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Abstract

In order to generate synthetic basket datasets for bet-
ter benchmark testing, it is important to integrate char-
acteristics from real-life databases into the synthetic bas-
ket datasets. The characteristics that could be used for
this purpose include the frequent itemsets and association
rules. The problem of generating synthetic basket datasets
from frequent itemsets is generally referred to as inverse
frequent itemset mining. In this paper, we show that the
problem of approximate inverse frequent itemset mining is
NP-complete. Then we propose and analyze an approx-
imate algorithm for approximate inverse frequent itemset
mining, and discuss privacy issues related to the synthetic
basket dataset. In particular, we propose an approximate
algorithm to determine the privacy leakage in a synthetic
basket dataset.

Keywords: data mining, privacy, complexity

1 Introduction

Since the seminal paper [2], association rule and fre-
quent itemset mining received a lot of attention. By com-
paring five well-known association rule algorithms using
three real-world data sets and the artificial data set from
IBM Almaden, Zheng et al. [29] found out that the algo-
rithm performance on the artificial data sets are very differ-
ent from their performance on real-world data sets. Thus
there is a great need to use real-world data sets as bench-
marks.

However, organizations hesitate to provide their real-
world data sets as benchmarks due to the potential disclo-
sure of private information. Privacy preserving association
rule mining has been a very active research topic in the last
few years. In this area, researchers are interested in topics
such as preserving the database privacy while mining use-
ful association rules from it. There have been two different
approaches to this problem. The first is to disturb the data
before delivery for mining so that real values are obscured

while preserving statistics on the collection. Some recent
work [8, 1, 9, 22, 6, 3, 17, 23, 7] investigates the tradeoff
between private information leakage and accuracy of min-
ing results. One problem related to the perturbation based
approach is that it can not always fully preserve individ-
ual’s privacy while achieving precision of mining results
[14]. The second approach is distributed privacy preserv-
ing association rule mining [25, 13] based on secure mul-
tiparty computation[28]. Though this approach can fully
preserve privacy, it works only for distributed environment
and needs sophisticated protocols (secure multi-party com-
putation based), which makes it infeasible for our scenario.

One potential approach [27] to address this problem is
to generate synthetic basket datasets for benchmarking pur-
pose by integrating characteristics from real-world basket
datasets that may have influence on the software perfor-
mance. The frequent sets and their supports (defined as the
number of transactions in the basket dataset that contain the
items) can be considered to be a reasonable summary of the
real-world data set. As observed by Calders [5], associa-
tion rules for basket dataset can be described by frequent
itemsets. Thus it is sufficient to consider frequent itemsets
only. Ramesh et al. [21] recently investigated the relation
between the distribution of discovered frequent set and the
performance of association rule mining. It suggests that
the performance of association rule mining method using
the original data set should be very similar to that using the
synthetic one compatible with the same frequent set min-
ing results.

Informally speaking, in this approach, one first mines
frequent itemsets and their corresponding supports from
the real-world basket datasets. These frequent itemset sup-
port constraints are used to generate the synthetic (mock)
dataset which could be used for benchmarking. For this
approach, private information should be deleted from the
frequent itemset support constraints or from the mock
database. The authors of [16, 5] investigate the problem
whether there exists a data set that is consistent with the
given frequent itemsets and frequencies and show that this
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problem isNP-complete. The frequency of each frequent
itemset can be taken as a constraint over the original data
set. The problem of inverse frequent set mining then can be
translated to a linear constraint problem. Linear program-
ming problems can be commonly solved today in hundreds
or thousands of variables and constraints. However, the
number of variables and constraints in this scenario is far
beyond hundreds or thousands (e.g.,2t, wheret is the num-
ber of items). Hence it is impractical to apply linear pro-
gramming techniques directly.

The authors of [21] proposed a method to generate bas-
ket data set for benchmarking when the length distrib-
utions of frequent and maximal frequent itemset collec-
tions are available. Though the generated synthetic data
set preserves the length distributions of frequent patterns,
one serious limitation is that the size of transaction data-
bases generated is much larger than that of original data-
base while the number of items generated is much smaller.
We believe the numbers of items and transactions are two
important parameters as they may significantly affect the
performance of association rule mining algorithms.

Instead of using the exact inverse frequent itemset min-
ing approach, we propose an approach to construct trans-
action databases which have the same size as the original
transaction database and which are approximately consis-
tent with the given frequent itemset constraints. These ap-
proximate transaction databases are sufficient for bench-
marking purposes. In this paper, we consider the complex-
ity for this approximation problem and study the privacy
issues.

We first introduce some terminologies.I is the finite set
of items. A transaction overI is defined as a pair(tid, I)
whereI is a subset ofI and tid is a natural number, called
the transaction identifier. A transaction databaseD overI
is a finite set of transactions overI. For an item setI ⊆ I
and a transaction(tid, J), we say that(tid, J) containsI
if I ⊆ J . The support of an itemsetI in a transaction
databaseD overI is defined as the number of transactions
T in D that containsI, and is denotedsupport(I,D). The
frequency of an itemsetI in a transaction databaseD over
I is defined as

freq(I,D) =def

support(I,D)

|D|
.

Calders [4, 5] defined the following problems that are re-
lated to the inverse frequent itemset mining.

FREQSAT
Instance: An item setI and a sequence(I1, f1), (I2, f2),
· · ·, (Im, fm), whereIi ⊆ I are itemsets and0 ≤ fi ≤ 1
are nonnegative rational numbers, for all0 ≤ i ≤ m.
Question: Does there exist a transaction databaseD overI
such thatfreq(Ii,D) = fi for all 0 ≤ i ≤ m?

FFREQSAT (Fixed size FREQSAT)
Instance: An integern, an item setI, and a sequence
(I1, f1), (I2, f2), · · ·, (Im, fm), whereIi ⊆ I are item-
sets and0 ≤ fi ≤ 1 are nonnegative rational numbers, for
all 0 ≤ i ≤ m.
Question: Does there exist a transaction databaseD overI
such thatD containsn transactions andfreq(Ii,D) = fi

for all 0 ≤ i ≤ m?

FSUPPSAT
Instance: An integern, an item setI, and a sequence
(I1, s1), (I2, s2), · · ·, (Im, sm), whereIi ⊆ I are itemsets
andsi ≥ 0 are nonnegative integers, for all0 ≤ i ≤ m.
Question: Does there exist a transaction databaseD overI
such thatD containsn transactions andsupport(Ii,D) =
si for all 0 ≤ i ≤ m?

Obviously, the problem FSUPPSAT is equivalent to the
problem FFREQSAT. Calders [4] showed that FREQSAT
is NP-complete and the problem FSUPPSAT is equivalent
to the Intersection Pattern problem IP: given ann × n ma-
trix C with integer entries, do there exist setsS1, . . . , Sn

such that|Si ∩ Sj | = C[i, j]? Though it is known that IP
is NP-hard, it is an open problem whether IP belongs to
NP. Thus it is an open problem whether FSUPPSAT and
FFREQSAT belong toNP.

In this paper, we will consider the problem of generating
transaction databases that approximately satisfy the given
frequent itemset support constraints. Section 2 discusses
the computational complexity of approximating transac-
tion databases. Section 3 proposes an algorithm to approx-
imately generate an approximate transaction database. Fi-
nally, Section 4 discusses privacy issues.

2 Approximations

Though it is an interesting problem to study whether
there exists a sizen transaction database that satisfies a set
of given frequency constraints, it is sufficient for bench-
marking purpose to construct a transaction database that is
approximately at the size ofn and that approximately satis-
fies the set of given frequency constraints. Thus we define
the following problem.

ApproSUPPSAT
Instance: An integern, an item setI, and a sequence
(I1, s1), (I2, s2), · · ·, (Im, sm), whereIi ⊆ I are itemsets
andsi ≥ 0 are nonnegative integers, for all1 ≤ i ≤ m.
Question: Does there exist a transaction databaseD of
n′ transactions overI such that|n − n′| = O(m) and
|support(Ii,D) − si| = O(m) for all 0 ≤ i ≤ m?
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Note that in the above definition, the approximation er-
rors are based on the parameterm instead ofn since for
most applications,m is small andn is bigger. Indeed,n
could be at the exponential order ofm. For performance
testing purpose, it is not meaningful to usen as the parame-
ter in these situations. It also straightforward to show that
the problem ApproSUPPSAT is equivalent to the following
problem: given an integern, an item setI, and a sequence
(I1, s1), (I2, s2), · · · , (Im, sm), decide whether there ex-
ists a transaction databaseD over I with n transactions
and0 ≤ support(Ii,D) − si = O(m) for all 0 ≤ i ≤ m.

In the following we show that ApproSUPPSAT isNP-
complete. Note that for the non-approximate version
FSUPPSAT of this problem, we do not know whether it
is in NP.

Lemma 2.1 ApproSUPPSAT ∈ NP.

Proof. Since the size of the transaction database isn which
might be exponential in the size of the instance input de-
scription, it is not possible to guess a transaction data-
base in polynomial time and check whether it satisfies the
constraints. In the following, we use other techniques to
show that the problem is inNP. Let I be the collection
of item sets and(I1, s1), (I2, s2), · · ·, (Im, sm) be the se-
quence of support constraints. Assume that|I| = t. Let
J0, J1, · · · , J2t−1 be an enumeration of the2t subsets ofI
(in particular, letJ0 = ∅ andJ2t−1 = I), andX0, X1, . . .,
X2t−1 be2t variables corresponding to these itemsets.

Assume that a transaction databaseD with n′ = n +
O(m) transactions containsXi itemsetJi for each0 ≤
i < 2t and D approximately satisfies the support con-
straints(I1, s1), (I2, s2), · · ·, (Im, sm). Then there exists
an integerk such that the following equations (1) hold for
some integer valuesX0, . . . , X2t−1, Z0, . . ., Zm. Simi-
larly, if there is an integerk and an integer solution to the
equations (1), then there is a transaction databaseD with
n′ = n + O(m) transactions that approximately satisfies
the support constraints(I1, s1), . . ., (Im, sm).

X0, . . . , X2t−1 ≥ 0

|Z0|, |Z1|, . . . , |Zm| ≤ km
∑2t

i=0 Xi + Z0 = n
∑

I1⊆Ji
Xi + Z1 = s1

· · ·
∑

Im⊆Ji
Xi + Zm = sm

(1)

where k is a large enough integer. In another word,
if the given instance of the ApproSUPPSAT problem is
satisfiable, then the equations (1) have an integer solu-
tion. That is, the solution space for the equation (1) is

a non-empty convex polyhedron. A simple argument1

could then be used to show that there is an extreme point
(X0

0 , . . . , X0
2t−1) (not necessarily an integer point) on this

convex polyhedron that satisfies the following property:

• There are at mostm + 1 non-zero values among the
variablesX0

0 , . . ., X0
2t−1, Z0, . . ., Zm.

Let Yi = [X0
i ] be the closest integer toX0

i for 0 ≤ i < 2t

andDY be the transaction database that containsYi copies
of the itemsetJi for each0 ≤ i ≤ 2t. ThenDY contains
n+O(m) transactions and|support(Ii,D)− si| = O(m)
for all 0 ≤ i ≤ m.

In another word, the given instance of the ApproSUPP-
SAT problem is satisfiable if and only if there exist item-
setsJ1, . . . , Jm+1 and an integer sequencex1, . . . , xm+1

such that the transaction databaseD consisting ofxi copies
of itemsetJi for eachi ≤ m witnesses the satisfiability.
Thus ApproSUPPSAT∈ NP which completes the proof
of Lemma. Q.E.D.

Lemma 2.2 ApproSUPPSAT is NP-hard.

Proof. The proof is based on an amplification of the reduc-
tion in theNP-hardness proof for FREQSAT in [4] which
is alike the one given for 2SAT in [11]. In the following, we
reduce theNP-complete problem 3-colorability to Appro-
SUPPSAT. Given a graphG = (V, E), G is 3-colorable if
there exists a 3-coloring functionc : V → {R, G, B} such
that for each edge(u, v) in E we havec(u) 6= c(v).

For the graphG = (V, E), we construct an instance
A(G) of ApproSUPPSAT as follows. Letm = 6|V | +
3|E|, andn = k0m

2 for some largek0 (note that we need
k0 > k for the constantk we will discuss later). Let the
itemsetI = {Rv, Gv, Bv : v ∈ V } and them support
constraints are defined as follows. For each vertexv ∈ V :

support({Rv}) = [n
3 ], support({Gv}) = [n

3 ],

support({Bv}) = [n
3 ],

support({Rv, Gv}) = 0, support({Rv, Bv}) = 0,

support({Gv, Bv}) = 0.

For each edge(u, v) ∈ E:

support({Ru, Rv}) = 0, support({Gu, Gv}) = 0,

support({Bu, Bv}) = 0.

In the following, we show that there is a transaction data-
baseD satisfying this ApproSUPPSAT problem if and only
if G is 3-colorable.

1Similar argument has been used to prove the fundamental theorem of
linear optimization in linear programming. See, e.g., [10,18].
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Suppose thatc is a 3-coloring ofG. Let T be a transac-
tion defined by lettingT1 = {Cv : v ∈ V } where

Cv =def







Rv if c(v) = R;
Gv if c(v) = G;
Bv if c(v) = B.

Let transactionsT2 andT3 be defined by coloringsc′ and
c′′ resulting from cyclically rearranging the colorsR, G, B
in the coloringc. Let the transaction databaseD consist
of [n

3 ] copies of each of the transactionT1, T2, and T3

(we may need to add one or two additional copies ofT1

if 3[n
3 ] 6= n). ThenD satisfies the ApproSUPPSAT prob-

lemA(G).
SupposeD is a transaction database satisfying the Ap-

proSUPPSAT problemA(G). We will show that there is
a transactionT in D from which a 3-coloring ofG could
be constructed. LetI1 be the collection of itemsets defined
as

I1 = {{Rv, Gv}, {Rv, Bv}, {Gv, Bv} : v ∈ V }∪

{{Ru, Rv}, {Gu, Gv}, {Bu, Bv} : (u, v) ∈ E}.

That is, I1 is the collection of itemset that should have
0 support according to the support constraints. SinceD
satisfiesA(G), for eachI ′ ∈ I1, support(I ′,D) = 0 is
approximately satisfied. Thus there is a constantk1 > 0
such that at mostk1m× |I1| = 3k1m(|V |+ |E|) transac-
tions inD contain an itemset inI1. LetD1 be the transac-
tion database obtained fromD by deleting all transactions
that contain itemsets fromI1. ThenD1 contains at least
n − 3k1m(|V | + |E|) transactions.

For each vertexv ∈ V , we say that a transaction(tid, J)
in D does not containv if J does not contain any items
from {Rv, Gv, Bv}. SinceD satisfiesA(G), for eachv ∈
V , approximately one third of the transactions containRv

(Gv, Bv, respectively). Thus there is a constantk2 > 0
such that at most3k2m × |V | transactions inD do not
contain some vertexv ∈ V . In another word, there are
at leastn − 3k2m × |V | transactionsJ in D such thatJ
containsv for all v ∈ V .

Let D2 be the transaction database obtained fromD1

by deleting all transactionsJ such thatJ does not contain
some vertexv ∈ V . The above analysis shows thatD2 con-
tains at leastn−3k1m(|V |+ |E|)−3k2m|V | transactions.
Let k = max{k1, k2}. Then we have

|D2| ≥ n − 3km(|V | + |E|) − 3km|V |

= n − km(6|V | + 3|E|)

= n − km2

= 3 · k0m
2 − km2

By the assumption ofk0 at the beginning of this proof, we
have|D2| ≥ 1. For any transactionJ in D2, we can define

a coloringc for G by letting

c(v) =







R if J containsRv

G if J containsGv

B if J containsBv

By the definition ofD2, the coloringc is defined unam-
biguously. That is,G is 3-colorable.

This completes the proof forNP-hardness of Appro-
SUPPSAT. Q.E.D.

Theorem 2.3 ApproSUPPSAT is NP-complete.

Proof. This follows from Lemma 2.1 and Lemma 2.2.
Q.E.D.

We showed that the problem ApproSUPPSAT isNP-
hard. In the proof of Lemma 2.2, we use the fact that the
numbern of transactions of the target basket database is
larger than the multiplication of the numberm of support
constraints and the approximate errorO(m) (that is,n is in
the order ofO(m2)). In practice, the numbern may not be
larger thankm2. Then one may wonder whether the prob-
lem is still NP-complete. Ifn is very small, for example,
at the order ofO(m), then obviously, the problem Appro-
SUPPSAT becomes trivial since one can just construct the
transaction database as the collection ofn copies of the
itemsetI (that is, the entire set of items). This is not a very
interesting case since ifn is at the order ofm, one certainly
does not want the approximate error to be at the order of
n also. A reasonable problem could be that one defines a
constant numberγ to replace the approximate errorO(m).
Then the proof in Lemma 2.2 shows that the problem Ap-
proSUPPSAT with approximate errorγ (instead ofO(m))
is still NP-complete ifn > γm. Tighter bounds could be
achieved if weighted approximate errors for different sup-
port constraints are given.

3 Generating approximate transaction data-
bases

In this section, we design and analyze a linear program
based algorithm to approximate theNP-complete problem
ApproSUPPSAT. LetI = {e1, . . . , et} be the collection
of items, n be the number of transactions in the desired
databaseD, and(I1, s1), (I2, s2), · · ·, (Im, sm) be the se-
quence of support constraints. According to the proof of
Lemma 2.1, if this instance of ApproSUPPSAT is solv-
able, then there is a transaction databaseD, consisting of
at mostm + 1 itemsetsJ1, . . . , Jm+1, that satisfies these
constraints. LetX1, . . . , Xm+1 be variables representing
the numbers of duplicated copies of these itemsets inD re-
spectively. That is,D containsXi copies ofJi for eachi.
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For all i ≤ m andj ≤ m + 1, let xi,j andyi,j be variables
with the property thatxi,j = Xj × yi,j and

yi,j =

{

1 if Ii ⊆ Jj ,
0 otherwise.

(2)

Then we havesupport(Ii,D) = xi,1+· · ·+xi,m+1 and the
above given ApproSUPPSAT instance could be formulated
as the following question.

minimizez1 + z2 + · · · + zm (3)

subject to


































X1 + X2 + · · · + Xm+1 = n,

si + zi = xi,1 + · · · + xi,m+1,

yi,j = 1 if Ii ⊆ Jj andyi,j = 0 otherwise,

xi,j = Xj × yi,j ,

zi, Xj are nonnegative integers,

(4)

for i ≤ m andj ≤ m + 1.
The condition set (4) contains the nonlinear equation

xi,j = Xj × yi,j and the nonlinear condition specified in
(2). Thus in order to approximate the given ApproSUPP-
SAT instance using linear program techniques, we need to
convert these conditions to linear conditions.

We first use characteristic arrays of variables to de-
note the unknown itemsetsJ1, . . . , Jm+1. For any itemset
I ⊆ I, let thet-ary arrayχ(I) ∈ {0, 1}t be the character-
istic array ofI. That is, thei-th componentχ(I)[i] = 1
if and only if ei ∈ I. Let χ(J1) = (u1,1, . . . , u1,t),
. . ., χ(Jm+1) = (um+1,1, . . . , um+1,t) be a collection of
(m + 1)t variables taking values from{0, 1}, representing
the characteristic arrays ofJ1, . . . , Jm+1 respectively.

In order to convert the condition specified in (2) to
linear conditions. we first use inner product constraints
to represent the conditionIi ⊆ Jj . For two character-
istic arraysχ1 and χ2, their inner product is defined as
χ1 · χ2 = χ1[1] · χ2[1] + · · · + χ1[t] · χ2[t]. It is straight-
forward to show that for two itemsetsI, J ⊆ I, we have
χ(I) · χ(J) ≤ min{|I|, |J |} andχ(I) · χ(J) = |I| if and
only if I ⊆ J .

Now the following conditions in (5) will guarantee that
the condition in (2) is satisfied.

{

|Ii| · yi,j ≤ χ(Jj) · χ(Ii) ≤ yi,j + |Ii| − 1

yi,j , uj,k ∈ {0, 1}
(5)

for all i ≤ m, j ≤ m + 1, andk ≤ t. The geometric
interpretation of this condition is as follows. If we consider
(χ(Jj) · χ(Ii), yi,j) as a point in the 2-dimensional space
(x, y) shown in Figure 1, then|Ii|y ≤ x defines points

below the line passing the points(0, 0) and (|Ii|, 1), and
x ≤ y + |Ii| − 1 defines the points above the line passing
through the points(|Ii| − 1, 0) and(|Ii|, 1). Thusyi,j = 1
if and only if χ(Jj) · χ(Ii) = |Ii|. That is,yi,j = 1 if and
only if Ii ⊆ Jj .

y

x

(0,0)

(|Ii|,1)

(|Ii|−1,0)

Figure 1: Triangle

The nonlinear equationsxi,j = Xj × yi,j can be con-
verted to the following conditions consisting of inequali-
ties.



































xi,j − nyi,j ≤ 0,

Xj ≥ xi,j ,

nyi,j + Xj − xi,j ≤ n,

xi,j ≥ 0,

yi,j ∈ {0, 1},

(6)

for all i ≤ m andj ≤ m +1. The constantn is used in the
inequalities due to the fact thatXj ≤ n for all j ≤ m + 1.
The geometric interpretation for the above inequalities is
described in the following. If we consider(xi,j , yi,j , Xj)
as a point in a 3-dimensional space(x, y, X) shown in Fig-
ure 2, then

1. x − ny = 0 defines the plane passing through points
(0, 0, 0), (0, 0, n), and(n, 1, n); Thusxi,j−nyi,j ≤ 0
guarantees thatxi,j = 0 if yi,j = 0.

2. X ≥ x defines the points above the plane passing
through points(0, 0, 0), (0, 1, 0), and(n, 1, n). This
condition together with the conditionyi,j ∈ {0, 1}
guarantees thatxi,j ≤ Xj whenyi,j = 1.

3. ny + X − x ≤ n defines the points below the
plane passing through points(0, 1, 0), (0, 0, n), and
(n, 1, n). This condition together with the condi-
tion yi,j ∈ {0, 1} guarantees thatxi,j ≥ Xj when
yi,j = 1. Together with the condition 2, we have
xi,j = Xj whenyi,j = 1.

Note: For the reason of convenience, we introduced the
intermediate variablesyi,j . In order to improve the linear
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(0, 0, 0)

(n, 1, n)

(0, 0, n)

x

y

X

(0,1,0)

Figure 2: Tetrahedron

program performance, we may combine the conditions (5)
and (6) to cancel the variablesyi,j .

Thus the integer programming formulation for the given
ApproSUPPSAT instance is as follows.

minimizez1 + z2 + · · · + zm (7)

subject to conditions (5), (6), and














X1 + X2 + · · · + Xm+1 = n,

si + zi = xi,1 + · · · + xi,m+1,

zi, Xj are nonnegative integers,

(8)

for i ≤ m andj ≤ m + 1. We first solve the linear relax-
ation of this integer program. That is, replace the second
equation in the condition (5) by

0 ≤ yi,j , uj,k ≤ 1 for all i ≤ m, j ≤ m + 1, andk ≤ t

and replace the third equation in the condition (8) by

zi, Xj ≥ 0.

Let o∗ = {(u∗
j,k, y∗

i,j, x
∗
i,j , z

∗
i , X∗

j ) : i ≤ m, j ≤ m +
1, k ≤ t} denote an optimal solution to this relaxed linear
program. There are several ways to construct an integer so-
lution ō from o∗. Let OPT (z; I) denote the optimal value
of z1 + · · · + zm for a given ApproSUPPSAT instanceI
andOPT (z; I) be the corresponding value for the com-
puted integer solution. For an approximation algorithm,
one may prefer to compute a numberα such that

OPT (z; I) ≤ αOPT (z; I).

Theorem 2.3 shows that it isNP-hard to approximate the
ApproSUPPSAT by an additive polynomial factor. Thus
OPT (z; I) is not in the order ofO(m) in the worst case
for any polynomial time approximation algorithms, and it

is not very interesting to analyze the worst case for our
algorithm.

In the Appendix, we present two simple naive round-
ing methods to get an integer solution̄o from o∗. We
then present two improved randomized and derandomized
rounding methods. The complexity analysis of the approx-
imation algorithm are also given in the appendix.

4 Privacy issues

Wang, Wu, and Zheng [26] considered general informa-
tion disclosure in the process of mock database generation.
In this section, we discuss privacy disclosures in synthetic
transaction databases. Confidential information in transac-
tion databases may be specified as a collection of itemsets
and their corresponding support (frequency) intervals. Let
P be a set defined as follows.

P = {(Ii, si, Si) : Ii ⊆ I, i ≤ l}.

We say that a (synthetic) transaction databaseD does not
disclose confidential information specified inP if one can-
not infer that

si ≤ support(Ii;D) ≤ Si

for all (Ii, si, Si) ∈ P . Similarly, we say that a support
constraint setS = {(I ′1, s1), . . . , (I

′
m, sm)} does not dis-

close confidential information specified inP if for each
element(Ii, si, Si) ∈ P , there is a transaction databaseDi

that satisfies all support constraints inS and

support(Ii,Di) /∈ [si, Si].

For the synthetic transaction database generation, there
are two scenarios for potential private information disclo-
sure. In the first scenario, the database owner uses the
following procedure to generate the synthetic transaction
database:

1. use a software package to mine the real-world trans-
action database to get a set of itemset support (fre-
quency) constraints;

2. use a software package based on our linear program
methods to generate a synthetic transaction database
D from the support (frequency) constraints;

3. release the synthetic transaction databaseD to the
public.

In this scenario, the mined support (frequency) constraints
are not released to the public and only the synthetic trans-
action database is released. In this case, it is straightfor-
ward to protect the confidential information specified in
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P . The database owner proceeds according to the above
steps until step3. Before releasing the synthetic transac-
tion databaseD, he can delete the confidential information
as follows.

• For each(Ii, si, Si) ∈ P , chooses a random number
ri ≤ n, wheren is the total number of transactions.
We distinguish the following two cases:

1. If ui = support(Ii,D)−ri < 0, then chooses a
random series of−ui transactionstj that do not
contain the itemsetIi, and modify these transac-
tions to contain the itemsetIi.

2. If ui = support(Ii,D)−ri ≥ 0, then chooses a
random series ofui transactionstj that contain
the itemsetIi, and modify these transactions in
a random way so that they do not contain the
itemsetIi.

After the above process, the resulting transaction database
contains no confidential information specified inP and the
database owner is ready to release it.

In the second scenario, the database owner uses the
following procedure to generate the synthetic transaction
database:

1. use a software package to mine the real-world trans-
action database to get a set of itemset support (fre-
quency) constraints;

2. release the support (frequency) constraints to the pub-
lic;

3. a customer who has interest in a synthetic transac-
tion database generates a synthetic transaction data-
baseD from the published support (frequency) con-
straints using a software package based on our linear
program methods.

In this scenario, the mined support (frequency) constraints
are released to the public directly. Thus the database owner
wants to make sure that no confidential information spec-
ified in P is contained in these support (frequency) con-
straints. Without loss of generality, we assume that there
is a single element(I, s, S) in P and the mined support
constraints areS = {(Ii, si) : i ≤ m}. S contains the
confidential information(I, s, S) if and only if for each
transaction databaseD which is consistent withS, we have
support(I;D) ∈ [s, S]. In another word,S does not con-
tain the confidential information(I, s, S) if and only if
there exists an integers′ with s′ < s or S < s′ < n
such thatS ∪ {(I, s′)} is consistent. That is, there is a
transaction databaseD that satisfies all support constraints
in S ∪ {(I, s′)}. In the following, we show that there is
even no efficient way to approximately decide whether a

given support constraint set contains confidential informa-
tion. We first define the problem formally.

ApproPrivacy
Instance: An integer n, an item setI, a support con-
straint setS = {(I ′1, s

′
1), · · ·, (I ′m, s′m)}, and a setP =

{(Ii, si, Si) : Ii ⊆ I, i ≤ l}.
Question: For all transaction databaseD of n transactions
overI with |support(I ′i,D)− s′i| = O(m) for all 0 ≤ i ≤
m, do we havesupport(Ii,D) ∈ [si, Si] for all i ≤ l? If
the answer is yes, we writeS |=a P .

By Theorem 2.3, we have the following result. Similar
NP-hardness results for exact frequency constraints infer-
ence have been obtained in [4, 5, 16].

Theorem 4.1 ApproPrivacy is coNP-complete.

Proof. S 6|=a P if and only if there is a transac-
tion databaseD and an indexj ≤ l such thatD sat-
isfies S ∪ {(Ij , support(Ij ,D) < si)} or D satisfies
S ∪ {(Ij , support(Ij ,D) > Si)} approximately. Thus the
theorem follows from Theorem 2.3. Q.E.D.

Thus there is no efficient way for the database owner
to decide whether a support constraint setS leaks confi-
dential information specified inP . In practice, however,
we can use the linear program based approximation algo-
rithms that we have discussed in Section 3 to compute the
confidence level about private information leakage as fol-
lows.

1. Convert the conditionS ∪ {(I, s′) : s′ < s or S <
s′ ≤ n} to an integer linear program in the for-
mat of (8). Note that the condition “s′ < s or S <
s′ ≤ n” is equivalent to the existential clause
∃s′ ((s′ < s) ∨ (S < s′ ≤ n)). Thus it is straightfor-
ward to convert it to integer linear program condi-
tions.

2. Let the confidence level bec =
∑m

i=1 zi. The smaller
c, the higher confidence. In the ideal case ofc = 0, we
have found an itemset transaction databaseD that wit-
nesses that no confidential information specified by
(I, s, S) is leaked inS.

If the database owner thinks that the confidence valuec =
∑m

i=1 zi obtained in the above procedure is too larger (thus
confidence level is too low). He may use the following
procedure to delete potential confidential information from
the support constraint set.

1. Leti be the number that maximizesmax(Ii,si)∈S |I ∩
Ii|.

2. Modify the valuesi to be a random value.
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3. Approximately revise support constraint values inS
to make it consistent. For example, to make it satisfy
the monotonic rule. Since it isNP-hard to determine
whether a support constraint set is consistent, we can
only revise the setS to be approximately consistent.

It should be noted that after the above process, the resulting
support constraint set may become inconsistent. Thus in
the next round, the valuec =

∑m

i=1 zi may be larger. If
that happens, the larger valuec does not interpret as the
privacy confidence level. Instead, it should be interpreted
as an indicator for inconsistency of the support constraint
set. Thus the above privacy deletion procedure should only
be carried out one time.

We should note that even if the confidence level is
higher, (that is,c =

∑m

i=1 zi is small), there is still
possibility that the confidential information specified by
(I, s, S) is leaked in theory. That is, for each transac-
tion databaseD that satisfies the constraintsS, we have
support(I,D) ∈ [s, S]. However, no one may be able to
recover this information since it isNP-hard to infer this
fact. Support constraint inference has been extensively
studied by Calders in [4, 5].

It would be interesting to consider conditional privacy-
preserving synthetic transaction database generations.
That is, we say that no private information is leaked un-
less some hardness problems are solved efficiently. This
is similar to the methodologies that are used in public key
cryptography. For example, we believe that RSA encryp-
tion scheme is secure unless one can factorize large inte-
gers.

In our case, we may assume that it is hard on average
to efficiently solve integer linear programs. Based on this
assumption, we can say that unless integer linear programs
could be solved efficiently on average, no privacy specified
in P is leaked byS if the computed confidence levelc =
∑m

i=1 zi is small.

5 Conclusions

In this paper, we discussed the general problems regard-
ing privacy preserving synthetic transaction database gen-
eration for benchmark testing purpose. In particular, we
showed that this problem is generallyNP-hard. Approxi-
mation algorithms for both synthetic transaction database
generation and privacy leakage confidence level approxi-
mation have been proposed. These approximation algo-
rithms include solving a continuous variable linear pro-
gram. According to [15], linear problems having hundreds
of thousands of continuous variables are regularly solved.
Thus if the support constraint set size is in the order of hun-
dreds of thousands, then these approximation algorithms

are efficient on regular Pentium-based computers. If more
constraints are necessary, then more powerful computers
are needed to generate synthetic transaction databases.
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6 Appendix: Rounding methods

Method 1: rounding u∗

j,k

Construct an integer solution ō =
(ūj,k, ȳi,j, x̄i,j , z̄i, X̄j) by roundingu∗

j,k to their closest
integers, roundingX∗

j to their almost closest integers so
that X̄1 + · · · + X̄m+1 = n, and computinḡyi,j , x̄i,j ,
and z̄i according to their definitions. That is, for each
j ≤ m + 1 andk ≤ t set

ūj,k =

{

1 if u∗
j,k ≥ 0.5,

0 otherwise.

For the rounding ofX∗
j , first roundX∗

j to their closest in-
tegers[X∗

j ]. Then randomly add/subtract1’s to/from these
values according to the value of̄X1 + · · ·+X̄m+1−n until
X̄1 + · · · + X̄m+1 = n.

From the construction, it is clear thatō is a feasible so-
lution of the integer program. The rounding procedure will
introduce the following errors to the optimal solution:

1. By rounding{u∗
j,k : i ≤ m, k ≤ t}, the values in

{χ(Ii) · χ(Jj) : i ≤ m, j ≤ m + 1} change. Thus
the values in{ȳi,j : i ≤ m, j ≤ m + 1} will change.
Thus the values in{x̄i,j : i ≤ m, j ≤ m + 1} will
be different from the values in{x∗

i,j : i ≤ m, j ≤
m + 1}.

2. By rounding{X∗
j : j ≤ m + 1}, the values of{x̄i,j :

i ≤ m, j ≤ m + 1} will change also.

Method 2: rounding x∗

i,j

Construct an integer solution ō =
(ūj,k, ȳi,j, x̄i,j , z̄i, X̄j) by roundingx∗

i,j to 0 or X∗
j and

computing the other values according to their definitions
or relationships. That is, first roundX∗

j to their closest
integers[X∗

j ]. Then randomly add/subtract1’s to/from
these values according to the value ofX̄1+· · ·+X̄m+1−n
until X̄1 + · · · + X̄m+1 = n. Now roundx∗

i,j as follows.
Let

x̄i,j =

{

X̄j if x∗
i,j ≥ 0.5X̄j,

0 otherwise.

Jj ’s could be computed by setting

Jj = ∪x̄i,j=X̄j
Ii.

The values of̄uj,k andȳi,j can be derived fromJj easily.
We still need to further update the values ofx̄i,j by using
the current values of̄yi,j since we need to satisfy the re-
quirementsxi,j = Xj × yi,j .

From the construction, it is clear thatō is a feasible so-
lution of the integer program. The rounding procedure will
introduce the following errors to the optimal solution:

1. By rounding{x∗
i,j : i ≤ m, j ≤ m + 1}, we need

to update the values of̄yi,j , which again leads to the
update of values of̄xi,j .

2. By rounding{X∗
j : j ≤ m + 1}, the values in{x̄i,j :

i ≤ m, j ≤ m + 1} will change also.

Method 3: randomized and derandomized round-
ing

For quite a fewNP-hard problems that are reduced to
integer programs, naive round methods remain to be the
ones with best known performance guarantee. Our meth-
ods 1 and 2 are based on these naive rounding ideas. In
last decades, randomization and derandomization methods
(see, e.g., [24, 19]) have received a great deal of attention
in algorithm design. In this paradigm for algorithm de-
sign, a randomized algorithm is first designed, then the al-
gorithm is “derandomized” by simulating the role of the
randomization in critical places in the algorithm. In this
section, we will design a randomized and derandomized
rounding approach to obtain an integer solutionō from o∗

with performance of at least the expectation. It is done by
the method of conditional probabilities.

In rounding method 1, we roundu∗
j,k to its closest inte-

ger. In a random rounding [20], we set the value ofūj,k to
1 with probabilityu∗

j,k and to0 with probability1 − u∗
j,k

(independent of other indices).
In rounding method 2, we roundx∗

i,j to the closest value
among0 andX̄j . In a random rounding [20], we set the

value ofx̄i,j to X̄j with probability
x∗

i,j

X̄j
and to0 with prob-

ability 1 −
x∗

i,j

X̄j
(independent of other indices).

A random rounding approach produces integer solu-
tions with an expected valuez0 for

∑m

i=1 zi. An improved
rounding approach (derandomized rounding) produces in-
teger solutions with

∑m

i=1 zi guaranteed to be no larger
than the expected valuez0. In the following, we illustrate
our method for the random rounding based on the rounding
methods 1 and 2.
Randomized and derandomized rounding of x∗

i,j . We
determine the value of an additional variable in each step.
Suppose that{x̄i,j : (i, j) ∈ I0} has already been deter-
mined, and we want to determine the value ofx̄i0,j0 with
(i0, j0) /∈ I0. We compute the conditional expectation for
∑m

i=1 zi of this partial assignment first with̄xi0,j0 set to
zero, and then again with it set tōXj0 . If we setx̄i0,j0 ac-
cording to which of these values is smaller, then the condi-
tional expectation at the end of this step is at most the con-
ditional expectation at the end of the previous step. This
implies that at the end of the rounding, we get at most the
original expectation.
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In the following, we show how to compute the condi-
tional expectation. At the beginning of each step, assume
that for all entries(i′, j′) in I0, x̄i′,j′ has been determined
already and we want to determine the value ofx̄i0,j0 for
(i0, j0) /∈ I0 in this step.

In order to compute the conditional expectation of
∑m

i=1 zi, we first compute the probability Prob[Ii ⊆ Jj ]
for all (i, j) /∈ I0. For eachj ≤ m + 1, let

J0
j =

⋃

Ii′⊆Jj ,(i′,j)∈I0

Ii′

If Ii ⊆ J0
j , then we haveIi ⊂ Jj and Prob[Ii ⊆ Jj ] = 1.

Otherwise, continue with the following computation. By

regarding
x∗

i,j

X̄j
as the probability thatx∗

i,j takes the value

X̄j , we know that with at least probability
x∗

i,j

X̄j
we have

Ii ⊆ Jj . However, the actual probability may be larger
since other entriesIi′ with Ii ∩ Ii′ 6= ∅ may contribute
items toJj , which may lead to the inclusion ofIi in Jj .
First we define the following sets.

Li,j = {1, . . . , i − 1, i + 1, . . .m} \ {i′ : (i′, j) ∈ I0}

Ui,j =

{

K ⊆ Li,j : Ii ⊆ J0
j

⋃

⋃

i′∈K

Ii′

}

,

and

U ′
i,j = {K ∈ Ui,j : there is noK ′ ∈ Ui,j such thatK ′ ⊂ K}.

For eachK ∈ U ′
i,j, let

p(i, j, K) =
∏

i′∈K

x∗
i′,j

X̄j

.

Then the probability Prob[Ii ⊆ Jj ] can be approximated as

Prob[Ii ⊆ Jj ] =
x∗

i,j

X̄j

+

(

1 −
x∗

i,j

X̄j

)

∑

K∈U ′
i,j

p(i, j, K).

Note that we say that we approximate the probability
Prob[Ii ⊆ Jj ] since in the computation, we assume that

Prob[Ii′ ⊆ Jj ] =
x∗

i′,j

X̄j
for other i′ which may not be

true. If necessary, we can improve the approximation by
iteration. That is, repeat the above procedure for several
rounds and, in each round, use the approximated probabil-
ities for Prob[Ii′ ⊆ Jj ] from the previous round. If suffi-
cient rounds are repeated, the probability will converge in
the end.

Since we have the probabilities Prob[Ii ⊆ Jj ] for all
(i, j) /∈ I0 now, it is straightforward to compute the con-
ditional expectation ofE(

∑m

i=1 zi) =
∑m

i=1 E(zi). The

expected value forzi is

E(zi) = E





m+1
∑

j=1

xi,j



−si =

m+1
∑

j=1

X̄j ·Prob[Ii ⊆ Jj ]−si.

Randomized and derandomized rounding of u∗
j,k. We

determine the value of an additional variable in each step.
Suppose that{ūj,k : (j, k) ∈ I0} has already been deter-
mined, and we want to determine the value ofūj0,k0

with
(j0, k0) /∈ I0. We compute the conditional expectation for
∑m

i=1 zi of this partial assignment first with̄ui0,j0 set to
zero, and then again with it set to1. If we setūj0,k0

accord-
ing to which of these values is smaller, then the conditional
expectation at the end of this step is at most the conditional
expectation at the end of the previous step. This implies
that at the end of the rounding, we get at most the original
expectation.

According to our analysis in the randomized and de-
randomized rounding ofx∗

i,j , it is sufficient to compute
the probability Prob[Ii ⊆ Jj ] for all (i, j). AssumeI =
{e1, . . . , et} andIi = {ei1 , . . ., ei|Ii|

}. Set

Prob[Ii ⊆ Jj ] = ûj,i1 × · · · × ûj,i|Ii|

where

ûj,is
=

{

ūj,is
if (j, is) ∈ I0,

u∗
j,is

otherwise

for s ≤ |Ii|. Using Prob[Ii ⊆ Jj ], one can compute
the conditional expectation of

∑m

i=1 zi as in the case for
rounding ofx∗

i,j .

Complexity analysis of the approximation algo-
rithm

In the integer linear program formulation of our prob-
lem, we havet(m+1) variablesuj,k, m+1 variablesXj ,
m(m + 1) variablesxi,j , m(m + 1) variablesyi,j, andm
variableszi. In total, we havet(m + 1) + 2m2 + 4m + 1
variables.

There are(m + 1)(2m + t) constraints in the condition
(5),4m(m+1) constraints in the condition (5), and3m+2
constraints in the condition (8). Thus we have6m2+9m+
mt + t + 2 constraints in total.

The rounding, randomized, and derandomized round-
ing algorithms could be finished inO(tm3) steps. Thus
the major challenge is to solve the relaxed continuous vari-
ables linear program. According to [15], hundreds of thou-
sands of continuous variables are regularly solved. Thus
our approximation algorithm are efficient whenm and t
take reasonable values.
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