^0 , $k_x^1 \in \{0, 1\}^t$ to each wire x corresponding to 0 and 1 values of the wire. The circuit owner chooses a secret random permutation π_x over $\{0, 1\}$ for each wire x. The garbled values for the wire x consist of $k_x^0 || \pi_x(0)$ and $k_x^1 || \pi_x(1)$ where $\pi_x(b)$ is considered as an external index for k_x^b . It is easily observed that for any $b \in \{0, 1\}$, we have $b = \pi_x(b) \oplus \pi_x(0)$. For a gate z = g(x, y), the garbled gate \tilde{g} consists of four ciphertexts that are ordered using the external index $\pi_x(b_x) || \pi_y(b_y)$. For example, if we assume that $\pi_x(0) = \pi_y(0) = 1$ and $\pi_x(1) = \pi_y(1) = 0$, then the garbled gate \tilde{g} is described using the following four ciphertexts.

$$\begin{aligned} \pi_{x}(1) \| \pi_{y}(1) &: (k_{z}^{g(1,1)} \| \pi_{z}(g(1,1))) \oplus H_{g}(k_{x}^{1} \circ k_{y}^{1}) \\ \pi_{x}(1) \| \pi_{y}(0) &: (k_{z}^{g(1,0)} \| \pi_{z}(g(1,0))) \oplus H_{g}(k_{x}^{1} \circ k_{y}^{0}) \\ \pi_{x}(0) \| \pi_{y}(1) &: (k_{z}^{g(0,1)} \| \pi_{z}(g(0,1))) \oplus H_{g}(k_{x}^{0} \circ k_{y}^{1}) \\ \pi_{x}(0) \| \pi_{y}(0) &: (k_{z}^{g(0,0)} \| \pi_{z}(g(0,0))) \oplus H_{g}(k_{x}^{0} \circ k_{y}^{0}) \end{aligned}$$
(1)

where H_g is a gate g specific pseudorandom function (e.g., a secure hash function or an encryption scheme) whose output length is $|k_z^b| + 1$ and \circ is an operator. For example, one may define $k_1 \circ k_2 = k_1 ||k_2$ or $k_1 \circ k_2 = k_1 \oplus k_2$ or $k_1 \circ k_2 = k_1 + k_2 \mod 2^t$ etc. For most applications, we take a pseudorandom function H (e.g., a cryptographic hash function) and define $H_g(\cdot) = H(gID, \cdot)$ where gID is an identity string for the gate g. At the start of the protocol, the circuit owner provides the evaluator with a garbled version \tilde{g} for each gate g of the circuit. During the evaluation process, the circuit owner provides garbled input values to the evaluator and the evaluator evaluates the garbled circuits gate by gate. As an example, if the input is (x, y) = (1, 0), then the circuit owner sends garbled values $k_x^1 ||\pi_x(1) = k_x^1||0$ and $k_y^0 ||\pi_y(0) = k_y^0||1$ to the evaluator. Since the external index bit value $\pi_x(1)||\pi_y(0) = 01$, the evaluator uses the corresponding second ciphertext to recover the garbled value $k_z^{g(1,0)} ||\pi_z(g(1,0))$ for the output wire z, which corresponds to the output g(1, 0).

Several efforts have been made to reduce the garbled circuit size. Kolesnikov and Schneider [9] observed that if there is a circuit-wide global offset value $\Delta \in \{0, 1\}^t$ such that garbled values for each wire x within the circuit satisfy the invariance property

 $k_x^1 = k_x^0 \oplus \Delta$, then the XOR gate could be garbled for free since we have $k_x^{b_x} \oplus k_y^{b_y} = k_x^0 \oplus k_y^0 \oplus ((b_x \oplus b_y) \cdot \Delta)$ where $1 \cdot \Delta = \Delta$ and $0 \cdot \Delta = 0^t$.

Naor, Pinkas, and Śumner [12] observed that one can choose a randomly fixed pair $(b_x, b_y) \in \{0, 1\}^2$ and let

$$k_{z}^{g(b_{x},b_{y})} \| \pi(g(b_{x},b_{y})) = H_{g}(k_{x}^{b_{x}} \circ k_{y}^{b_{y}}).$$

Then the corresponding ciphertext for the row $(\pi(b_x), \pi(b_y))$ is a zero string and one does not need to store it. In other words, one can reduce the number of ciphertexts from 4 to 3 for each garbled gate. In this paper, we will refer this approach as GRR3.

Pinkas et al. [14] used polynomial interpolation to reduce each gate to two ciphertexts. However, Pinkas et al's technique is not compatible with the free-XOR technique. Recently, Zahur, Rosulek, and Evans [19] introduced the state-of-the-art half-gates technique to design free-XOR compatible garbling schemes so that each AND/OR gate could be represented using two ciphertexts.

The aforementioned free-XOR, GRR2, and half-gates garbling schemes reduce garbled circuit sizes by leaking the number and locations of XOR gates within circuits. This kind of side information leakage is acceptable for SFE (secure function evaluation) though it may be unacceptable for other applications. For example, these techniques cannot be used to improve the efficiency of non-universal circuit based PFE protocols in Katz and Malka [6] and Mohassel and Sadeghian [11]. In this paper, we investigate the possibility of reducing garbled circuit size without leaking any further information beyond circuit topology. Specifically, we design garbled circuits with at most two ciphertexts for each garbled gate such that the only leaked information is the circuit topology. We then apply our techniques to PFE protocols in Katz and Malka [6] and Mohassel and Sadeghian [11] to reduce the number of ciphertexts by a factor of 25%.

It has been an interesting and challenging question to study the lower bounds of garbled circuit sizes. Zahur, Rosulek, and Evans [19] proved that any "linear" garbling scheme garbles an AND gate to at least two ciphertexts. However, the statement of their lower bound theorem is inaccurate. In this paper, we present a linear (over integers) garbling scheme that garbles an AND gate to one ciphertext. By examining the proofs in [19], it is clear that their proof is based on linear operations in the finite field $\mathbb{F}_{2'}$. Thus one should bear in mind that the result in [19] only applies to the finite field $\mathbb{F}_{2'}$.

We conclude this section with the introduction of some notations. We use κ to denote the security parameter, $p(\cdot)$ to denote a function p that takes one input, and $p(\cdot, \cdot)$ to denote a function p that takes two inputs. A function f is said to be negligible in an input parameter κ if for all d > 0, there exists K such that for all $\kappa > K$, $f(\kappa) < \kappa^{-d}$. For convenience, we write $f(\kappa) = \text{negl}(\kappa)$. Two ensembles, $X = \{X_{\kappa}\}_{\kappa \in N}$ and $Y = \{Y_{\kappa}\}_{\kappa \in N}$, are said to be computationally indistinguishable (written as $X \stackrel{c}{\sim} Y$ or $X \stackrel{c}{=} Y$) if for all probabilistic polynomial-time algorithm D, we have

$$|Pr[D(X_{\kappa}, 1^{\kappa}) = 1] - Pr[D(Y_{\kappa}, 1^{\kappa}) = 1]| = \operatorname{negl}(\kappa).$$

Throughout the paper, we use probabilistic experiments and denote their outputs using random variables. For example, $\text{Exp}_{E,A}^{\text{real}}(1^{\kappa})$ represents the output of the real experiment for scheme *E* with adversary *A* on security parameter κ .

The structure of this paper is as follows. Section 2 reviews security definition for garbling schemes. Section 3 reviews GRR2 techniques. Section 4 presents our linear interpolation based garbled circuit construction techniques where each garbled gate uses two ciphertexts. Section 5 provides an optimization of GPGRR2 and shows that one can linearly garble an AND gate with one ciphertext. Section 6 uses linear interpolation garbling schemes to reduce the size of garbled circuits for PFE protocols in various adversary security models. Section 7 presents a revised circuit garbling scheme GRRcirc that is only secure for input privacy (it reveals the number and positions of XOR gates).

2 Circuit Garbling Schemes and Their Security

In this section, we briefly review the formal definition of circuit garbling schemes formalized by Bellare, Hoang, and Rogaway [3].

Definition 1. Let $C = \{C_n\}_{n \in N}$ be a family of circuits such that C_n is a set of boolean circuits that take *n*-bit inputs. A garbling scheme for *C* is a tuple of probabilistic polynomial time algorithms GS = (Gb, Enc, Eval, Dec) with the following properties

- $(\tilde{C}, \mathbf{sk}, \mathbf{dk}) = \mathsf{GS.Gb}(1^{\kappa}, C)$ outputs a garbled circuit \tilde{C} , a secret key \mathbf{sk} , and a decoding key \mathbf{dk} for circuits $C \in C_n$ on the security parameter input κ .
- − c = GS.Enc(sk, x) outputs an encoding c for an input $x \in \{0, 1\}^*$.
- $-\tilde{y} = \mathsf{GS.Eval}(\tilde{C}, c)$ outputs a garbled value \tilde{y} .
- $y = GS.Dec(dk, \tilde{y})$ outputs a circuit output.

The garbling scheme GS is correct if we have

 $Pr[GS.Dec(dk, GS.Eval(\tilde{C}, GS.Enc(sk, x))) \neq C(x)|GS] = negl(\kappa).$

The garbling scheme GS is efficient if the size of \tilde{C} is bounded by a polynomial and the run-time of c = GS.Enc(sk, x) is also bounded by a polynomial.

The security of garbling schemes is defined in terms of input and circuit privacy in the literature. For a garbled circuit, some side-information such as the number of inputs, outputs, gates, and the topology of the circuit *C* (that is, the connection of gates but not gate types) and other information is leaked inherently. We denote such kind of side information as $\Phi(C)$. Thus a security definition of garbling schemes should capture the intuition that the adversary learns no information except $\Phi(C)$ and the output given one evaluation of the garbled circuit. The following definition requires that for any circuit or input chosen by the adversary, one can simulate the garbled circuit and the encoding based on the computation result and $\Phi(C)$ in polynomial time. In the definition, the variable α represents any state that the adversary *A* may want to give to the algorithm *D*.

Definition 2. (*Privacy for garbling schemes*) A garbling scheme GS for a family of *circuits C is said to be* input and circuit private *if there exists a probabilistic polynomial*

time simulator Sim_{GS} such that for all probabilistic polynomial time adversaries A and algorithms D and all large κ , we have

$$\left| Pr[D(\alpha, x, C, \tilde{C}, c) = 1 | \text{REAL} \right| - Pr[D(\alpha, x, C, \tilde{C}_{sim}, \tilde{c}) = 1 | \text{SIM} \right| = \text{negl}(\kappa)$$

where REAL is the following event

 $(x, C, \alpha) = A(1^{\kappa}); (\tilde{C}, \mathsf{sk}, \mathsf{dk}) = \mathsf{GS.Gb}(1^{\kappa}, C); c = \mathsf{GS.Enc}(\mathsf{sk}, x);$ $C(x) = \mathsf{GS.Dec}(\mathsf{dk}, \mathsf{GS.Eval}(\tilde{C}, c))$

and SIM is the following event

$$(x, C, \alpha) = A(1^{\kappa}); \quad (\tilde{C}_{sim}, \tilde{c}) = Sim_{GS}(1^{\kappa}, C(x), \Phi(C), 1^{|C|}, 1^{|x|}).$$

The authors of [3] considered the following three kinds of commonly used sideinformation functions.

- 1. $\Phi_{size}(C) = (n, m, q)$ where n, m, q are the number of inputs, outputs, and gates of the circuit *C* respectively.
- 2. $\Phi_{topo}(C) = C_{topo}$ where a topological circuit C_{topo} is like the conventional circuit *C* except that the functionality of the gates is unspecified.
- 3. $\Phi_{circ}(C) = C$ where the side information is the circuit itself. That is, the entire circuit *C* is revealed.

It is pointed out in Bellare et al. [3, Sections 3.8] that, for both indistinguishabilitybased security notion and simulation-based security notion, each Φ_{topo} -secure garbling scheme GS_{topo} can be converted to a Φ_{size} -secure garbling scheme GS_{size} using universal circuits. GS_{size} and oblivious transfers can then be used to design secure PFE protocols. If the security notion is based on simulation, then one can use Φ_{circ} -secure garbling schemes, universal circuits, and oblivious transfers to design secure PFE protocols. However, no proof has been presented to show whether one can use Φ_{circ} -secure garbling schemes, universal circuits, and oblivious transfers to design secure PFE protocols using the indistinguishability-based security notion¹.

We conclude this section by pointing out a circuit complexity result which shows the important information leakage by identifying the number (or locations) of XOR gates within a topological circuit C_{topo} . Let AC^i denote the family of polynomial size circuits of depth $O(\log^i n)$ with unlimited-famin AND and OR gates (NOT gates are only allowed at inputs). Let NC^i denote the family of polynomial size circuits of depth $O(\log^i n)$ with bounded-famin AND and OR gates. It is a folklore that

$$NC^i \subseteq AC^i \subseteq NC^{i+1}$$
.

Let $f_{\text{parity}}(x_1, \dots, x_n) = x_1 \oplus x_1 \oplus \dots \oplus x_n$ be the parity function. It is well known that $f_{\text{parity}} \in \mathbb{NC}^1$. Ajtai et al. [1] and Furst et al. [5] showed that $f_{\text{parity}} \notin \mathbb{AC}^0$. That is, $f_{\text{parity}} \in \mathbb{NC}^1 \setminus \mathbb{AC}^0$.

¹ The authors would like to thank Dr. Viet Tung Hoang for several valuable discussions on this question and other results in [3].

Let C_{parity} be a randomly selected polynomial size circuit of constant depth with unlimited-fanin XOR gates that computes f_{parity} . Note that there are many such kind of circuits. Let $f_{ac_0} \in AC^0$ and $C_{f_{ac_0}}$ be a circuit that computes f_{ac_0} such that $C_{f_{ac_0},\text{topo}} = C_{\text{parity,topo}}$. That is, the topological circuits of $C_{f_{ac_0}}$ and C_{parity} are identical.

Assume that a circuit owner randomly selects C_{parity} or $C_{f_{ac_0}}$ to garble. Given Φ_{topo} -secure garbled circuits for C_{parity} or $C_{f_{ac_0}}$, the evaluator cannot tell whether the evaluated function is in AC^0 or not. On the other hand, if the evaluator receives Φ_{circ} -secure garbled circuits for C_{parity} or $C_{f_{ac_0}}$, it can distinguish whether the evaluated function is in AC^0 .

3 Pinkas et al.'s Garbled Row Reduction GRR2

We first review Pinkas et al's Garbled Row Reduction GRR2 [14]. Let t be the length in terms of number of bits of wire lables. That is, we have $t = |k_r^b|$ for all wires x and b = 0, 1. Wire labels k_x^b and integers $0, 1, 2, 3, \cdots$ can be interpreted as elements of the finite field $\mathbb{F}_{2'}$. A binary gate is said to be odd if its truth table has an odd number of '1' entries (e.g. an AND or OR gate), otherwise it is called an even gate (e.g., an XOR gate). Using polynomial interpolation, Pinkas et al. showed that each gate could be represented by only two ciphertexts. Specifically, for an odd gate g (e.g., an AND or OR gate), assume that the first three ciphertexts C_1, C_2, C_3 encrypt the same wire label $k_z^b || \pi_z(b)$ via $C_i = (k_z^b || \pi_z(b)) \oplus (K_i || M_i)$ (for i = 1, 2, 3) and the fourth ciphertext C_4 encrypts the wire label $k_{z}^{1-b} || \pi_{z}(1-b)$ via $C_{4} = (k_{z}^{1-b} || \pi_{z}(1-b)) \oplus (K_{4} || M_{4})$ where $b, M_{i} \in$ {0,1} for i = 1, 2, 3, 4. Let P(X) be a degree two polynomial over $\mathbb{F}_{2^{i}}$ passing through points $(1, K_1), (2, K_2)$, and $(3, K_3)$. Let Q(X) be another degree two polynomial over \mathbb{F}_{2^t} passing through points (5, P(5)), (6, P(6)), and (4, K_4). Then by setting $k_z^b = P(0)$ and $k_z^{1-b} = Q(0)$, one can replace the garbled table with $\langle P(5), P(6), c_1, c_2, c_3, c_4 \rangle$ where P(5) and P(6) are elements from \mathbb{F}_{2^t} and c_1, c_2, c_3, c_4 are bits encrypting the external index bits. That is, $\pi_z(g(b_x, b_y)) = c_i \oplus M_i$ for $i = 2\pi_x(b_x) + \pi_y(b_y) + 1$. The total size of the garbled gate is 2t + 4 bits. Interpolating the polynomial passing through points $(5; P(5)), (6; P(6)), \text{ and } (i; K_i) \text{ for } i = 1, 2, 3, 4 \text{ will produce either polynomial } P(X) \text{ or }$ Q(X), which can be evaluated at X = 0 to get the appropriate value k_z^b or k_z^{1-b} .

For an even gate g (e.g., an XOR or NXOR gate), assume that ciphertexts C_{i_1}, C_{i_2} encrypt the wire label $k_z^0 || \pi_z(0)$ via $C_{i_j} = (k_z^0 || \pi_z(0)) \oplus (K_{i_j} || M_{i_j})$ (for j = 1, 2) and the ciphertexts C_{i_3}, C_{i_4} encrypt the wire label $k_z^1 || \pi_z(1)$ via $C_{i_j} = (k_z^1 || \pi_z(1)) \oplus (K_{i_j} || M_{i_j})$ (for j = 3, 4) where $M_{i_j} \in \{0, 1\}$ for $i_j = 1, 2, 3, 4$. Let P(X) be a linear polynomial over $\mathbb{F}_{2'}$ passing through points (i_1, K_{i_1}) and (i_2, K_{i_2}) . Let Q(X) be another linear polynomial over $\mathbb{F}_{2'}$ passing through points (i_3, K_{i_3}) and (i_4, K_{i_4}) . Define $k_z^0 = P(0)$ and $k_z^1 = Q(0)$. If $\pi_z(0) = 0$ then the garbled gate is represented as $\langle P(5), Q(5), c_1, c_2, c_3, c_4 \rangle$. Otherwise, $\pi_z(1) = 0$ and the garbled gate is represented as $\langle Q(5), P(5), c_1, c_2, c_3, c_4 \rangle$. In the garbled gate, P(5) and Q(5) are elements from $\mathbb{F}_{2'}$ and c_1, c_2, c_3, c_4 are bits encrypting the external index bits. That is, $\pi_z(g(b_x, b_y)) = c_i \oplus M_i$ for $i = 2\pi_x(b_x) + \pi_y(b_y) + 1$. The total size of the garbled gate is 2t + 4 bits. The evaluator receives the garbled gate in the format of $\langle Y_1, Y_2, c_1, c_2, c_3, c_4 \rangle$. At the time of evaluation, the evaluator first calculates the value $\pi_z(b_z)$ using the ingoing wire labels. If $\pi_z(b_z) = 0$, then it interpolates the linear polynomial passing through points (5; Y_1) and (i; K_i) for i = 1, 2, 3, 4 which will produce either polynomial P(X) or Q(X), which can be evaluated at X = 0 to get the appropriate value $k_z^{b_z}$. If $\pi_z(b_z) = 1$, then it interpolates the linear polynomial passing through points (5; Y_2) and (*i*; K_i) for i = 1, 2, 3, 4 to obtain the appropriate value $k_z^{b_z}$.

The ciphertexts for odd gates and even gates have different format with GRR2 techniques. Thus GGR2 garbled circuits are not secure for Φ_{topo} . It is easy to check that in the GRR2 garbling scheme, the number of ciphertexts for an even gate could be reduced to one ciphertext by using the GRR3 approach.

3.1 Zahur, Rosulek, and Evans's Half-Gates

Zahur, Rosulek, and Evans [19] proposes a free-XOR compatible half-gates garbling scheme so that each odd gate is garbled to two ciphertexts and each even gate is free. In the half-gates technique, the circuit owner first chooses a circuit-wide global offset value Δ . The circuit is garbled in such a way that garbled values for each wire *x* within the circuit satisfy the invariance property $k_x^1 = k_x^0 \oplus \Delta$. Thus an even gate could be garbled for free. Assume that z = g(x, y) is the odd gate " $x \wedge y$ ". Then it can be written as $(x \wedge r) \oplus (x \wedge (r \oplus y))$ where *r* is a random bit. Zahur, Rosulek, and Evans [19] recommends the use of $r = \pi_y(0)$. Let $r_x = \pi_x(0)$ and $r_y = \pi_y(0)$. Let $r\Delta$ denote the zero string for r = 0 and denote the string Δ for r = 1. Then the two gates $(x \wedge r)$ and $(x \wedge (r \oplus y))$ are garbled separately. The XOR of the output of these two gates is free.

- For the first gate $u = (x \wedge r)$, we can choose a random value k_u^0 and garble it using two ciphertexts " $H(k_x^0) \oplus k_u^{0}$ " and " $H(k_x^1) \oplus (k_u^0 \oplus r\Delta)$ ". By using the standard garbled row reduction technique GGR3, the gate " $x \wedge r$ " could be garbled using one ciphertext $H(k_x^0) \oplus H(k_x^1) \oplus r_y\Delta$
- For the second gate $v = (x \land (r \oplus y))$, the evaluator knows the value of " $r \oplus y$ " since we have $r \oplus b_y = \pi_y(0) \oplus b_y = \pi_y(b_y)$. First choose a random value k_v^0 . If " $r \oplus y = 0$ " then "v = 0". In this case, the ciphertext should decrypt to k_v^0 . If " $r \oplus y = 1$ " then "v = x". In this case, it suffices for the evaluator to decrypt the ciphertext to $k_v^0 \oplus k_x^0$ since the evaluator could get the actual output label as $k_v^0 \oplus k_x^0 \oplus k_x^{b_x}$ where $k_x^{b_x}$ is the received value on wire x. By using the standard row reduction technique GGR3, the gate $v = (x \land (r \oplus y))$ could be garbled using one ciphertext $H(k_v^0) \oplus H(k_v^1) \oplus k_x^0$.

In the summary, the AND gate $z = x \land y$ is garbled into two ciphertexts:

$$H(k_x^0) \oplus H(k_x^1) \oplus r_y\Delta; \quad H(k_y^0) \oplus H(k_y^1) \oplus k_x^0$$

and the OR gate $z = x \lor y$ is garbled into two ciphertexts:

$$H(k_x^0) \oplus H(k_x^1) \oplus (1 - r_y)\Delta; \quad H(k_y^0) \oplus H(k_y^1) \oplus k_x^1$$

The garbled labels for the output wire z is

$$k_z^0 = H(k_x^{r_x}) \oplus g(r_x, r_y) \Delta \oplus H(k_y^{r_y}); \quad k_z^1 = H(k_x^{r_x}) \oplus g(r_x, r_y) \Delta \oplus H(k_y^{r_y}) \oplus \Delta$$

Evaluation of a Garbled Gate. The evaluator receives the garbled values $k_x^{b_x}$, $k_y^{b_y}$ and learns the value of $b_y \oplus r_y$ from the external index bits. Based on the external index

values, the evaluator first calculates $k_1 = H(k_x^{r_x}) \oplus g(r_x, r_y)\Delta$ from the first ciphertext. Secondly, If $b_y \oplus r_y = 0$, then the evaluator calculates $k_2 = H(k_y^{b_y})$. Otherwise, if $b_y \oplus r_y = 1$, then the evaluator calculates $k_2 = H(k_y^{1-b_y}) \oplus k_x^0 \oplus k_x^{b_x}$ from the second ciphertext and $k_x^{b_x}$. Finally let $k_z^{g(b_x,b_y)} = k_1 \oplus k_2$.

As an example to show that the above evaluation process works, we assume that g is an AND gate and assume that r = 0. For the input x = 0, y = 1, we get $k_1 = H(k_x^0)$ and $k_2 = H(k_y^0) \oplus k_x^0 \oplus k_x^0 = H(k_y^0)$. Thus $k_z^0 = H(k_x^0) \oplus H(k_y^0)$. For the input x = 1, y = 1, we get $k_1 = H(k_x^0) \oplus r\Delta = H(k_x^0)$ and $k_2 = H(k_y^0) \oplus k_x^0 \oplus k_x^1 = H(k_y^0) \oplus \Delta$. Thus $k_z^1 = H(k_x^0) \oplus H(k_y^0) \oplus \Delta$.

4 Garbled Gate Size Reduction Using Linear Interpolation

4.1 Gate Privacy Preserving Garbled Row Reduction GPGRR2

As we mentioned in the preceding section, Pinkas et al's GRR2 garbling scheme [14] leaks the number and positions of even/odd gate types. For example, an evaluator evaluates a garbled odd gate using degree two polynomial interpolation and evaluates a garbled even gate using linear interpolation. The free-XOR techniques proposed by Kolesnikov and Schneider [9] leaks the number and positions of XOR gates and the half-gates techniques by Zahur, Rosulek, and Evans [19] leaks the number and positions of XOR gates also. In this section, we propose a gate privacy preserving garbled row reduction GPGRR2 technique to garble circuits with security for Φ_{topo} . Our garbling scheme GPGRR2 does not require the external index bits. For reason of convenience, the following construction still includes the external index bits.

First select two parameters t and τ based on the security requirements. It is recommended to select τ such that $10 \le \tau < t$. Each ciphertext will be of length t + 1 bits. In order to garble a circuit C, the circuit owner first chooses a circuit-wide global offset value $\Delta \in \{0, 1\}^t$ uniformly at random. Furthermore, let H be a pseudo-random function with $(t + \tau + 1)$ -bits output. The circuit C will be garbled in such a way that for all wires x, the garbled values $k_x^0 || \pi_x(0)$ and $k_x^1 || \pi_x(1)$ for the wire x satisfy the following invariance property:

$$k_r^1 = k_r^0 + \Delta \mod 2^t \tag{2}$$

In the following, we formally describe the process of garbling a gate z = g(x, y)in a circuit *C*. Let $k_x^0 || \pi_x(0), k_x^1 || \pi_x(1), k_y^0 || \pi_y(0)$, and $k_y^1 || \pi_y(1)$ be the garbled input wire values for the wires *x* and *y* respectively. Let $k_z^0 || \pi_z(0), k_z^1 || \pi_z(1)$ be the garbled output wire values for the output wire z = g(x, y) that will be defined. Define the operator \circ as the integer addition modulo 2^t . Then we have

$$k_x^0 \circ k_y^0 = k_x^0 + k_y^0 = \bar{x}_1 \mod 2^t k_x^0 \circ k_y^1 = k_x^1 \circ k_y^0 = k_x^0 + k_y^0 + \Delta = \bar{x}_1 + \Delta \mod 2^t k_x^1 \circ k_y^1 = k_x^0 + k_y^0 + 2\Delta = \bar{x}_1 + 2\Delta \mod 2^t$$
(3)

for some $\bar{x}_1 \in \{0, 1\}^t$. For these garbled input wire values, we have

$$\begin{split} K_{00} \| M_{00} \| N_{00} &= H_g(k_x^0 \circ k_y^0) = H_g(\bar{x}_1 \mod 2^t) \\ K_{01} \| M_{01} \| N_{01} &= H_g(k_x^0 \circ k_y^1) = H_g(\bar{x}_1 + \Delta \mod 2^t) \\ K_{10} \| M_{10} \| N_{10} &= H_g(k_x^1 \circ k_y^0) = H_g(\bar{x}_1 + \Delta \mod 2^t) \\ K_{11} \| M_{11} \| N_{11} &= H_g(k_x^1 \circ k_y^1) = H_g(\bar{x}_1 + 2\Delta \mod 2^t) \end{split}$$
(4)

where $M_{00}, M_{01}, M_{10}, M_{11} \in \{0, 1\}$ and $N_{00}, N_{01}, N_{10}, N_{11} \in \{0, 1\}^{\tau}$. It follows that

$$K_{01} \| M_{01} \| N_{01} = K_{10} \| M_{10} \| N_{10}.$$

In case that there exist two values in

$$N_{00}, N_{10}, \text{ and } N_{11}$$
 (5)

that are identical, re-start the garbling process and choose different garbled input wire values for the wires x and y. We distinguish the following two cases depending on whether g is an even gate or an odd gate.

Garbling an Odd Gate *g*. We begin by assuming that *g* represents an OR gate. Let P(X) denote a linear polynomial over \mathbb{F}_{2^t} that passes through two given points:

$$(N_{10}, K_{10})$$
 and (N_{11}, K_{11}) .

We define k_z^1 as P(0) and k_z^0 as $k_z^1 - \Delta \mod 2^t$, where k_z^0 , k_z^1 , and Δ are interpreted as integers modulo 2^t . Similarly, let Q(X) be another linear polynomial over \mathbb{F}_{2^t} passing through

$$(0, k_z^0)$$
 and (N_{00}, K_{00}) .

It's important to note that P(X) is interpolated based on situations where the output of the OR gate is 1, while Q(X) corresponds to situations where the output is 0. Let X_z be a solution of the equation P(X) = Q(X) over \mathbb{F}_{2^t} . Then, the garbled table for gate g is represented as $\langle X_z, P(X_z), c_1, c_2, c_3, c_4 \rangle = \langle X_z, Q(X_z), c_1, c_2, c_3, c_4 \rangle$, where X_z and $P(X_z)$ are elements from \mathbb{F}_{2^t} and c_1, c_2, c_3, c_4 are bits encrypting the external index bits. In other words, $\pi_z(g(b_x, b_y)) = c_i \oplus M_i$ for $i = 2\pi_x(b_x) + \pi_y(b_y) + 1$. The total size of the garbled gate is 2t + 4 bits. Excluding the external index bits, the size is 2t bits.

For an AND gate, start by selecting a linear polynomial, denoted as P(X), that passes through the points (N_{10}, K_{10}) and (N_{00}, K_{00}) . Define k_z^0 as P(0) and k_z^1 as $k_z^0 + \Delta \mod 2^t$. Next, construct another linear polynomial, denoted as Q(X), passing through the points $(0, k_z^1)$ and (N_{11}, K_{11}) . Essentially, P(X) is interpolated based on when the output of the AND gate is 0, while Q(X) is interpolated for an output of 1. The subsequent steps remain unchanged.

Alternatively, for the gate g, one can employ $\langle P(2^{\tau}), Q(2^{\tau}), c_1, c_2, c_3, c_4 \rangle$ as the garbled table, rather than using the solution point X_z for the equation P(X) = Q(X). In this scenario, the external index bit determines whether $P(2^{\tau})$ or $Q(2^{\tau})$ is used for linear interpolation during evaluation.

Garbling an Even Gate *g*. Without loss of generality, let's assume *g* is an XOR gate. For an NXOR gate, we can handle it similarly by swapping k_z^0 and k_z^1 . Consider P(X) as a linear polynomial over \mathbb{F}_{2^t} passing through points

$$(N_{00}, K_{00})$$
 and (N_{11}, K_{11}) .

Set $k_z^0 = P(0)$ and $k_z^1 = k_z^0 + \Delta \mod 2^t$, interpreting k_z^0 , k_z^1 , and Δ as integers modulo 2^t . Similarly, let Q(X) be a linear polynomial over \mathbb{F}_{2^t} passing through points

$$(0, k_z^1)$$
 and (N_{10}, K_{10}) .

P(X) is interpolated for the situation when the XOR gate's output is 0, and Q(X) for the output being 1. Find X_z , a solution of P(X) = Q(X) over $\mathbb{F}_{2'}$. The garbled table for gate g becomes $\langle X_z, P(X_z), c_1, c_2, c_3, c_4 \rangle$, where X_z and $P(X_z)$ are elements from $\mathbb{F}_{2'}$, and c_1, c_2, c_3, c_4 are bits encrypting the external index bits. In other words, $\pi_z(g(b_x, b_y)) = c_i \oplus M_i$ for $i = 2\pi_x(b_x) + \pi_y(b_y) + 1$. The total size of the garbled gate is 2t + 4 bits. Excluding external index bits, it's 2t bits. Similarly, we can use $\langle P(2^{\tau}), Q(2^{\tau}), c_1, c_2, c_3, c_4 \rangle$ as the garbled table for gate g, using external index bit information to determine whether $P(2^{\tau})$ or $Q(2^{\tau})$ should be used for linear interpolation during evaluation.

Evaluation of a Garbled Circuit. For a garbled gate $\tilde{g} = \langle X_z, P(X_z), c_1, c_2, c_3, c_4 \rangle$, where the evaluator is uncertain whether it's an even or odd gate, the evaluator receives encoded values $k_x^{b_x} || \pi(b_x)$ and $k_y^{b_y} || \pi(b_y)$ on wires *x* and *y*. The initial step involves computing

$$K||M||N = H_g(k_x^{b_x} + k_y^{b_y} \mod 2^t).$$

Then, utilizing a linear polynomial R(X) over \mathbb{F}_{2^t} passing through points (N, K) and $(X_z, P(X_z))$, the evaluator determines $k_z^{g(b_x, b_y)} = R(0)$. The output wire's external index bit is determined by $\pi_z(g(b_x, b_y)) = c_{2\pi_x(b_x)+\pi_y(b_y)+1} \oplus M$.

This evaluation process entails a cryptographic hash function operation and a linear polynomial interpolation. For the interpolation, the evaluator must find *a* and *b* in $\mathbb{F}_{2'}$ such that $aN_i + b = K_i$ and $aX_z + b = P(X_z)$, i.e., $a = (N_i - X_z)^{-1}(K_i - P(X_z))$ over $\mathbb{F}_{2'}$. In summary, the primary costs for the evaluator are one cryptographic hash function operation and one field element inverse operation over $\mathbb{F}_{2'}$.

In the above garbling scheme, an additional parameter τ is used. For larger circuits, one should choose a larger τ though for smaller circuits, one can use a smaller τ . The value of τ does not have impact on the garbling scheme security. However, it has impact on the efficiency of the garbling process. If the value of τ is too small, then the probability for two values in (5) to be identical is high and one has to re-start the garbling process more frequently. On the other hand, for large enough τ , the probability for two values in (5) to be identical is very small and one does not need to restart the garbling process at all. It is also noted that the value of τ has no impact on the garbled circuit size.

4.2 Provable Security of GPGRR2 for Φ_{topo}

In Sect. 4.1, we proposed a Gate Privacy preserving Garbled Row Reduction technique GPGRR2 such that each garbled gate contains two ciphertexts and a four-bits ciphertext. The four-bits ciphertext is optional and could be ignored since we do not use it for the scheme GPGRR2. For both odd gates and even gates, the two ciphertexts are the coordinates of a point in a two dimensional space over $\mathbb{F}_{2'}$. Thus the evaluator cannot distinguish the type of a garbled gate. The remaining part of the security proof is similar

to that of the garbling scheme Garble1 security for Φ_{topo} by Bellare, Hoang, and Rogaway [3]. The proof of Garble1 security in [3] is based on the observation that, given a pair of garbled values of the input wires, the evaluator can compute one garbled output value, but cannot distinguish the other garbled output value from random. This is true for GPGRR2 since the other garbled value is defined using a linear interpolation with a value which is unknown to the evaluator (indeed, the evaluator cannot distinguish that unknown value from random). The details are omitted here.

5 Optimized GPGRR2 and Lower Bounds

GPGRR2 is secure for Φ_{topo} and has comparable efficiency with other GRR techniques that are only secure for Φ_{circ} . For example, Pinkas et al's Garbled Row Reduction GRR2 [14] converts each odd gate to two ciphertexts and each even gate to one ciphertext. Pinkas et al's GRR2 technique requires the evaluator to carry out a degree two polynomial interpolation while GPGRR2 only requires a linear interpolation.

Zahur, Rosulek, and Evans [19] proved that "every ideally secure linear garbling scheme for AND gates must have two ciphertexts for each garbled gate". Zahur, Rosulek, and Evans's proof is based on linear operations in the finite field \mathbb{F}_{2^t} . In this section, we show that if we use linear operations over integers (instead of linear operations over \mathbb{F}_{2^t}), we can design a secure linear garbling scheme that garbles an AND/OR gate to only one ciphertext. This technique is further used to optimize the garbling scheme GPGRR2. In an ideal case, the optimized garbling scheme GPGRR2 may generate garbled circuits of 1.5*n* ciphertexts for circuits of *n* gates. That is, the garbled circuit is around 1.5*nt* bits. But the reader should be reminded that generally this ideal size is not achievable. Indeed, the problem of finding an optimized garbled circuit for a given circuit is **NP**-complete following a similar proof as that in FleXOR [8].

The garbling scheme GPGRR2 in Sect. 4.1 used a circuit-wide global offset value Δ though it is not necessary to have this offset value Δ to be global. In order for the construction in Sect. 4.1 to work, it suffices to have the following invariance property

$$k_x^0 + k_y^1 = k_x^1 + k_y^0 \mod 2^t \tag{6}$$

for all gates z = g(x, y) with garbled input wire values $k_x^0 || \pi_x(0)$, $k_x^1 || \pi_x(1)$, $k_y^0 || \pi_y(0)$, and $k_y^1 || \pi_y(1)$ respectively. Based on this observation, the garbling scheme GPGRR2 could be optimized using the following principle: for each gate g with two input wires x and y, if x is the output wire of a gate g_1 and y is the output wire of a gate g_2 , then we can construct a garbled gate for g_1 with one ciphertext and a garbled gate for g_2 with two ciphertexts. The gates g_1 and g_2 are constructed in such a way that the Eq. (6) is satisfied.

As an example of optimized garbling scheme GPGRR2, we construct a Φ_{topo} -secure garbled circuit of 4-ciphertexts for the 3-gate circuit " $(x_1 \land x_2) \lor (x_3 \land x_4)$ ". Let g_1 be the gate $x_5 = (x_1 \land x_2)$, g_2 be the gate $x_6 = (x_3 \land x_4)$, and g_3 be the gate $x_7 = (x_5 \lor x_6)$ respectively. Assume that the invariance property (6) is satisfied for garbled input wire labels for gates g_1 and g_2 . That is, (6) is satisfied by replacing x, y with x_1, x_2 (or with x_3, x_4) respectively. Similar to the original GPGRR2 garbling scheme, we define the operator \circ as the integer addition modulo 2^t. **Garbling the Gate** g_1 : " $x_5 = (x_1 \wedge x_2)$ ". Let $k_{x_1}^0 || \pi_{x_1}(0)$, $k_{x_1}^1 || \pi_{x_1}(1)$, $k_{x_2}^0 || \pi_{x_2}(0)$, and $k_{x_2}^1 || \pi_{x_2}(1)$ be the garbled input wire values for the wires x_1 and x_2 respectively. For $i_1, i_2 \in \{0, 1\}$, let

$$K_{i_1i_2} \| M_{i_1i_2} \| N_{i_1i_2} = H_{g_1}(k_{x_1}^{i_1} \circ k_{x_2}^{i_2}).$$

By the invariance property (6), we have

$$k_{x_1}^0 \circ k_{x_2}^1 = k_{x_1}^1 \circ k_{x_2}^0 \mod 2^t$$

This implies that $K_{01}||M_{01}||N_{01} = K_{10}||M_{10}||N_{10}$. In case that there are two values from N_{00} , N_{01} , and N_{11} that are identical, re-start the garbling process to choose different garbled input wire values for the wires x_1 and x_2 .

Let P(X) be a linear polynomial over \mathbb{F}_{2^t} passing through the two points (N_{00}, K_{00}) and (N_{01}, K_{01}) . Let Q(X) be a linear polynomial over \mathbb{F}_{2^t} passing through the two points (N_{11}, K_{11}) and $(2^{\tau}, P(2^{\tau}))$. Set $k_{x_5}^0 = P(0)$ and $k_{x_5}^1 = Q(0)$. Then the garbled table for the gate g_1 is $\langle P(2^{\tau}), c_1, c_2, c_3, c_4 \rangle$ where $P(2^{\tau})$ is an element from \mathbb{F}_{2^t} and c_1, c_2, c_3, c_4 are bits encrypting the external index bits. That is, $\pi_{x_5}(g(b_{x_1}, b_{x_2})) = c_i \oplus M_i$ for $i = 2\pi_{x_1}(b_{x_1}) + \pi_{x_2}(b_{x_2}) + 1$. The total size of the garbled gate is t + 4 bits.

Garbling the Gate g_2 : " $x_6 = (x_3 \wedge x_4)$ ". Let $k_{x_3}^0 \| \pi_{x_3}(0)$, $k_{x_3}^1 \| \pi_{x_3}(1)$, $k_{x_4}^0 \| \pi_{x_4}(0)$, and $k_{x_4}^1 \| \pi_{x_4}(1)$ be the garbled input wire values for the wires x_3 and x_4 respectively. For $i_1, i_2 \in \{0, 1\}$, let

$$K_{i_1i_2} \| M_{i_1i_2} \| N_{i_1i_2} = H_{g_1}(k_{x_3}^{i_1} \circ k_{x_4}^{i_2}).$$

By the invariance property (6), we have

$$k_{x_3}^0 \circ k_{x_4}^1 = k_{x_3}^1 \circ k_{x_4}^0 \mod 2^4$$

This implies that $K_{01}||M_{01}||N_{01} = K_{10}||M_{10}||N_{10}$. In case that there are two values from N_{00}, N_{01} , and N_{11} that are identical, re-start the garbling process to choose different garbled input wire values for the wires x_3 and x_4 .

Let P(X) be a linear polynomial over \mathbb{F}_{2^t} passing through the two points (N_{00}, K_{00}) and (N_{01}, K_{01}) . Set $k_{x_6}^0 = P(0)$ and

$$k_{x_6}^1 = k_{x_6}^0 + k_{x_5}^1 - k_{x_5}^0 \mod 2^t \tag{7}$$

where we interpret $k_{x_5}^0$, $k_{x_5}^1$, $k_{x_6}^0$, and $k_{x_6}^1$ as integers modulo 2^t. Note that the Eq. (7) guarantees that the invariance (6) is satisfied for the gate g_3 with input wires x_5 , x_6 . Let Q(X) be a linear polynomial over \mathbb{F}_{2^t} passing through the two points $(0, k_{x_6}^1)$ and (N_{11}, K_{11}) . Let X_z , be a solution of the equation P(X) = Q(X) over \mathbb{F}_{2^t} . Then the garbled table for the gate g is $\langle X_z, P(X_z), c_1, c_2, c_3, c_4 \rangle$ where X_z and $P(X_z)$ are elements from \mathbb{F}_{2^t} and c_1, c_2, c_3, c_4 are bits encrypting the external index bits. That is, $\pi_{x_6}(g(b_{x_3}, b_{x_4})) = c_i \oplus M_i$ for $i = 2\pi_{x_2}(b_{x_2}) + \pi_{x_4}(b_{x_4}) + 1$. The total size of the garbled gate is 2t + 4 bits.

Garbling the Gate g_3 : " $x_7 = (x_5 \lor x_6)$ ". By the Eq. (7), the invariance (6) is satisfied for the gate g_3 with input wires x_5, x_6 . Thus the garbling process for the gate g_1 could be used to construct a garbled gate \tilde{g}_3 with one ciphertext and 4 bits. That is, the total size of the garbled gate \tilde{g}_3 is t + 4 bits. The details are omitted here.

As a summary, the garbled circuit for the 3-gate circuit " $(x_1 \land x_2) \lor (x_3 \land x_4)$ " contains four ciphertexts (one for g_1 , two for g_2 , and one for g_3) and twelve bits. The total size of the garbled circuit is 4t + 12 bits. Note that for such kind of 3-gate circuit, the best reported garbled circuit size in the literature is 6t + 12 bits. The proof of security for the optimized GPGRR2 remains the same as that for GPGRR2 and the details are omitted here.

6 Reducing Ciphertext Size in Private Function Evaluations

In a two party PFE protocol, participant P_1 has a string x, participant P_2 has a function f and the outcome of the protocol is that P_2 learns f(x) and nothing about x (beyond its length), while P_1 learns nothing about f (beyond side information we are willing to leak, such as the number of gates in the circuit f). Similarly, the outcome of the two party PFE protocol could be that P_1 learns f(x) and nothing about f, while P_2 learns nothing about x. For the general case that P_2 has a private input x_2 himself, one can include the value of x_2 in the circuit computing f itself.

Traditionally, there are two approaches to design PFE protocols: using universal circuits and using homomorphic encryption. Universal circuit based PFE protocols introduce extra overhead and result in more complicated implementations. For the class of size *n* circuits, Valiant's universal circuit [16] is of size $19n \log n$ with depth O(n) and Kolesnikov and Schneider's universal circuit [10] is of size $1.5n \log^2 n$ though it has smaller universal circuits for circuit sizes less than 5000. Kiss and Schneider [7] further reduced Valiant's bound by constructing universal circuit where the number of AND gates is bounded by $5n \log n$ and where the number of total gates is bounded by $20n \log n$. Though Kiss and Schneider [7] showed that it is practical to implement PFE using Valiant's size-optimized universal circuits, they claimed that "*universal circuits are not the most efficient solution to perform PFE*". Specifically, SFE protocol implementation for functions with billions of gates has been reported in the literature though the best reported universal circuit based PFE protocol implementation [7] is for simulated circuits of 300,000 gates, which results in a universal circuit of at most 245, 627, 140 gates (and at most 61,406,785 AND gates).

6.1 PFE in Semi-honest Security Model

Katz and Malka [6] and Mohassel and Sadeghian [11] proposed efficient constant-round Yao's garbled circuit based PFE protocols with communication/computational complexity linear in the size of the circuit computing f. The PFE protocols in [6] and [11] require that each circuit gate contain four ciphertexts. In the following, we use our GPGGR2 techniques to reduce the number of each garbled gate's ciphertexts to three in these PFE protocols. Thus we have a 25% reduction in the garbled circuit size for these PFE protocols. Note that free-XOR, GGR2, and half-gates could not be used to reduce the ciphertext numbers in these PFE protocols. The garble row reduction technique GGR3 cannot be used to reduce the ciphertext numbers in these PFE protocols either since the wire label values are obliviously chosen by both parties. Katz and Malka [6] introduced one PFE protocol with provable security in the semi-honest security model with the assumption of semantic security for homomorphic encryption schemes and linear-related key security for symmetric encryption schemes. They also introduced a more efficient variant PFE protocol with provable security in the random oracle model. The second protocol is roughly twice as efficient as the first one. The authors of [6] mentioned that the random oracle requirement for the second protocol may not be necessary and its security without random oracle may be proved if further assumptions on the symmetric-key encryption scheme is made. In the following, we reduce the number of ciphertexts in the second PFE protocol [6] (with security in random oracle) by a factor of 25%. The same reduction could be made for the PFE protocols in Mohassel and Sadeghian [11].

PFE protocols in [6,11] use a singly homomorphic public-key encryption scheme sHE(Gen, Enc, Dec) such as the additive homomorphic Paillier encryption scheme [13]. In the following, we will give the protocol description in sufficient details without a formal definition. For a formal definition, the readers are referred to [6]. In our discussion, we assume that P_2 learns the output f(x). The protocol can be modified to let P_1 learn the output straightforwardly. Let C_f be a circuit that computes P_2 's function f and that C_f contains only NAND gates. Assume that C_f have n gates and it take l-bit inputs. In a high level, the PFE protocol proceeds as follows.

- 1. Given the pair (n, l), P_1 generates a sequence of n gates.
- 2. P_2 obliviously connects these gates to form a circuit C_f using a singly homomorphic encryption scheme.
- 3. P_1 produces a garbled circuit corresponding to the circuit C_f by garbling the *n* gates independently (which are connected obliviously).
- 4. P_1 gives an encoded version of the input x to P_2 and P_2 evaluates the garbled circuit to obtain the circuit output $C_f(x) = f(x)$.

Now we describe an instantiation of the above PFE protocol with reduced number of ciphertexts for each garbled gate. Let the outgoing wires set $OW = \{ow_1, \dots, ow_l, \dots, ow_{l+n}\}$ be the union of the set of l input wires and the n output wires for all gates in the circuit C_f . Let the incoming wires set $IW = \{iw_1, \dots, iw_{2n}\}$ be the set of input wires to each gate of the circuit. The topology of the circuit C_f can be described by a mapping $\pi_C : \{1, \dots, |OW|\} \rightarrow \{1, \dots, |IW|\}$. Though each internal gate has only a single outgoing wire, it can have arbitrary fan-out. This is handled by mapping an outgoing wire $ow_i \in OW$ to multiple incoming wires in IW. The full protocol semiPFE is described in Fig. 1.

Correctness. In step (5) of the protocol semiPFE, if the linear polynomial $T_i(X) = P_i(X)$, then the equation (9) shows that $k_{l+i} = k_{l+i}^0 + \Delta$. Otherwise $T_i(X) = Q_i(X)$ and the equation (9) shows that $k_{l+i} = k_{l+i}^0$. This shows the correctness of the protocol.

Security. The security for PFE protocols can be defined in the semi-honest adversary model and in the malicious adversary model. In the semi-honest model, we assume that both participants follow the protocol honestly but both of them may be curious and try to learn some additional information from their protocol view. Let $view_i(1^k, x, C_f)$ (i = 1, 2) be the view of the participant P_i during the PFE protocol execution when P_1 holds input x and P_2 holds $C_f \in C$, where C is a class of circuits. The protocol is called

- 1. P_1 generates a private and public key pair (sk, pk) for an additive homomorphic encryption scheme such as Paillier scheme and chooses a circuit-wide global offset value $\Delta \in \mathbb{F}_{2^l}$. P_1 chooses l + n outgoing-wire keys $k_i^0 \in \mathbb{F}_{2^l}$ and sets $k_i^1 = k_i^0 + \Delta$ for $1 \le i \le l + n$. P_1 sends pk, $\text{Enc}_{pk}(k_1^0), \dots, \text{Enc}_{pk}(k_{l+n}^0)$ to P_2 .
- 2. For each gate *i* with incoming wires ow_j , ow_k , P_2 chooses random $a_i, a'_i \in \mathbb{F}_{2^i}$ and re-randomize the encrypted wire labels for gate *i* as

$$encG_i = \left(Enc_{pk}(k_i^0 + a_i), Enc_{pk}(k_k^0 + a'_i), Enc_{pk}(k_{l+i}^0)\right)$$

 P_2 sends $encG_1, \cdots, encG_n$ to P_1 .

3. For each $i = 1, \dots, n$, P_1 decrypts $encG_i$ to obtain the keys $(L_i^0, R_i^0, k_{l+i}^0)$ where $L_i^0 = k_j^0 + a_i$ and $R_i^0 = k_k^0 + a'_i$. P_1 defines $L_i^1 = L_i^0 + \Delta$, $R_i^1 = R_i^0 + \Delta$, and prepares the garbled version of the *i*-th gate as follows. Let H_i be a gate *i* specific hash function with $(t + \tau)$ -bit outputs and let

$$K_{00}||N_{00} = H_i(L_i^0 + R_i^0 \mod 2^t) K_{01}||N_{01} = H_i(L_i^0 + R_i^0 + \Delta \mod 2^t) K_{10}||N_{10} = H_i(L_i^0 + R_i^0 + \Delta \mod 2^t) K_{11}||N_{11} = H_i(L_i^0 + R_i^0 + 2\Delta \mod 2^t)$$
(8)

where $K_{00}, K_{01}, K_{10}, K_{11} \in \mathbb{F}_{2^t}$ and $N_{00}, N_{01}, N_{10}, N_{11} \in \mathbb{F}_{2^\tau}$.

- (a) Let $P_i(X)$ be a linear polynomial passing through the points: (N_{00}, K_{00}) and (N_{01}, K_{01}) .
- (b) Set $\gamma_i^0 = P_i(0) \Delta \mod 2^t$ and let $Q_i(X)$ be a linear polynomial passing through the points: $(0, \gamma_i^0)$ and (N_{11}, K_{11}) .
- (c) Let $X_{i,0}$ be a solution of the equation $P_i(X) = Q_i(X)$.
- (d) The garbled version of the *i*-th gate is $GG_i = \langle X_{i,0}, P_i(X_{i,0}), k_{l+i}^0 \gamma_i^0 \rangle$
- 4. P_1 sends GG_1, \dots, GG_n to P_2 . In addition, for the input $x = x_1 \cdots x_l$ that P_1 holds, P_1 sends $k_1^{x_1}, \dots, k_l^{x_l}$ to P_2 .
- 5. Now P_2 has the keys $k_1^{x_1}, \dots, k_l^{x_l}$ for the outgoing wire $i \in \{1, \dots, l\}$. For each gate *i* that P_2 has both incoming wire key labels, P_2 computes the *i*-gate outgoing wire key label k_{l+i} as follows: Assume that the *i*-th gate have incoming wires ow_j , ow_k and P_2 have already determined keys k_j, k_k for outgoing wires ow_j, ow_k . P_2 computes keys $L_i = k_j + a_i$ and $R_i = k_k + a'_i$ for the left and right incoming wires to gate *i* respectively. P_2 computes

$$K_i || N_i = H_i (R_i + L_i \mod 2^t).$$

Let $T_i(X)$ be a linear polynomial passing through the following two points: (N_i, M_i) and $(X_{i,0}, P_i(X_{i,0}))$. P_2 sets the outgoing wire keys

$$k_{l+i} = T_i(0) + k_{l+i}^0 - \gamma_i^0 = k_{l+i}^0 + T_i(0) - P_i(0) + \Delta \mod 2^t.$$
(9)

Once P_2 has determined key k_{l+n} , it can use an oblivious transfer protocol with P_1 to learn the circuit output f(x).

Fig. 1. Protocol semiPFE

a secure C-PFE protocol if there exist probabilistic polynomial time simulators S_1 and S_2 such that for all probabilistic polynomial time algorithm D, we have

$$|Pr[D(S_1(1^{\kappa}, x)) = 1] - Pr[D(view_1(1^{\kappa}, x, C_f)) = 1]| = negl(\kappa)$$

and

$$\left| Pr[D(S_2(1^{\kappa}, C_f, C_f(x)) = 1] - Pr[D(\text{view}_2(1^{\kappa}, x, C_f)) = 1] \right| = \text{negl}(\kappa)$$

The provable security in the above semi-honest adversary model for our protocol semiPFE follows from the proof in Katz and Malka [6] by observing the following fact: given a pair of key values of the incoming wires of a gate, P_2 can compute one key values for the outgoing wire, but cannot distinguish the other key values for the outgoing wire from random. This is true for the protocol semiPFE since the other key values for the outgoing wire is defined using a linear interpolation with a value which is unknown to P_2 . The details are omitted here.

Mohassel and Sadeghian [11] proposed a framework for designing PFE protocols by considering circuit topology privacy and secure evaluation of circuit gates independently. Specifically, they reduce the task of the circuit topology hiding (CTH) to oblivious evaluation of a mapping that encodes the topology of the circuit and they design a private gate evaluation (PGE) sub-protocol. Mohassel and Sadeghian then showed how to naturally combine CTH and PGE to obtain an efficient and secure PFE. The CTH functionality is implemented by an efficient oblivious evaluation of the mapping π_C using generalized switching networks and oblivious transfers. The PGE functionality is a PFE protocol for a single gate circuit where P_2 provides the gate's functionality and P_1 provides the input to the gate. The PGE functionality is based on Yao's garbled circuit and our above linear interpolation approach in the protocol semiPFE could be used in the same way to improve the PGE efficiency by a factor of 25%. The details are omitted here.

6.2 PFE Protocols Against Malicious Participants

Section 6.1 presents an efficient protocol semiPFE against semi-honest adversaries. This protocol is insecure against active adversaries. For example, in step (2) of the protocol semiPFE, P_2 may generate the wires $encG_i$ in a malicious way to learn P_1 's private input x. Specifically, assume that ow_1, \dots, ow_l are the circuit input wires. For each gate i, P_2 can choose random $a_i, a'_i \in \mathbb{F}_{2^t}$ and re-randomize the encrypted wire labels for gate i as

$$encG_i = (Enc_{pk}(\lambda(j,l)k_j^0 + a_i), Enc_{pk}(\lambda(j,l)k_k^0 + a'_i), Enc_{pk}(k_{l+i}^0))$$

where

$$\lambda(j,l) = \begin{cases} 0 & \text{if } j < l \\ 1 & \text{if } j \ge l \end{cases}$$

 P_2 sends $encG_1, \dots, encG_n$ to P_1 . With this revision of the $encG_i, P_2$ may learn the last bit x_l of P_1 's private input $x = x_1 \dots x_l$. Assume that P_1 provide the wire labels $k_1^{x_1}, \dots, k_l^{x_l}$ for the private input x. By the construction of $encG_i, P_2$ can evaluate

the garbled circuit to obtain $f(0, \dots, 0, x_l)$. By comparing whether $f(0, \dots, 0, x_l) = f(0, \dots, 0, 0)$ or $f(0, \dots, 0, x_l) = f(0, \dots, 0, 1)$, P_2 may learn the value of x_l .

Zero-knowledge proofs could be used to make the protocol semiPFE secure against active malicious participants. However, performance of the resulting protocol could not compete with PFE protocols based on SFE with universal circuits in the malicious adversary model.

Security definition for PFE protocols against malicious adversaries uses the real protocol execution to simulate an ideal world protocol execution by a trusted party (see, e.g., Canetti [4]). In the real-world execution, protocol participants jointly run the protocol and the adversary \mathcal{A} is allowed to corrupt a participant. Let \mathcal{A}_i (i = 1, 2) be the probabilistic polynomial time adversary that corrupts the participant P_i . In the ideal world evaluation, all participants submit their inputs to a trusted party who will evaluate the entire protocol himself and there is a simulator S_i for the subset of participants controlled by the adversary \mathcal{A}_i in the real world evaluation. Intuitively, a protocol is called a secure *C*-PFE protocol if there exist simulators such that the real world protocol evaluation simulates the ideal world protocol evaluation. This intuition is formally captured by requiring that the following two distributions are computationally indistinguishable.

- The honest participants' outputs and the adversary \mathcal{R} 's view in the real-world execution.
- The honest participants' outputs and the simulator S's view in the ideal-world execution.

Real-World Execution. In the real world execution, let out_1 , out_2 denote the output of P_1 and P_2 respectively. For each individual adversary \mathcal{A}_i (i = 1, 2), there are two candidate views that we should consider. As an example, for the adversary \mathcal{A}_1 , we need to consider the following two scenarios.

- If P_2 is honest, then we need to consider $view_{\mathcal{A}_1,1} = view_{\mathcal{A}_1} \cup out_2$.
- If P_2 is dishonest, then we need to consider $view_{\mathcal{A}_1,0} = view_{\mathcal{A}_1}$.

Ideal-World Execution. In the ideal world execution, P_1 sends x to the trusted party and P_2 sends C_f to the trusted party if they are honest. For a dishonest participant, she sends either what she holds or a random string (it could be in the correct syntax format of a legal protocol message) to the trusted party. The trusted party computes $C_f(x)$ and sends it to P_2 . We use out₁, out₂ to denote the output sent to P_1 and P_2 respectively by the trusted party and use S_1 , S_1 to denote the simulators for \mathcal{A}_1 and \mathcal{A}_2 respectively. For each individual adversary, we need to construct a simulator S (that is, S_1 or S_2). But for this single simulator S, we need to consider two candidate views derived from the other adversary who may control the other participants. As an example, for the adversary \mathcal{A}_1 , we need to consider the following two potential views.

- If P_2 is honest, then we need to consider $view_{S_1,1} = view_{S_1} \cup out_2$.
- If P_2 is dishonest, then we need to consider $view_{S_1,0} = view_{S_1}$.

Definition 3. A two party protocol Π is called a secure C-PFE protocol if there are probabilistic polynomial time simulators S_1 and S_2 such that the following four pairs

of probabilistic distributions are computationally indistinguishable over the security parameter κ .

$$\begin{split} & \mathsf{view}_{\mathcal{S}_1,0}(1^{\kappa}, x, C_f) \stackrel{\sim}{\sim} \mathsf{view}_{\mathcal{R}_1,0}(1^{\kappa}, x, C_f) \\ & \mathsf{view}_{\mathcal{S}_1,1}(1^{\kappa}, x, C_f) \stackrel{\sim}{\sim} \mathsf{view}_{\mathcal{R}_1,1}(1^{\kappa}, x, C_f) \\ & \mathsf{view}_{\mathcal{S}_2,0}(1^{\kappa}, x, C_f) \stackrel{\sim}{\sim} \mathsf{view}_{\mathcal{R}_2,0}(1^{\kappa}, x, C_f) \\ & \mathsf{view}_{\mathcal{S}_2,1}(1^{\kappa}, x, C_f) \stackrel{\sim}{\sim} \mathsf{view}_{\mathcal{R}_2,1}(1^{\kappa}, x, C_f). \end{split}$$

In the above list, the views are dependent on the security parameter κ which is omitted.

Katz and Malka [6] proposed a revision of their PFE protocol to achieve security against a malicious participant P_1 . Specifically, they revised their protocol by requiring P_1 to prove to P_2 the following facts (in the following, we use our protocol semiPFE instead of their original protocols):

- The public key pk communicated in Step 1 of semiPFE was generated using the specified key generation algorithm sHE.Gen.
- The ciphertexts $\text{Enc}_{pk}(k_1^0), \dots, \text{Enc}_{pk}(k_{l+n}^0)$ communicated in Step 1 of semiPFE are well-formed ciphertexts using the public key pk.
- The garbled circuits in Step 3 are constructed correctly.
- The inputs are encoded correctly in Step 4.

A similar proof as in [6] could be used to show that

$$\mathsf{view}_{\mathcal{S}_{1},1}(1^{\kappa}, x, C_{f}) \stackrel{c}{\sim} \mathsf{view}_{\mathcal{A}_{1},1}(1^{\kappa}, x, C_{f})$$
$$\mathsf{view}_{\mathcal{S}_{1},0}(1^{\kappa}, x, C_{f}) \stackrel{c}{\sim} \mathsf{view}_{\mathcal{A}_{1},0}(1^{\kappa}, x, C_{f})$$

for our protocol semiPFE. In the same way, if we require P_2 to prove to P_1 the knowledge of $a_i, a'_i \in \mathbb{F}_{2^i}$ $(i = 1, \dots, n)$ for the ciphertexts

$$\operatorname{encG}_{i} = \left(\operatorname{Enc}_{\operatorname{pk}}(k_{i}^{0} + a_{i}), \operatorname{Enc}_{\operatorname{pk}}(k_{k}^{0} + a_{i}'), \operatorname{Enc}_{\operatorname{pk}}(k_{l+i}^{0})\right)$$

communicated in Step 2 and that the circuit encoded using $encG_1, \dots, encG_{n+l}$ belongs to *C*, then we can show that

$$\mathsf{view}_{\mathcal{S}_{2},1}(1^{\kappa}, x, C_{f}) \stackrel{c}{\sim} \mathsf{view}_{\mathcal{A}_{2},1}(1^{\kappa}, x, C_{f})$$
$$\mathsf{view}_{\mathcal{S}_{2},0}(1^{\kappa}, x, C_{f}) \stackrel{c}{\sim} \mathsf{view}_{\mathcal{A}_{2},0}(1^{\kappa}, x, C_{f}).$$

6.3 Circuit Private PFE Protocols with Malicious P₁

The discussion in the preceding section shows that the protocol semiPFE could be revised to be secure against malicious participants using zero-knowledge proofs. Zero-knowledge proofs are normally expensive and the resulting protocols may not outperform universal circuit based PFE protocols. In certain practical applications, we may want to protect the circuit privacy from a malicious participant P_1 and assume that P_2 is semi-honest. For this kind of scenarios, it is not necessary for the participant P_1 to prove to P_2 that the garbled circuits in Step 3 are constructed correctly. Since it will not help P_1 to learn any information of P_2 's circuit C_f by constructing incorrect garbled

circuits in Step 3 of semiPFE. Similarly, P_1 does not need to prove to P_2 that the inputs are encoded correctly in Step 4. In the following paragraphs, we sketch the construction of a more efficient protocol privPFE that leaks zero information about the circuit C_f to a malicious P_1 .

Though other singly homomorphic encryption schemes could be used, we use Paillier's encryption scheme to simplify the discussion. In Paillier's scheme, the public key $p\mathbf{k} = (n, g)$ consists of two integers where n = pq divides the order of $g \in \mathbb{Z}_{n^2}^*$ and p, q are two prime numbers. The private key $\mathbf{sk} = (\lambda, \mu)$ is a pair of integers where $\lambda = \operatorname{lcm}(p - 1, q - 1)$ and $\mu = \left(\frac{(g^{\lambda} \mod n^2) - 1}{n}\right)^{-1} \mod n$. A message *m* is encrypted to $c = \operatorname{Enc}_{pk}(m) = g^m \cdot r^n \mod n^2$ for a randomly selected $r \in \mathbb{Z}_n^*$. A ciphertext *c* is decrypted to the message $m = \operatorname{Dec}_{\mathbf{sk}}(c) = \frac{\mu((c^{\lambda} \mod n^2) - 1)}{n} \mod n$.

In the protocol semiPFE, the only message that P_2 sends to P_1 is the oblivious gates $encG_i$ $(i = 1, \dots, n)$. P_1 will not learn any information about the circuit C_f if P_1 cannot correlate the ciphertext $Enc_{pk}(k_i^0 + a_i)$ to the ciphertext $Enc_{pk}(k_i^0)$. This is guaranteed

- 1. P_1 generates a private and public key pair (sk, pk) for Paillier's encryption scheme where $sk = (\lambda, \mu)$, pk = (n, g), and n = pq.
- 2. P_1 chooses two circuit-wide global offset values $\Delta, \Gamma \in \mathbb{F}_{2^l}$. P_1 chooses l + n outgoing-wire keys $k_i^0 \in \mathbb{F}_{2^l}$ and sets $k_i^1 = k_i^0 + \Delta$ for $1 \le i \le l + n$. P_1 sends pk, $\operatorname{Enc}_{pk}(k_1^0), \dots, \operatorname{Enc}_{pk}(k_{l+n}^0)$ to P_2 .
- 3. P_2 verifies that $g \in \mathbb{Z}_{n^2}^*$ and $\operatorname{Enc}_{pk}(k_i^0) \in \mathbb{Z}_{n^2}^*$ for $i = 1, \dots, n+l$.
- 4. For each gate *i* with incoming wires ow_j , ow_k , P_2 chooses random $a_i, a'_i \in \mathbb{F}_{2^i}$ and re-randomize the encrypted wire labels for gate *i* as

$$\operatorname{encG}_{i} = \left(\operatorname{Enc}_{\operatorname{pk}}(k_{i}^{0} + a_{i}), \operatorname{Enc}_{\operatorname{pk}}(k_{k}^{0} + a_{i}'), \operatorname{Enc}_{\operatorname{pk}}(k_{l+i}^{0})\right).$$

 P_2 sends $encG_1, \cdots, encG_n$ to P_1 .

5. For each $i = 1, \dots, n$, P_1 decrypts $encG_i$ to obtain the keys $(L_i^0, R_i^0, k_{l+i}^0)$ where $L_i^0 = k_j^0 + a_i$ and $R_i^0 = k_k^0 + a'_i$. P_1 defines $L_i^1 = L_i^0 + \Delta$, $R_i^1 = R_i^0 + \Delta$, and prepares the garbled version of the *i*-th gate as follows. Let H_i be a gate *i* specific hash function with $(t + \tau)$ -bit outputs and let

$$\begin{split} &K_{00} \| N_{00} = H_i (\Gamma + L_i^0 + R_i^0 \mod 2') \\ &K_{01} \| N_{01} = H_i (\Gamma + L_i^0 + R_i^0 + \Delta \mod 2') \\ &K_{10} \| N_{10} = H_i (\Gamma + L_i^0 + R_i^0 + \Delta \mod 2') \\ &K_{11} \| N_{11} = H_i (\Gamma + L_i^0 + R_i^0 + 2\Delta \mod 2') \end{split}$$
(10)

where $K_{00}, K_{01}, K_{10}, K_{11} \in \mathbb{F}_{2^{t}}$ and $N_{00}, N_{01}, N_{10}, N_{11} \in \mathbb{F}_{2^{\tau}}$. Set the garbled version of the *i*-th gate as $\mathsf{GG}_{i} = \langle X_{i,0}, P_{i}(X_{i,0}), k_{l+i}^{0} - \gamma_{i}^{0} + \Gamma \rangle$ where $\langle X_{i,0}, P_{i}(X_{i,0}), k_{l+i}^{0} - \gamma_{i}^{0} \rangle$ is constructed in the same way as Step 5 of the protocol semiPFE.

- 6. P_1 sends GG_1, \dots, GG_n to P_2 . In addition, for the input $x = x_1 \dots x_l$ that P_1 holds, P_1 sends $\Gamma + k_1^{x_1}, \dots, \Gamma + k_l^{x_l}$ to P_2 .
- 7. The process for P_2 to evaluate the garbled circuit to obtain $C_f(x)$ remains the same as the Step 5 of the protocol semiPFE.

by the semantic security of the homomorphic encryption scheme. In other words, if P_1 can prove to P_2 that the public key is generated using the specified key generation algorithm then the circuit privacy is guaranteed. However, if Paillier's scheme is used then zero knowledge proof is necessary. It is sufficient for P_2 to check that the condition $g \in \mathbb{Z}_{n^2}^*$ holds for the public key (n, g) generated by P_1 where we assume that P_2 will not leak any information about the circuit C_f on purpose. Specifically, the new protocol privPFE is described in Fig. 2.

Correctness. The correctness of the protocol privPFE can be verified straightforwardly in the same way as that for the protocol semiPFE.

Privacy. In the following, we sketch a proof of privacy for the protocol privPFE against malicious P_1 . First we show that a dishonest P_1 will learn nothing about the circuit C_f except the circuit size unless P_2 leaks certain information about C_f on purpose. As we have mentioned in the preceding paragraphs, the only information that P_2 sends to P_1 is the set of oblivious gates

$$encG_i = \left(Enc_{pk}(k_i^0 + a_i), Enc_{pk}(k_k^0 + a_i'), Enc_{pk}(k_{l+i}^0)\right)$$

for $i = 1, \dots, n$. In Step 3, P_2 verifies that $g \in \mathbb{Z}_{n^2}^*$ and $\text{Enc}_{pk}(k_i^0) \in \mathbb{Z}_{n^2}^*$ for $i = 1, \dots, n + l$. Thus if a_i, a'_i are chosen uniformly at random, then $\text{Enc}_{pk}(k_j^0 + a_i)$, $\text{Enc}_{pk}(k_k^0 + a'_i)$ are values distributed uniformly at random over $\mathbb{Z}_{n^2}^*$ and are independent of the values $\text{Enc}_{pk}(k_j^0)$ and $\text{Enc}_{pk}(k_k^0)$. In a summary, unless P_2 chooses a_i, a'_i nonuniformly, P_1 learns no information about the circuit C_f except the circuit size. Note that the privacy of C_f is preserved unconditionally. Secondly, a semi-honest participant P_2 learns nothing about the private input x except the final output f(x). The proof is similar to the proofs in [6] and the details are omitted. This completes the proof of privacy.

6.4 Secure PFE Protocols Against Two Malicious Participants

In order to protect the privacy of P_1 's input x against a malicious P_2 in the protocol privPFE, P_2 needs to prove to P_1 that the circuit defined by the oblivious gates encG₁,..., encG_{n+l} belongs to the specified circuit class C. Otherwise, the circuit corresponding to these oblivious gates could be a simple circuit such as $\neg(x_1 \land x_1)$ which leaks information about the input value $x = x_1 \cdots x_l$ from the output $C_f(x)$. In other words, the protocol privPFE is not secure against malicious participant P_2 .

For PFE protocols with circuit owner P_2 learning the final output $C_f(x)$, it seems to be inherently necessary to have participant P_2 to prove to P_1 that the circuit defined by the oblivious gates $encG_1, \dots, encG_{n+l}$ belongs to the specified circuit class C. Otherwise, the protocol could not be secure against a malicious participant P_2 . For applications where only the participant P_1 needs to learn the final output $C_f(x)$, the protocol privPFE is also secure against both malicious P_1 and malicious P_2 . Let us revise the protocol privPFE to a new protocol secPFE as in Fig. 3.

The correctness of the protocol secPFE is straightforward. For the security proof, we distinguish two cases. In the first case we assume that P_1 is malicious. In this case the proof is identical to the privacy proof for the protocol privPFE since the only extra information that P_2 delivers to P_1 is the final output key label k_{n+l}^0 or $k_{n+l}^0 + \Delta$ which

The protocol proceeds as in privPFE. In the last step, instead of P_2 obliviously learning exactly one of the key labels k_{n+l}^0 and $k_{n+l}^0 + \Delta$, P_2 handles the garbled circuit evaluation output to P_1 . Note that the garbled circuit evaluation output is either k_{n+l}^0 or $k_{n+l}^0 + \Delta$.

Fig. 3. Protocol secPFE

leaks no information about the circuit topology. In other words, a malicious P_1 learns no information about the circuit C_f . In the second case, we assume that P_2 is malicious. In this case, let ow_1, \dots, ow_l be the *l* input wires. Assume that the *i*th gate

$$encG_i = \left(Enc_{pk}(k_i^0 + a_i), Enc_{pk}(k_k^0 + a_i'), Enc_{pk}(k_{l+i}^0)\right)$$

contains one or two input wires. Note that P_1 garbles this *i*th gate using ingoing key labels $(\Gamma + k_j^0 + a_i, \Gamma + k_j^0 + a_i + \Delta)$ and $(\Gamma + k_k^0 + a_k, \Gamma + k_k^0 + a_k + \Delta)$ respectively. Without loss of generality, we may assume that $j \le l$ (that is, ow_j is an input wire). For the input wire ow_j , P_1 provides the input key label $\Gamma + k_j^{x_j} = \Gamma + k_j^0 + x_j \Delta$ to P_2 corresponding to the input bit x_j . We can distinguish the following two cases:

- P_2 knows the value of $k_j^0 + a_i$. In this case, unless Paillier's encryption scheme is not semantically secure, P_2 does not follow the protocol by choosing a random a_i to generate the ciphertext $\operatorname{Enc}_{pk}(k_j^0 + a_i)$. Instead, P_2 chooses a value $c_i = k_j^0 + a_i$ and let $\operatorname{Enc}_{pk}(k_j^0 + a_i) = \operatorname{Enc}_{pk}(c_i)$. In this case, P_2 can not distinguish a_i from a random value. Thus P_2 can not distinguish $\Gamma + k_j^0 + a_i + x_j\Delta$ from a random value. Consequently, P_2 cannot go ahead to evaluate the *i*th garbled gate.
- P_2 does not know the value of $k_j^0 + a_i$. In this case, P_2 may or may not follow the protocol. In either case, P_2 can not distinguish k_j^0 from a random value. If P_2 followed the protocol and selected a known value a_i , then P_2 can compute the key value $\Gamma + k_j^0 + a_i + x_j \Delta$ and continue the garbled gate evaluation. If P_2 has not followed the protocol and selected $k_j^0 + a_i$ in a way that she does not know the value of a_i , then P_2 can not compute the key value $\Gamma + k_j^0 + a_i + x_j \Delta$ and cannot continue the garbled gate evaluation.

With above discussion, a similar proof for garbled circuit security as in [3,6] could be used to show that a malicious participant P_2 learns no information about the input x in case that the Paillier's encryption scheme is semantically secure and the hash functions used in the protocol can be considered as random oracles. The details of the proof are omitted.

7 Circuit Garbling Scheme GRRcirc

The half-gates technique garbles each odd gates to two ciphertexts and even gates are free. However, the evaluator needs to carry out two cryptographic hash (or encryption) operations for each odd gate. In our GPGRR2 scheme, the evaluator needs to carry out one cryptographic hash (or encryption) operation and one multiplicative inverse

operation in the finite field $\mathbb{F}_{2'}$. In case that one needs a Φ_{circ} -secure garbling scheme and prefers multiplicative inverse operations than cryptographic hash (or encryption) operations, one may revise the scheme GPGRR2 by adding additional conversion processes (either free or with one additional ciphertexts) to obtain a free-XOR compatible GRRcirc scheme.

As a high level description, the conversion process is as follows. For each odd gate, if an output wire z is going to even gates, then we can let the output wire z to satisfy the condition " $k_z^1 = k_z^0 \oplus \Delta$ " instead of " $k_z^1 = k_z^0 + \Delta \mod 2$ ". For each odd gate, if one or two input wires x satisfy " $k_x^1 = k_x^0 \oplus \Delta$ " instead of " $k_z^1 = k_z^0 + \Delta \mod 2$ ", we can add a conversion ciphertext to translate the condition " $k_x^1 = k_x^0 \oplus \Delta$ " to the condition " $k_z^1 = k_z^0 + \Delta \mod 2^{t}$ ". Furthermore, we use the GPGRR2 optimization technique to reduce two ciphertexts to one ciphertext for as many odd gates as possible. After the above revision, all even gates are free and each odd gate has one, two, or three ciphertexts. Specifically, the garbling scheme GRRcirc proceeds as follows.

- 1. For each odd gate such that all input wire labels satisfy the invariance property (6) and the output wire is only used by odd gates, garble the gate using the scheme GPGRR2. That is, let the garbled output wire labels satisfy the property $k_z^1 = k_z^0 + \Delta \mod 2^t$. This garbled gate contains two ciphertexts.
- 2. For each odd gate such that at least one input wire label does not satisfy the invariance property (6) and the output is only used by odd gates, garble the gate using the GRR3 with three ciphertexts.
- For each odd gate with all fanout wires z going to even gates, depending on whether the input wires satisfy the invariance property (6) or not, revise either the above step 1 or the above step 2 to garble the gate so that the output wire has garbled wire labels k⁰_z and k¹_z = k⁰_z ⊕ Δ. This garbled gate contains two or three ciphertexts.
 For each odd gate with fanout wires going to both odd and even gates, garble it with
- 4. For each odd gate with fanout wires going to both odd and even gates, garble it with three ciphertexts so that the output wire has garbled wire labels k_z^0 and $k_z^1 = k_z^0 \oplus \Delta$ for even gates and has garbled wire labels k_z^0 and $k_z^1 = k_z^0 + \Delta \mod 2^t$ for odd gates. Our experiments have not found such kind of gates for the commonly used circuits that we will discuss later.
- 5. For each odd gate, use the following process to reduce the number of ciphertexts to one if possible. In the following process, a gate g_1 is called a sibling gate of g_2 if there exists a gate g_3 such that the two input wires of g_3 are the output wires of g_1 and g_2 respectively.
 - (a) Mark all even gates as "FINAL".
 - (b) If all gates are marked either as "1-Cipher" or as "FINAL". Then the process is over. Otherwise, choose a random odd gate g that is not marked as "1-Cipher" or "FINAL". Let S = {g}.
 - (c) If there exists a gate $g' \notin S$, g' is a sibling of some gate in S, and g' is marked as "1-Cipher" or "FINAL", mark all gates in S as "FINAL" and go to Step (5b).
 - (d) If there exists a gate g' ∉ S, g' is a sibling of some gate in S, and g' is neither marked as "1-Cipher" nor marked as "FINAL", let S = S ∪ {g'} and go to Step (5c).
 - (e) If there is no gate $g' \notin S$ such that g' is a sibling of some gate in S, use the optimized GPGRR2 technique to garble g using one ciphertext and all other

gates in S using two ciphertexts appropriately. It is noted that if the garbled gate g contains three ciphertexts originally, then we can only reduce the number of ciphertexts to two instead of one. Mark g as "1-Cipher" and all other gates in S as "FINAL". Go to Step (5b).

6. Each even gate is for free. That is, no ciphertext is required.

We used the above process to compare the proposed garbling scheme GRRcirc against other garbling schemes from the literature. Since it is optional to use the external index bits in GRRcirc, we do not include the external index bits for GRRcirc garbling scheme in the following comparison. Specifically, we compare the garbled circuit sizes for the following circuits that are available from [15]: AES (Key Expanded), DES (Key Expanded), MD5, SHA-1, SHA-256. Note that the circuits for these functions [15] contains AND, XOR, and INV gates. For our comparison, we integrated the INV gates into the AND/XOR gates to obtain OR and NXOR gates. Thus we will only consider circuits with AND/OR/XOR/NXOR gates. We will use t to denote the size of wire labels (e.g., we may take t = 80). For the garbling schemes, we compare Yao's classical scheme [18], point-permute [2], GRR3 [12], GRR2 [14], free XOR+GRR3 [9], FleXOR [8], and half-gates [19]. For the FleXOR garbling scheme [8], we used the data for the best performance "safe ordering heuristics" reported in Fig. 9 of [8]. For each garbling scheme in Table 1, we have two rows of values for each circuit. The top row contains the number of ciphertexts of the garbled circuits and the bottom row contains the size of the garbled circuits when t = 80.

The comparison results in Table 1 show that, GRRcirc has comparable performance with FleXOR. However, it has large garbled circuit size compared with half-gates techniques. As we have mentioned in the previous sections, one may choose to use GRRcirc

	AES (KE)	DES (KE)	MD5	SHA-1	SHA-256
# AND/OR [15]	5440	18175	29084	37300	90825
# XOR/NXOR [15]	20325	1351	14150	24166	42029
# Total gates	25765	19526	43234	61466	132854
classical [18]	103060t	78104t	172936t	245864t	531416t
	0.98MB	0.74MB	1.65MB	2.34MB	5.07MB
point-permute [2]	103060(t+1)t	78104(t+1)	172936(t+1)	245864(t+1)	531416(t+1)
	1MB	0.75MB	1.67MB	2.37MB	5.13MB
GGR3 [12]	77295(t+1)	58578(t+1)	129702(t+1)	184398(t+1)	398562(t+1)
	0.75MB	0.57MB	1.25MB	1.78MB	3.85MB
GGR2 [14]	51530(t+1)	39052(t+1)	86468(t+1)	122932(t+1)	265708(t+1)
	0.50MB	0.38MB	0.83MB	1.19MB	2.57MB
free XOR+GRR3 [9]	16320(t+1)	54525(t+1)	87252(t+1)	111900(t+1)	272475(t+1)
	0.16MB	0.53MB	0.84MB	1.08MB	2.63MB
FleXOR [8]	18550(t+1)	36904(t+1)	N/A	85438(t+1)	207253(t+1)
	0.18MB	0.36MB	N/A	0.82MB	2MB
half-gates [19]	10880(t+1)	36350(t+1)	58168(t+1)	74600(t+1)	181650(t+1)
	0.11MB	0.35MB	0.56MB	0.72MB	1.75MB
GRRcirc	16640t	37198t	75584t	97080t	225498t
	0.16MB	0.35MB	0.72MB	0.92MB	2.15MB

Table 1. Garbled Circuit Size Comparison

instead of half-gates if one prefers field multiplicative inverse operations than cryptographic hash (or encryption) operations since for half-gates garbled circuits, each odd gate evaluation requires two cryptographic hash (or encryption) operations while for GRRcirc garbled circuits, each odd gate evaluation requires one cryptographic hash (or encryption) operation and one field multiplicative inverse operation.

8 Conclusion

Using a linear interpolation method, we proposed a circuit garbling scheme to garble each circuit gate to at most two ciphertexts with gate functionality privacy. We also proposed an optimization process to garble a circuit in such a way that some gates only contain one ciphertext. It would be interesting to investigate the lower bound for garbled circuit size. We also applied our garbling schemes to constant round PFE protocols and proposed a more efficient PFE protocol that is secure against malicious participant P_1 if P_2 learns the final output and is secure against two malicious participants P_1/P_2 if only P_1 learns the final output.

References

- 1. Ajtai, M., Komlós, J., Szemerédi, E.: An *o*(*n* log *n*) sorting network. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 1–9. ACM (1983)
- Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proceedings of the 22nd ACM STOC, pp. 503–513. ACM (1990)
- Bellare, M., Hoang, V., Rogaway, P.: Foundations of garbled circuits. In: Proceedings of the 2012 ACM CCS, pp. 784–796. ACM (2012)
- 4. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: IEEE Proceedings of the FOCS, pp. 136–145. IEEE (2001)
- Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17(1), 13–27 (1984)
- Katz, J., Malka, L.: Constant-round private function evaluation with linear complexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_30
- Kiss, Á., Schneider, T.: Valiant's universal circuit is practical. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_27
- Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_25
- Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https:// doi.org/10.1007/978-3-540-70583-3_40
- Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8_7

- Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_33
- Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 129–139. ACM (1999)
- Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-x_16
- Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_15
- 15. Smart, N.P., Tillich, S.: Circuits of basic functions suitable for MPC and FHE. http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
- Valiant, L.: Universal circuits. In: Proceedings of the 8th ACM STOC, pp. 196–203. ACM (1976)
- Wang, Y., Malluhi, Q.M.: Reducing Garbled Circuit Size While Preserving Circuit Gate Privacy. Cryptology ePrint Archive, Paper 2017/041 (2017). https://eprint.iacr.org/2017/041
- Yao, A.: How to generate and exchange secrets. In: Proceedings 27th IEEE FOCS, pp. 162– 167. IEEE (1986)
- Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8