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Abstract. Recently, Wang (2017) introduced a random linear code based quan-
tum resistant public key encryption scheme RLCE which is a variant of McEliece
encryption scheme. Wang (2017) analyzed an instantiation of RLCE scheme us-
ing Generalized Reed-Solomon codes. In this paper, we introduce and analyze
Hermitian code based RLCE schemes HermitianRLCE. Based on our security
analysis, we provide HermitianRLCE parameters at the 128, 192, and 256 bits
security level. These parameters show that HermitianRLCE has much smaller
public keys than GRS-RLCE.
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1 Introduction

Since McEliece encryption scheme [8] was introduced more than thirty years ago, it
has withstood many attacks and still remains unbroken for general cases. It has been
considered as one of the candidates for post-quantum cryptography since it is immune
to existing quantum computer algorithm attacks. The original McEliece cryptography
system is based on binary Goppa codes. Several variants have been introduced to re-
place Goppa codes in the McEliece encryption scheme though most of them have been
broken. Up to the writing of this paper, secure McEliece encryption schemes include
MDPC/LDPC code based McEliece encryption schemes [1,9], Wang’s RLCE [12,13],
and the original binary Goppa code based McEliece encryption scheme. The advantage
of the RLCE encryption scheme is that its security does not depend on any specific
structure of underlying linear codes, instead its security is believed to depend on the
NP-hardness of decoding random linear codes.

The RLCE scheme [12,13] could be used as a template to design encryption schemes
based on any linear codes. Wang [12,13] analyzed Generalized Reed-Solomon code
based RLCE security. This paper proposes a Hermitian code based RLCE scheme. It
is shown that Hermitian code based RLCE scheme has smaller key sizes compared
with Generalized Reed-Solomon code based RLCE schemes. For example, for the AES
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128, 192, and 256 security levels, the GRS-RLCE schemes have public keys of size
183KB, 440KB, and 1203KB respectively. For HermitianRLCE schemes, the corre-
sponding public keys are of the size 103KB, 198KB, 313KB respectively. It should be
noted that several authors have tried to design algebraic-geometric code based McEliece
encryption scheme (see, e.g., [6]). However, most of these algebraic-geometric code
based McEliece encryption schemes have been broken (see, e.g., [3]). Hermitian RLCE
provides an alternative approach which combines the algebraic geometric construction
based on Hermitian curves (and more generally, the extended norm-trace curves) with
that of a random linear code.

Unless specified otherwise, bold face letters such as a,b, e, f ,g are used to denote
row or column vectors over Fq . It should be clear from the context whether a specific
bold face letter represents a row vector or a column vector.

2 McEliece and RLCE Encryption schemes

For given parameters n, k and t, the McEliece scheme [8] chooses an [n, k, 2t+1] linear
Goppa code C. Let Gs be the k × n generator matrix for the code C. Select a random
dense k × k non-singular matrix S and a random n × n permutation matrix P . Then
the public key is G = SGsP and the private key is Gs. The following is a description
of encryption and decryption processes.

Mc.Enc(G,m, e). For a message m ∈ {0, 1}k, choose a random vector e ∈ {0, 1}n of
weight t and compute the cipher text c = mG+ e

Mc.Dec(S,Gs, P, c). For a received ciphertext c, first compute c′ = cP−1 = mSG.
Next use an error-correction algorithm to recover m′ = mS and finally compute the
message m as m = m′S−1.

The protocol for the RLCE Encryption scheme by Wang [12] consists of the fol-
lowing three processes:
RLCE.KeySetup, RLCE.Enc, and RLCE.Dec. Specifically the revised RLCE scheme pro-
ceeds as follows.

RLCE.KeySetup(n, k, d, t, w). Let n, k, d, t > 0, and w ∈ {1, · · · , n} be given parame-
ters such that n−k+1 ≥ d ≥ 2t+1. LetGs be a k×n generator matrix for an [n, k, d]
linear code C such that there is an efficient decoding algorithm to correct at least t errors
for this linear code given byGs. Let P1 be a randomly chosen n×n permutation matrix
and GsP1 = [g0, · · · ,gn−1].

1. Let r0, r1, · · · , rw−1 ∈ Fkq be column vectors drawn uniformly at random and let

G1 = [g0, · · · ,gn−w, r0, · · · ,gn−1, rw−1] (1)

be the k × (n+ w) matrix obtained by inserting column vectors ri into GsP1.

2. Let A0 =

(
a0,00 a0,01
a0,10 a0,11

)
, · · · , Aw−1 =

(
aw−1,00 aw−1,01
aw−1,10 aw−1,11

)
∈ F2×2

q be non-

singular 2×2 matrices chosen uniformly at random such that ai,00ai,01ai,10ai,11 6=
0 for all i = 0, · · · , w− 1. Let A = diag[1, · · · , 1, A0, · · · , Aw−1] be an (n+w)×
(n+ w) non-singular matrix.



3. Let S be a random dense k×k non-singular matrix and P2 be an (n+w)×(n+w)
permutation matrix.

4. The public key is the k × (n + w) matrix G = SG1AP2 and the private key is
(S,Gs, P1, P2, A).

RLCE.Enc(G,m, e). For a row vector message m ∈ Fkq , choose a random row vector
e = [e0, . . . , en+w−1] ∈ Fn+wq such that the Hamming weight of e is at most t. The
cipher text is c = mG+ e.

RLCE.Dec(S,Gs, P1, P2, A, c). For a received cipher text c = [c0, . . . , cn+w−1], com-
pute

cP−12 A−1 = mSG1 + eP−12 A−1 = [c′0, . . . , c
′
n+w−1].

Let c′ = [c′0, c
′
1, · · · , c′n−w, c′n−w+2, · · · , c′n+w−2] be the row vector of length n se-

lected from the length n+w row vector cP−12 A−1. Then c′P−11 = mSGs+e′ for some
error vector e′ ∈ Fnq where the Hamming weight of e′ ∈ Fnq is at most t. Using an effi-
cient decoding algorithm, one can recover mSGs from c′P−11 . LetD be a k×k inverse
matrix of SG′s where G′s is the first k columns of Gs. Then m = c1D where c1 is the
first k elements of mSGs. Finally, calculate the Hamming weight wt = wt(c−mG).
If wt ≤ t then output m as the decrypted plaintext. Otherwise, output error.

3 Hermitian codes

Consider the curve X given by

yq
r−1

+ yq
r−2

+ · · ·+ yq + y = xu (2)

over the field Fqr where u| q
r−1
q−1 . Notice that when u = qr−1

q−1 , the equation (2) gives

TrFqr/Fq
= NFqr/Fq

.

When r = 2 and u = qr−1
q−1 , the equation (2) gives

yq + y = xq+1

over Fq2 which is the defining equation of the Hermitian curve. In general, the genus of
X is

g =
(u− 1)(qr−1 − 1)

2

and X has at least
n̄ = qr−1 + u(qr − qr−1)

affine Fqr -rational points. We are interested in taking qr = 28 which gives several
options for r and q as shown in Table 1.

The Hermitian code over Fq2 is defined using the Hermitian curve yq + y = xq+1.
To begin, fix n ≤ q3 and 2g + 1 < α < n. Select n distinct Fq2 -rational affine points



P1, . . . , Pn onX . Thus, each Pi is of the form Pab where a, b ∈ Fq2 and bq+b = aq+1.
Let D = P1 + · · ·+ Pn, and set

B := {xiyj : i ≥ 0, 0 ≤ j ≤ q − 1, iq + j(q − 1) ≤ α};

one may note that B is a basis for the vector space L (αP ), where P denotes the point
at infinity on X . In the Hermitian code C(D,αP ), the message is a polynomial f ∈
Span (B), and the codeword of the message polynomial f is the evaluations of f over
the Hermitian curve. More precisely, C = C(D,αP ) is the image of the evaluation
map

ev : L(αP )→ Fnq2
f 7→ (f(P1), · · · , f(Pn)).

It is noted that for the Hermitian code C(D,αP ) with α ≥ 2g − 1, the length is n,
the dimension is α + 1 − g, and the minimum distance satisfies d ≥ n − α. The exact
minimum distances are known [14].

4 HermitianRLCE

HermitianRLCE is an RLCE encryption scheme with Hermitian code as the underly-
ing code. Specifically, HermitianRLCE replaces the the generator matrix Gs utilized
in RLCE.KeySetup(n, k, d, t, w) in Section 2 with a Hermitian code k × n generator
matrix.

5 Security analysis

In the following sections, we carry out heuristic security analyses on the revised RLCE
scheme.

5.1 Classical and quantum Information-Set Decoding

Information-set decoding (ISD) is one of the most important message recovery at-
tacks on McEliece encryption schemes. The state-of-the-art ISD attack for non-binary
McEliece scheme is the one presented in Peters [10], which is an improved version of
Stern’s algorithm [11]. For the RLCE encryption scheme, the ISD attack is based on the
number of columns in the public key G instead of the number of columns in the private
key Gs. The cost of ISD attack on an [n, k, t;w]-RLCE scheme is equivalent to the cost
of ISD attack on an [n+ w, k; t]-McEliece scheme.

For the naive ISD, one first uniformly selects k columns from the public key and
checks whether it is invertible. If it is invertible, one multiplies the inverse with the cor-
responding ciphertext values in these coordinates that correspond to the k columns of
the public key. If these coordinates contain no errors in the ciphertext, one recovers the
plain text. To be conservative, we may assume that randomly selected k columns from
the public key is invertible. For each k × k matrix inversion, Strassen algorithm takes
O(k2.807) field operations (though Coppersmith-Winograd algorithm takes O(k2.376)



field operations in theory, it may not be practical for the matrices involved in RLCE en-
cryption schemes). In a summary, the naive information-set decoding algorithm takes
approximately 2κ

′
c steps to find k-error free coordinates where, by Sterling’s approxi-

mation,

κ′c = log2

(
(n+w

k )(k2.807+k2)
(n+w−t

k )

)
' (n+ w)I

(
k

n+w

)
− (n+ w − t)I

(
k

n+w−t

)
+ log2

(
k2.807 + k2

) (3)

and I(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy of x. There are
several improved ISD algorithms in the literature. These improved ISD algorithms allow
a small number of error positions within the selected k ciphertext values or select k+ δ
columns of the public key matrix for a small number δ > 0 or both.

An HermitianRLCE scheme is said to have quantum security level κq if the expected
running time (or circuit depth) to decrypt a HermitianRLCE ciphertext using Grover’s
algorithm based ISD is 2κq . For a function f : {0, 1}l → {0, 1} with the property that
there is an x0 ∈ {0, 1}l such that f(x0) = 1 and f(x) = 0 for all x 6= x0, Grover’s
algorithm finds the value x0 using π

4

√
2l Grover iterations andO(l) qubits. Specifically,

Grover’s algorithm converts the function f to a reversible circuit Cf and calculates

|x〉 Cf−→ (−1)f(x)|x〉

in each of the Grover iterations, where |x〉 is an l-qubit register. Thus the total steps for
Grover’s algorithm is bounded by π|Cf |

4

√
2l.

For the HermitianRLCE scheme, the quantum ISD attack first uniformly selects
k columns from the public key and checks whether it is invertible. If it is invertible,
one multiplies the inverse with the ciphertext. If these coordinates contain no errors in
the ciphertext, one recovers the plain text. Though Grover’s algorithm requires that the
function f evaluate to 1 on only one of the inputs, there are several approaches (see,
e.g., Grassl et al [5]) to cope with cases that f evaluates to 1 on multiple inputs.

For randomly selected k columns from a RLCE encryption scheme public key, the

probability that the ciphertext contains no errors in these positions is (n+w−t
k )

(n+w
k )

. Thus the

quantum ISD algorithm requires
√(

n+w
k

)
/
(
n+w−t

k

)
Grover iterations. For each Grover

iteration, the function f needs to carry out the following computations:

1. Compute the inverse of a k × k sub-matrix Gsub of the public key and multiply
it with the corresponding entries within the ciphertext. This takes O

(
k2.807 + k2

)
field operations if Strassen algorithm is used.

2. Check that the selected k positions contain no errors in the ciphertext. This can be
done with one of the following methods:
(a) Multiply the recovered message with the public key and compare the differ-

ences from the ciphertext. This takes O((n+ w)k) field operations.
(b) Use the redundancy within message padding scheme to determine whether the

recovered message has the correct padding information. The cost for this oper-
ation depends on the padding scheme.



It is expensive for circuits to use look-up tables for field multiplications. Using
Karatsuba algorithm, Kepley and Steinwandt [7] constructed a field element multipli-
cation circuit with gate counts of 7 · (log2 q

2)1.585. In a summary, the above function f
for the HermitianRLCE quantum ISD algorithm could be evaluated using a reversible
circuit Cf with O

(
7
(
(n+ w)k + k2.807 + k2

)
(log2 q

2)1.585
)

gates. To be conserva-
tive, we may assume that a randomly selected k-columns sub-matrix from the public
key is invertible. Thus Grover’s quantum algorithm requires approximately

7
(
(n+ w)k + k2.807 + k2

)
(log2 q

2)1.585

√ (
n+w
k

)(
n+w−t

k

) (4)

steps for the simple ISD algorithm against HermitianRLCE encryption scheme.

5.2 Schur product attacks on algebraic geometric codes

Couvreur, Marquez-Corbella, and Pellikaan [4] introdcued a Schur product based attack
on algebraic geometry codes based McEliece encryption schemes. Their attack can de-
crypt any encrypted message in O(n3) operations after computing an Error Correcting
Pair in O(n4) operations. Specifically, their attack works for high genus algebraic ge-
ometry codes. In this section, we show how to choose parameters for HermitianRLCE
scheme to avoid the attacks in [4].

For two codes C1 and C2 of length n, the star product code C1∗C2 is the vector space
spanned by a ∗ b for all pairs (a,b) ∈ C1×C2 where a ∗ b = [a0b0, a1b1, · · · , an−1bn−1].
For the square code C2 = C ∗ C, we have dim C2 ≤ min

{
n,
(
dim C+1

2

)}
. For an

[n, k] Hermitian code C with 2g < α < n+1
2 , it follows from [4, Corollary 6] that

dim C2 = 2k + g − 1. The following is a brief proof on this fact. Note that g =
q(q−1)

2 . Fix C = C(αP ). We claim C2 = C(2αP ). Suppose W ∈ C2. Then W =
(f(P1)h(P1), · · · , f(Pn)h(Pn)) = (fh(P1), · · · , fh(Pn)) for some f, h ∈ L(αP ).
But fh ∈ L(2αP ) since (fh) = (f) + (h) ≥ −αP − αP = −2αP . Thus we have
W ∈ C(2αP ). An argument in [4] could be used to show that C(2αP ).

Let G be the public key for an (n, k, d, t, w) HermitianRLCE encryption scheme
based on a Hermitian code. Let C be the code generated by the rows of G. Let D1

be the code with a generator matrix D1 obtained from G by replacing the randomized
2w columns with all-zero columns and let D2 be the code with a generator matrix D2

obtained from G by replacing the n − w non-randomized columns with zero columns.
Since C ⊂ D1+D2 and the pair (D1,D2) is an orthogonal pair, we have C2 ⊂ D2

1+D2
2 .

It follows that

2k + g − 1 ≤ dim C2 ≤ min{2k + g − 1, n− w}+ 2w (5)

where we assume that 2w ≤ k2. In the following discussion, we assume that the 2w
randomized columns in D2 behave like random columns in the attacks of [4] . In all
of our selected HermitianRLCE parameters, we have 2k + g − 1 > n − w. Thus
dim C2 = D2

1+D2
2 = n−w+D2

2 = n+w. Furthermore, for any code C′ of length n′ that
is obtained from C using code puncturing and code shortening, we have dim C′2 = n′.



Thus the techniques in [4] could not be used to recover any non-randomized columns
in D1.

As we have mentioned in the preceding paragraph, our selected parameters satisfies
the condition 2k + g − 1 > n − w. Thus plain filtration attacks will not identify the
randomized columns. However, one may select w′ < w columns from the public key
and shorten these w′ columns. A similar analysis as in Couvreur, Lequesne, and Tillich
[2] shows that if these w′ columns are the added random columns, then the resulting
code is a (k−w′)×(n−w′) HermitianRLCE code withw−w′ added random columns.
In order for one to verify that w′ columns are added random columns, one needs to
observe that

2(k − w′) + g − 1 + w′
2
< min{(k − w′)2, n− w′} (6)

In our parameter selection, we make sure that for all w′ < w, the inequality (6) does
not hold.

6 Recommended parameters

In this section, we propose parameters for HermitianRLCE schemes with equivalent
security levels of AES-128, AES-192, and AES-256. If we take the code C(D,αP )
where D = P1 + · · · + Pn and q(q − 1) < α < n, then we have k = α + 1 − g and
d ≥ n − α. That is, the Hermitian code will correct at least t = n−α−1

2 errors. In this
section, we will use the Hermitian curve with the parameter q = 16, r = 2, and u = 17
in Table 1. That is, we will work on the finite field F28 and the Hermitian curve contains
212 = 4096 elements with g = 120. Table 2 lists the parameters for HermitianRLCE
encryption scheme at the security levels 128, 192, and 256 bits where κc is the classical
security level and κq is the quantum security level. As a comparison, we also include
the corresponding public key size for Generalized Reed-Solomon code based RLCE
schemes. It is noted that for security level 128 and 192, HermitianRLCE’s public key
size is approximiately 80% of the GRS-RLCE public key size. For the security level
256, HermitianRLCE’s public key size is approximiately 72% of the GRS-RLCE public
key size.

7 HermitianRLCE with other extended norm-trace curves

In Section 6, we proposed HermitianRLCE parameters for Hermitian curves with q =
16, r = 2, and u = 17. It would be interesting to know whether other curves have
advantages in reducing the public key sizes and improve the encryption/decryption per-
formance. A product Hermitian code has dimension 2k+ g− 1 which is “closer” to the
product code dimension of a random code (compared with the dimension 2k−1 for the
product code of a GRS code). Thus smaller values w in HermitianRLCE schemes are
sufficient to defeat filtration attacks. The smaller choice of w has significantly reduced
the public key size of HermitianRLCE schemes (compared with GRS-RLCE schemes).
However, the value of w should be sufficiently larger so that

(
n+w
w

)
≥ 2128 (respec-

tively 2192 and 2256) for the security level of AES-128. For the parameter q = 4, r = 4,



and u = 5, Table 3 lists the parameters for HermitianRLCE encryption scheme at the
security levels 128 and 192. For this parameter set, it is not possible to choose a param-
eter sets for the 256-bit security level since the Hermitian curve contains 1024 points.
The public key size is relatively larger for the parameters q = 4, r = 4, and u = 5.

As another example, we analyze security levels for HermitianRLCE schemes based
on extended norm-trace curves with parameter q = 4, r = 4, and u = 17. Table 4 lists
the parameters for HermitianRLCE encryption schemes at the security levels 128, 192,
and 256. The public key size is significantly larger for the parameters q = 4, r = 4, and
u = 17.

Our analysis in Tables 2, 3, 4 shows that other extended norm-trace curves with
smaller genus can be used to build HermitianRLCE schemes with smaller public key
sizes. Thus the preferred extended norm-trace for HermitianRLCE encryption schemes
are based on Hermitian curves with q = 16, r = 2, and u = 17
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Table 1. Parameters for Hermitian Curves

q r u n̄ g
16 2 17 4096 120
4 4 5 1024 126

17 3328 504
85 16384 2646

2 8 3 512 127
5 768 254

15 2048 889
17 2304 1016
51 6656 3175
85 11008 5334

255 32768 16129

Table 2. Parameters for HermitianRLCE scheme with q = 16, r = 2, and u = 17

ID κc κq n k t w cipher bytes sk pk bytes GRS-RLCE pk bytes
0 128 84 635 280 118 22 635 105560 188001
1 192 118 870 421 165 33 870 202922 450761
2 256 148 1090 531 220 45 1090 320724 1232001

Table 3. Parameters for HermitianRLCE scheme with q = 4, r = 4, and u = 5

ID κc κq n k t w cipher bytes sk pk bytes GRS-RLCE pk bytes
0 128 84 640 295 110 22 640 108265 188001
1 192 118 870 435 155 33 870 203580 450761

Table 4. Parameters for HermitianRLCE scheme with q = 4, r = 4, and u = 17

ID κc κq n k t w cipher bytes sk pk bytes GRS-RLCE pk bytes
0 128 84 1270 357 205 22 1270 333795 188001
1 192 118 1540 537 250 33 1540 556332 450761
2 256 148 1810 687 310 45 1810 802416 1232001
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