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Abstract. This paper investigates efficient and confidential circuit garbling tech-
niques. The primary contribution of this research is the introduction of GPGRR2
(Gate Privacy preserving Garbled Row Reduction), a technique aimed at con-
structing garbled circuits using at most two ciphertexts per garbled gate while
ensuring gate privacy preservation. When compared to the state-of-the-art gate-
privacy-preserving garbling scheme GRR3, GPGRR2 shows a remarkable reduc-
tion in the size of garbled circuits by at least 33%. Another significant achieve-
ment is the development of a linear garbling scheme for odd gates, enabling the
garbling of a single gate to one ciphertext. Furthermore, leveraging the GPGRR2
scheme facilitates a substantial decrease in the number of ciphertexts in non-
universal-circuit based PFE protocols by a factor of 25%.

Keywords: garbled circuit · privacy preserving garbled circuit · secure function
evaluation · private function evaluation

1 Introduction

Yao [18] introduced the garbled circuit concept which allows computing a function f
on an input x without leaking any information about the input x or individual circuit
gate functionality used for the computation of f (x). Since then, garbled circuit based
protocols have been used in numerous places and it has become one of the fundamen-
tal components of secure multi-party computation (SMC), secure function evaluation
(SFE), and private function evaluation (PFE) protocols. In a PFE protocol, one partic-
ipant P1 holds a circuit C and a private input x1 and every other participant Pi (i ≥ 2)
holds a private input xi. The PFE protocol’s goal is that a subset (or all) of the partici-
pants learns the circuit output C(x1, · · · , xn) but nothing beyond this. In particular, the
participant Pi (i ≥ 2) should not learn anything else except the size of C and, option-
ally, the output. Note that a PFE protocol is different from standard SMC/SFE protocols
where the circuit C is publicly known to all participants in SMC/SFE protocols.
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Bellare et al. [3] provides a rigorous definition of circuit garbling schemes and ana-
lyzed garbling scheme security from aspects of privacy, obliviousness, and authenticity.
Specifically, Bellare et al. [3] pointed out that garbling schemes that are secure forΦcirc

(that is, it does not conceal the circuit) is sufficient for the design of SFE/SMC protocols.
However, for a PFE protocol, one needs a garbling scheme that is secure for Φsize (that
is, it only leaks the circuit size). Though Yao’s circuit garbling scheme is only secure for
Φtopo (that is, it only reveals the circuit topology) and not secure for Φsize, one can use
universal circuit to convert a Φtopo-secure garbling scheme to a Φsize-secure garbling
scheme (see, e.g., Bellare et al. [3]).

We first review Yao’s garbled circuit construction using Beaver, Micali, and Rog-
away’s point-permute (or called external index) technique [2]. Note that the exter-
nal index technique makes it possible to design garbled circuits without using CPA-
secure encryption schemes. Unless stated otherwise, throughout the paper we will
use lower case letters u, v, w, x, y, z etc. to denote wires within a circuit and use
bu, bv, bw, bx, by, bz ∈ {0, 1} as variables to denote the values on the wires u, v, w, x,
y, z respectively. For a given number t that is dependent on the security parameter κ, the
circuit owner assigns two random values k0x, k

1
x ∈ {0, 1}t to each wire x corresponding

to 0 and 1 values of the wire. The circuit owner chooses a secret random permutation
πx over {0, 1} for each wire x. The garbled values for the wire x consist of k0x ||πx(0) and
k1x ||πx(1) where πx(b) is considered as an external index for kbx. It is easily observed that
for any b ∈ {0, 1}, we have b = πx(b) ⊕ πx(0). For a gate z = g(x, y), the garbled gate g̃
consists of four ciphertexts that are ordered using the external index πx(bx)||πy(by). For
example, if we assume that πx(0) = πy(0) = 1 and πx(1) = πy(1) = 0, then the garbled
gate g̃ is described using the following four ciphertexts.

πx(1)||πy(1) : (kg(1,1)z ||πz(g(1, 1))) ⊕ Hg(k1x ◦ k1y )
πx(1)||πy(0) : (kg(1,0)z ||πz(g(1, 0))) ⊕ Hg(k1x ◦ k0y )
πx(0)||πy(1) : (kg(0,1)z ||πz(g(0, 1))) ⊕ Hg(k0x ◦ k1y )
πx(0)||πy(0) : (kg(0,0)z ||πz(g(0, 0))) ⊕ Hg(k0x ◦ k0y )

(1)

where Hg is a gate g specific pseudorandom function (e.g., a secure hash function or an
encryption scheme) whose output length is |kbz | + 1 and ◦ is an operator. For example,
one may define k1 ◦ k2 = k1||k2 or k1 ◦ k2 = k1 ⊕ k2 or k1 ◦ k2 = k1 + k2 mod 2t

etc. For most applications, we take a pseudorandom function H (e.g., a cryptographic
hash function) and define Hg(·) = H(gID, ·) where gID is an identity string for the gate
g. At the start of the protocol, the circuit owner provides the evaluator with a garbled
version g̃ for each gate g of the circuit. During the evaluation process, the circuit owner
provides garbled input values to the evaluator and the evaluator evaluates the garbled
circuits gate by gate. As an example, if the input is (x, y) = (1, 0), then the circuit owner
sends garbled values k1x ||πx(1) = k1x ||0 and k0y ||πy(0) = k0y ||1 to the evaluator. Since the
external index bit value πx(1)||πy(0) = 01, the evaluator uses the corresponding second
ciphertext to recover the garbled value kg(1,0)z ||πz(g(1, 0)) for the output wire z, which
corresponds to the output g(1, 0).

Several efforts have been made to reduce the garbled circuit size. Kolesnikov and
Schneider [9] observed that if there is a circuit-wide global offset value ∆ ∈ {0, 1}t such
that garbled values for each wire x within the circuit satisfy the invariance property
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k1x = k0x ⊕ ∆, then the XOR gate could be garbled for free since we have kbxx ⊕ kbyy =

k0x ⊕ k0y ⊕
(
(bx ⊕ by) · ∆

)
where 1 · ∆ = ∆ and 0 · ∆ = 0t.

Naor, Pinkas, and Sumner [12] observed that one can choose a randomly fixed pair
(bx, by) ∈ {0, 1}2 and let

kg(bx ,by)z ||π(g(bx, by)) = Hg(kbxx ◦ k
by
y ).

Then the corresponding ciphertext for the row (π(bx), π(by)) is a zero string and one
does not need to store it. In other words, one can reduce the number of ciphertexts from
4 to 3 for each garbled gate. In this paper, we will refer this approach as GRR3.

Pinkas et al. [14] used polynomial interpolation to reduce each gate to two cipher-
texts. However, Pinkas et al’s technique is not compatible with the free-XOR technique.
Recently, Zahur, Rosulek, and Evans [19] introduced the state-of-the-art half-gates tech-
nique to design free-XOR compatible garbling schemes so that each AND/OR gate
could be represented using two ciphertexts.

The aforementioned free-XOR, GRR2, and half-gates garbling schemes reduce gar-
bled circuit sizes by leaking the number and locations of XOR gates within circuits.
This kind of side information leakage is acceptable for SFE (secure function evalua-
tion) though it may be unacceptable for other applications. For example, these tech-
niques cannot be used to improve the efficiency of non-universal circuit based PFE
protocols in Katz and Malka [6] and Mohassel and Sadeghian [11]. In this paper, we
investigate the possibility of reducing garbled circuit size without leaking any further
information beyond circuit topology. Specifically, we design garbled circuits with at
most two ciphertexts for each garbled gate such that the only leaked information is the
circuit topology. We then apply our techniques to PFE protocols in Katz and Malka [6]
and Mohassel and Sadeghian [11] to reduce the number of ciphertexts by a factor of
25%.

It has been an interesting and challenging question to study the lower bounds of
garbled circuit sizes. Zahur, Rosulek, and Evans [19] proved that any “linear” garbling
scheme garbles an AND gate to at least two ciphertexts. However, the statement of their
lower bound theorem is inaccurate. In this paper, we present a linear (over integers)
garbling scheme that garbles an AND gate to one ciphertext. By examining the proofs
in [19], it is clear that their proof is based on linear operations in the finite field F2t .
Thus one should bear in mind that the result in [19] only applies to the finite field F2t .

We conclude this section with the introduction of some notations. We use κ to denote
the security parameter, p(·) to denote a function p that takes one input, and p(·, ·) to
denote a function p that takes two inputs. A function f is said to be negligible in an
input parameter κ if for all d > 0, there exists K such that for all κ > K, f (κ) < κ−d. For
convenience, we write f (κ) = negl(κ). Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N ,
are said to be computationally indistinguishable (written as X c∼ Y or X c

= Y) if for all
probabilistic polynomial-time algorithm D, we have

|Pr[D(Xκ, 1κ) = 1] − Pr[D(Yκ, 1κ) = 1]| = negl(κ).

Throughout the paper, we use probabilistic experiments and denote their outputs using
random variables. For example, ExprealE,A (1κ) represents the output of the real experiment
for scheme E with adversary A on security parameter κ.
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The structure of this paper is as follows. Section 2 reviews security definition for
garbling schemes. Section 3 reviews GRR2 techniques. Section 4 presents our linear
interpolation based garbled circuit construction techniques where each garbled gate
uses two ciphertexts. Section 5 provides an optimization of GPGRR2 and shows that
one can linearly garble an AND gate with one ciphertext. Section 6 uses linear inter-
polation garbling schemes to reduce the size of garbled circuits for PFE protocols in
various adversary security models. Section 7 presents a revised circuit garbling scheme
GRRcirc that is only secure for input privacy (it reveals the number and positions of
XOR gates).

2 Circuit Garbling Schemes and Their Security

In this section, we briefly review the formal definition of circuit garbling schemes for-
malized by Bellare, Hoang, and Rogaway [3].

Definition 1. Let C = {Cn}n∈N be a family of circuits such that Cn is a set of boolean
circuits that take n-bit inputs. A garbling scheme for C is a tuple of probabilistic poly-
nomial time algorithms GS = (Gb, Enc, Eval, Dec) with the following properties

– (C̃, sk, dk) = GS.Gb(1κ,C) outputs a garbled circuit C̃, a secret key sk, and a decod-
ing key dk for circuits C ∈ Cn on the security parameter input κ.

– c = GS.Enc(sk, x) outputs an encoding c for an input x ∈ {0, 1}∗.
– ỹ = GS.Eval(C̃, c) outputs a garbled value ỹ.
– y = GS.Dec(dk, ỹ) outputs a circuit output.

The garbling scheme GS is correct if we have

Pr[GS.Dec(dk, GS.Eval(C̃, GS.Enc(sk, x))) ! C(x)|GS] = negl(κ).

The garbling scheme GS is efficient if the size of C̃ is bounded by a polynomial and the
run-time of c = GS.Enc(sk, x) is also bounded by a polynomial.

The security of garbling schemes is defined in terms of input and circuit privacy
in the literature. For a garbled circuit, some side-information such as the number of
inputs, outputs, gates, and the topology of the circuit C (that is, the connection of gates
but not gate types) and other information is leaked inherently. We denote such kind of
side information as Φ(C). Thus a security definition of garbling schemes should cap-
ture the intuition that the adversary learns no information except Φ(C) and the output
given one evaluation of the garbled circuit. The following definition requires that for
any circuit or input chosen by the adversary, one can simulate the garbled circuit and
the encoding based on the computation result and Φ(C) in polynomial time. In the def-
inition, the variable α represents any state that the adversary A may want to give to the
algorithm D.

Definition 2. (Privacy for garbling schemes) A garbling scheme GS for a family of
circuits C is said to be input and circuit private if there exists a probabilistic polynomial
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time simulator SimGS such that for all probabilistic polynomial time adversaries A and
algorithms D and all large κ, we have

∣∣∣Pr[D(α, x,C, C̃, c) = 1|REAL] − Pr[D(α, x,C, C̃sim, c̃) = 1|SIM]
∣∣∣ = negl(κ)

where REAL is the following event

(x,C,α) = A(1κ); (C̃, sk, dk) = GS.Gb(1κ,C); c = GS.Enc(sk, x);
C(x) = GS.Dec(dk, GS.Eval(C̃, c))

and SIM is the following event

(x,C,α) = A(1κ); (C̃sim, c̃) = SimGS(1κ,C(x),Φ(C), 1|C|, 1|x|).

The authors of [3] considered the following three kinds of commonly used side-
information functions.

1. Φsize(C) = (n,m, q) where n,m, q are the number of inputs, outputs, and gates of
the circuit C respectively.

2. Φtopo(C) = Ctopo where a topological circuit Ctopo is like the conventional circuit C
except that the functionality of the gates is unspecified.

3. Φcirc(C) = C where the side information is the circuit itself. That is, the entire
circuit C is revealed.

It is pointed out in Bellare et al. [3, Sections 3.8] that, for both indistinguishability-
based security notion and simulation-based security notion, each Φtopo-secure garbling
scheme GStopo can be converted to a Φsize-secure garbling scheme GSsize using uni-
versal circuits. GSsize and oblivious transfers can then be used to design secure PFE
protocols. If the security notion is based on simulation, then one can use Φcirc-secure
garbling schemes, universal circuits, and oblivious transfers to design secure PFE pro-
tocols. However, no proof has been presented to show whether one can useΦcirc-secure
garbling schemes, universal circuits, and oblivious transfers to design secure PFE pro-
tocols using the indistinguishability-based security notion1.

We conclude this section by pointing out a circuit complexity result which shows
the important information leakage by identifying the number (or locations) of XOR
gates within a topological circuit Ctopo. Let ACi denote the family of polynomial size
circuits of depth O(logi n) with unlimited-fanin AND and OR gates (NOT gates are
only allowed at inputs). Let NCi denote the family of polynomial size circuits of depth
O(logi n) with bounded-fanin AND and OR gates. It is a folklore that

NCi ⊆ ACi ⊆ NCi+1.

Let fparity(x1, · · · , xn) = x1 ⊕ x1 ⊕ · · · ⊕ xn be the parity function. It is well known that
fparity ∈ NC1. Ajtai et al. [1] and Furst et al. [5] showed that fparity " AC0. That is,
fparity ∈ NC1 \ AC0.

1 The authors would like to thank Dr. Viet Tung Hoang for several valuable discussions on this
question and other results in [3].
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Let Cparity be a randomly selected polynomial size circuit of constant depth with
unlimited-fanin XOR gates that computes fparity. Note that there are many such kind
of circuits. Let fac0 ∈ AC0 and C fac0 be a circuit that computes fac0 such that C fac0 ,topo =
Cparity,topo. That is, the topological circuits of C fac0 and Cparity are identical.

Assume that a circuit owner randomly selects Cparity or C fac0 to garble. Given
Φtopo-secure garbled circuits for Cparity or C fac0 , the evaluator cannot tell whether the
evaluated function is in AC0 or not. On the other hand, if the evaluator receives Φcirc-
secure garbled circuits for Cparity or C fac0 , it can distinguish whether the evaluated
function is in AC0.

3 Pinkas et al.’s Garbled Row Reduction GRR2

We first review Pinkas et al’s Garbled Row Reduction GRR2 [14]. Let t be the length
in terms of number of bits of wire lables. That is, we have t = |kbx | for all wires x and
b = 0, 1. Wire labels kbx and integers 0, 1, 2, 3, · · · can be interpreted as elements of
the finite field F2t . A binary gate is said to be odd if its truth table has an odd number
of ‘1’ entries (e.g. an AND or OR gate), otherwise it is called an even gate (e.g., an
XOR gate). Using polynomial interpolation, Pinkas et al. showed that each gate could
be represented by only two ciphertexts. Specifically, for an odd gate g (e.g., an AND
or OR gate), assume that the first three ciphertexts C1,C2,C3 encrypt the same wire
label kbz ||πz(b) via Ci = (kbz ||πz(b))⊕ (Ki||Mi) (for i = 1, 2, 3) and the fourth ciphertext C4

encrypts the wire label k1−bz ||πz(1−b) viaC4 = (k1−bz ||πz(1−b))⊕ (K4||M4) where b,Mi ∈
{0, 1} for i = 1, 2, 3, 4. Let P(X) be a degree two polynomial over F2t passing through
points (1,K1), (2,K2), and (3,K3). Let Q(X) be another degree two polynomial over
F2t passing through points (5, P(5)), (6, P(6)), and (4,K4). Then by setting kbz = P(0)
and k1−bz = Q(0), one can replace the garbled table with ⟨P(5), P(6), c1, c2, c3, c4⟩ where
P(5) and P(6) are elements from F2t and c1, c2, c3, c4 are bits encrypting the external
index bits. That is, πz(g(bx, by)) = ci ⊕ Mi for i = 2πx(bx) + πy(by) + 1. The total size
of the garbled gate is 2t + 4 bits. Interpolating the polynomial passing through points
(5; P(5)), (6; P(6)), and (i;Ki) for i = 1, 2, 3, 4 will produce either polynomial P(X) or
Q(X), which can be evaluated at X = 0 to get the appropriate value kbz or k

1−b
z .

For an even gate g (e.g., an XOR or NXOR gate), assume that ciphertexts Ci1 ,Ci2
encrypt the wire label k0z ||πz(0) via Cij = (k0z ||πz(0)) ⊕ (Kij ||Mij ) (for j = 1, 2) and the
ciphertexts Ci3 ,Ci4 encrypt the wire label k

1
z ||πz(1) via Cij = (k1z ||πz(1)) ⊕ (Kij ||Mij ) (for

j = 3, 4) where Mij ∈ {0, 1} for i j = 1, 2, 3, 4. Let P(X) be a linear polynomial over
F2t passing through points (i1,Ki1 ) and (i2,Ki2 ). Let Q(X) be another linear polynomial
over F2t passing through points (i3,Ki3 ) and (i4,Ki4 ). Define k

0
z = P(0) and k1z = Q(0). If

πz(0) = 0 then the garbled gate is represented as ⟨P(5),Q(5), c1, c2, c3, c4⟩. Otherwise,
πz(1) = 0 and the garbled gate is represented as ⟨Q(5), P(5), c1, c2, c3, c4⟩. In the gar-
bled gate, P(5) and Q(5) are elements from F2t and c1, c2, c3, c4 are bits encrypting the
external index bits. That is, πz(g(bx, by)) = ci ⊕ Mi for i = 2πx(bx) + πy(by) + 1. The
total size of the garbled gate is 2t+ 4 bits. The evaluator receives the garbled gate in the
format of ⟨Y1,Y2, c1, c2, c3, c4⟩. At the time of evaluation, the evaluator first calculates
the value πz(bz) using the ingoing wire labels. If πz(bz) = 0, then it interpolates the
linear polynomial passing through points (5; Y1) and (i;Ki) for i = 1, 2, 3, 4 which will
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produce either polynomial P(X) or Q(X), which can be evaluated at X = 0 to get the
appropriate value kbzz . If πz(bz) = 1, then it interpolates the linear polynomial passing
through points (5;Y2) and (i;Ki) for i = 1, 2, 3, 4 to obtain the appropriate value kbzz .

The ciphertexts for odd gates and even gates have different format with GRR2 tech-
niques. Thus GGR2 garbled circuits are not secure for Φtopo. It is easy to check that in
the GRR2 garbling scheme, the number of ciphertexts for an even gate could be reduced
to one ciphertext by using the GRR3 approach.

3.1 Zahur, Rosulek, and Evans’s Half-Gates

Zahur, Rosulek, and Evans [19] proposes a free-XOR compatible half-gates garbling
scheme so that each odd gate is garbled to two ciphertexts and each even gate is free.
In the half-gates technique, the circuit owner first chooses a circuit-wide global offset
value ∆. The circuit is garbled in such a way that garbled values for each wire x within
the circuit satisfy the invariance property k1x = k0x ⊕ ∆. Thus an even gate could be
garbled for free. Assume that z = g(x, y) is the odd gate “x ∧ y”. Then it can be written
as (x ∧ r) ⊕ (x ∧ (r ⊕ y)) where r is a random bit. Zahur, Rosulek, and Evans [19]
recommends the use of r = πy(0). Let rx = πx(0) and ry = πy(0). Let r∆ denote the
zero string for r = 0 and denote the string ∆ for r = 1. Then the two gates (x ∧ r) and
(x ∧ (r ⊕ y)) are garbled separately. The XOR of the output of these two gates is free.

– For the first gate u = (x∧r), we can choose a random value k0u and garble it using two
ciphertexts “H(k0x)⊕ k0u” and “H(k1x)⊕ (k0u ⊕ r∆)”. By using the standard garbled row
reduction technique GGR3, the gate “x ∧ r” could be garbled using one ciphertext
H(k0x) ⊕ H(k1x) ⊕ ry∆

– For the second gate v = (x ∧ (r ⊕ y)), the evaluator knows the value of “r ⊕ y” since
we have r ⊕ by = πy(0) ⊕ by = πy(by). First choose a random value k0v . If “r ⊕ y = 0”
then “v = 0”. In this case, the ciphertext should decrypt to k0v . If “r ⊕ y = 1” then
“v = x”. In this case, it suffices for the evaluator to decrypt the ciphertext to k0v ⊕ k0x
since the evaluator could get the actual output label as k0v ⊕ k0x ⊕ kbxx where kbxx is the
received value on wire x. By using the standard row reduction technique GGR3, the
gate v = (x ∧ (r ⊕ y)) could be garbled using one ciphertext H(k0y ) ⊕ H(k1y ) ⊕ k0x.

In the summary, the AND gate z = x ∧ y is garbled into two ciphertexts:

H(k0x) ⊕ H(k1x) ⊕ ry∆; H(k0y ) ⊕ H(k1y ) ⊕ k0x
and the OR gate z = x ∨ y is garbled into two ciphertexts:

H(k0x) ⊕ H(k1x) ⊕ (1 − ry)∆; H(k0y ) ⊕ H(k1y ) ⊕ k1x
The garbled labels for the output wire z is

k0z = H(krxx ) ⊕ g(rx, ry)∆ ⊕ H(kryy ); k1z = H(krxx ) ⊕ g(rx, ry)∆ ⊕ H(kryy ) ⊕ ∆

Evaluation of a Garbled Gate. The evaluator receives the garbled values kbxx , k
by
y and

learns the value of by ⊕ ry from the external index bits. Based on the external index
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values, the evaluator first calculates k1 = H(krxx ) ⊕ g(rx, ry)∆ from the first ciphertext.
Secondly, If by⊕ry = 0, then the evaluator calculates k2 = H(kbyy ). Otherwise, if by⊕ry =
1, then the evaluator calculates k2 = H(k1−byy ) ⊕ k0x ⊕ kbxx from the second ciphertext and
kbxx . Finally let kg(bx,by)z = k1 ⊕ k2.

As an example to show that the above evaluation process works, we assume that g
is an AND gate and assume that r = 0. For the input x = 0, y = 1, we get k1 = H(k0x)
and k2 = H(k0y ) ⊕ k0x ⊕ k0x = H(k0y ). Thus k

0
z = H(k0x) ⊕ H(k0y ). For the input x = 1, y = 1,

we get k1 = H(k0x) ⊕ r∆ = H(k0x) and k2 = H(k0y ) ⊕ k0x ⊕ k1x = H(k0y ) ⊕ ∆. Thus k1z =

H(k0x) ⊕ H(k0y ) ⊕ ∆.

4 Garbled Gate Size Reduction Using Linear Interpolation

4.1 Gate Privacy Preserving Garbled Row Reduction GPGRR2

As we mentioned in the preceding section, Pinkas et al’s GRR2 garbling scheme [14]
leaks the number and positions of even/odd gate types. For example, an evaluator eval-
uates a garbled odd gate using degree two polynomial interpolation and evaluates a
garbled even gate using linear interpolation. The free-XOR techniques proposed by
Kolesnikov and Schneider [9] leaks the number and positions of XOR gates and the
half-gates techniques by Zahur, Rosulek, and Evans [19] leaks the number and positions
of XOR gates also. In this section, we propose a gate privacy preserving garbled row
reduction GPGRR2 technique to garble circuits with security for Φtopo. Our garbling
scheme GPGRR2 does not require the external index bits. For reason of convenience,
the following construction still includes the external index bits.

First select two parameters t and τ based on the security requirements. It is recom-
mended to select τ such that 10 ≤ τ < t. Each ciphertext will be of length t + 1 bits.
In order to garble a circuit C, the circuit owner first chooses a circuit-wide global offset
value ∆ ∈ {0, 1}t uniformly at random. Furthermore, let H be a pseudo-random function
with (t + τ + 1)-bits output. The circuit C will be garbled in such a way that for all
wires x, the garbled values k0x ||πx(0) and k1x ||πx(1) for the wire x satisfy the following
invariance property:

k1x = k0x + ∆ mod 2t (2)

In the following, we formally describe the process of garbling a gate z = g(x, y)
in a circuit C. Let k0x ||πx(0), k1x ||πx(1), k0y ||πy(0), and k1y ||πy(1) be the garbled input wire
values for the wires x and y respectively. Let k0z ||πz(0), k1z ||πz(1) be the garbled output
wire values for the output wire z = g(x, y) that will be defined. Define the operator ◦ as
the integer addition modulo 2t. Then we have

k0x ◦ k0y = k0x + k0y = x̄1 mod 2t

k0x ◦ k1y = k1x ◦ k0y = k0x + k0y + ∆ = x̄1 + ∆ mod 2t

k1x ◦ k1y = k0x + k0y + 2∆ = x̄1 + 2∆ mod 2t
(3)
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for some x̄1 ∈ {0, 1}t. For these garbled input wire values, we have

K00||M00||N00 = Hg(k0x ◦ k0y ) = Hg(x̄1 mod 2t)
K01||M01||N01 = Hg(k0x ◦ k1y ) = Hg(x̄1 + ∆ mod 2t)
K10||M10||N10 = Hg(k1x ◦ k0y ) = Hg(x̄1 + ∆ mod 2t)
K11||M11||N11 = Hg(k1x ◦ k1y ) = Hg(x̄1 + 2∆ mod 2t)

(4)

where M00,M01,M10,M11 ∈ {0, 1} and N00,N01,N10,N11 ∈ {0, 1}τ. It follows that
K01||M01||N01 = K10||M10||N10.

In case that there exist two values in

N00, N10, and N11 (5)

that are identical, re-start the garbling process and choose different garbled input wire
values for the wires x and y. We distinguish the following two cases depending on
whether g is an even gate or an odd gate.

Garbling an Odd Gate g. We begin by assuming that g represents an OR gate. Let
P(X) denote a linear polynomial over F2t that passes through two given points:

(N10,K10) and (N11,K11) .

We define k1z as P(0) and k0z as k1z − ∆ mod 2t, where k0z , k
1
z , and ∆ are interpreted as

integers modulo 2t. Similarly, let Q(X) be another linear polynomial over F2t passing
through

(0, k0z ) and (N00,K00) .

It’s important to note that P(X) is interpolated based on situations where the output of
the OR gate is 1, while Q(X) corresponds to situations where the output is 0. Let Xz be
a solution of the equation P(X) = Q(X) over F2t . Then, the garbled table for gate g is
represented as ⟨Xz, P(Xz), c1, c2, c3, c4⟩ = ⟨Xz,Q(Xz), c1, c2, c3, c4⟩, where Xz and P(Xz)
are elements from F2t and c1, c2, c3, c4 are bits encrypting the external index bits. In
other words, πz(g(bx, by)) = ci ⊕ Mi for i = 2πx(bx) + πy(by) + 1. The total size of the
garbled gate is 2t + 4 bits. Excluding the external index bits, the size is 2t bits.

For an AND gate, start by selecting a linear polynomial, denoted as P(X), that passes
through the points (N10,K10) and (N00,K00). Define k0z as P(0) and k

1
z as k

0
z+∆ mod 2t.

Next, construct another linear polynomial, denoted as Q(X), passing through the points
(0, k1z ) and (N11,K11). Essentially, P(X) is interpolated based on when the output of the
AND gate is 0, while Q(X) is interpolated for an output of 1. The subsequent steps
remain unchanged.

Alternatively, for the gate g, one can employ ⟨P(2τ),Q(2τ), c1, c2, c3, c4⟩ as the gar-
bled table, rather than using the solution point Xz for the equation P(X) = Q(X). In this
scenario, the external index bit determines whether P(2τ) or Q(2τ) is used for linear
interpolation during evaluation.

Garbling an Even Gate g. Without loss of generality, let’s assume g is an XOR gate.
For an NXOR gate, we can handle it similarly by swapping k0z and k1z . Consider P(X)
as a linear polynomial over F2t passing through points

(N00,K00) and (N11,K11) .
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Set k0z = P(0) and k1z = k0z +∆ mod 2t, interpreting k0z , k
1
z , and ∆ as integers modulo 2t.

Similarly, let Q(X) be a linear polynomial over F2t passing through points

(0, k1z ) and (N10,K10) .

P(X) is interpolated for the situation when the XOR gate’s output is 0, and Q(X)
for the output being 1. Find Xz, a solution of P(X) = Q(X) over F2t . The garbled
table for gate g becomes ⟨Xz, P(Xz), c1, c2, c3, c4⟩, where Xz and P(Xz) are elements
from F2t , and c1, c2, c3, c4 are bits encrypting the external index bits. In other words,
πz(g(bx, by)) = ci ⊕ Mi for i = 2πx(bx) + πy(by) + 1. The total size of the garbled
gate is 2t + 4 bits. Excluding external index bits, it’s 2t bits. Similarly, we can use
⟨P(2τ),Q(2τ), c1, c2, c3, c4⟩ as the garbled table for gate g, using external index bit infor-
mation to determine whether P(2τ) or Q(2τ) should be used for linear interpolation
during evaluation.

Evaluation of a Garbled Circuit. For a garbled gate g̃ = ⟨Xz, P(Xz), c1, c2, c3, c4⟩,
where the evaluator is uncertain whether it’s an even or odd gate, the evaluator receives
encoded values kbxx ||π(bx) and kbyy ||π(by) on wires x and y. The initial step involves com-
puting

K||M||N = Hg(kbxx + kbyy mod 2t).

Then, utilizing a linear polynomial R(X) over F2t passing through points (N,K) and
(Xz, P(Xz)), the evaluator determines kg(bx ,by)z = R(0). The output wire’s external index
bit is determined by πz(g(bx, by)) = c2πx(bx)+πy(by)+1 ⊕ M.

This evaluation process entails a cryptographic hash function operation and a linear
polynomial interpolation. For the interpolation, the evaluator must find a and b in F2t
such that aNi + b = Ki and aXz + b = P(Xz), i.e., a = (Ni − Xz)−1(Ki − P(Xz)) over F2t .
In summary, the primary costs for the evaluator are one cryptographic hash function
operation and one field element inverse operation over F2t .

In the above garbling scheme, an additional parameter τ is used. For larger circuits,
one should choose a larger τ though for smaller circuits, one can use a smaller τ. The
value of τ does not have impact on the garbling scheme security. However, it has impact
on the efficiency of the garbling process. If the value of τ is too small, then the prob-
ability for two values in (5) to be identical is high and one has to re-start the garbling
process more frequently. On the other hand, for large enough τ, the probability for two
values in (5) to be identical is very small and one does not need to restart the garbling
process at all. It is also noted that the value of τ has no impact on the garbled circuit
size.

4.2 Provable Security of GPGRR2 forΦtopo

In Sect. 4.1, we proposed a Gate Privacy preserving Garbled Row Reduction technique
GPGRR2 such that each garbled gate contains two ciphertexts and a four-bits cipher-
text. The four-bits ciphertext is optional and could be ignored since we do not use it for
the scheme GPGRR2. For both odd gates and even gates, the two ciphertexts are the
coordinates of a point in a two dimensional space over F2t . Thus the evaluator cannot
distinguish the type of a garbled gate. The remaining part of the security proof is similar
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to that of the garbling scheme Garble1 security for Φtopo by Bellare, Hoang, and Rog-
away [3]. The proof of Garble1 security in [3] is based on the observation that, given a
pair of garbled values of the input wires, the evaluator can compute one garbled output
value, but cannot distinguish the other garbled output value from random. This is true
for GPGRR2 since the other garbled value is defined using a linear interpolation with a
value which is unknown to the evaluator (indeed, the evaluator cannot distinguish that
unknown value from random). The details are omitted here.

5 Optimized GPGRR2 and Lower Bounds

GPGRR2 is secure for Φtopo and has comparable efficiency with other GRR techniques
that are only secure for Φcirc. For example, Pinkas et al’s Garbled Row Reduction
GRR2 [14] converts each odd gate to two ciphertexts and each even gate to one cipher-
text. Pinkas et al’s GRR2 technique requires the evaluator to carry out a degree two
polynomial interpolation while GPGRR2 only requires a linear interpolation.

Zahur, Rosulek, and Evans [19] proved that “every ideally secure linear garbling
scheme for AND gates must have two ciphertexts for each garbled gate”. Zahur,
Rosulek, and Evans’s proof is based on linear operations in the finite field F2t . In this
section, we show that if we use linear operations over integers (instead of linear opera-
tions over F2t ), we can design a secure linear garbling scheme that garbles an AND/OR
gate to only one ciphertext. This technique is further used to optimize the garbling
scheme GPGRR2. In an ideal case, the optimized garbling scheme GPGRR2 may gen-
erate garbled circuits of 1.5n ciphertexts for circuits of n gates. That is, the garbled
circuit is around 1.5nt bits. But the reader should be reminded that generally this ideal
size is not achievable. Indeed, the problem of finding an optimized garbled circuit for a
given circuit is NP-complete following a similar proof as that in FleXOR [8].

The garbling scheme GPGRR2 in Sect. 4.1 used a circuit-wide global offset value
∆ though it is not necessary to have this offset value ∆ to be global. In order for the
construction in Sect. 4.1 to work, it suffices to have the following invariance property

k0x + k1y = k1x + k0y mod 2t (6)

for all gates z = g(x, y) with garbled input wire values k0x ||πx(0), k1x ||πx(1), k0y ||πy(0), and
k1y ||πy(1) respectively. Based on this observation, the garbling scheme GPGRR2 could
be optimized using the following principle: for each gate g with two input wires x and
y, if x is the output wire of a gate g1 and y is the output wire of a gate g2, then we
can construct a garbled gate for g1 with one ciphertext and a garbled gate for g2 with
two ciphertexts. The gates g1 and g2 are constructed in such a way that the Eq. (6) is
satisfied.

As an example of optimized garbling scheme GPGRR2, we construct aΦtopo-secure
garbled circuit of 4-ciphertexts for the 3-gate circuit “(x1 ∧ x2) ∨ (x3 ∧ x4)”. Let g1 be
the gate x5 = (x1 ∧ x2), g2 be the gate x6 = (x3 ∧ x4), and g3 be the gate x7 = (x5 ∨ x6)
respectively. Assume that the invariance property (6) is satisfied for garbled input wire
labels for gates g1 and g2. That is, (6) is satisfied by replacing x, y with x1, x2 (or with
x3, x4) respectively. Similar to the original GPGRR2 garbling scheme, we define the
operator ◦ as the integer addition modulo 2t.
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Garbling the Gate g1: “x5 = (x1 ∧ x2)”. Let k0x1 ||πx1 (0), k1x1 ||πx1 (1), k0x2 ||πx2 (0), and
k1x2 ||πx2 (1) be the garbled input wire values for the wires x1 and x2 respectively. For
i1, i2 ∈ {0, 1}, let

Ki1i2 ||Mi1i2 ||Ni1i2 = Hg1 (k
i1
x1 ◦ ki2x2 ).

By the invariance property (6), we have

k0x1 ◦ k1x2 = k1x1 ◦ k0x2 mod 2t

This implies that K01||M01||N01 = K10||M10||N10. In case that there are two values from
N00, N01, and N11 that are identical, re-start the garbling process to choose different
garbled input wire values for the wires x1 and x2.

Let P(X) be a linear polynomial over F2t passing through the two points (N00,K00)
and (N01,K01). Let Q(X) be a linear polynomial over F2t passing through the two points
(N11,K11) and (2τ, P(2τ)). Set k0x5 = P(0) and k1x5 = Q(0). Then the garbled table for
the gate g1 is ⟨P(2τ), c1, c2, c3, c4⟩ where P(2τ) is an element from F2t and c1, c2, c3, c4
are bits encrypting the external index bits. That is, πx5 (g(bx1 , bx2 )) = ci ⊕ Mi for i =
2πx1 (bx1 ) + πx2 (bx2 ) + 1. The total size of the garbled gate is t + 4 bits.

Garbling the Gate g2: “x6 = (x3 ∧ x4)”. Let k0x3 ||πx3 (0), k1x3 ||πx3 (1), k0x4 ||πx4 (0), and
k1x4 ||πx4 (1) be the garbled input wire values for the wires x3 and x4 respectively. For
i1, i2 ∈ {0, 1}, let

Ki1i2 ||Mi1i2 ||Ni1i2 = Hg1 (k
i1
x3 ◦ ki2x4 ).

By the invariance property (6), we have

k0x3 ◦ k1x4 = k1x3 ◦ k0x4 mod 2t

This implies that K01||M01||N01 = K10||M10||N10. In case that there are two values from
N00,N01, and N11 that are identical, re-start the garbling process to choose different
garbled input wire values for the wires x3 and x4.

Let P(X) be a linear polynomial over F2t passing through the two points (N00,K00)
and (N01,K01). Set k0x6 = P(0) and

k1x6 = k0x6 + k1x5 − k0x5 mod 2t (7)

where we interpret k0x5 , k
1
x5 , k

0
x6 , and k1x6 as integers modulo 2t. Note that the Eq. (7)

guarantees that the invariance (6) is satisfied for the gate g3 with input wires x5, x6.
Let Q(X) be a linear polynomial over F2t passing through the two points (0, k1x6 ) and
(N11,K11). Let Xz, be a solution of the equation P(X) = Q(X) over F2t . Then the garbled
table for the gate g is ⟨Xz, P(Xz), c1, c2, c3, c4⟩ where Xz and P(Xz) are elements from F2t
and c1, c2, c3, c4 are bits encrypting the external index bits. That is, πx6 (g(bx3 , bx4 )) =
ci ⊕ Mi for i = 2πx2 (bx2 ) + πx4 (bx4 ) + 1. The total size of the garbled gate is 2t + 4 bits.

Garbling the Gate g3: “x7 = (x5 ∨ x6)”. By the Eq. (7), the invariance (6) is satisfied
for the gate g3 with input wires x5, x6. Thus the garbling process for the gate g1 could
be used to construct a garbled gate g̃3 with one ciphertext and 4 bits. That is, the total
size of the garbled gate g̃3 is t + 4 bits. The details are omitted here.
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As a summary, the garbled circuit for the 3-gate circuit “(x1∧x2)∨(x3∧x4)” contains
four ciphertexts (one for g1, two for g2, and one for g3) and twelve bits. The total size
of the garbled circuit is 4t + 12 bits. Note that for such kind of 3-gate circuit, the best
reported garbled circuit size in the literature is 6t+ 12 bits. The proof of security for the
optimized GPGRR2 remains the same as that for GPGRR2 and the details are omitted
here.

6 Reducing Ciphertext Size in Private Function Evaluations

In a two party PFE protocol, participant P1 has a string x, participant P2 has a function
f and the outcome of the protocol is that P2 learns f (x) and nothing about x (beyond
its length), while P1 learns nothing about f (beyond side information we are willing to
leak, such as the number of gates in the circuit f ). Similarly, the outcome of the two
party PFE protocol could be that P1 learns f (x) and nothing about f , while P2 learns
nothing about x. For the general case that P2 has a private input x2 himself, one can
include the value of x2 in the circuit computing f itself.

Traditionally, there are two approaches to design PFE protocols: using universal cir-
cuits and using homomorphic encryption. Universal circuit based PFE protocols intro-
duce extra overhead and result in more complicated implementations. For the class
of size n circuits, Valiant’s universal circuit [16] is of size 19n log n with depth O(n)
and Kolesnikov and Schneider’s universal circuit [10] is of size 1.5n log2 n though it
has smaller universal circuits for circuit sizes less than 5000. Kiss and Schneider [7]
further reduced Valiant’s bound by constructing universal circuit where the number of
AND gates is bounded by 5n log n and where the number of total gates is bounded
by 20n log n. Though Kiss and Schneider [7] showed that it is practical to implement
PFE using Valiant’s size-optimized universal circuits, they claimed that “universal cir-
cuits are not the most efficient solution to perform PFE”. Specifically, SFE protocol
implementation for functions with billions of gates has been reported in the literature
though the best reported universal circuit based PFE protocol implementation [7] is
for simulated circuits of 300,000 gates, which results in a universal circuit of at most
245, 627, 140 gates (and at most 61,406,785 AND gates).

6.1 PFE in Semi-honest Security Model

Katz andMalka [6] andMohassel and Sadeghian [11] proposed efficient constant-round
Yao’s garbled circuit based PFE protocols with communication/computational com-
plexity linear in the size of the circuit computing f . The PFE protocols in [6] and [11]
require that each circuit gate contain four ciphertexts. In the following, we use our
GPGGR2 techniques to reduce the number of each garbled gate’s ciphertexts to three
in these PFE protocols. Thus we have a 25% reduction in the garbled circuit size for
these PFE protocols. Note that free-XOR, GGR2, and half-gates could not be used to
reduce the ciphertext numbers in these PFE protocols. The garble row reduction tech-
nique GGR3 cannot be used to reduce the ciphertext numbers in these PFE protocols
either since the wire label values are obliviously chosen by both parties.
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Katz and Malka [6] introduced one PFE protocol with provable security in the
semi-honest security model with the assumption of semantic security for homomorphic
encryption schemes and linear-related key security for symmetric encryption schemes.
They also introduced a more efficient variant PFE protocol with provable security in
the random oracle model. The second protocol is roughly twice as efficient as the first
one. The authors of [6] mentioned that the random oracle requirement for the second
protocol may not be necessary and its security without random oracle may be proved
if further assumptions on the symmetric-key encryption scheme is made. In the follow-
ing, we reduce the number of ciphertexts in the second PFE protocol [6] (with security
in random oracle) by a factor of 25%. The same reduction could be made for the PFE
protocols in Mohassel and Sadeghian [11].

PFE protocols in [6,11] use a singly homomorphic public-key encryption scheme
sHE(Gen, Enc, Dec) such as the additive homomorphic Paillier encryption scheme [13].
In the following, we will give the protocol description in sufficient details without a for-
mal definition. For a formal definition, the readers are referred to [6]. In our discussion,
we assume that P2 learns the output f (x). The protocol can be modified to let P1 learn
the output straightforwardly. Let C f be a circuit that computes P2’s function f and that
C f contains only NAND gates. Assume that C f have n gates and it take l-bit inputs. In
a high level, the PFE protocol proceeds as follows.

1. Given the pair (n, l), P1 generates a sequence of n gates.
2. P2 obliviously connects these gates to form a circuitC f using a singly homomorphic

encryption scheme.
3. P1 produces a garbled circuit corresponding to the circuit C f by garbling the n gates

independently (which are connected obliviously).
4. P1 gives an encoded version of the input x to P2 and P2 evaluates the garbled circuit

to obtain the circuit output C f (x) = f (x).

Now we describe an instantiation of the above PFE protocol with reduced num-
ber of ciphertexts for each garbled gate. Let the outgoing wires set OW =
{ow1, · · · , owl, · · · , owl+n} be the union of the set of l input wires and the n output wires
for all gates in the circuitC f . Let the incoming wires set IW = {iw1, · · · , iw2n} be the set
of input wires to each gate of the circuit. The topology of the circuitC f can be described
by a mapping πC : {1, · · · , |OW|} → {1, · · · , |IW|}. Though each internal gate has only a
single outgoing wire, it can have arbitrary fan-out. This is handled by mapping an out-
going wire owi ∈ OW to multiple incoming wires in IW. The full protocol semiPFE is
described in Fig. 1.

Correctness. In step (5) of the protocol semiPFE, if the linear polynomial Ti(X) =
Pi(X), then the equation (9) shows that kl+i = k0l+i +∆. Otherwise Ti(X) = Qi(X) and the
equation (9) shows that kl+i = k0l+i. This shows the correctness of the protocol.

Security. The security for PFE protocols can be defined in the semi-honest adversary
model and in the malicious adversary model. In the semi-honest model, we assume that
both participants follow the protocol honestly but both of them may be curious and
try to learn some additional information from their protocol view. Let viewi(1κ, x,C f )
(i = 1, 2) be the view of the participant Pi during the PFE protocol execution when P1

holds input x and P2 holds C f ∈ C, where C is a class of circuits. The protocol is called
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Fig. 1. Protocol semiPFE
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a secure C-PFE protocol if there exist probabilistic polynomial time simulators S1 and
S2 such that for all probabilistic polynomial time algorithm D, we have

∣∣∣Pr[D(S1(1κ, x)) = 1] − Pr[D(view1(1κ, x,C f )) = 1]
∣∣∣ = negl(κ)

and
∣∣∣Pr[D(S2(1κ,C f ,C f (x)) = 1] − Pr[D(view2(1κ, x,C f )) = 1]

∣∣∣ = negl(κ)

The provable security in the above semi-honest adversary model for our protocol
semiPFE follows from the proof in Katz and Malka [6] by observing the following
fact: given a pair of key values of the incoming wires of a gate, P2 can compute one
key values for the outgoing wire, but cannot distinguish the other key values for the
outgoing wire from random. This is true for the protocol semiPFE since the other key
values for the outgoing wire is defined using a linear interpolation with a value which
is unknown to P2. The details are omitted here.

Mohassel and Sadeghian [11] proposed a framework for designing PFE protocols
by considering circuit topology privacy and secure evaluation of circuit gates indepen-
dently. Specifically, they reduce the task of the circuit topology hiding (CTH) to obliv-
ious evaluation of a mapping that encodes the topology of the circuit and they design a
private gate evaluation (PGE) sub-protocol. Mohassel and Sadeghian then showed how
to naturally combine CTH and PGE to obtain an efficient and secure PFE. The CTH
functionality is implemented by an efficient oblivious evaluation of the mapping πC
using generalized switching networks and oblivious transfers. The PGE functionality
is a PFE protocol for a single gate circuit where P2 provides the gate’s functionality
and P1 provides the input to the gate. The PGE functionality is based on Yao’s garbled
circuit and our above linear interpolation approach in the protocol semiPFE could be
used in the same way to improve the PGE efficiency by a factor of 25%. The details are
omitted here.

6.2 PFE Protocols Against Malicious Participants

Section 6.1 presents an efficient protocol semiPFE against semi-honest adversaries.
This protocol is insecure against active adversaries. For example, in step (2) of the
protocol semiPFE, P2 may generate the wires encGi in a malicious way to learn P1’s
private input x. Specifically, assume that ow1, · · · , owl are the circuit input wires. For
each gate i, P2 can choose random ai, a′i ∈ F2t and re-randomize the encrypted wire
labels for gate i as

encGi = (Encpk(λ( j, l)k0j + ai), Encpk(λ( j, l)k0k + a′i), Encpk(k
0
l+i))

where

λ( j, l) =
{
0 if j < l
1 if j ≥ l

P2 sends encG1, · · · , encGn to P1. With this revision of the encGi, P2 may learn the
last bit xl of P1’s private input x = x1 · · · xl. Assume that P1 provide the wire labels
kx11 , · · · , kxll for the private input x. By the construction of encGi, P2 can evaluate
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the garbled circuit to obtain f (0, · · · , 0, xl). By comparing whether f (0, · · · , 0, xl) =
f (0, · · · , 0, 0) or f (0, · · · , 0, xl) = f (0, · · · , 0, 1), P2 may learn the value of xl.

Zero-knowledge proofs could be used to make the protocol semiPFE secure against
active malicious participants. However, performance of the resulting protocol could
not compete with PFE protocols based on SFE with universal circuits in the malicious
adversary model.

Security definition for PFE protocols against malicious adversaries uses the real
protocol execution to simulate an ideal world protocol execution by a trusted party
(see, e.g., Canetti [4]). In the real-world execution, protocol participants jointly run the
protocol and the adversary A is allowed to corrupt a participant. Let Ai (i = 1, 2) be
the probabilistic polynomial time adversary that corrupts the participant Pi. In the ideal
world evaluation, all participants submit their inputs to a trusted party who will evaluate
the entire protocol himself and there is a simulator Si for the subset of participants con-
trolled by the adversary Ai in the real world evaluation. Intuitively, a protocol is called
a secure C-PFE protocol if there exist simulators such that the real world protocol eval-
uation simulates the ideal world protocol evaluation. This intuition is formally captured
by requiring that the following two distributions are computationally indistinguishable.

– The honest participants’ outputs and the adversary A’s view in the real-world exe-
cution.

– The honest participants’ outputs and the simulator S’s view in the ideal-world exe-
cution.

Real-World Execution. In the real world execution, let out1, out2 denote the output
of P1 and P2 respectively. For each individual adversary Ai (i = 1, 2), there are two
candidate views that we should consider. As an example, for the adversaryA1, we need
to consider the following two scenarios.

– If P2 is honest, then we need to consider viewA1,1 = viewA1 ∪ out2.
– If P2 is dishonest, then we need to consider viewA1,0 = viewA1 .

Ideal-World Execution. In the ideal world execution, P1 sends x to the trusted party
and P2 sends C f to the trusted party if they are honest. For a dishonest participant, she
sends either what she holds or a random string (it could be in the correct syntax format
of a legal protocol message) to the trusted party. The trusted party computes C f (x) and
sends it to P2. We use out1, out2 to denote the output sent to P1 and P2 respectively by
the trusted party and useS1,S1 to denote the simulators forA1 andA2 respectively. For
each individual adversary, we need to construct a simulator S (that is, S1 or S2). But for
this single simulator S, we need to consider two candidate views derived from the other
adversary who may control the other participants. As an example, for the adversaryA1,
we need to consider the following two potential views.

– If P2 is honest, then we need to consider viewS1,1 = viewS1 ∪ out2.
– If P2 is dishonest, then we need to consider viewS1,0 = viewS1 .

Definition 3. A two party protocol Π is called a secure C-PFE protocol if there are
probabilistic polynomial time simulators S1 and S2 such that the following four pairs
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of probabilistic distributions are computationally indistinguishable over the security
parameter κ.

viewS1,0(1
κ, x,C f )

c∼ viewA1,0(1
κ, x,C f )

viewS1,1(1
κ, x,C f )

c∼ viewA1,1(1
κ, x,C f )

viewS2,0(1
κ, x,C f )

c∼ viewA2,0(1
κ, x,C f )

viewS2,1(1
κ, x,C f )

c∼ viewA2,1(1
κ, x,C f ).

In the above list, the views are dependent on the security parameter κ which is omitted.

Katz and Malka [6] proposed a revision of their PFE protocol to achieve security
against a malicious participant P1. Specifically, they revised their protocol by requiring
P1 to prove to P2 the following facts (in the following, we use our protocol semiPFE
instead of their original protocols):

– The public key pk communicated in Step 1 of semiPFE was generated using the
specified key generation algorithm sHE.Gen.

– The ciphertexts Encpk(k01), · · · , Encpk(k0l+n) communicated in Step 1 of semiPFE are
well-formed ciphertexts using the public key pk.

– The garbled circuits in Step 3 are constructed correctly.
– The inputs are encoded correctly in Step 4.

A similar proof as in [6] could be used to show that

viewS1,1(1
κ, x,C f )

c∼ viewA1,1(1
κ, x,C f )

viewS1,0(1
κ, x,C f )

c∼ viewA1,0(1
κ, x,C f )

for our protocol semiPFE. In the same way, if we require P2 to prove to P1 the knowl-
edge of ai, a′i ∈ F2t (i = 1, · · · , n) for the ciphertexts

encGi =
(
Encpk(k0j + ai), Encpk(k0k + a′i), Encpk(k

0
l+i)
)

communicated in Step 2 and that the circuit encoded using encG1, · · · , encGn+l belongs
to C, then we can show that

viewS2,1(1
κ, x,C f )

c∼ viewA2,1(1
κ, x,C f )

viewS2,0(1
κ, x,C f )

c∼ viewA2,0(1
κ, x,C f )

.

6.3 Circuit Private PFE Protocols with Malicious P1

The discussion in the preceding section shows that the protocol semiPFE could be
revised to be secure against malicious participants using zero-knowledge proofs. Zero-
knowledge proofs are normally expensive and the resulting protocols may not outper-
form universal circuit based PFE protocols. In certain practical applications, we may
want to protect the circuit privacy from a malicious participant P1 and assume that P2

is semi-honest. For this kind of scenarios, it is not necessary for the participant P1 to
prove to P2 that the garbled circuits in Step 3 are constructed correctly. Since it will not
help P1 to learn any information of P2’s circuit C f by constructing incorrect garbled
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circuits in Step 3 of semiPFE. Similarly, P1 does not need to prove to P2 that the inputs
are encoded correctly in Step 4. In the following paragraphs, we sketch the construction
of a more efficient protocol privPFE that leaks zero information about the circuit C f to
a malicious P1.

Though other singly homomorphic encryption schemes could be used, we use Pail-
lier’s encryption scheme to simplify the discussion. In Paillier’s scheme, the public key
pk = (n, g) consists of two integers where n = pq divides the order of g ∈ Z∗n2 and
p, q are two prime numbers. The private key sk = (λ, µ) is a pair of integers where

λ = lcm(p − 1, q − 1) and µ =
(
(gλ mod n2)−1

n

)−1
mod n. A message m is encrypted

to c = Encpk(m) = gm · rn mod n2 for a randomly selected r ∈ Z∗n. A ciphertext c is
decrypted to the message m = Decsk(c) =

µ((cλ mod n2)−1)
n mod n.

In the protocol semiPFE, the only message that P2 sends to P1 is the oblivious gates
encGi (i = 1, · · · , n). P1 will not learn any information about the circuit C f if P1 cannot
correlate the ciphertext Encpk(k0j + ai) to the ciphertext Encpk(k0j ). This is guaranteed

Fig. 2. Protocol privPFE
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by the semantic security of the homomorphic encryption scheme. In other words, if
P1 can prove to P2 that the public key is generated using the specified key generation
algorithm then the circuit privacy is guaranteed. However, if Paillier’s scheme is used
then zero knowledge proof is necessary. It is sufficient for P2 to check that the condition
g ∈ Z∗n2 holds for the public key (n, g) generated by P1 where we assume that P2 will
not leak any information about the circuit C f on purpose. Specifically, the new protocol
privPFE is described in Fig. 2.

Correctness. The correctness of the protocol privPFE can be verified straightforwardly
in the same way as that for the protocol semiPFE.

Privacy. In the following, we sketch a proof of privacy for the protocol privPFE against
malicious P1. First we show that a dishonest P1 will learn nothing about the circuit C f

except the circuit size unless P2 leaks certain information about C f on purpose. As we
have mentioned in the preceding paragraphs, the only information that P2 sends to P1

is the set of oblivious gates

encGi =
(
Encpk(k0j + ai), Encpk(k0k + a′i), Encpk(k

0
l+i)
)

for i = 1, · · · , n. In Step 3, P2 verifies that g ∈ Z∗n2 and Encpk(k0i ) ∈ Z∗n2 for i = 1, · · · , n+
l. Thus if ai, a′i are chosen uniformly at random, then Encpk(k0j + ai), Encpk(k0k + a′i)
are values distributed uniformly at random over Z∗n2 and are independent of the values
Encpk(k0j ) and Encpk(k

0
k ). In a summary, unless P2 chooses ai, a′i nonuniformly, P1 learns

no information about the circuitC f except the circuit size. Note that the privacy ofC f is
preserved unconditionally. Secondly, a semi-honest participant P2 learns nothing about
the private input x except the final output f (x). The proof is similar to the proofs in [6]
and the details are omitted. This completes the proof of privacy.

6.4 Secure PFE Protocols Against Two Malicious Participants

In order to protect the privacy of P1’s input x against a malicious P2 in the proto-
col privPFE, P2 needs to prove to P1 that the circuit defined by the oblivious gates
encG1, · · · , encGn+l belongs to the specified circuit class C. Otherwise, the circuit cor-
responding to these oblivious gates could be a simple circuit such as ¬(x1 ∧ x1) which
leaks information about the input value x = x1 · · · xl from the output C f (x). In other
words, the protocol privPFE is not secure against malicious participant P2.

For PFE protocols with circuit owner P2 learning the final output C f (x), it seems to
be inherently necessary to have participant P2 to prove to P1 that the circuit defined by
the oblivious gates encG1, · · · , encGn+l belongs to the specified circuit class C. Other-
wise, the protocol could not be secure against a malicious participant P2. For applica-
tions where only the participant P1 needs to learn the final output C f (x), the protocol
privPFE is also secure against both malicious P1 and malicious P2. Let us revise the
protocol privPFE to a new protocol secPFE as in Fig. 3.

The correctness of the protocol secPFE is straightforward. For the security proof,
we distinguish two cases. In the first case we assume that P1 is malicious. In this case
the proof is identical to the privacy proof for the protocol privPFE since the only extra
information that P2 delivers to P1 is the final output key label k0n+l or k

0
n+l + ∆ which
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Fig. 3. Protocol secPFE

leaks no information about the circuit topology. In other words, a malicious P1 learns
no information about the circuit C f . In the second case, we assume that P2 is malicious.
In this case, let ow1, · · · , owl be the l input wires. Assume that the ith gate

encGi =
(
Encpk(k0j + ai), Encpk(k0k + a′i), Encpk(k

0
l+i)
)

contains one or two input wires. Note that P1 garbles this ith gate using ingoing key
labels (Γ+ k0j +ai,Γ+ k0j +ai +∆) and (Γ+ k0k +ak,Γ+ k0k +ak +∆) respectively. Without
loss of generality, we may assume that j ≤ l (that is, ow j is an input wire). For the input
wire ow j, P1 provides the input key label Γ + kxjj = Γ + k0j + x j∆ to P2 corresponding to
the input bit x j. We can distinguish the following two cases:

– P2 knows the value of k0j + ai. In this case, unless Paillier’s encryption scheme is
not semantically secure, P2 does not follow the protocol by choosing a random ai
to generate the ciphertext Encpk(k0j + ai). Instead, P2 chooses a value ci = k0j + ai
and let Encpk(k0j + ai) = Encpk(ci). In this case, P2 can not distinguish ai from a
random value. Thus P2 can not distinguish Γ + k0j + ai + x j∆ from a random value.
Consequently, P2 cannot go ahead to evaluate the ith garbled gate.

– P2 does not know the value of k0j + ai. In this case, P2 may or may not follow
the protocol. In either case, P2 can not distinguish k0j from a random value. If P2

followed the protocol and selected a known value ai, then P2 can compute the key
value Γ+k0j+ai+x j∆ and continue the garbled gate evaluation. If P2 has not followed
the protocol and selected k0j +ai in a way that she does not know the value of ai, then
P2 can not compute the key value Γ + k0j + ai + x j∆ and cannot continue the garbled
gate evaluation.

With above discussion, a similar proof for garbled circuit security as in [3,6] could be
used to show that a malicious participant P2 learns no information about the input x in
case that the Paillier’s encryption scheme is semantically secure and the hash functions
used in the protocol can be considered as random oracles. The details of the proof are
omitted.

7 Circuit Garbling Scheme GRRcirc

The half-gates technique garbles each odd gates to two ciphertexts and even gates are
free. However, the evaluator needs to carry out two cryptographic hash (or encryption)
operations for each odd gate. In our GPGRR2 scheme, the evaluator needs to carry
out one cryptographic hash (or encryption) operation and one multiplicative inverse
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operation in the finite field F2t . In case that one needs a Φcirc-secure garbling scheme
and prefers multiplicative inverse operations than cryptographic hash (or encryption)
operations, one may revise the scheme GPGRR2 by adding additional conversion pro-
cesses (either free or with one additional ciphertexts) to obtain a free-XOR compatible
GRRcirc scheme.

As a high level description, the conversion process is as follows. For each odd gate,
if an output wire z is going to even gates, then we can let the output wire z to satisfy the
condition “k1z = k0z ⊕ ∆” instead of “k1z = k0z + ∆ mod 2t”. For each odd gate, if one or
two input wires x satisfy “k1x = k0x ⊕ ∆” instead of “k1z = k0z + ∆ mod 2t”, we can add
a conversion ciphertext to translate the condition “k1x = k0x ⊕ ∆” to the condition “k1z =
k0z + ∆ mod 2t”. Furthermore, we use the GPGRR2 optimization technique to reduce
two ciphertexts to one ciphertext for as many odd gates as possible. After the above
revision, all even gates are free and each odd gate has one, two, or three ciphertexts.
Specifically, the garbling scheme GRRcirc proceeds as follows.

1. For each odd gate such that all input wire labels satisfy the invariance property (6)
and the output wire is only used by odd gates, garble the gate using the scheme
GPGRR2. That is, let the garbled output wire labels satisfy the property k1z = k0z +∆
mod 2t. This garbled gate contains two ciphertexts.

2. For each odd gate such that at least one input wire label does not satisfy the invari-
ance property (6) and the output is only used by odd gates, garble the gate using the
GRR3 with three ciphertexts.

3. For each odd gate with all fanout wires z going to even gates, depending on whether
the input wires satisfy the invariance property (6) or not, revise either the above step
1 or the above step 2 to garble the gate so that the output wire has garbled wire labels
k0z and k1z = k0z ⊕ ∆. This garbled gate contains two or three ciphertexts.

4. For each odd gate with fanout wires going to both odd and even gates, garble it with
three ciphertexts so that the output wire has garbled wire labels k0z and k1z = k0z ⊕ ∆
for even gates and has garbled wire labels k0z and k

1
z = k0z +∆ mod 2t for odd gates.

Our experiments have not found such kind of gates for the commonly used circuits
that we will discuss later.

5. For each odd gate, use the following process to reduce the number of ciphertexts to
one if possible. In the following process, a gate g1 is called a sibling gate of g2 if
there exists a gate g3 such that the two input wires of g3 are the output wires of g1
and g2 respectively.
(a) Mark all even gates as “FINAL”.
(b) If all gates are marked either as “1-Cipher” or as “FINAL”. Then the process is

over. Otherwise, choose a random odd gate g that is not marked as “1-Cipher”
or “FINAL”. Let S = {g}.

(c) If there exists a gate g′ " S , g′ is a sibling of some gate in S , and g′ is marked
as “1-Cipher” or “FINAL”, mark all gates in S as “FINAL” and go to Step (5b).

(d) If there exists a gate g′ " S , g′ is a sibling of some gate in S , and g′ is neither
marked as “1-Cipher” nor marked as “FINAL”, let S = S ∪ {g′} and go to Step
(5c).

(e) If there is no gate g′ " S such that g′ is a sibling of some gate in S , use the
optimized GPGRR2 technique to garble g using one ciphertext and all other
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gates in S using two ciphertexts appropriately. It is noted that if the garbled gate
g contains three ciphertexts originally, then we can only reduce the number of
ciphertexts to two instead of one. Mark g as “1-Cipher” and all other gates in S
as “FINAL”. Go to Step (5b).

6. Each even gate is for free. That is, no ciphertext is required.

We used the above process to compare the proposed garbling scheme GRRcirc
against other garbling schemes from the literature. Since it is optional to use the external
index bits in GRRcirc, we do not include the external index bits for GRRcirc garbling
scheme in the following comparison. Specifically, we compare the garbled circuit sizes
for the following circuits that are available from [15]: AES (Key Expanded), DES (Key
Expanded), MD5, SHA-1, SHA-256. Note that the circuits for these functions [15] con-
tains AND, XOR, and INV gates. For our comparison, we integrated the INV gates into
the AND/XOR gates to obtain OR and NXOR gates. Thus we will only consider circuits
with AND/OR/XOR/NXOR gates. We will use t to denote the size of wire labels (e.g.,
we may take t = 80). For the garbling schemes, we compare Yao’s classical scheme
[18], point-permute [2], GRR3 [12], GRR2 [14], free XOR+GRR3 [9], FleXOR [8],
and half-gates [19]. For the FleXOR garbling scheme [8], we used the data for the
best performance “safe ordering heuristics” reported in Fig. 9 of [8]. For each garbling
scheme in Table 1, we have two rows of values for each circuit. The top row contains
the number of ciphertexts of the garbled circuits and the bottom row contains the size
of the garbled circuits when t = 80.

The comparison results in Table 1 show that, GRRcirc has comparable performance
with FleXOR. However, it has large garbled circuit size compared with half-gates tech-
niques. As we have mentioned in the previous sections, one may choose to use GRRcirc

Table 1. Garbled Circuit Size Comparison

AES (KE) DES (KE) MD5 SHA-1 SHA-256

# AND/OR [15] 5440 18175 29084 37300 90825
# XOR/NXOR [15] 20325 1351 14150 24166 42029
# Total gates 25765 19526 43234 61466 132854
classical [18] 103060t 78104t 172936t 245864t 531416t

0.98MB 0.74MB 1.65MB 2.34MB 5.07MB
point-permute [2] 103060(t+1)t 78104(t+1) 172936(t+1) 245864(t+1) 531416(t+1)

1MB 0.75MB 1.67MB 2.37MB 5.13MB
GGR3 [12] 77295(t+1) 58578(t+1) 129702(t+1) 184398(t+1) 398562(t+1)

0.75MB 0.57MB 1.25MB 1.78MB 3.85MB
GGR2 [14] 51530(t+1) 39052(t+1) 86468(t+1) 122932(t+1) 265708(t+1)

0.50MB 0.38MB 0.83MB 1.19MB 2.57MB
free XOR+GRR3 [9] 16320(t+1) 54525(t+1) 87252(t+1) 111900(t+1) 272475(t+1)

0.16MB 0.53MB 0.84MB 1.08MB 2.63MB
FleXOR [8] 18550(t+1) 36904(t+1) N/A 85438(t+1) 207253(t+1)

0.18MB 0.36MB N/A 0.82MB 2MB
half-gates [19] 10880(t+1) 36350(t+1) 58168(t+1) 74600(t+1) 181650(t+1)

0.11MB 0.35MB 0.56MB 0.72MB 1.75MB
GRRcirc 16640t 37198t 75584t 97080t 225498t

0.16MB 0.35MB 0.72MB 0.92MB 2.15MB
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instead of half-gates if one prefers field multiplicative inverse operations than crypto-
graphic hash (or encryption) operations since for half-gates garbled circuits, each odd
gate evaluation requires two cryptographic hash (or encryption) operations while for
GRRcirc garbled circuits, each odd gate evaluation requires one cryptographic hash (or
encryption) operation and one field multiplicative inverse operation.

8 Conclusion

Using a linear interpolation method, we proposed a circuit garbling scheme to garble
each circuit gate to at most two ciphertexts with gate functionality privacy. We also
proposed an optimization process to garble a circuit in such a way that some gates only
contain one ciphertext. It would be interesting to investigate the lower bound for garbled
circuit size. We also applied our garbling schemes to constant round PFE protocols and
proposed a more efficient PFE protocol that is secure against malicious participant P1 if
P2 learns the final output and is secure against two malicious participants P1/P2 if only
P1 learns the final output.
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