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Abstract

In order to generate synthetic basket datasets for bet-
ter benchmark testing, it is important to integrate char-
acteristics from real-life databases into the synthetic bas-
ket datasets. The characteristics that could be used for
this purpose include the frequent itemsets and association
rules. The problem of generating synthetic basket datasets
from frequent itemsets is generally referred to as inverse
frequent itemset mining. In this paper, we show that the
problem of approximate inverse frequent itemset mining is
NP-complete. Then we propose and analyze an approx-
imate algorithm for approximate inverse frequent itemset
mining, and discuss privacy issues related to the synthetic
basket dataset. In particular, we propose an approximate
algorithm to determine the privacy leakage in a synthetic
basket dataset.
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1 Introduction

Since the seminal paper [2], association rule and fre-
guent itemset mining received a lot of attention. By com-
paring five well-known association rule algorithms using

three real-world data sets and the artificial data set from

IBM Almaden, Zheng et al. [29] found out that the algo-
rithm performance on the artificial data sets are very differ

ent from their performance on real-world data sets. Thus
there is a great need to use real-world data sets as bench

marks.
However, organizations hesitate to provide their real-
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while preserving statistics on the collection. Some recent
work [8, 1, 9, 22, 6, 3, 17, 23, 7] investigates the tradeoff
between private information leakage and accuracy of min-
ing results. One problem related to the perturbation based
approach is that it can not always fully preserve individ-
ual's privacy while achieving precision of mining results
[14]. The second approach is distributed privacy preserv-
ing association rule mining [25, 13] based on secure mul-
tiparty computation[28]. Though this approach can fully
preserve privacy, it works only for distributed environrhen
and needs sophisticated protocols (secure multi-party com
putation based), which makes it infeasible for our scenario

One potential approach [27] to address this problem is
to generate synthetic basket datasets for benchmarking pur
pose by integrating characteristics from real-world baske
datasets that may have influence on the software perfor-
mance. The frequent sets and their supports (defined as the
number of transactions in the basket dataset that contin th
items) can be considered to be a reasonable summary of the
real-world data set. As observed by Calders [5], associa-
tion rules for basket dataset can be described by frequent
itemsets. Thus it is sufficient to consider frequent itemset
only. Ramesh et al. [21] recently investigated the relation
between the distribution of discovered frequent set and the
performance of association rule mining. It suggests that
the performance of association rule mining method using
the original data set should be very similar to that using the
synthetic one compatible with the same frequent set min-
ing results.

Informally speaking, in this approach, one first mines
frequent itemsets and their corresponding supports from

world data sets as benchmarks due to the potential disclo-the real-world basket datasets. These frequent itemset sup
sure of private information. Privacy preserving assooiati  port constraints are used to generate the synthetic (mock)
rule mining has been a very active research topic in the lastdataset which could be used for benchmarking. For this
few years. In this area, researchers are interested instopic approach, private information should be deleted from the
such as preserving the database privacy while mining use-frequent itemset support constraints or from the mock
ful association rules from it. There have been two different database. The authors of [16, 5] investigate the problem
approaches to this problem. The first is to disturb the data whether there exists a data set that is consistent with the
before delivery for mining so that real values are obscured given frequent itemsets and frequencies and show that this



problem isNP-complete. The frequency of each frequent

FFREQSAT (Fixed size FREQSAT)

itemset can be taken as a constraint over the original datajnstance: An integern, an item setZ, and a sequence
set. The problem of inverse frequent set miningthencanbe(1,, f,), (12, f2), -+, (Im, fm), Wherel, C T are item-

translated to a linear constraint problem. Linear program-

sets and) < f; < 1 are nonnegative rational numbers, for

ming problems can be commonly solved today in hundreds all 0 < i < m.

or thousands of variables and constraints. However, the Quegtion: Does there exist a transaction databBsever?
number of variables and constraints in this scenario is far sych thatb containsn transactions andreq(I;, D) = f;

beyond hundreds or thousands (e2.wheret is the num-
ber of items). Hence it is impractical to apply linear pro-
gramming techniques directly.

forall0 <:<m?

FSUPPSAT

The authors of [21] proposed a method to generate bas-|nstance: An integern, an item setZ, and a sequence

ket data set for benchmarking when the length distrib-

utions of frequent and maximal frequent itemset collec-

(I1,81), (I2,82), -+, (Im, $m ), Wherel; C 7 are itemsets
ands; > 0 are nonnegative integers, for 8l ¢ < m.

tions are available. Though the generated synthetic dataQueﬂion: Does there exist a transaction databBsaver?

set preserves the length distributions of frequent patern

one serious limitation is that the size of transaction data-

such thatD containsn transactions anslupport(l;, D) =
s;forall0 <7 <m?

bases generated is much larger than that of original data-

base while the number of items generated is much smaller.

Obviously, the problem FSUPPSAT is equivalent to the

We believe the numbers of items and transactions are twoproblem FFREQSAT. Calders [4] showed that FREQSAT
important parameters as they may significantly affect the is NP-complete and the problem FSUPPSAT is equivalent

performance of association rule mining algorithms.

Instead of using the exact inverse frequent itemset min-

to the Intersection Pattern problem IP: givenrar n ma-
trix C' with integer entries, do there exist séis ..., .S,

ing approach, we propose an approach to construct trans-such thatS; N S;| = C[i, j]? Though it is known that IP
action databases which have the same size as the originais NP-hard, it is an open problem whether IP belongs to
transaction database and which are approximately consisNP. Thus it is an open problem whether FSUPPSAT and
tent with the given frequent itemset constraints. These ap- FFREQSAT belong toP.

proximate transaction databases are sufficient for bench-

In this paper, we will consider the problem of generating

marking purposes. In this paper, we consider the complex-transaction databases that approximately satisfy thengive

ity for this approximation problem and study the privacy
issues.

We first introduce some terminologiesis the finite set
of items. A transaction ovef is defined as a paftid, I)
wherel is a subset of and tid is a natural number, called
the transaction identifier. A transaction databBseverZ
is a finite set of transactions ovér For an item sef C 7
and a transactiottid, J), we say tha{tid, J) contains/
if 7 C J. The support of an itemsdt in a transaction
databas® overZ is defined as the number of transactions
T in D that containd, and is denotedupport(I, D). The
frequency of an itemsdtin a transaction databageover
7 is defined as

support(I, D)

freq(I,D) =gef D]

Calders [4, 5] defined the following problems that are re-
lated to the inverse frequent itemset mining.

FREQSAT

Instance: An item setZ and a sequencds, f1), (I2, f2),
++y (Im, fm), wherel; C T are itemsets and < f; <1
are nonnegative rational numbers, for@k i < m.
Question: Does there exist a transaction databRseverZ
such thatfreq(I;, D) = f; forall0 <i <m?

frequent itemset support constraints. Section 2 discusses
the computational complexity of approximating transac-
tion databases. Section 3 proposes an algorithm to approx-
imately generate an approximate transaction database. Fi-
nally, Section 4 discusses privacy issues.

2 Approximations

Though it is an interesting problem to study whether
there exists a size transaction database that satisfies a set
of given frequency constraints, it is sufficient for bench-
marking purpose to construct a transaction database that is
approximately at the size afand that approximately satis-
fies the set of given frequency constraints. Thus we define
the following problem.

ApproSUPPSAT
Instance: An integern, an item setZ, and a sequence
(I, 81), (I2,52), - -y (Im, m ), Wherel; C T are itemsets

ands; > 0 are nonnegative integers, for alk i < m.
Question: Does there exist a transaction databasef
n/ transactions ovef such thatjn — n’| = O(m) and
|support(I;, D) — s;| = O(m) forall 0 < i < m?



Note that in the above definition, the approximation er-
rors are based on the parameterinstead ofn since for
most applicationsin is small andrn is bigger. Indeedpn
could be at the exponential order of. For performance
testing purpose, itis not meaningful to usas the parame-
ter in these situations. It also straightforward to show tha
the problem ApproSUPPSAT is equivalent to the following
problem: given an integet, an item sef, and a sequence
(I1,81), (I2,82), -+, (Im, $m), decide whether there ex-
ists a transaction databageoverZ with n transactions
and0 < support(I;, D) — s; = O(m) forall 0 < i < m.

In the following we show that ApproSUPPSAT P-
complete. Note that for the non-approximate version
FSUPPSAT of this problem, we do not know whether it
isinNP.

Lemma 2.1 ApproSUPPSAT € NP.

Proof. Since the size of the transaction databaseddich

might be exponential in the size of the instance input de-

scription, it is not possible to guess a transaction data-

base in polynomial time and check whether it satisfies the

constraints. In the following, we use other techniques to

show that the problem is iNP. Let Z be the collection

of item sets and!y, s1), (I2, $2), - -, (Im, Sm) be the se-

quence of support constraints. Assume tifat= ¢. Let

Jo, J1, -+, Jor_q1 be an enumeration of ti¥ subsets of

(in particular, let/o = 0 andJy:_, = 7), andXg, X1, .. .,

X,:_1 be2t variables corresponding to these itemsets.
Assume that a transaction databd®evith n’ = n +

O(m) transactions containX; itemset.J; for each0 <

i < 2' and D approximately satisfies the support con-

straints(Iy, s1), (I2,82), - - -, (Im, sm). Then there exists

an integerk such that the following equations (1) hold for

some integer valueXy, ..., Xot_1, Zo, ..., Zp. Simi-

larly, if there is an integek and an integer solution to the

equations (1), then there is a transaction dataageéth

n’ = n + O(m) transactions that approximately satisfies

the support constraintds, s1), . . ., (Im, Sm)-
Xo,...,X2t71 > 0
|ZO|’|Z1|7"'a|Zm| < km
Z?;o Xi+Zo n )
ZI]QJi Xi+ 2 = 5
YorcnXitZm = sm

where k is a large enough integer. In another word,
if the given instance of the ApproSUPPSAT problem is
satisfiable, then the equations (1) have an integer solu-
tion. That is, the solution space for the equation (1) is

a non-empty convex polyhedron. A simple argument
could then be used to show that there is an extreme point
(X§,..., X2 ) (not necessarily an integer point) on this
convex polyhedron that satisfies the following property:

e There are at mosi + 1 non-zero values among the
variablesX(, ..., X9 |, Zo, ..., Zm.

LetY; = [X?] be the closest integer t&? for 0 < i < 2°

andDY be the transaction database that contiinsopies
of the itemsetJ; for each0 < i < 2t. ThenDY contains
n+ O(m) transactions angupport(1;, D) — s;| = O(m)

forall0 <i<m.

In another word, the given instance of the ApproSUPP-
SAT problem is satisfiable if and only if there exist item-
setsJy, ..., Jm11 and an integer sequeneg, . .., ;11
such that the transaction datab@seonsisting ofr; copies
of itemsetJ; for eachi < m witnesses the satisfiability.
Thus ApproSUPPSAE NP which completes the proof
of Lemma. Q.E.D.

Lemma 2.2 ApproSUPPSAT is NP-hard.

Proof. The proofis based on an amplification of the reduc-
tion in theNP-hardness proof for FREQSAT in [4] which
is alike the one given for 2SAT in [11]. In the following, we
reduce theNP-complete problem 3-colorability to Appro-
SUPPSAT. Given a grapfi = (V, E), G is 3-colorable if
there exists a 3-coloring function: V' — {R, G, B} such
that for each edgéu, v) in E we havec(u) # c(v).

For the graphG = (V, E)), we construct an instance
A(G) of ApproSUPPSAT as follows. Let = 6|V| +
3|E|, andn = kym? for some larges, (note that we need
ko > k for the constank we will discuss later). Let the
itemset/ = {R,,G,, B, : v € V} and them support
constraints are defined as follows. For each ventexV:

support({Ry}) = [3], support({G.}) = [3],
support({B.}) = [3],

support({Ry,, Gy }) = 0, support({Ry, B,}) = 0,
support({G,, By}) = 0.

For each edgéu, v) € E:

support({ Ry, Ry}) = 0, support({G., Gy }) = 0,
support({ By, By}) = 0.
In the following, we show that there is a transaction data-

baseD satisfying this ApproSUPPSAT problem if and only
if G is 3-colorable.

1Similar argument has been used to prove the fundamentaktineof
linear optimization in linear programming. See, e.g., [18],



Suppose thatis a 3-coloring ofGG. LetT be a transac-
tion defined by letting’y = {C, : v € V} where

R, if c(v) = R;
CU =def GU if C(’U) = G;
B, if c(v) = B.

Let transactiongd, andT3 be defined by colorings and
¢’ resulting from cyclically rearranging the colaRs G, B

in the coloringe. Let the transaction databa®econsist
of [Z] copies of each of the transactidn, 7>, and T
(we may need to add one or two additional copied of
if 3[3] # n). ThenD satisfies the ApproSUPPSAT prob-
lem A(G).

SupposeD is a transaction database satisfying the Ap-

proSUPPSAT problem?(G). We will show that there is
a transactiory’ in D from which a 3-coloring oi7 could
be constructed. Léf; be the collection of itemsets defined
as

Il = {{Rva Gv}a {Rvan}a {GvaB’U} ve V}U
{{Ru, Ry}, {Gu, Gy}, {Bu, By} : (u,v) € E}.

That is, Z; is the collection of itemset that should have
0 support according to the support constraints. Sifce
satisfiesA(G), for eachl’ € Iy, support(I',D) = 0 is
approximately satisfied. Thus there is a consfant> 0
such that at mogt;m x |Z1| = 3kym(|V| + | E|) transac-
tions inD contain an itemset iff;. Let D; be the transac-
tion database obtained frof by deleting all transactions
that contain itemsets frod;. ThenD; contains at least
n — 3kym(|V| + | E|) transactions.

For each vertex € V, we say that a transacti¢tid, .J)
in D does not contain if J does not contain any items
from {R,,G,, B, }. SinceD satisfiesA(G), for eachv €
V', approximately one third of the transactions cont&in
(Gy, By, respectively). Thus there is a constapt> 0
such that at mos8kam x |V| transactions irD do not
contain some vertex € V. In another word, there are
at leastn — 3kam x |V| transactions/ in D such that/
containsy forallv € V.

Let D, be the transaction database obtained ffBm
by deleting all transactions such that/ does not contain
some vertex € V. The above analysis shows tiiat con-
tains at least — 3k1m(|V'|+ |E|) — 3kem|V | transactions.
Letk = max{ki, k2 }. Then we have

[Ds| > n—3km(|V]|+ |E|) — 3km|V]|
= n—km(6|V|+3|E|)
= n—km?
= 3. kom? — km?
By the assumption of; at the beginning of this proof, we
have|D,| > 1. For any transactiod in D2, we can define

a coloringe for G by letting

R if J containsR,
c(v)y=¢ G if J contains,
B if J containsB,,

By the definition ofD,, the coloringe is defined unam-
biguously. That is(Z is 3-colorable.

This completes the proof foNP-hardness of Appro-
SUPPSAT. Q.E.D.

Theorem 2.3 ApproSUPPSAT is NP-complete.

Proof. This follows from Lemma 2.1 and Lemma 2.2.

Q.E.D.

We showed that the problem ApproSUPPSATNE-
hard. In the proof of Lemma 2.2, we use the fact that the
numbern of transactions of the target basket database is
larger than the multiplication of the number of support
constraints and the approximate erfim) (thatis,n isin
the order ofO(m?)). In practice, the number may not be
larger tharkm?. Then one may wonder whether the prob-
lem is still NP-complete. Ifn is very small, for example,
at the order ofD(m), then obviously, the problem Appro-
SUPPSAT becomes trivial since one can just construct the
transaction database as the collectiomoéopies of the
itemsetZ (thatis, the entire set of items). This is not a very
interesting case sinceiifis at the order ofn, one certainly
does not want the approximate error to be at the order of
n also. A reasonable problem could be that one defines a
constant numbey to replace the approximate er©@fm).
Then the proof in Lemma 2.2 shows that the problem Ap-
proSUPPSAT with approximate error(instead ofO(m))
is still NP-complete ifn > ym. Tighter bounds could be
achieved if weighted approximate errors for different sup-
port constraints are given.

3 Generating approximatetransaction data-
bases

In this section, we design and analyze a linear program
based algorithm to approximate tN&-complete problem
ApproSUPPSAT. Le = {ey,...,e:} be the collection
of items, n be the number of transactions in the desired
databasé®, and (11, s1), (I2,82), - -+, (Im, $m) be the se-
guence of support constraints. According to the proof of
Lemma 2.1, if this instance of ApproSUPPSAT is solv-
able, then there is a transaction databBseonsisting of
at mostm + 1 itemsets/y, ..., Jn+1, that satisfies these
constraints. LetX,,..., X,,+1 be variables representing
the numbers of duplicated copies of these itemsefsiia-
spectively. That isP containsX; copies ofJ; for eachi.



Forall: <mandj <m+ 1, letz; ; andy; ; be variables
with the property that; ; = X; x y; ; and

Yij = {

Then we haveupport(I;, D) = x; 1+ - -+x; m+1 and the
above given ApproSUPPSAT instance could be formulated
as the following question.

1
0

if 1; C Jj,
otherwise.

(@)

minimizezy + zo + -+ + 2z, (3)
subject to
X1+X2+"'+Xm+1 =N,
Si+zi =21+ + Tim+1,
yi; = 1if I; C J; andy; ; = 0 otherwise,  (4)

Tij = Xj X Yij

z;, X; are nonnegative integers

fori <mandj <m+ 1.

The condition set (4) contains the nonlinear equation
x;; = X; x y;; and the nonlinear condition specified in
(2). Thus in order to approximate the given ApproSUPP-
SAT instance using linear program techniques, we need to
convert these conditions to linear conditions.

We first use characteristic arrays of variables to de-
note the unknown itemsets, . .., J,,+1. For any itemset
I C Z, let thet-ary arrayy(I) € {0,1}* be the character-
istic array ofI. That is, thei-th componeni(I)[i] = 1
if and only ife; € I. Let x(J1) = (ur1,...,u14),
coos X(Tmt1) = (Ums1,15- - -, Um+1,¢) be @ collection of
(m + 1)t variables taking values frof0, 1}, representing
the characteristic arrays di, . . . , J,,+1 respectively.

In order to convert the condition specified in (2) to
linear conditions. we first use inner product constraints
to represent the conditioh, C J;. For two character-
istic arraysy: and x», their inner product is defined as
X1 X2 = x1[1] - x2[1] + - - + xa[t] - x2[t]. Itis straight-
forward to show that for two itemsefs J C Z, we have
X(D) - x(J) < min{|1],|J]} andx (1) - x(J) = |1 if and
onlyif I C J.

Now the following conditions in (5) will guarantee that
the condition in (2) is satisfied.

{

foralli < m,j7 < m+ 1, andk < t. The geometric
interpretation of this condition is as follows. If we consid
(x(J;) - x(I:),y:,5) as a point in the 2-dimensional space
(z,y) shown in Figure 1, thefl;|y < z defines points

L] - yig < x(J5) - x(Li) < yig+ L] =1

(5)
Yi g, ujk € {0,1}

below the line passing the poin8, 0) and (|1;|,1), and

x < y+ |I;| — 1 defines the points above the line passing
through the point$|1;| — 1,0) and(|;|,1). Thusy; ; =1

if and only if x(J;) - x(I;) = |I;|. Thatis,y; ; = 1 if and
onlyif I; C Jj.

-

(Il 1)

(0,0) (I1il-1,0)

Figure 1: Triangle

The nonlinear equations; ; = X; x y;,; can be con-
verted to the following conditions consisting of inequali-
ties.

®ij —nyij <0,

Xj > x5,

nyij + Xj —wij <n, (6)
x5 > 0,

yi; € {0,1},

forall: < mandj < m+ 1. The constant is used in the
inequalities due to the fact that; < n forall j < m + 1.
The geometric interpretation for the above inequalities is
described in the following. If we considég; ;, v ;, X;)

as a pointin a 3-dimensional spgeey, X ) shown in Fig-
ure 2, then

1. x — ny = 0 defines the plane passing through points
(0,0,0),(0,0,n),and(n, 1,n); Thusz; j—ny; ; <0
guarantees that, ; = 0if y; ; = 0.

2. X > =z defines the points above the plane passing
through pointg0, 0, 0), (0, 1,0), and(n, 1,n). This
condition together with the conditiop; ; € {0,1}
guarantees that; ; < X, wheny; ; = 1.

.ny + X — x < n defines the points below the
plane passing through point$, 1,0), (0,0,n), and
(n,1,n). This condition together with the condi-
tion y; ; € {0,1} guarantees that; ; > X; when
vi; = 1. Together with the condition 2, we have
Tij = Xj Whenyi,j =1.

Note: For the reason of convenience, we introduced the
intermediate variableg; ;. In order to improve the linear



X is not very interesting to analyze the worst case for our

A algorithm.
In the Appendix, we present two simple naive round-
y ing methods to get an integer solutienfrom o*. We

©, 0, n I then present two improved randomized and derandomized

N e rounding methods. The complexity analysis of the approx-

T (n,1,n) imation algorithm are also given in the appendix.
(0,100~
4 Privacy issues

0.0.0 Wang, Wu, and Zheng [26] considered general informa-

tion disclosure in the process of mock database generation.

In this section, we discuss privacy disclosures in syntheti

transaction databases. Confidential information in treansa

and (6) to cancel the variablgs;. and their corresponding support (frequency) intervald. Le
Thus the integer programming formulation for the given 7 b€ @ set defined as follows.

ApproSUPPSAT instance is as follows. P = {(L,50,S): [ CT,i <1}.

Figure 2: Tetrahedron

minimize 2y + 2 + -+ + zm () We say that a (synthetic) transaction datal®s#oes not
disclose confidential information specified/mif one can-

subject to conditions (5), (6), and not infer that

Xi+Xo+-- -+ X1 =0, s; < support(I;; D) < S;

) R . . 8 -
Si+ 2 =it + +_x“_m+1’ ®) for all (I;,s;,5;) € P. Similarly, we say that a support
zi, Xj are nonnegative integers constraint seS = {(I1,s1),-.., (I, sm)} does not dis-

) ) ] . close confidential information specified # if for each
fori < mandj <m + 1. We first solve the linear relax-  glement1;, s;, S;) € P, there is a transaction databade
ation of this integer program. That is, replace the second {pat satisfies all support constraintsSrand
equation in the condition (5) by
support(I;, D;) & [s:,5:].
0<wyij,ujr <1 foralli<m,j<m+1, andk <t
For the synthetic transaction database generation, there

and replace the third equation in the condition (8) by are two scenarios for potential private information disclo
sure. In the first scenario, the database owner uses the
ziy, Xj > 0. following procedure to generate the synthetic transaction
database:

Leto* = {(u} s, yi2i,25,X7) 4 < m,j < m+ _
1,k < t} denote an optimal solution to this relaxed linear 1. use a software package to mine the real-world trans-
program. There are several ways to construct an integer so- action database to get a set of itemset support (fre-
lution 6 from o*. Let OPT(z; I) denote the optimal value quency) constraints;

of z1 + - -+ + z,, for a given ApproSUPPSAT instande
andOPT'(z;I) be the corresponding value for the com-
puted integer solution. For an approximation algorithm,

one may prefer to compute a numleesuch that

2. use a software package based on our linear program
methods to generate a synthetic transaction database
D from the support (frequency) constraints;

3. release the synthetic transaction datali2s® the
OPT(z;I) < aOPT(z;1). public.

Theorem 2.3 shows that it dP-hard to approximate the In this scenario, the mined support (frequency) conssaint
ApproSUPPSAT by an additive polynomial factor. Thus are not released to the public and only the synthetic trans-
OPT(z;I) is not in the order ofD(m) in the worst case  action database is released. In this case, it is straightfor
for any polynomial time approximation algorithms, and it ward to protect the confidential information specified in



P. The database owner proceeds according to the abovegiven support constraint set contains confidential inferma

steps until ste3. Before releasing the synthetic transac-
tion databas®, he can delete the confidential information
as follows.

e For each(l;,s;, S;) € P, chooses a random number
r; < n, wheren is the total number of transactions.
We distinguish the following two cases:

1. If u; = support(l;, D) —r; < 0,then chooses a
random series of-u, transactions; that do not
contain the itemsef;, and modify these transac-
tions to contain the itemsé;.

. Ifu; = support(l;, D) —r; > 0, then chooses a
random series ofi; transactions; that contain
the itemsetl;, and modify these transactions in
a random way so that they do not contain the
itemset!;.

After the above process, the resulting transaction databas
contains no confidential information specifiedf#rand the
database owner is ready to release it.

In the second scenario, the database owner uses th
following procedure to generate the synthetic transaction
database:

1. use a software package to mine the real-world trans-
action database to get a set of itemset support (fre-
guency) constraints;

. release the support (frequency) constraints to the pub-
lic;

. a customer who has interest in a synthetic transac-
tion database generates a synthetic transaction data
baseD from the published support (frequency) con-
straints using a software package based on our linear
program methods.

In this scenario, the mined support (frequency) constaint

are released to the public directly. Thus the database owner

wants to make sure that no confidential information spec-
ified in P is contained in these support (frequency) con-
straints. Without loss of generality, we assume that there
is a single element!, s, S) in P and the mined support
constraints are&§ = {(I;,s;) : ¢ < m}. S contains the
confidential information(Z, s, S) if and only if for each
transaction databagewhich is consistent witk$, we have
support(I; D) € [s,S]. In another wordS does not con-
tain the confidential informatioit/, s, S) if and only if
there exists an integed with s’ < sor S < s < n
such thatS U {(I, s")} is consistent. That is, there is a
transaction databage that satisfies all support constraints
in SuU{(I,s)}. Inthe following, we show that there is
even no efficient way to approximately decide whether a

éheorem follows from Theorem 2.3.

tion. We first define the problem formally.

ApproPrivacy

Instance: An integern, an item setZ, a support con-
straint setS = {(Iy,s}), ---, (I},,s,,)}, and a seP =
{(Ii, Si,Si) : Ii g I,i S l}

Question: For all transaction databag®of n transactions
overZ with |support(I], D) — s} = O(m) forall 0 < i <
m, do we havesupport(I;, D) € [s;,S;] foralli < 1? If
the answer is yes, we writg¢ =, P.

By Theorem 2.3, we have the following result. Similar
NP-hardness results for exact frequency constraints infer-
ence have been obtained in [4, 5, 16].

Theorem 4.1 ApproPrivacy is coNP-complete.

Proof. S ¥, P if and only if there is a transac-
tion databaseD and an indexj < [ such thatD sat-
isfies S U {(I;, support(I;,D) < s;)} or D satisfies
S U{(I;, support(I;, D) > S;)} approximately. Thus the
Q.E.D.

Thus there is no efficient way for the database owner
to decide whether a support constraint Sefeaks confi-
dential information specified . In practice, however,
we can use the linear program based approximation algo-
rithms that we have discussed in Section 3 to compute the
confidence level about private information leakage as fol-
lows.

1. Convert the conditio U {(I,s") : s’ < sorS <
s’ < n} to an integer linear program in the for-
mat of (8). Note that the conditions” < sorS <

’ < n” is equivalent to the existential clause
3" ((s" < s) V(S < s <n)). Thusitis straightfor-
ward to convert it to integer linear program condi-
tions.

2. Letthe confidence level he= """ | z;. The smaller
¢, the higher confidence. Inthe ideal case ef 0, we
have found an itemset transaction datalfaseat wit-
nesses that no confidential information specified by
(I,s,S)is leaked inS.

If the database owner thinks that the confidence valae
>i* | z; obtained in the above procedure is too larger (thus
confidence level is too low). He may use the following
procedure to delete potential confidential informatiomfro

the support constraint set.

1. Leti be the number that maximizesaxy, s,)es |1 N
L.

2. Modify the values; to be a random value.



3. Approximately revise support constraint valuesSin  are efficient on regular Pentium-based computers. If more
to make it consistent. For example, to make it satisfy constraints are necessary, then more powerful computers
the monotonic rule. Since it NP-hard to determine  are needed to generate synthetic transaction databases.
whether a support constraint set is consistent, we can
only revise the sef to be approximately consistent.
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6 Appendix: Rounding methods

Method 1: rounding u} ,

Construct an  integer  solution o
(Uj ks Uij» Tirjs 2is Xj) Dy roundingu; . to their closest
integers, roundmg’(* to their aImost closest integers so
that X; + - + X,,.1 = n, and computingy; ;, Z; ;.
and z; according to their definitions. That is, for each
j<m+1landk <tset

_ 1
Uj k= 0

For the rounding ofX 7, first round.X; to their closest in-
tegerg X 7]. Then randomly add/subtrat’ to/from these
values accordlng to the value &f +- - -+ X, 1 —n until
X4+ Xopg1 = n.

From the construction, it is clear thais a feasible so-
lution of the integer program. The rounding procedure will
introduce the following errors to the optimal solution:

if u;k > 0.5,
otherwise.

1. By rounding{u}, : i < m,k < t}, the values in
{x(L) - x(J;) 4 < m,j < m+ 1} change. Thus
the values in{g; ; : i < m,j < m+ 1} will change.
Thus the values if{z; ; : i < m,j < m + 1} will
be different from the values iz} ; : i < m,j <
m+ 1}.

2. By rounding{ X} : j < m + 1}, the values ofz; ; :
1 <m,j < m+ 1} will change also.

Method 2: rounding 7 ;

Construct an integer  solution o
(@K, Yi,j» Tij» i, X;) by roundingz; ; to 0 or X and
computing the other values accordmg to their def|n|t|ons
or relationships. That is, first round; to their closest
integers[X;]. Then randomly add/subtradts to/from

these values according to the valuegf+- - -+ X, .1 —n

until X; + - -+ + X, 11 = n. Now roundz} ; as follows.
Let _ ) _
Z = Xj if Ir,j > O.5Xj,
10 otherwise.

J;’s could be computed by setting

Jj = Uii,j:Xin'
The values ofi; ;, andy; ; can be derived frony; easily.
We still need to further update the valueswgf; by using
the current values of; ; since we need to satisfy the re-
quirementse; ; = X; X y; ;.

From the construction, it is clear thais a feasible so-
lution of the integer program. The rounding procedure will

introduce the following errors to the optimal solution:
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1. By rounding{z}; : i < m,j < m + 1}, we need
to update the values @f; ;, which again leads to the
update of values of; ;.

2. By rounding{ X7 : j < m + 1}, the values iz, ; :
i <m,j <m—+ 1} will change also.

Method 3: randomized and derandomized round-
ing

For quite a fewNP-hard problems that are reduced to
integer programs, naive round methods remain to be the
ones with best known performance guarantee. Our meth-
ods 1 and 2 are based on these naive rounding ideas. In
last decades, randomization and derandomization methods
(see, e.g., [24, 19]) have received a great deal of attention
in algorithm design. In this paradigm for algorithm de-
sign, a randomized algorithm is first designed, then the al-
gorithm is “derandomized” by simulating the role of the
randomization in critical places in the algorithm. In this
section, we will design a randomized and derandomized
rounding approach to obtain an integer soluticinom o*
with performance of at least the expectation. It is done by
the method of conditional probabilities.

In rounding method 1, we round; , to its closest inte-
ger. In a random rounding [20], we set the value:gf; to
1 with probability? , and to0 with probability 1 — u? ,
(independent of other indices).

In rounding method 2, we round ; to the closest value
among0 and X;. In a random rounding [20], we set the

value ofz; ; to X; with probability% and to0 with prob-
J

ability 1 — IX—JJ (independent of other indices).

A random rounding approach produces integer solu-
tions with an expected valug for >~ | z;. Animproved
rounding approach (derandomized rounding) produces in-
teger solutions withy""" | z; guaranteed to be no larger
than the expected valug. In the following, we illustrate
our method for the random rounding based on the rounding
methods 1 and 2.

Randomized and derandomized rounding of =z} .. We
determine the value of an additional variable in each step.
Suppose tha{z; ; : (i,j) € Ip} has already been deter-
mined, and we want to determine the valuergf ;, with
(i0,70) ¢ Io. We compute the conditional expectation for
Zz’;l z; of this partial assignment first with;, ;, set to
zero, and then again with it set #;,. If we setz;, j, ac-
cording to which of these values is smaller, then the condi-
tional expectation at the end of this step is at most the con-
ditional expectation at the end of the previous step. This
implies that at the end of the rounding, we get at most the
original expectation.



In the following, we show how to compute the condi-

tional expectation. At the beginning of each step, assume

that for all entrieqs’, j') in Iy, Z;» ;» has been determined
already and we want to determine the valuergf ;, for
(40, j0) ¢ Iy in this step.

In order to compute the conditional expectation of
>t 2, we first compute the probability Prih C J;]
forall (i,7) ¢ Iy. Foreachj < m + 1, let

U

I, CJ; (4,

0
Jj

Iy
j)Elo

If I, € J?, then we havd; C J; and Probl; C J;] = 1.
Otherwise, continue with the following computation. By
regarding as the probability that; ; takes the value

X, we know that with at least prObabI|It¥<— we have
I; C J;. However, the actual probability may be larger
since other entrie;; with I; N I; # () may contribute
items to.J;, which may lead to the inclusion df in J;.
First we define the following sets.

L;; {1,...,i—=1a4+1,...mI\{¢: (¢,5) € In}
Ui,j = {KQL”IZQJJOU U Ii’},

i'eEK
and

Uj; ={K € U;; : thereis noK’ € U; ; such thatk” C K}.

For eachK € U! _, let

%71
*
115
X

irek Y

p(i,j, K) =
Then the probability Prd; C .J;] can be approximated as

> pli, ), K),

KeU; ;

*
J

T +<1 xfj)
J Xj

Proi:{Ii - Jj] = X,

Note that we say that we approximate the probability
ProdI; C Jj] since in the computation we assume that

Prodl;, C J;] =

expected value fot; is

m—+1 m—+1
Y @iy | —si= Y X;-ProdI; C Jj)-
=1 j=1

Randomized and derandomized rounding of u} ,. We
determine the value of an additional variable i |n each step.
Suppose thafu, ;. : (j, k) € Iy} has already been deter-
mined, and we want to determine the valueigf ., with
(jo, ko) ¢ Io. We compute the conditional expectation for
Zz’;l z; of this partial assignment first with;, ;, set to
zero, and then again with it set1oIf we setz;, x, accord-
ing to which of these values is smaller, then the conditional
expectation at the end of this step is at most the conditional
expectation at the end of the previous step. This implies
that at the end of the rounding, we get at most the original
expectation.

According to our analysis in the randomized and de-
randomized rounding of; ;, it is sufficient to compute
the probability Profl; C J;] for all (i, j). Assumel =

{er,....ect andl; = {e;, ..., €, | }. Set
ProdI; C J;] =G4 X -+ X Ujiyy|
where
. — { @i, i (jis) € Lo,
ot ur, otherwise
for s < |I;]. Using Proll; C J;], one can compute

the conditional expectation df;" | z; as in the case for
rounding ofz} .

Complexity analysis of the approximation algo-
rithm

In the integer linear program formulation of our prob-
lem, we have(m + 1) variablesu; ,,, m+ 1 variablesX;,
m(m + 1) variablesr; ;, m(m + 1) variablesy; ;, andm
variablesz;. In total, we have(m + 1) + 2m? + 4m + 1
variables.

There argm + 1)(2m + t) constraints in the condition
(5),4m(m—+1) constraints in the condition (5), aBdh + 2
constraints in the condition (8). Thus we have? +9m+

true. If necessary, we can improve the approximation by mt + t + 2 constraints in total.

iteration. That is, repeat the above procedure for several

The rounding, randomized, and derandomized round-

rounds and, in each round, use the approximated probabil-ing algorithms could be finished i@(tm?*) steps. Thus

ities for Prol;; C J;] from the previous round. If suffi-

the major challenge is to solve the relaxed continuous vari-

cient rounds are repeated, the probability will converge in ables linear program. According to [15], hundreds of thou-

the end.

Since we have the probabilities Pfép C J;] for all
(i,4) ¢ Ip now, it is straightforward to compute the con-
ditional expectation of2(>"1" | z;) = >, E(z;). The
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sands of continuous variables are regularly solved. Thus
our approximation algorithm are efficient whemn and ¢
take reasonable values.



