
Free Chain: Enabling Freedom of Expression
through Public Blockchains

1st Israa Alsarsour
Department of Computer
Science and Engineering

Qatar University
Doha, Qatar

ia1205702@qu.edu.qa

2nd Qutaibah Malluhi
Department of Computer
Science and Engineering

Qatar University
Doha, Qatar

qmalluhi@qu.edu.qa

3rd Yongge Wang
Department of SIS

UNC Charlotte
USA

Yongge.wang@gmail.com

Abstract—Everyone should have the right to expression and
opinion without interference. Nevertheless, Internet censorship
is often misused to block freedom of speech. The distributed
ledger technology provides a globally shared database that is
geographically distributed and that cannot be controlled by a
central authority. Blockchain is an emerging technology that
enabled distributed ledgers and has recently been employed for
building various types of applications. This paper demonstrates
a unique application of blockchain technologies to create a social
media platform that supports the freedom of expression. The
paper adapts permissionless and public blockchains in order to
leverage their advantages of providing an immutable and tamper-
proof digital ledger. This study shows the blockchain potential
for providing censorship-resistant social media platform. The
paper presents and evaluates possible methods for building such
system using the Bitcoin and Ethereum blockchain networks.
After exploring both blockchains the result shows that Ethereum
blockchain is much beneficial to use as a platform to allow
freedom of speech.

Index Terms—Blockchain, Ethereum, Bitcoin, Freedom of
speech, Cybersecurity, Cryptocurrency

I. INTRODUCTION

Social media allows communication between end users,
which offers them the potential to express their opinions
and interact with each other. This recognition of social me-
dia continues to grow at an exponential rate [1]. Recently,
however, there has been an increased attack on the freedom
of expression on social media, such as YouTube, Facebook,
and Twitter. The censorship software monitors peoples online
activities and prevents them from accessing unwanted content
or delete what has been posted. According to Freedom House,
a total of 68 countries suffered a net decline in political rights
and civil liberties during 2018, with only 50 registering gains
[9].

Furthermore, the existing methods to overcome censorship,
such as domain fronting, have failed. Domain fronting allows
hiding the real Internet communication and route it through
a third-party website. However, governments succeeded in
stopping this mechanism by blocking all the traffic to the
third-party website. One example is the Israel government’s
clear censorship on Facebook posts, Wikipedia content and any
activity/program that uncovers what is happening in Palestine.
A program called A Jewish-American on Israels Fascism: No

Hope for Change from Within was blocked in 28 nations [2]
in April last year. The TV show was a study that shows
the aggressive attitude Israelis frequently practice towards
Palestinians. Another example of censorship is when Chinese
government deleted a letter which was posted in popular plat-
forms Weibo and WeChat [3]. The Letter requested an official
investigation for a case of sexual assault of a female student by
her university professor which led to her committing suicide.
An anonymous user then published the letter to the Ethereum
blockchain, which means it is now permanently stored in the
public domain.

The freedom of speech became internationally protected in
the Universal Declaration of Human Rights (UDHR), which
was announced by the United Nations General Assembly in
1948. After the end of second world war [4] UDHR declared
that ”Everyone has the right to freedom of opinion and ex-
pression; this right includes freedom to hold opinions without
interference and to seek, receive and impart information and
ideas through any media and regardless of frontiers” [5].

The aim of this paper is to address the issue of suppression
of freedom of speech. Blockchain tackles this problem by
using a permanent decentralized ledger that no central entity
has control over. This method prevents data from being tam-
pered with, because there is no single dominant authority that
can alter data [6]. The technical objectives of our proposed
research includes the following:

• To identify alternative methods of adding arbitrary data
on public non-permissioned blockchains.

• To evaluate and compare the performance of the alterna-
tive methods and adopt one to use to enable freedom of
expression.

• To build an optimized publishing tool based on the
adopted method.

• To build a viewing tool that enables user-friendly explo-
ration of content published on the blockchain.

Blockchain technology is becoming popular for supporting
private and secure networks. While the main application of
public non-permissioned blockchains is to record currency
transactions, recently the thought of using them as a tool for
free speech has emerged. Therefore, we aim to use blockchain

to enable free speech in an efficient and effective environment
in terms of cost, time as well as tools to view people’s opinions
protected from censorship by governments and other pressure
groups, regardless of the political views being expressed.

The remainder of this paper is structured as follows; a
background on the fundamentals of Bitcoin and Ethereum
blockchains and the relevant topics is given in section II. After
that, the methodology is given in section III where we discuss
the different methods to insert data into the blockchains. In
section IV, the results and discussions are presented. Finally,
the conclusion and future work is given in section V.

II. BACKGROUND

A. Bitcoin

There was a change in the world after bitcoin, a crypto-
graphic currency, was introduced in the paper [7], written by
a pseudonym “Satoshi Nakamoto”. Since 2009, bitcoin has
been widely adopted and used and is now one of the major
cryptographic currencies on the market. The cryptography
behind bitcoin is relatively simple. The start of the coin base
by Satoshi Nakamoto is the binary string w0. To mine the
first bitcoin BTC, a random number 0 is required to be found
so that the first two bits of w1 = H(w0, r0) is 00 (that is,
w1 < 2|w0|−2). Anyone finding this r0 is rewarded with a
few BTCs. The next person to find another, so that the first
two bits of w2 = H(w1, r1) is 00 is also rewarded with a
few BTCs. This process continues and new blocks wi+1 1
keep being added to the existing block chain w0, ..., wi. If the
frequency of finding a BTC block is fewer than 10 minutes,
the community starts a voting process to extend the required
prefix of 0s in the hash outputs.

The bitcoin is a chain w0, w1, ..., wn where wn is the current
bitcoin head which everyone works on. The bitcoin network is
a peer to peer (P2P) network and every participant works on
the longest chain. There is no benefit to working on a shorter
chain; the transaction included in these chains will be invalid.
Bitcoin transactions are included in the hash inputs so that
they can be verified at a later times. In particular, we have

wi + 1 = H(wi, TR, ri)

where TR is the Merkle hash output of the transactions to be
included and ri is a random number found to make ri is a
random number that one finds to make wi +1 have a specific
number of 0s in its prefix. The Merkle hash tree is illustrated
in Fig.“1”.

1) Transactions: In the bitcoin system, a user is identified
by a public key (pubkey)of 26-35 alphanumeric characters
presenting a bitcoin address [8]. A random 256 bit number is
a private key, and an elliptic curve digital signature algorithm
(ECDSA) produces the corresponding pubkey. A transaction
is in the format of “Alice pays x BTC to Bob”, presented by
inputs and outputs illustrated in Fig. ”2” . In our example an
input is where Alice should provide a proof of the ownership
to her x BTC received in a previous transaction by unlocking
the x BTC calling a script scriptSig. An output contain the
locking script called scriptPubKey holds the x BTC and Bob

Fig. 1. Merkle hash tree.

pubkey address and only the receiver ”Bob” will be able to
unlock it using his signature and pubkey. Thus, a transaction
is achieved by Alice signing the message “reference number,
Bob’s public key, BTC amount x”, where the reference number
refers to a block wi in the current BTC chain wi in the current
BTC chain w0, w1, ..., wn , where Alice received a minimum
of x BTCs in a transaction with the provided reference number
included in wi. For instance, the block wi ncludes a transaction
with this reference numbers which shows that Alice received
a particular quantity of BTCs.

Fig. 2. Transaction in Bitcoin

2) Scripting Language: Transaction validation in Bitcoin is
not an automatic process, it is achieved by executing Locking
and Unlocking scripts which are placed in output and input
scripts, respectively. In order to validate that a transaction
redeems the output of another transaction correctly, both
scripts should be combined and the result of the execution
of both scripts should be true, else, the transaction would be
invalid. Bitcoin scripting language is known as “Script”, it is
a simple Forth like programming language that was created
especially for Bitcoin, what is special about Script is that
it supports cryptographic operations for calculating the hash
and verifying signatures. Script is stack-based, which means
that the operations follow the operands. Another important
characteristic of Script is that it is Turing-complete meaning
that it is not a general-purpose programming language and it
does not support loops and recursion, although this feature
limits Bitcoin’s abilities, it is considered as a security feature
as the execution time and memory usage are predictable and
it protects the transactions from logic bombs that might cause
Denial of Service attack (DoS). Figure 3 shows how the
locking and unlocking scripts are stacked [9]. A transaction
is validated by executing the locking script of the previous

Fig. 3. Concatenation of Unlocking and Locking Scripts

transaction and unlocking script of the current transaction.
Locking and Unlocking scripts are also known as scriptSig
and scriptPubKey, respectively. The scriptSig is a spending
condition of the output and the scriptPubkey is used to satisfy
that condition .

3) Standard Transactions: A transaction is standard if it
passes Bitcoin Core’s IsStandard() and IsStandardTx() tests.
Bitcoin support five standard transactions:

1) PAY-TO-PUBLIC-KEY-HASH (P2PKH): P2PKH is the
default transaction in bitcoin Blockchain. The locking
script known as ScriptPubKey is cosiest of hash of
the public key of the receiver. To unlock (spent) the
transaction a script of the receiver pubkey along with
a valid digital signature should be provided known as
ScriptSig.

2) PAY-TO-PUBLIC-KEY (P2PK): P2PK is a simpler ver-
sion of P2PKH. The defference is that the locking script
is now the pubkey instead of pubkey hash and the
unlocking script is the only the signature.

3) PAY-TO-MULTISIG (Multisig): Multisig is a script
where it has many n pubkeys as locking script and
requires some or all m signatures to those pubkeys to
unlock the script.

4) PAY-TO-SCRIPT-HASH (P2SH): P2SH is more ad-
vanced script used mostly for Multisig transactions. The
locking script contains the hash of the custom redeem
script. And to unlock it, the redeem script and the data
needed to unlock it should be provided. It allow users
to create their own redeem scripts, but also share them
easily with others making the burden on the sender of the
message to provide the redeem script and data needed
to unlock (spend) it.

5) COINBASE: An input script used only by the miners
is referred to as the “Coinbase”. This data provides
up to 100 bytes of arbitrary. For holding ASCII en-
coded string, for instance, names of their mining pools,
miners are at liberty to manipulate these bytes of the
Coinbase data. For example, the following text was
added by Satoshi Nakamoto using the Coinbase data:
“The Times 03/Jan/2009 Chancellor on the brink of
the second bailout for banks” [10], when the Bitcoin
blockchain was firstly used by Nakamoto. Whereas, this
field is an approach to store arbitrary data in the Bitcoin
Blockchain ledger, only miners have access to it and
general Bitcoin users have no access to it. Thus, this
section contains it for attention only, and, the same will

not be mentioned for a second time.
6) OP RETURN: The opcode OP RETURN was intro-

duced to Bitcoin blockchain as a reaction to the growing
users who are trying to store arbitrary data in the
blockchain by abusing other standard scripting opcodes
such as P2PKH. opcode OP RETURN can store 80
bytes of arbitrary data in each transaction. A transaction
can have many outputs but only one OP RETURN
output transaction is allowed for the transaction to be
considered standard [11]. OP RETURN script always
assess to false [12], thus creating unspendable UTXO.
Miners can safely remove the output transaction of
OP RETURN from the UTXO set and do not need to
keep track of them.

B. Ethereum

Although forth-like scripts in bitcoin are enough for design-
ing different types of smart contracts, it has limited capability.
An underlying philosophy in Ethereum is the inclusion of
a Turing-complete programming language in the blockchain
system is that various types of smart contract can be supported
in the blockchain. The design of Ethereum was that of an In-
ternet Service Platform with the objective of allowing anyone
to upload programs to the Ethereum World Computer, and
anyone can request that an uploaded program can be executed.
Compared with Bitcoin, there two main functions of Ethereum:
• Ethereum is a blockchain with a built-in Turing-complete

programming language, which allows anyone to write
smart contracts and decentralised applications so that they
can create their own ownership rules, transaction formats,
and state transition functions.

• Bitcoin only supports “proof of work”. Whereas
Ethereum supports both “proof of stake” and “proof of
work”, where “proof of stake” calculates a node’s weight
as proportional to its currency holdings, rather than its
computational resources.

The runtime environment for Ethereum smart contracts is
based on the Ethereum Virtual Machine (EVM). The EVM can
run any operation which has been created using the Solidity, a
Turing-complete Ethereum scripting language. An Ethereum
account is a 20-byte string consisting of four fields: nonce,
ether balance, contract code (optional), and storage (empty by
default). There are two types of Ethereum account: Ethereum
Externally Owned Accounts (EOAs) and contract accounts. An
EOA is linked to a private key and the only way to ‘activate’
a contract account is by using an EOA. A contract account is
ruled by its internal smart contract code, which is programmed
to be controlled by an EOA with a specific address. A smart
contract program in a contract account is executed when a
transaction is sent to that account. The transaction’s sender has
to pay for each step of the ‘program’ which they activate. This
includes the costs of both computation and memory storage.
The user is able to create a new contract by deploying code
to the blockchain.

Ethereum also supports contracts that can generate logs
through events, which are informative messages stored in each

Ethereum blocks transaction log, each event is associated to
the address of the contract that triggered it.

Fig. 4. Transaction Trie, State Trie and Receipts Trie in Ethereum

Ethereum has three Merkle Patricia trees, State, Transaction,
and Receipt, in which each stores some type of data. The
Receipt tree saves the information resulted from emitting an
event log, such as block number, block hash, transaction hash,
gas used by current transaction, logs which were created by
the transaction and more. The Transaction tree contains pa-
rameters such as nonce, gas price, gas limit, recipient, transfer
value, transaction signature values, and account initialization
for contract creation and transaction data for message call
[13]. The information of a transaction that deploys a contract
get stored in a State tree, such as post-transaction state,
the accumulative gas used, logs which were created from
executing the transaction, and the information of these logs,
which is stored in the bloom filter.

III. METHODOLOGY

In this section, we review different methods to insert data
in Bitcoin and Ethereum blockchains.

A. Embed data in Bitcoin blocks

As we have discussed in Section 3, Bitcoin transactions
are described using Forth-like scripts [14]. A script describes
how the Bitcoin receiver can spend the received Bitcoins. For
uncommon bitcoin transfers the script specifies that for Bob,
the recipient, to spend the received bitcoins he has to present
a public key and digital signature where the public key hash
is equal to Bob’s ID embedded in the script and the digital
signature will prove the ownership of the private key which
corresponds to the provided public key. A transaction is valid
if failure is not triggered by the combined script, and top stack

item is non-zero when the script exits. The stacks hold byte
vectors of at most 520 bytes long. The script words are called
opcodes (also known as commands or functions).

The goal of our proposed solution is to include a maximum
number of non-transaction related bytes into the script without
triggering failure so that the transaction will be included in the
block by miners. There are several ways for arbitrary data such
as short messages and files to be injected in Bitcoin ledger via
several methods:

1) OP RETURN: This opcode (op) is followed by one
pushdata op which can be used to store 80 bytes
of data that is not related to the transaction itself
(e.g. human-readable messages.). This opcode consid-
ered non-standard to have more than one OP RETURN
output or an OP RETURN output with more than one
pushdata op in each transaction (see Fig. ”5” for a
graphical illustration).

Fig. 5. Return Transaction

2) PAY-TO-PUBLIC-KEY-HASH: is a well-known and de-
batable data insertion technique, wherein, the data in the
< PubKeyHash > field of the output script is stored
accompanied by a non-dust amount of Bitcoin. This is
known as Pay-to- Fake-Key-Hash (P2FKH). There is no
public key with the user, which can be hashed on the
data being stored. Due to this, users can never spend
these transaction outputs (see Fig. ”6” for a graphical
illustration). Nevertheless, the miners are unaware if the
hash denotes a real public key possessed by someone and
as they are valid Unspent Transaction Outputs UTXOs,
these UTXOs must be recorded (forever) by the miners.
The P2FKH method provides the storage of 20 bytes per
output; however, a single transaction can entail a number
of outputs. In Bitcoin’s blockchain, the images, text and
mp3 files have been stored through this method and now
it is this method utilized by tools such as Apertus.io [15].

Fig. 6. Pay-to-Public-Key-Hash Transaction

3) PAY-TO-PUBLIC-KEY: Rather than a fake public key
hash, one can store the data as a fake public key (P2FK).
There are 65 bytes in an uncompressed public key, and
three fewer OP codes make up the overall script, due to
which, it is turned out as an efficient method for data
storage as compared to the P2FKH (see Fig. ”7” for a
graphical illustration). However, the community doesn’t
use it as a widespread method to store the data. A likely
reason for this is since the nodes can easily identify fake
(uncompressed) public keys and this approach could be
shut down by the miners in the future. In this regard, the
data can be saved with a fake compressed public key (33
bytes) besides realizing data efficiency as compared to
P2FKH.

Fig. 7. Pay-to-Public-Key Transaction

4) PAY-TO-MULTISIG: A one-of-two or one-of-three mul-
tisig script containing real public key and one or two
fake keys having arbitrary data is another method to
insert data (Pay-to-Fake-Multisig), which is generally
seen in the Blockchain technology Creation of UTXO
bloat can be prevented, since these transactions are
spendable. As far as the lowest overhead cost is con-
cerned, a (real) compressed public key would be used
and the data will be stored via two fake uncompressed
public keys (65 bytes each). With the help of this
method, the UTXO set will maintain the data till the
spending of these outputs (using the one real key) by
the user. Within a single transaction, one can consis-
tently store multiple P2FMS outputs in all of them
using the same public key, as a result of which, data
reconstruction becomes easy (see Fig. ”8” for a graphical
illustration). In spite of that, there should be more
than 400 bytes in the transactions that contain a single
OP CHECKMULTISIG. In-fact, 20 bytes per sigop is
the default requirement, and 20 sigops are considered as
one instance of OP CHECKMULTISIG. The redemp-
tion of these UTXOs becomes unproductive because of
these shortcomings. Additionally, as compared to the
min non-dust values, the cost for spending these UTXOs
will be greater. Thus, to store arbitrary data with a burn
amount, users can use all three pubkey fields with no
respect for the UTXO bloat.

5) PAY-TO-SCRIPT-HASH: Just like the P2FKH, data
storage as a fake hash is done by Pay-to-Fake-Script-
Hash (P2FSH) method. As compared to P2FKH, two
fewer OP codes are required by the P2FSH (making

Fig. 8. Multisig Transaction

it more effective), however, an unspendable UTXO is
still developed. The methods storing data in the input
script, where a P2SH output is spent. Creating the
UTXO and spending the UTXO are the two stages
of the P2SH. A Redeem Script is first developed and
the HASH160 algorithm is subsequently applied to this
script for creation of the P2SH UTXO. accordingly, the
output script is given below:

OP HASH160”RedeemScriptHash”OP EQUAL

For consuming this UTXO, an input script is created
containing the Redeem Script (as a solo stack element,
hence confined to 520 bytes), which is led by a series of
Script operations, through which, the Redeem Script will
conclude in only true upon execution. The data insertion
has two approaches: arbitrary data may either be stored
in the the Redeem Script, or/and may be stored in the bit
of the input script leading the Redeem Script. E.g., a user
can create a Redeem Script with an OP PUSHDATA2
(three bytes) followed by a 517-bytes data element.
Apart from OP 0, any stack element is considered as
“true”, the UTXO will successfully be redeemed by this
script. Despite this, owing to the 520-byte Redeem Script
limit, large amounts of data can be efficiently stored
in the segment of the input script leading the Redeem
Script (see Fig. ”9” for a graphical illustration). Since
June 2014, experts have been using the variations of the
following P2SH-based methods for data storage in the
Blockchain.

Fig. 9. Pay-to-Script-Hash Transaction

B. Embed data in Ethereum blocks
Ethereum has two types of transactions: message call trans-

action and contract creation transaction. Both types of trans-

actions share the common fields: nonce, gasPrice, gasLimit,
to, value, v, r, and s. Moreover, a contract creation transaction
contains a field of an unlimited size byte array which specifies
the EVM code for account initialisation procedure. Conversely,
a message call transaction features a byte array data field of
unlimited size which specifies the input data of the message
call.

The objective of the indicated solution is to insert non-
transaction related data into the transaction data field or unit,
depending on whether the transaction is for a message call
or contract creation. Therefore, we conduct an experiment
using Ethereum Kovan Testnet to embed data to Ethereum
Blockchain Using:

1) Data Field: A message call transaction can either be a
call to a smart contract or be a simple transfer of ether
to a non-contract “externally owned account”. Whether
the message call is a call to a smart contract is being
called or it is a simple transfer of ether to a non-
contract “externally owned account”, the data files will
be available for the senders to embed information of
any size depending on their gasLimit. In the case of
smart contract call the data filed is used to specify what
function the parameters, which can be designed to hold
the embedded data as the parameters. Similarly, if the
call is a simple transfer of ether, then data field is unused
and can hold the embedded data as well.

2) Contract Creation: The contract creation transaction field
init contains the EVM-code. When creating a contract
the EVM-code will be stored in the state Trie, which
gives the user the chance to embed data in the EVM-
code using parameterized constructor.

3) Event Creation: as we have discussed in section 3, events
are messages stored in each Ethereum blocks transaction
log. The EVM has logging functionality, this is actually
what is behind those events. The event logs are part of
the transaction receipts Trie (one of the three Merkle
Patricia trees that are stored in Ethereum). This means
Merkle proofs can be requested for log information
because the receipt root is stored in the block. One can
declare an event with a keyword event followed by event
name and parameters.

eventMyEvent(uintarg1, addressindexedarg2)

Additionally, one can search for these logs later on in the
chain if he/she want to go back in history and search for
them. Events can inform external users that something
happened on the blockchain and through returned values.
Thus, applications can subscribe and listen to these
events through the RPC interface of an Ethereum client.

Since the fields data and init are specified as unlimited size
byte arrays, theoretically one can embed as much information
as she wants in Ethereum transactions if she has sufficient
ether (that is, more than gasLimit).

Fig. 10. Solidity Code of Event and Contract

IV. RESULTS AND DISCUSSION

In this study, we built a system which allows the user to
publish text data into the Ethereum blockchain. The user has
the ability to choose between the different methods that we
discussed in the preceding section. Additionally, the user has
the ability to see the published data from different methods
throughout the system as well as on the blockchain ledger.
Finally, they key point of our system is that it is a standalone
application which ensures that it would not need additional
money to keep it floating.

We ran our experiments using macOS Catalina version
10.15.5 operating system. The processor of the machine is
2.8 GHz. We used Kovan test-net in Ethereum blockchain.
Additionally, we used test-net network in Bitcoin network. We
ran the experiments on different days during August 2020.
Finally, Ether.js 4.0.0 API is used in Ethereum blockchain
using Webstorm version 2019.3.4. We used bitcoin-0.11.3.jar
in Bitcoin blockchain using Eclipse photon 2018 version 4.8.0.

To evaluate each method we used these parameters: The
cost depends on the transaction fees times the number of
transactions that are needed to publish data in the ledger. Since
the rate of adding blocks is constant, the speed is determined
by the number of transactions needed to insert data into the
ledger and the number of blocks in which these transactions
will be included. For example, if we have a message we need
to publish, it requires n transactions with no control of how
they will spread over blocks which might require m blocks.
Because a block is added to the Bitcoin blockchain every 10
minutes [17] and every 15 seconds in Ethereum [18]. Finally,
the ease of browsing was also evaluated. This is affected by
the way we fragment the data and recollect it again to present
it in the GUI interface that the users will be using to publish
and browse their data.

A. Evaluating Ethereuem

Gas limit is about 10M gas, leading to typical block sizes of
20-30KB. Therefore, we tried 1KB, 10KB, 20KB, and 30KB
and 40KB data sizes to experiment inserting data into the
ledger. As we discussed in the previous sections, Ethereum
has three methods to insert data in the ledger. For the data
field, using Ether.js API, we were able to insert any size of
data as long as we had sufficient gas. We inserted data by
making message calls to a new address each time. The value
field was set to zero, but we specified the gas price based
on the appropriate gas price currently in the network. Even

though we ran our experiments on Kovan, the users have the
ability to choose which network they want to publish to. An
estimated transaction fee pops up to the user before sending
the transaction for them to confirm the transaction. After the
confirmation, a link to where the transaction is in the ledger
(transaction hash) is provided for the users to see their data in
the ledger. They have the option to also explore the transaction
in the system after providing the transaction hash see Fig ”Fig.
11” for clear steps of using our system.

Fig. 11. Example Transaction

For inserting data using contract creation method, we cre-
ated a contract that has a string field to hold data and it is
updated using a parameterized constructor using solidity. Thus,
when we deployed the contract in our system we included the
data in the constructor which allowed data to be included in
the contract EVM-code as well as in the state Trie. The last
method we used is contract creation using events. We created
a contract using solidity that saved data in an event through
emitting it using parameterized constructor which saved the
data in the contract EVM-code as well as in the transaction
receipt Trie.

We ran the experiments multiple times and each point in
Figure 12 is a reading of 5 times. In each run we set the gas
price differently which did not affect the gas used results. We
calculated the transaction fee each run which varies because
of the following equation.

TransactionFee = gasPrice ∗ gasUsed

Figure 13 illustrates the transaction fee in Ether at
0.000000011 Ether (11 Gwei) gas price.

Fig. 12. Gas Used Ethereum

In Figure 12, we can see that data field is the least expensive
method to be used to insert data into the ledger in terms of

Fig. 13. Transaction Fee Ethereum

Fig. 14. Transaction Fee Ethereum (USD)

gas used which leads to cheap transaction fee as well. Then,
contract creation-event methods cost and transaction fee are a
little bit higher from field data method since the data is stored
in the receipt trie as logs and in the init data field along with
the EVM-code in the transaction tries. Lastly, contract creation
method is the most expensive one as shown in Figure 13,
since the data is stored in the state and transaction tries which
is much expensive than storing data in other tries. Therefore,
if a user wants to insert data to Ethereum blockchain it is
recommended to use either of the data field methods.

B. Evaluating Bitcoin

Bitcoin hard forks have splitted Bitcoin into the following
cryptocurrencies: Bitcoin Core (BTC, the original version by
Satoshi Nakamoto), Bitcoin Cash (BCH), Bitcoin Gold (BTG),
and Bitcoin Private (BTCP). Currently, Bitcoin Core has a
block size limit of 1MB and Bitcoin Cash has a block size
limit of 32MB. In the following, we only consider the data
bandwidth for Bitcoin Core.

In the Bitcoin Core implementation, there is no size limit
on Bitcoin transactions. Thus the transaction size is essentially
limited by the block size. However, there is a transaction fees
[16] document mentioned that “Then transactions that pay a
fee of at least 0.00001 BTC/kb are added to the block, highest-
fee-per-kilobyte transactions first, until the block is not more
than 750,000 bytes big.” In the Bitcoin Core source code, the
maximum allowed script size is 10,000 bytes. However, there

is no limit on output per transaction. Theoretically one can
put as much as 750KB data in one transaction, though one
may use a more smart strategy to split the data into multiple
transactions.

To make the comparison between both blockchains much
easier, we considered using 1KB, 10KB, 20KB, and 30KB and
40KB data sizes to experiment inserting data into the Bitcoin
ledger as well. We ran the experiments using bitcoin.js API. As
we have mentioned in the preceding sections, bitcoin has five
different methods to insert data in the ledger. One is allowed
to use multiple methods within one script with the restriction
that each method can not exceed the data allowed limit which
was explained in the previous section through figures. For the
chosen data sizes, when we want to use P2FK method, we have
to divide the data into segments of 65 bytes and use multiple
P2FK in one transaction using multiple outputs. This is done
to all other transactions methods except OP RETURN.

Figure 15 and 16 illustrate the transaction fees in USD
of each method needed to insert 1KB, 10KB, 20KB, and
30KB and 40KB data sizes. As we can see, comparing
the transactions fee, the most expensive is P2FKH followed
by OP RETURN and P2FK. PAY-TO-SCRIPT-HASH and
PAY-To-MULTISIG which is considered the least expensive
method. Thus, if the user wants to insert data to Bitcoin ledger
they are recommended to use PAY-To-MULTISIG method and
PAY-TO-SCRIPT-HASH.

Fig. 15. Transaction Fee Bitcoin

Fig. 16. Transaction Fee Bitcoin Without P2FKH

Another aspect to evaluate the methods are aiming at
using fake keys to insert data by bloating the UTXO set.
For example, P2FKH and P2FSH are considered fruitless by
bloating the ledger with unspendable UTXO per 20 bytes
of data. Another method considered fruitless is P2FK by
providing only 65 bytes per one unspendable UTXO. One the
other hand, P2FMS inserts 195 bytes using all three fake keys
which result in unspendable UTXO. However, if one used two
fake keys to insert 130 bytes and one real key that makes
the UTXO spendable. Lastly, OP PRTURN provides 80 bytes
with unspendable UTXO but without bloating the set since the
users can discard these UTXO from their sets.

C. Comparison Between both Blockchain

After looking at both results in Bitcoin and Ethereum
blockchains, we can see clearly that Ethereum blockchain is
much beneficial to use it as platform for allowing freedom of
speech. Another aspect to look at it, as well, is reconstructing
the data after inserting them in both ledgers. Since the number
of transactions is much less in Ethereum blockchain than in
Bitcoin, thus reconstructing the data is much easier.

V. CONCLUSION AND FUTURE WORK

Most countries with dictatorship governments deploy pow-
erful firewalls to block contents from the external world and
impose censorship on Internet media. For Proof of Work and
Proof of Stake based blockchains, the content in the blocks are
nonremovable. Furthermore, the participants of blockchains
may keep their identity anonymous. Thus, blockchains may
provide citizens within these countries with freedom of speech.
On the other hand, criminals may use blockchains to distribute
illegal contents (e.g., child pornography) or to establish black
markets. It is noted that Bitcoins did not receive sufficient
attention until it was used as the payment method on Silkroad
for illegal contents. Though a blockchain itself has a limited
bandwidth for content distribution, it is sufficient to carry out
these illegal activities. When blockchains are used for these
purposes, there is a chance that most countries will ban it.
In this study, we have successfully proposed a solution that
aims to prove and facilitate the ability to achieve freedom of
speech by using Ethereum and Bitcoin blockchains. This is
mainly based on blockchains immutable nature to prevent any
changes in the data. This paper presented different methods to
achieve that in both blockchains and presented the evaluation
of the results of the proposed solution.

As discussed earlier, that blockchain has the potential to
be used as a tool to achieve ’freedom of speech’ due to the
privacy and immutability features, it also has some challenges:
• Privacy: Recently, the state-of-art became active regard-

ing De-anonymization of blockchain users. Moreover,
there are some reported incidents of identifying some
users in the blockchain. Thus, we need to use mixers
to maximize the privacy of the users of our application
although it will increase the cost.

• Risks of Arbitrary Blockchain Content: Since the pro-
posed solution introduces the idea of inserting arbitrary

data into the blockchain, there is no guarantee that users
will not misuse these channels for content insertion. One
solution might be creating a blacklist of words that are
agreed upon and shared in the blockchain to prevent
the misbehaving people from publishing inappropriate
content.

REFERENCES

[1] G. Matthew, and A. Kohirkar, “Social media analytics: Techniques and
insights for extracting business value out of social media,” IBM Press,
2015.

[2] I. Bentov, A. Gabizon, and A. Mizrahi. Cryptocurrencies without proof
of work. In International Conference on Financial Cryptography and
Data Security, pages 142–157. Springer, 2016.

[3] E. Muzzy, How the Ethereum Blockchain Became a
Tool in the Fight for China’s #MeToo Movement. 2018,
https://medium.com/@everett.muzzy/how-the-ethereum-blockchain-
became-a-tool-in-the-fight-for-chinas-metoo-movement-e4017b1acddd

[4] Freedom in the World 2019 Democracy in Retreat.
https://freedomhouse.org/report/freedom-world/2019/democracy-retrea

[5] Universal Declaration of Human Rights. http://www.un.org/en/universal-
declaration-human-rights

[6] R. Hanifatunnisa, and B. Rahardjo. Blockchain based e-voting recording
system design. 2017 11th International Conference on Telecommunica-
tion Systems Services and Applications (TSSA), 6.,2017

[7] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[8] A. M. Antonopoulos, Mastering Bitcoin: Unlocking Digital Crypto-

Currencies. O’Reilly Media, Inc., 2014.
[9] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder,

Bitcoin and cryptocurrency technologies: a comprehensive introduction.
Princeton and Oxford: Princeton University Press, 2016.

[10] J. Thomason, S. Bernhardt, T. Kansara and N. Cooper. ”Blockchain
Introduced.” Blockchain Technology for Global Social Change. IGI
Global, 2019. 25-59. Web. 4 Mar. 2020. doi:10.4018/978-1-5225-9578-
6.ch002

[11] S. Bistarelli, I. Mercanti, and F. Santini. ”An analysis of non-standard
bitcoin transactions.” 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT). IEEE, 2018.

[12] M. Bartoletti, and L. Pompianu. ”An analysis of Bitcoin OP RETURN
metadata.” International Conference on Financial Cryptography and Data
Security. Springer, Cham, 2017.

[13] G. Wood. ”Ethereum: A secure decentralised generalised transaction
ledger”. Ethereum project yellow paper, 151(2014), 1-32. 2014

[14] Bitcoinwiki. Bitcoin script, https://en.bitcoin.it/wiki/Script, 2017.
[15] A. Sward, I. Vecna, and F. Stonedahl. ”Data insertion in bitcoin’s

blockchain.” Ledger 3 (2018). Harvard
[16] Bitcoinwiki. Bitcoin transaction fees,

https://en.bitcoin.it/wiki/Transaction fees, 2017.
[17] https://bitcoin.org/en/developer-guide#block-chain
[18] https://www.ethereum.org/ether

