
Efficient Identity-Based and Authenticated Key
Agreement Protocol

Yongge Wang

UNC Charlotte (USA), yonwang@uncc.edu

Abstract. Several identity based and implicitly authenticated key agreement pro-
tocols have been proposed in recent years and none of them has achieved all re-
quired security properties. It remains an open question to design secure identity
based and implicitly authenticated key agreement protocols. In this paper, we pro-
pose an efficient identity-based and authenticated key agreement protocol IDAK
using Weil/Tate pairing. The security of IDAK is proved in Bellare-Rogaway
model. Several required properties for key agreement protocols are not implied
by the Bellare-Rogaway model. We proved these properties for IDAK separately.

1 Introduction

Key establishment protocols are one of the most important cryptographic primitives
that have been used in our society. Many authenticated key agreement protocols have
been proposed and the security properties of key agreement protocols have been ex-
tensively studied. In order to implement these authenticated key agreement protocols,
one needs to get the corresponding party’s authenticated public key. One potential ap-
proach for implementing these schemes is to deploy a public key infrastructure (PKI)
system, which has proven to be difficult. Thus it is preferred to design easy to deploy
authenticated key agreement systems. Identity based key agreement system is such an
example.

In 1984, Shamir [16] proposed identity based cryptosystems where user’s identities
(such as email address, phone numbers, office locations, etc.) could be used as the
public keys. Several identity based key agreement protocols (see, e.g., [6, 10, 14, 15, 17,
18]) have been proposed since then. Most of them are not practical or do not have all
required security properties. Joux [8] proposed a one-round tripartite non-identity based
key agreement protocol using Weil pairing. Then feasible identity based encryption
schemes based on Weil or Tate paring were introduced by Sakai, Ohgishi, and Kasahara
[14] and later by Boneh and Franklin [4] independently.

The advantage of identity based key agreement is that non-PKI system is required.
The only prerequisite for executing identity based key agreement protocols is the de-
ployment of authenticated system-wide parameters. Thus, it is easy to implement these
protocols in relatively closed environments such as government organizations and com-
mercial entities.

The remainder of this paper is organized as follows. In §2 we briefly describe bi-
linear maps, bilinear Diffie-Hellman problem, and its variants. In §3, we describe our
identity based and authenticated key agreement protocol IDAK. §4 describes a secu-
rity model for identity based key agreement. In section §5, we prove the security of

IDAK key agreement protocol. In sections §6 and §7, we discuss key compromise im-
personation resilience and perfect forward secrecy properties of IDAK key agreement
protocol, and in section §8, we describe IDAK key agreement protocol with key con-
firmation and we prove its security. In section §9, we discuss implementation issues
(including efficiency) and applications. We conclude our paper with a discussion on
related protocols and their insecurity in §10.

2 Bilinear maps and the bilinear Diffie-Hellman assumptions

2.1 Bilinear maps

In the following, we briefly describe the bilinear maps and bilinear map groups. The
details could be found in Joux [8] and Boneh and Franklin [4].

1. G and G1 are two (multiplicative) cyclic groups of prime order q.
2. g is a generator of G.
3. ê : G×G→ G1 is a bilinear map.

A bilinear map is a map ê : G×G→ G1 with the following properties:

1. bilinear: for all g1, g2 ∈ G, and x, y ∈ Z, we have ê(gx1 , g
y
2) = ê(g1, g2)xy .

2. non-degenerate: ê(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed efficiently
and there exists a groupG1 and an efficiently computable bilinear map ê : G×G→ G1

as above. Concrete examples of bilinear groups are given in [8, 4]. For convenience,
throughout the paper, we view both G and G1 as multiplicative groups though the con-
crete implementation of G could be additive elliptic curve groups.

2.2 Complexity assumptions

Throughout the paper efficient means probabilistic polynomial-time, negligible refers
to a function εk which is smaller than 1/kc for all c > 0 and sufficiently large k,
and overwhelming refers to a function 1 − εk for some negligible εk. Consequently, a
function δk is non-negligible if there exists a constant c and there are infinitely many k
such that δk > 1/kc. We first formally define the notion of a bilinear group family and
computational indistinguishable distributions (some of our terminologies are adapted
from Boneh [3]).
Bilinear group families A bilinear group family G is a set G = {Gρ} of bilinear groups
Gρ = 〈G,G1, ê〉 where ρ ranges over an infinite index set, G and G1 are two groups
of prime order qρ, and ê : G × G → G1 is a bilinear map. We denote by |ρ| the
length of the binary representation of ρ. We assume that group and bilinear operations
in Gρ = 〈G,G1, ê〉 are efficient in |ρ|. Unless specified otherwise, we will abuse our
notations by using q as the group order instead of qρ in the remaining part of this paper.
Instance generator An Instance Generator, IG, for a bilinear group family G is a
randomized algorithm that given an integer k (in unary, that is, 1k), runs in polynomial-
time in k and outputs some random index ρ for Gρ = 〈G,G1, ê〉, and a generator g

of G, where G and G1 are groups of prime order q. Note that for each k, the Instance
Generator induces a distribution on the set of indices ρ.

The following Bilinear Diffie-Hellman Assumption (BDH) has been used by Boneh
and Franklin [4] to show security of their identity-based encryption scheme.
Bilinear Diffie-Hellman Problem Let G = {Gρ} be a bilinear group family and g be
a generator for G, where Gρ = 〈G,G1, ê〉. The BDH problem in G is as follows: given
〈g, gx, gy, gz〉 for some x, y, z ∈ Z∗q , compute ê(g, g)xyz ∈ G1. A CBDH algorithm
C for G is a probabilistic polynomial-time algorithm that can compute the function
BDHg(g

x, gy, gz) = ê(g, g)xyz in Gρ with a non-negligible probability. That is, for
some fixed c we have

Pr [C(ρ, g, gx, gy, gz) = ê(g, g)xyz] ≥ 1

kc
(1)

where the probability is over the random choices of x, y, z in Z∗q , the index ρ, the
random choice of g ∈ G, and the random bits of A.
CBDH Assumption. The bilinear group family G = {Gρ} satisfies CBDH-Assumption
if there is no CBDH algorithm for G. A perfect-CBDH algorithm C for G is a proba-
bilistic polynomial-time algorithm that can compute the function BDHg(g

x, gy, gz) =
ê(g, g)xyz inGρ with overwhelming probability. G satisfies perfect-CBDH-Assumption
if there is no perfect-CBDH algorithm for G.

Theorem 1. A bilinear group family G satisfies the CBDH-Assumption if and only if it
satisfies the perfect-CBDH-Assumption.

Proof. The fact that the CBDH-Assumption implies the perfect-CBDH-Assumption
is trivial. The converse is proved by the self-random-reduction technique. Let O be a
CBDH oracle. That is, there exists a c > 0 such that (1) holds with C replaced with
O. We construct a perfect-CBDH algorithm C which makes use of the oracle O. Given
g, gx, gy, gz ∈ G, algorithm C must compute ê(g, g)xyz with overwhelming probability.
Consider the following algorithm: select a, b, c ∈R Zq (unless stated explicitly, we use
x ∈R X to denote that x is randomly chosen from X in the remainder of this paper)
and output

Ix,y,z,a,b,c = O(g, gx+a, gy+b, gz+c) · ê(g, g)−(abz+abc+ayz+ayc+xbz+xbc+xyc).

One can easily verify that if O(ρ, g, gx+a, gy+b, gz+c) = ê(g, g)(x+a)(y+b)(z+c), then
Ix,y,z,a,b,c = ê(g, g)xyz . Consequently, standard amplification techniques can be used
to construct the algorithm C. The details are omitted. �

Consider Joux’s tripartite key agreement protocol [8]: Alice, Bob, and Carol fix a
bilinear group 〈G,G1, ê〉. They select x, y, z ∈R Z∗q and exchange gx, gy , and gz . Their
shared secret is ê(g, g)xyz . To totally break the protocol a passive eavesdropper, Eve,
must compute the BDH function: BDHg(g

x, gy, gz) = ê(g, g)xyz .
CBDH-Assumption by itself is not sufficient to prove that Joux’s protocol is useful

for practical cryptographic purposes. Even though Eve may be unable to recover the en-
tire secret, she may still be able to predict quite a few bits (less than c log k bits for some
constant c; Otherwise, CBDH assumption is violated) of information for ê(g, g)xyz with
some confidence. If ê(g, g)xyx is to be the basis of a shared secret key, one must bound

the amount of information Eve is able to deduce about it, given gx, gy , and gz . This is
formally captured by the, much stronger, Decisional Bilinear Diffie-Hellman assump-
tion (DBDH-Assumption)

Definition 1. Let {Xρ} and {Yρ} be two ensembles of probability distributions, where
for each ρ both Xρ and Yρ are defined over the same domain. We say that the two
ensembles are computationally indistinguishable if for any probabilistic polynomial-
time algorithm D, and any c > 0 we have

|Pr [D (Xρ) = 1]− Pr [D (Yρ) = 1]| < 1

kc

for all sufficiently large k, where the probability is taken over all Xρ, Yρ, and internal
coin tosses of D.

In the remainder of the paper, we will say in short that the two distributions Xρ and Yρ
are computationally indistinguishable.

Let G = {Gρ} be a bilinear group family. We consider the following two ensembles
of distributions:

– {Xρ} of random tuples 〈ρ, g, gx, gy, gz, ê(g, g)t〉, where g is a random generator of
G (Gρ = 〈G,G1, ê〉) and x, y, z, t ∈R Zq .

– {Yρ} of tuples 〈ρ, g, gx, gy, gz, ê(g, g)xyz〉, where g is a random generator of G
and x, y, z ∈R Zq .

An algorithm that solves the Bilinear Diffie-Hellman decision problem is a polyno-
mial time probabilistic algorithm that can effectively distinguish these two distributions.
That is, given a tuple coming from one of the two distributions, it should output 0 or
1, and there should be a non-negligible difference between (a) the probability that it
outputs a 1 given an input from {Xρ}, and (b) the probability that it outputs a 1 given
an input from {Yρ}. The bilinear group family G satisfies the DBDH-Assumption if the
two distributions are computationally indistinguishable.
Remark. The DBDH-Assumption is implied by a slightly weaker assumption: perfect-
DBDH-Assumption. A perfect-DBDH statistical test for G distinguishes the inputs from
the above {Xρ} and {Yρ} with overwhelming probability. The bilinear group family G
satisfies the perfect-DBDH-Assumption if there is no such probabilistic polynomial-
time statistical test.

3 The scheme IDAK

In this section, we describe our identity-based and authenticated key agreement scheme
IDAK. Let k be the security parameter given to the setup algorithm and IG be a bilinear
group parameter generator. We present the scheme by describing the three algorithms:
Setup, Extract, and Exchange.
Setup: For the input k ∈ Z+, the algorithm proceeds as follows:

1. Run IG on k to generate a bilinear group Gρ = {G,G1, ê} and the prime order q
of the two groups G and G1. Let h be the cofactor of the group order q for G (that
is, the order of the basing elliptic curve group for G is qh). If G is not an elliptic
curve group, then h could be defined similarly. Choose a random generator g ∈ G.

2. Pick a random master secret α ∈ Z∗q .
3. Choose cryptographic hash functions H : {0, 1}∗ → G and π : G × G → Z∗q . In

the security analysis, we view H and π as random oracles.

The system parameter is 〈q, h, g,G,G1, ê, H, π〉 and the master secret key is α.

Extract: For a given identification string ID ∈ {0, 1}∗, the algorithm computes a gen-
erator gID = H(ID) ∈ G, and sets the private key dID = gαID where α is the master
secret key.

Exchange: For two participants Alice and Bob whose identification strings are IDA and
IDB respectively, the algorithm proceeds as follows.

1. Alice selects x ∈R Z∗q , computes RA = gxIDA , and sends it to Bob.
2. Bob selects y ∈R Z∗q , computes RB = gyIDB , and sends it to Alice.
3. Alice computes sA = π(RA, RB), sB = π(RB , RA), and the shared secret skAB

as
ê(gIDA , gIDB)(x+sA)(y+sB)hα = ê

(
d
(x+sA)h
IDA

, gsBIDB ·RB
)
.

4. Bob computes sA = π(RA, RB), sB = π(RB , RA), and the shared secret skBA
as

ê(gIDA , gIDB)(x+sA)(y+sB)hα = ê
(
gsAIDA ·RA, d

(y+sB)h
IDB

)
.

In the next section, we will show that IDAK protocol is secure in Bellare and Rog-
away [2] model with random oracle plus DBDH-Assumption. We conclude this section
with a theorem which says that the shared secret established by the IDAK key agree-
ment protocol is computationally indistinguishable from a random value. This result
essentially shows that IDAK is a Canetti-Krawczyk secure session key agreement pro-
tocol in communication networks with ideal “authenticated links” [5].

Theorem 2. Let G = {Gρ} be a bilinear group family, Gρ = 〈G,G1, ê〉, and g1, g2 be
random generators of G. Assume DBDH-Assumption hold for G. Then the distributions
〈g1, g2, gx1 , g

y
2 , ê(g1, g2)(x+π(g

x
1 ,g

y
2))(y+π(g

y
2 ,g

x
1))hα〉 and 〈g1, g2, gx1 , g

y
2 , ê(g1, g2)zh〉 are

computationally indistinguishable, where α, x, y, z are selected from Z∗q uniformly.

Before we give a proof for Theorem 2, we first prove two lemmas that will be used
in the proof of the Theorem.

Lemma 1. (Naor and Reingold [12]) Let G = {Gρ} be a bilinear group family, Gρ =
〈G,G1, ê〉, m be a constant, g be a random generator of G, and ĝ = ê(g, g). Assume
that the DBDH-Assumption holds for Gρ. Then the two distributions 〈R, (ĝxiyjzl :
i, j, l ≤ m)〉 and 〈R, (ĝuijl : i, j, l ≤ m)〉 are computationally indistinguishable. Here
R denotes the tuple (g, (gxi , gyj , gzl : i, j, l ≤ m)) and xi, yj , zl, uijl ∈R Zq .

Proof. Using a random reduction, Naor and Reingold [12, Lemma 4.4] showed that the
two distributions 〈R, (gxiyj : i, j ≤ m)〉 and 〈R, (guij : i, j ≤ m)〉 are computa-
tionally indistinguishable. The proof can be directly modified to obtain a proof for this
Lemma. The details are omitted. �

Lemma 2. Let G = {Gρ} be a bilinear group family, Gρ = 〈G,G1, ê〉, g be a random
generator of G, ĝ = ê(g, g), and f1 and f2 be two polynomial-time computable func-
tions. If the two distributionsX1 = 〈R, ĝf1(x), ĝf2(x)〉 and Y1 = 〈R, ĝz1 , ĝz2〉 are com-
putationally indistinguishable, then the two distributions X2 = 〈R1, ĝ

f1(x)+f2(x)〉 and
Y2 = 〈R2, ĝ

z〉 are computationally indistinguishable, whereR = (g, (gxi : 1 ≤ i ≤ m)),
x = (x1, . . . , xm), and xi, z1, z2, z ∈R Zq .

Proof. For a contradiction, assume that there is a probabilistic polynomial-time algo-
rithm D that distinguishes the two distributions X2 and Y2 with non-negligible prob-
ability δk. In the following we construct a probabilistic polynomial-time algorithm D′
to distinguish the two distributions X1 and Y1. D′ is defined by letting D′ (R, X, Y) =
D (R, X · Y) for all R, and X,Y ∈ G1. Thus we have Pr [D′r(X1) = 1|R, r] =
Pr [Dr(X2) = 1|R, r], for any fixed internal coin tosses r of D and D′.

Let DDR,r = {X : Dr (R, X) = 1} and DD
′

R,r = {(X,Y) : D′r (R, X, Y) = 1}.
By definition of D′, we have DD

′

R,r = {(X,Y) : X · Y ∈ DDR,r}. It follows that

|DD′R,r| = q|DDR,r| and
Pr [D′r(Y1) = 1|R, r] = |DD′R,r|/q2 = |DDR,r|/q = Pr [Dr(Y2) = 1|R, r] .

Thus we have

|Pr [D′ (X1) = 1]− Pr [D′(Y1) = 1]|

=
∣∣∣∑R,r Pr[R, r] · (Pr [D′r(X1) = 1|R, r]− Pr [D′r(Y1) = 1|R, r])

∣∣∣
=
∣∣∣∑R,r Pr[R, r] · (Pr [Dr(X2) = 1|R, r]− Pr [Dr(Y2) = 1|R, r])

∣∣∣
= |Pr [D(X2) = 1]− Pr [D(Y2) = 1]|

> δk.

Hence,D′ distinguishes the distributions X1 and Y1 with non-negligible probability δk.
This contradicts the assumption of the Lemma. �

Proof of Theorem 2 Let ĝ = ê(g, g).By Lemma 1, the two distributions

X = 〈g, gα, gx, gy, ĝhαxy, ĝhαxπ(gy,gx), ĝhαyπ(gx,gy), ĝhαπ(gx,gy)π(gy,gx)〉 and
Y = 〈g, gα, gx, gy, ĝhz′1 , ĝhz′2π(,gy,gx), ĝhz′3π(gx,gy), ĝhz′4π(gx,gy)π(gy,gx)〉

are computationally indistinguishable assuming that DBDH-Assumption holds for G,
where g is a random generator of Gρ and α, x, y, z′1, z′2, z′3, z

′
4 ∈R Zq . Since π is a

fixed function from G to Z∗q and q is a prime, it is straightforward to verify that for any
α, x, y ∈ Zq , ĝhz

′
2π(g

y,gx), ĝhz
′
3π(g

x,gy), and ĝhz
′
4π(g

x,gy)π(gy,gx) are uniformly (and
independently of each other) distributed over G1. It follows that the distribution

Z = 〈g, gα, gx, gy, ĝhz1 , ĝhz2 , ĝhz3 , ĝhz4)〉

is computationally indistinguishable from the distribution Y , where z1, z2, z3, z4 ∈R
Zq . Thus X and Z are computationally indistinguishable. The Theorem now follows
from Lemma 2. �

4 The security model

Our security model is based on Bellare and Rogaway [2] security models for key agree-
ment protocols with several modifications. In our model, we assume that we have at
most m ≤ poly(k) protocol participants (principals): ID1, . . . , IDm, where k is the se-
curity parameter. The protocol determines how principals behave in response to input
signals from their environment. Each principal may execute the protocol multiple times
with the same or different partners. This is modelled by allowing each principal to have
different instances that execute the protocol. An oracle Πs

i,j models the behavior of the
principal IDi carrying out a protocol session in the belief that it is communicating with
the principal IDj for the sth time. One given instance is used only for one time. Each
Πs
i,j maintains a variable view (or transcript) consisting of the protocol run transcripts

so far.
The adversary is modelled by a probabilistic polynomial time Turing machine that

is assumed to have complete control over all communication links in the network and
to interact with the principals via oracle accesses to Πs

i,j . The adversary is allowed to
execute any of the following queries:

– Extract(ID). This allows the adversary to get the long term private key for a new
principal whose identity string is ID.

– Send(Πs
i,j , X). This sends message X to the oracle Πs

i,j . The output of Πs
i,j is

given to the adversary. The adversary can ask the principal IDi to initiate a session
with IDj by a query Send(Πs

i,j , λ) where λ is the empty string.
– Reveal(Πs

i,j). This asks the oracle to reveal whatever session key it currently
holds.

– Corrupt(i). This asks IDi to reveal the long term private key dIDi .

The difference between the queries Extract and Corrupt is that the adversary can use
Extract to get the private key for an identity string of her choice while Corrupt can
only be used to get the private key of existing principals.

Let Πs
ij be an initiator oracle (that is, it has received a λ message at the beginning)

and Πs′

ji be a responder oracle. If every message that Πs
ij sends out is subsequently

delivered to Πs′

ji , with the response to this message being returned to Πs
ij as the next

message on its transcript, then we say the oracle Πs′

ji matches Πs
ij . Similarly, if every

message that Πs′

ji receives was previously generated by Πs
ij , and each message that

Πs′

ji sends out is subsequently delivered toΠs
ij , with the response to this message being

returned toΠs′

ji as the next message on its transcript, then we say the oracleΠs
ij matches

Πs′

ji . The details for an exact definition of matching oracles could be found in [1].
For the definition of matching oracles, the reader should be aware the following

scenarios: Even though the oracle Πs
ij thinks that its matching oracle is Πs′

ji , the real
matching oracle for Πs

ij could be Πt′

ji. For example, if Πs
ij sends a message X to Πs′

ji

and Πs′

ji replies with Y . The adversary decides not to forward the message Y to Πs
ij .

Instead, the adversary sends the message X to initiate another oracle Πt′

ji and IDi does
not know the existence of this new oracle Πt′

ji. The oracle Πt′

ji replies with Y ′ and

the adversary forwards this Y ′ to Πs
ij as the responding message for X . In this case,

the transcript of Πs
ij matches the transcript of Πt′

ji. Thus we consider Πs
ij and Πt′

ji as
matching oracles. In another word, the matching oracles are mainly based the message
transcripts.

In order to define the notion of a secure session key exchange, the adversary is given
an additional experiment. That is, in addition to the above regular queries, the adversary
can choose, at any time during its run, a Test(Πs

i,j) query to a completed oracle Πs
i,j

with the following properties:

– The adversary has never issued, at any time during its run, the query Extract(IDi)
or Extract(IDj).

– The adversary has never issued, at any time during its run, the query Corrupt(i)
or Corrupt(j).

– The adversary has never issued, at any time during its run, the query Reveal(Πs
i,j).

– The adversary has never issued, at any time during its run, the query Reveal(Πs′

j,i)

if the matching oracle Πs′

j,i for Πs
i,j exists (note that such an oracle may not ex-

ist if the adversary is impersonating the IDj to the oracle Πs
i,j). The value of s

may be different from the value of s′ since the adversary may run fake sessions to
impersonate any principals without victims’ knowledge.

Let sksi,j be the value of the session key held by the oracleΠs
i,j that has been established

between IDi and IDj . The oracle Πs
i,j tosses a coin b ←R {0, 1}. If b = 1, the adver-

sary is given sksi,j . Otherwise, the adversary is given a value r randomly chosen from
the probability distribution of keys generated by the protocol. In the end, the attacker
outputs a bit b′. The advantage that the adversary has for the above guess is defined as

AdvA(k) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Now we are ready to give the exact definition for a secure key agreement protocol.

Definition 2. A key agreement protocol Π is BR-secure if the following conditions are
satisfied for any adversary:

1. If two uncorrupted oracles Πs
ij and Πs′

ji have matching conversations (e.g., the ad-
versary is passive) and both of them are complete according to the protocolΠ , then
both oracles will always accept and hold the same session key which is uniformly
distributed over the key space.

2. AdvA(k) is negligible.

In the following, we briefly discuss the attributes that a BR-secure key agreement
protocol achieves.

– Known session keys. The adversary may use Reveal(Πs′

i,j) query before or after
the query Test(Πs

i,j). Thus in a secure key agreement model, the adversary learns
zero information about a fresh key for session s even if she has learnt keys for other
sessions s′.

– Impersonation attack. If the adversary impersonates IDj to IDi, then she still
learns zero information about the session key that the oracle Πs

ij holds for this
impersonated IDj since there is no matching oracle for Πs

ij in this scenario. Thus
A can use Test query to test this session key that Πs

ij holds.
– Unknown key share. If IDi establishes a session key with IDl though he believes

that he is talking to IDj , then there is an oracle Πs
ij that holds this session key

skij . At the same time, there is an oracle Πs′

li′ that holds this session key skij ,
for some i′ (normally i′ = i). During an unknown key share attack, the user IDj

may not know this session key. Since Πs
ij and Πs′

li′ are not matching oracles, the
adversary can make the query Reveal(Πs′

li′) to learn this session key before the
query Test(Πs

ij). Thus the adversary will succeed for this Test query challenge if
the unknown key share attack is possible.

However, the following important security properties that a secure key agreement scheme
should have are not implied from the original BR-security model.

– Perfect forward secrecy. This property requires that previously agreed session
keys should remain secret, even if both parties’ long-term private key materials
are compromised. Bellare-Rogaway model does not capture this property. Canetti
and Krawczyk’s model [5] use the session-key expiration primitive to capture this
property. Similar modification to Bellare-Rogaway model are required to capture
this property also. We will give a separate proof that the IDAK key agreement
protocol achieves weak perfect forward secrecy.

– Key compromise impersonation resilience. If the entityA’s long term private key
is compromised, then the adversary could impersonateA to others, but it should not
be able to impersonate others to A. Similar to wPFS property, Bellare-Rogaway
model does not capture this property. We will give a separate proof that the IDAK
key agreement protocol has this property.

5 The security of IDAK

Before we present the security proof for the IDAK key agreement protocol, we first
prove some preliminary results that will be used in the security proof.

Lemma 3. Let G = {Gρ} be a bilinear group family, Gρ = 〈G,G1, ê〉, g be a random
generator of G, and π : G×G→ Zq be a random oracle. Assume DBDH-Assumption
holds for G and let X and Y be two distributions defined as

X = 〈R, gβx0 , gγy0 , ê(g, g)(x0+π(g
βx0 ,gγy0))(y0+π(g

γy0 ,gβx0))αβγ , ê(g, g)αβγ〉
and Y = 〈R, gβx0 , gγy0 , ê(g, g)(x0+π(g

βx0 ,gγy0))(y0+π(g
γy0 ,gβx0))t, ê(g, g)t〉

Then we have

1. The two distributions X and Y are computationally indistinguishable if R is de-
fined as

R =
(
g, gα, gβ , gγ , gx, gr, gA, ê

(
gx+βπ(g

x,gA), gA · grπ(gA,g
x)
)α)

,

α, β, γ, x, t, x0 are chosen from Z∗q uniformly, gr = gγ or r is either chosen from
Z∗q uniformly, gA and gγy0 are chosen from G within polynomial time according
to a fixed distribution given the view (gx, gr, gα, gβ , gγ , gβx0) without violating
DBDH-Assumption.

2. For any constant m ≤ poly(k), the two distributions X and Y are computationally
indistinguishable ifR is defined for i, j, l ≤ m as:

(g, gα, gβ , gγ , (gxi , grj , gA,l)i,j,l≤m, (ê(g
xi+βπ(g

xi ,gA,l), gA,l · grjπ(gA,l,g
xi))α))

where α, β, γ, xi are uniformly chosen from Z∗q , rj are either chosen from Z∗q uni-
formly or grj = gγ , and gA,l is chosen within polynomial time according to a
fixed distribution given the view (gxi , grj , gα, gβ , gγ , gβx0 : i, j, l ≤ m) without
violating DBDH-Assumption.

3. For any constant m ≤ poly(k), the two distributions X and Y are computationally
indistinguishable ifR = (R1,R2), whereR1 is defined as theR in the item 2, and
R2 is defined as:

((gA,i, g
rj , gA,l)i,j,l≤m, (ê(gA,i·gβπ(gA,i,gA,l), gA,l·grjπ(gA,l,gA,i))α : i, j, l ≤ m))

where rj are either chosen fromZ∗q uniformly or grj = gγ , gA,i and gA,l are chosen
within polynomial time according to a fixed distribution given the view (gxi , grj ,
gα, gβ , gγ , gβx0 , gγy0 : i, j, l ≤ m) without violating DBDH-Assumption and with
the condition that “gA,i 6= gβx0 or gA,l 6= gγy0”. Note that gA,i and gA,l could
have different distributions.

Proof. In the following, we use the random reduction to prove the lemma.
1. For a contradiction, assume that there is a polynomial time probabilistic algorithm

D that distinguishes X and Y . We construct a polynomial time probabilistic algorithm
A that distinguishes 〈g, gu, gv, gw, ê(g, g)a〉 and 〈g, gu, gv, gw, ê(g, g)uvw〉 with δk,
where u, v, w, a are uniformly at random in Zq .

Let the input of A be 〈g, gu, gv, gw, ê(g, g)ã〉, where ã is either uvw or uniformly
at random in Zq . A chooses uniformly at random c1, c2, c3, x, x0 ∈ Zq , sets gα =
gc1u+c2 , gβ = gv+c3 , gγ = gw+c4 , chooses uniformly at random r ∈ Zq or lets
gr = gβ , chooses gγy0 , gA ∈ G within polynomial time according to any distribution
given the view (gx, gr, gα, gβ , gγ , gβx0) (the distributions for gA ∈ G and gγy0 could
be different). Since gx and gβx0 are uniformly chosen from G, we may assume that
the values of π(gx, gA) and π(gγy0 , gβx0) are unknown yet. Without loss of generality,
we may assume that x + βπ(gx, gA) and y0 + π(gγy0 , gβx0) take values c5 and c6
respectively, where c5 and c6 are uniformly chosen from Zq . In a summary, the value
ofR could be computed from gu, gv, gw, c1, c2, c3, c4, c5 efficiently. A then sets

ê(g, g)t̃ = ê(g, g)c1ã+c4(c1u+c2)(v+c3)+w(c1uc3+c1v+c2c3).

A can compute ê(g, g)(x0+π(g
βx0 ,gγy0))(y0+π(g

γy0 ,gβx0))t̃ using the values of ê(g, g)t̃,
x0, π(gβx0 , gγy0), c6. Let A

(
g, gu, gv, gw, ê(g, g)ã

)
= D(X̃), where X̃ is obtained

from Y by replacing t with t̃ and taking the remaining values as defined above.
Note that if ã = uvw, then t̃ = αβγ, and X̃ is distributed according to the distribu-

tion X . That is, α, β, γ, x, x0 are uniform in Zq and independent of each other and of

(u, v, w), (r, gA, gγy0) is chosen according to the specified distributions without vio-
lating DBDH-Assumption. Otherwise, X̃ is distributed according to the distribution X ,
and t̃ is uniform in Zq and independent of α, β, γ, x, x0, r, u, v, w, gA, gγy0 . Therefore,
by definitions,

Pr [A (g, gu, gv, gw, ê(g, g)uvw) = 1] = Pr [D(X) = 1]
and Pr [A (g, gu, gv, gw, ê(g, g)a) = 1] = Pr [D(Y) = 1]

Thus A distinguishes 〈g, gu, gv, gw, ê(g, g)a〉 and 〈g, gu, gv, gw, ê(g, g)uvw〉 with δk,
where a is uniform at random in Zq . This is a contradiction.

2. This part of the Lemma could be proved in the same way. The details are omitted.
3. Since “gA,i 6= gβx0 or gA,l 6= gγy0”, we assume that the values of π(gA,i, gA,l)

and π(gA,l, gA,i) are unknown yet. By the random oracle property of π, this part of the
Lemma could be proved in the same way as in item 1. The details are omitted. �

Theorem 3. Suppose that the functions H and π are random oracles and the bilinear
group family G satisfies DBDH-Assumption. Then the IDAK scheme is a BR-secure key
agreement protocol.

Proof. By Theorem 2, the condition 1 in the Definition 2 is satisfied for the IDAK key
agreement protocol. In the following, we show that the condition 2 is also satisfied.

For a contradiction, assume that the adversary A has non-negligible advantage
δk = AdvA(k) in guessing the value of b after the Test query. We show how to
construct a simulator S that uses A as an oracle to distinguish the distributions X
and Y in the item 3 of Lemma 3 with non-negligible advantage 2δk(qE − 2)2/q4E ,
where qE denotes the number of distinct H-queries that the algorithm A has made.
The game between the challenger and the simulator S starts with the challenger first
generating bilinear groups Gρ = 〈G,G1, ê〉 by running the algorithm Instance Gen-
erator. The challenger then chooses α, β, γ, t ∈R Zq and b ∈R {0, 1}. The chal-
lenger gives the tuple 〈ρ, g, gα, gβ , gγ , ê(g, g)t̃〉 to the algorithm S where t̃ = αβγ
if b = 1 and t̃ = t otherwise. During the simulation, the algorithm S can ask the
challenger to provide randomly chosen gxi . S may then choose (with the help of A
perhaps) gA,l within polynomial time according to any distribution given the view
(gxi , grj , gα, gβ , gγ , gαx0 : i, j, l ≤ m) and sends gA,l to the challenger. The challenger
responds with ê(gxi+βπ(g

xi ,gA,l), gA,l · grjπ(gA,l,g
xi))α. At the end of the simulation,

the algorithm S is supposed to output its guess b′ ∈ {0, 1} for b. It should be noted that
if b = 1, then the output of the challenger together with the values gA,l selected by the
simulator S is the tuple X of Lemma 3, and is the tuple Y of Lemma 3 if b = 0. Thus
the simulator S could be used to distinguish X and Y of Lemma 3.

The algorithm S selects two integers I, J ≤ qE randomly and works by interacting
with A as follows:

Setup: Algorithm S gives A the IDAK system parameters 〈q, h,G,G1, ê, H, π〉 where
q,G,G1, ê are parameters from the challenger, H and π are random oracles controlled
by S as follows.
H-queries: At any time algorithm A can query the random oracle H using the queries
Extract(IDi) or GetID(IDi) = H(IDi). To respond to these queries algorithm S

maintains an H list that contains a list of tuples 〈IDi, gIDi〉. The list is initially empty.
When A queries the oracle H at a point IDi, S responds as follows:

1. If the query IDi appears on the H list in a tuple 〈IDi, gIDi〉, then S responds with
H(IDi) = gIDi .

2. Otherwise, if this is the I-th new query of the random oracle H , S responds with
gIDi = H(IDi) = gβ , and adds the tuple 〈IDi, g

β〉 to the H list. If this is the J-th
new query of the random oracle, S responds with gIDi = H(IDi) = gγ , and adds
the tuple 〈IDi, g

γ〉 to the H list.
3. In the remaining case, S selects a random ri ∈ Zq , responds with gIDi = H(IDi) =
gri , and adds the tuple 〈IDi, g

ri〉 to the H list.

π-queries: At any time the challenger, the algorithm A, and the algorithm S can query
the random oracle π. To respond to these queries algorithm S maintains a πlist that
contains a list of tuples 〈g1, g2, π(g1, g2)〉. The list is initially empty. When A queries
the oracle π at a point (g1, g2), S responds as follows: If the query (g1, g2) appears on
the πlist in a tuple 〈(g1, g2), π(g1, g2)〉, then S responds with π(g1, g2). Otherwise, S
selects a random vi ∈ Zq , responds with π(g1, g2) = vi, and adds the tuple 〈(g1, g2), vi〉
to the πlist. Technically, the random oracle π could be held by an independent third
party to avoid the confusion that the challenger also needs to access this random oracle
also.
Query phase: S responds to A’s queries as follows.

For a GetID(IDi) query, S runs theH-queries to obtain a gIDi such thatH(IDi) =
gIDi , and responds with gIDi .

For an Extract(IDi) query for the long term private key, if i = I or i = J , then
S reports failure and terminates. Otherwise, S runs the H-queries to obtain gIDi =
H(IDi) = gri , and responds dIDi = (gα)

ri = gαIDi .
For a Send(Πs

i,j , X) query, we distinguish the following three cases:

1. X = λ. If i = I or J , S asks the challenger for a random Ri ∈ G (note that S
does not know the discrete logarithm of Ri with base gIDi), otherwise S chooses a
random ui ∈ Z∗q and sets Ri = guiIDi . S lets Πs

i,j reply with Ri. That is, we assume
that IDi is carrying out an IDAK key agreement protocol with IDj and IDi sends
the first message Ri to IDj .

2. X 6= λ and the transcript of the oracle Πs
i,j is empty. In this case, Πs

i,j is the
responder to the protocol and has not sent out any message yet. If i = I or J , S asks
the challenger for a random Ri ∈ G, otherwise S chooses a random ui ∈ Z∗q and
sets Ri = guiIDi . S lets Πs

i,j reply with Ri and marks the oracle Πs
i,j as completed.

3. X 6= λ and the transcript of the oracle Πs
i,j is not empty. In this case, Πs

i,j is the
protocol initiator and should have sent out the first message already. ThusΠs

i,j does
not need to respond anything. After processing the query Send(Πs

i,j , X), S marks
the oracle Πs

i,j as completed.

For a Reveal(Πs
i,j) query, if i 6= I and i 6= J , S computes the session key

skij = ê(g
π(Rj ,Ri)
IDj

· Rj , d
(ui+π(Ri,Rj))h
IDi

) and responds with skij , here Rj is the mes-
sage received by Πs

i,j . Note that the message Rj may not necessarily be sent by the
oracle Πs′

j,i for some s′ since it could have been a bogus message from A. Otherwise,

i = I or i = J . Without loss of generality, we assume that i = I . In this case, the oracle
Πs
I,j dose not know its private key gβα. Thus it needs help from the challenger to com-

pute the shared session key. Let RI and Rj be the messages that Πs
I,j has sent out and

received respectively. Πs
I,j gives these two values to the challenger and the challenger

computes the shared session key skIj = ê
(
g
π(Rj ,Ri)
IDj

·Rj , RαhI gπ(RI ,Rj)αβh
)

. Πs
I,j

then responds with kIj .
For a Corrupt(i) query, if i = I or i = J , then S reports failure and terminates.

Otherwise, S responds with dIDi = (gα)
ri = gαIDi .

For the Test(Πs
i,j) query, if i 6= I or j 6= J , then S reports failure and terminates.

Otherwise, assume that i = I and j = J . LetRI = guIIDI be the message thatΠs
i,j sends

out (note that the challenger generated this message) and RJ = guJIDJ be the message
that Πs

i,j receives (note that RJ could be the message that the challenger generated
or could be generated by the algorithm A). S gives the messages RI and RJ to the
challenger. The challenger computes X = ê(g, g)(uI+π(RI ,RJ))(uJ+π(RJ ,RI))t̃h and
gives X to S. S responds with X . Note that if t̃ = αβγ, then X is the session key.
Otherwise, X is a uniformly distributed group element.

Guess: After the Test(Πs
i,j) query, the algorithm A may issue other queries before fi-

nally outputs its guess b′ ∈ {0, 1}. Algorithm S outputs b′ as its guess to the challenger.

Claim: If S does not abort during the simulation then A’s view is identical to its view
in the real attack. Furthermore, if S does not abort, then

∣∣Pr[b = b′]− 1
2

∣∣ > δk, where
the probability is over all random coins used by S and A.

Proof of Claim: The responses to H-queries and π-queries are the same as in the real
attack since the response is uniformly distributed. All responses to getID, private key
extract, message delivery, reveal, and corrupt queries are valid. It remains to show that
the response to the test query is valid also. When t̃ is uniformly distributed overZq , The-
orem 2 shows that X = ê(g, g)(uI+π(RI ,RJ))(uJ+π(RJ ,RI))t̃h is uniformly distributed
over G and is computationally indistinguishable from a random value before A’s view.
Therefore, by definition of the algorithm A, we have

∣∣Pr[b = b′]− 1
2

∣∣ > δk. �

Suppose A makes a total of qE H-queries. We next calculate the probability that S
does not abort during the simulation. The probability that S does not abort for Extract
queries is (qE − 2)/qE . The probability that S does not abort for Corrupt queries is
(qE − 2)/qE . The probability that S does not abort for Test queries is 2/q2E . Therefore,
the probability that S does not abort during the simulation is 2(qE−2)2/q4E . This shows
that S’s advantage in distinguishing the distributions X and Y in Lemma 3 is at least
2δk(qE − 2)2/q4E which is non-negligible.

To complete the proof of Theorem 3, we show that the communications between S
and challenger are carried out according to the distributionsX and Y of Lemma 3. For a
Reveal(Πs

I,j) query, the challenger outputs ê
(
g
π(Rj ,RI)
IDj

·Rj , RαhI gπ(RI ,Rj)αβh
)

to
the algorithm S. Let RI = gx, Rj = gA, and gIDj = gr. Then x is chosen uniform
at random from Zq , r is chosen uniform at random from Z∗q when j 6= J or r = γ
when j = J , and the value of gA is chosen by the algorithmA or by the algorithm S or
by the challenger in probabilistic polynomial time according to the current views. For
example, if gA is chosen by the algorithm A, then A may generate gA as the combi-

nation (e.g., multiplication) of some previously observed messages/values or generate
it randomly. Thus, ignoring the cofactor h, the communication between the challenger
and the algorithm S during Reveal(Πs

I,j) queries is carried out according to the dis-
tributions X and Y of Lemma 3. The case for Reveal(Πs

J,j) queries is the same.
For Test(Πs

I,J) query, challenger outputsX = ê(g, g)(uI+π(RI ,RJ))(uJ+π(RJ ,RI))t̃h

to the algorithm S, where RI = gβuI and RJ = gγuJ . Let x0 = uI and y0 = uJ . Then
x0 is chosen uniform at random from Zq and the value of gγy0 is chosen by the algo-
rithm A or by the challenger in probabilistic polynomial time according to the current
views. Similarly, A may choose gγy0 as the combination (e.g., multiplication) of some
previously observed messages/values. Ignoring the cofactor h, the communication be-
tween the challenger and the algorithm S during the Test(Πs

I,J) query is carried out
according to the distributions X and Y of Lemma 3.

It should be noted that after the Test(Πs
I,J) query, the adversary may create bogus

oracles for the participants IDI and IDJ and send bogus messages that may depend
on all existing communicated messages (including messages held by the oracle Πs

I,J)
and then reveal session keys from these oracles. In particular, the adversary may play
a man in the middle attack by modifying the messages sent from Πs

I,J to Πs′

J,I and
modifying the messages sent fromΠs′

J,I toΠs
I,J . Then the oraclesΠs′

J,I andΠs
I,J are not

matching oracles. Thus A can reveal the session key held by the oracle Πs′

J,I before the
guess. In the R2 part in the distributions X and Y of Lemma 3, we have the condition
“gA,i 6= gβx0 or gA,l 6= gγy0” (this condition holds since the algorithm A has not
revealed the matching oracles for Πs

I,J). If both gA,i 6= gβx0 and gA,l 6= gγy0 , then the
oracleΠs′

J,I is a matching oracle forΠs
I,J andA is not allowed to reveal the session key

held by the oracle Πs′

J,I . Thus, Ignoring the cofactor h, the communication between the
challenger and the algorithm S during these Test(Πs

I,J) query is carried out according
to the distributions X and Y of Lemma 3.

In the summary, all communications between the challenger and S are carried out
according to the distributions X and Y of Lemma 3. This completes the proof of the
Theorem. �

6 Weak Perfect forward secrecy

In this section, we show that the protocol IDAK achieves weak perfect forward secrecy
property. Perfect forward secrecy property requires that even if Alice and Bob lose their
private keys dIDA = gαIDA and dIDB = gαIDB , the session keys established by Alice
and Bob in the previous sessions are still secure. Krawczyk [9] pointed out that no
two-message key-exchange protocol authenticated with public keys and with no secure
shared state can achieve perfect forward secrecy. Weak perfect forward secrecy (wPFS)
property for key agreement protocols sates as follows [9]: any session key established
by uncorrupted parties without active intervention by the adversary is guaranteed to
remain secure even if the parties to the exchange are corrupted after the session key was
erased from the parties memory (for a formal definition, the reader is referred to [9]).

In the following, we show the IDAK achieves wPFS property. Using the similar
primitive of “session-key expiration” as in Canetti and Krawczyk’s model [5], we can

revise Bellare-Rogaway model so that wPFS property is provable also. In Bellare-
Rogaway model, the Test(Πs

i,j) query is allowed only if the four properties in Sec-
tion 4 are satisfied. We can replace the property “the adversary has never issued, at any
time during its run, the query Corrupt(i) or Corrupt(j)” with the property “the ad-
versary has never issued, before the session Πs

i,j is complete, the query Corrupt(i)
or Corrupt(j)”. We call this model the wpfsBR model. In the following, we briefly
show that IDAK is secure in the wpfsBR model. It suffices to show that the two distribu-
tions

(
R, ê(gIDA , gIDB)

(x+π(gxIDA
,gyIDB

))(y+π(gyIDB
,gxIDA

))α
)

and (R, ê(gIDA , gIDB)z)

are computationally indistinguishable for R = (gαIDA , g
α
IDB

, gxIDA , g
y
IDB

) and uniform
at random chosen gIDA , gIDB , x, y, z, α. Consequently, it is sufficient to prove the fol-
lowing theorem.

Theorem 4. Let G = {Gρ} be a bilinear group family, Gρ = 〈G,G1, ê〉. Assume that
DBDH-Assumption holds for G. Then the two distributions

X = (g1, g2, g
α
1 , g

α
2 , g

x
1 , g

y
2 , ê(g1, g2)xyα)

and Y = (g1, g2, g
α
1 , g

α
2 , g

x
1 , g

y
2 , ê(g1, g2)z)

are computationally indistinguishable for random chosen g1, g2, x, y, z, α.

Proof. We use a random reduction. For a contradiction, assume that there is a polyno-
mial time probabilistic algorithm D that distinguishes X and Y with a non-negligible
probability δk. We construct a polynomial time probabilistic algorithm A that distin-
guishes (R, ê(g, g)t) and (R, ê(g, g)uvw) with δk, where R = (g, gu, gv, gw) and
u, v, w, t are uniformly at random in Zq . Let the input of A be (R, ê(g, g)t̃), where
t̃ is either uvw or uniformly at random in Zq . We construct A as follows. A chooses
random c1, c2, c3, c4, c5 ∈ Zq and sets g1 = gc1 , g2 = gc2 , gα1 = guc1c3 , gα2 = guc2c3 ,

gx1 = gvc1c4 , gy2 = gwc2c5 , and ê(g1, g2)z̃ = ê(g, g)t̃c1c2c3c4c5 . Let A
(
R, ê(g, g)t̃

)
=

D
(
g1, g2, g

α
1 , g

α
2 , g

x
1 , g

y
2 , ê(g1, g2)z̃

)
. Note that if t̃ = uvw, then c1, c2, α, x, y are uni-

form in Zq (and independent of each other and of u, v, w) and xyα = z̃. Otherwise,
c1, c2, α, x, y are uniform in Zq and independent of each other and of u, v, w. There-
fore, by the definitions,

Pr [A (R, ê(g, g)uvw) = 1] = Pr [D(X) = 1]
and Pr [A (R, ê(g, g)t) = 1] = Pr [D(Y) = 1]

Thus A distinguishes 〈g, gu, gv, gw, ê(g, g)t〉 and 〈g, gu, gv, gw, ê(g, g)uvw〉 with δk.
This is a contradiction. �

Though Theorem 4 shows that the protocol IDAK achieves weak perfect forward
secrecy even if both participating parties’ long term private keys were corrupted, IDAK
does not have perfect forward secrecy when the master secretαwere leaked. The perfect
forward secrecy against the corruption of α could be achieved by requiring Bob (the
responder in the IDAK protocol) to send gyIDA in addition to the value RB = gyIDB and
by requiring both parties to compute the shared secret as H(gxyIDA ||skAB) where skAB
is the shared secret established by the IDAK protocol.

7 Key compromise impersonation (KCI) resilience

In this section, we briefly show that the protocol IDAK has the key compromise imper-
sonation resilience property. That is, if Alice loses her private key dA = gαIDA , then the
adversary still could not impersonate Bob to Alice. For a formaly proof of KCI, we still
need to consider the information obtained by the adversary by Reveal, Extract, Send,
Corrupt queries in other sessions.

In order to show KCI for IDAK, it is sufficient to show that the two distributions(
R, ê

(
gxIDA · g

π(gxIDA
,RB)

IDA
, RB · g

π(RB ,g
x
IDA

)

IDB

)α)
and (R, ê(gIDA , gIDB)z) are com-

putationally indistinguishable forR = (gαIDA , g
x
IDA

, RB), where gIDA , gIDB , x, z, α are
chosen uniform at random, and RB is chosen according to some probabilistic polyno-

mial time distribution. Since the value ê
(
g
π(gxIDA

,RB)

IDA
, RB · g

π(RB ,g
x
IDA

)

IDB

)α
is known,

it is sufficient to prove the following theorem.

Theorem 5. Let G = {Gρ} be a bilinear group family, Gρ = 〈G,G1, ê〉. Assume that
DBDH-Assumption holds for G. Then the two distributions

X =
(
g1, g2, g

α
1 , g

x
1 , RB , ê

(
gx1 , RB · g

π(RB ,g
x
1)

2

)α)
and Y = (g1, g2, g

α
1 , g

x
1 , RB , ê(g1, g2)z)

are computationally indistinguishable for random chosen g1, g2, x, z, α, where RB is
chosen according to some probabilistic polynomial time distribution.

Proof. Since gx1 is chosen uniform at random, and π is a random oracle, we may as-
sume that RB · g

π(RB ,g
x
1)

2 is uniformly distributed over G when RB is chosen ac-
cording to any probabilistic polynomial time distribution. Thus the proof is similar
to the proof of Theorem 4 and the details are omitted. The theorem could also be
proved using the Splitting lemma [13] which was used to prove the fork lemma. Briefly,
the Splitting lemma translates the fact that when a subset A is “large” in a prod-
uct space X × Y , it has many large sections. Using the Splitting lemma, one can
show that if D can distinguish X and Y , then by replaying D with different ran-
dom oracle π, one can get sufficient many tuples (g1, g2, g

α
1 , g

x
1 , RB , π1, π2) such that

(1) π1(RB , g
x
1) 6 π2(RB , g

x
1); (2) D distinguishes X1 and Y (respectively X2 and Y)

when z is uniformly chosen but other values take the values from the above tuple

with π1 (respectively π2). Since ê
(
gx1 , RBg

π1(RB ,g
x
1)

2

)α
/ê
(
gx1 , RBg

π2(RB ,g
x
1)

2

)α
=

ê (g1, g2)
xα(π1(RB ,g

x
1)−π2(RB ,g

x
1)), we can distinguish ê (g1, g2)

xα from ê (g, g)
z for

random chosen z. This is a contradiction with the DBDH-Assumption. �

8 IDAK with key confirmation

The security Definition 2 in Section §4 for key agreement protocols does not provide the
following assurance to a user IDi during a key agreement protocol: one oracle Πs

ij has
been engaged in a conversation and has successfully finished the protocol with a ses-
sion key output. However, there may be no matching oracle Πs′

ji existing at all (though

according to the definition, the adversary learns zero information about the session key
held by Πs

ij). In order to provide assurance against the above scenario, we study secure
key agreement protocols with key confirmation in this section. First we slightly mod-
ify our matching oracle definition from Section §4. The definition of matching oracles
in Section §4 does require all messages that Πs

ij sends out should reach its matching
oracle Πs′

ji and vice versa. In this section, when we talk about matching oracles, we
do not require the last message of the protocol to reach its destination. Indeed, in any
protocol, the party who sends the last message flow cannot “know” whether or not its
last message was received by its partner (see [2]).

Let No-MatchingE(k) denote the event that, during the protocol execution against
the adversary, there exists an oracle Πs

ij with the following properties:

1. Πs
ij has been engaged in a conversation and has successfully finished the protocol

with a session key output.
2. There is no matching oracle Πs′

ji for Πs
ij existing.

3. The adversary has not compromised the long term keys for IDi and IDj .

Definition 3. A protocol Π is a BR-secure key agreement protocol with key confirma-
tion ifΠ is a BR-secure key agreement protocol and the probability of No-MatchingE(k)
is negligible. In short, we say that Π is a BRkc-secure

It is straightforward to observe that IDAK is not a BR-kcsecure. In this section, we
design a BRkc-secure key agreement scheme. We first briefly describe message au-
thentication code. A Message Authentication Code is a deterministic polynomial time
algorithm MAC(·)(·). To authenticate a messagem with a keyK, one computes the au-
thenticated message pair (m, a) = (m,MACK(m)), where a = MACK(m) is called
the tag on m. A MAC scheme is secure if the probability for an adversary to forge a tag
a for a (not authenticated yet) message m of the adversary’s choice under a randomly
chosen keyK is negligible. The adversary is allowed to make adaptive-message attacks.
That is, the adversary can choose messages m′ (different from the target message) and
ask the MAC oracle to generate the authentication tag on m′ under the target key K. In
the following, we describe the IDAK protocol with key confirmation and show that it is
secure according to Definition 3.

The Setup algorithm is the same as that in IDAK protocol, in addition, we also need
to choose two additional random oraclesH1 andH2 (both will be used as key derivation
functions), and a secure message authentication function MAC(·)(·).

The Extract algorithm for IDAKC is the same as that in IDAK protocol.
The Exchange algorithm for IDAKC proceeds as follows:

Exchange For two participants Alice and Bob whose identification strings are IDA and
IDB respectively, the algorithm proceeds as follows.

1. Alice selects x ∈R Z∗q , computes RA = gxIDA , and sends it to Bob.
2. (a) Bob selects y ∈R Z∗q , computes RB = gyIDB .

(b) Bob computes sA = π(RA, RB), sB = π(RB , RA), and the shared secret
skIDAK as

ê(gIDB , gIDA)(x+sA)(y+sB)hα = ê
(
gsAIDA ·RA, d

(y+sB)h
IDB

)
.

(c) Bob computes K1 = H1(skIDAK) and K2 = H2(skIDAK).
(d) Bob computes MACK2(IDB , IDA, RB , RA) and sends this together with RB

to Alice.
3. (a) Alice computes sA = π(RA, RB), sB = π(RB , RA), and the shared secret

skIDAK as

ê(gIDB , gIDA)(x+sA)(y+sB)hα = ê
(
d
(x+sA)h
IDA

, gsBIDB ·RB
)
.

(b) Alice computes K1 = H1(skIDAK) and K2 = H2(skIDAK).
(c) Alice computes MACK2

(IDA, IDB , RA, RB) and sends this to Bob.

Theorem 6. Assume that H , π, H1 and H2 are independent random oracles, MAC
is a secure message authentication function, and the group family G satisfies DBDH-
Assumption. Then IDAKC is a BRkc-secure key agreement protocol.

Proof. By Theorem 3, IDAKC is a BR-secure key agreement protocol. Thus we only
need to show that the probability of No-MatchingE(k) = εk is negligible.

For a contradiction, assume that the adversary has a non-negligible advantage εk
such that there exists an oracleΠs

IJ that has been engaged in a conversation and has suc-
cessfully finished the protocol with a session key output, but there is no matching oracle
Πs′

JI existing. We show how to construct a simulator S that usesA as an oracle to forge
an authentication tag on an un-authenticated messagem under an unknown random key
with non-negligible advantage εk(22k−1)(1−δk)(qE−2)(q2EqN−2)2/q7Eq

3
N22k, where

qE is the number of H-queries that the simulation makes, qN is the maximum number
of IDAKC key agreement sessions that the algorithm A initiates for each participant,
δk is the probability that the adversary can compute the session key of an un-revealed
oracle. The game between the challenger and the simulator S starts with the challenger
first choose a random keyK for the MAC scheme. During the simulation, S can present
messages m to the challenger to get the MAC tag on m under this keyK (but the adver-
saryA is not allowed to ask the challenger for MAC tags). At the end of the simulation,
the algorithm S is supposed to output a message m and its guess a for the MAC tag on
m under the key K. The algorithm S works by interacting with A as follows:

Setup: Algorithm S selects uniformly at random system parameters 〈q, h,G,G1, ê, H ,
H1,H2, π〉 and gives it toA, whereH,H1,H2, and π are random oracles controlled by
S as follows. These random oracles could be queried by S or A during the simulation.
Meanwhile, S keeps the master secret key α in secret.

H-queries, π-queries, H1-queries, and H2-queries: They are the same as the π-
queries in the proof of Theorem 3. That is, S answers all distinct queries independently
and randomly. Note that H-queries defined here is different from that in the proof of
Theorem 3.

Query phase (MAC forgery phase): S chooses three integers I, J ≤ n and s0 ≤ qN ,
and responds to A’s queries as follows.

For an Extract(IDi) query, S runs the H-queries to obtain gIDi = H(IDi) and
responds with dIDi = gαIDi .

For a Send(Πs
i,j , X) query, we distinguish the following three cases:

1. X = λ. In this case, Πs
i,j is the protocol initiator. S chooses a random xi ∈ Zq and

sets Ri = gxiIDi . S lets Πs
i,j reply with Ri. That is, we assume that IDi is carrying

out an IDAKC key agreement protocol with IDj and IDi sends the first message
Ri to IDj .

2. X 6= λ and the transcript of the oracle Πs
i,j is empty. In this case, Πs

i,j is the
protocol responder and has not sent out any message yet. S chooses a random
xi ∈ Zq and sets Ri = gxiIDi . S then distinguishes the following two cases:
(a) i = I and j = J and s = s0. Instead of running the H2-queries to obtain

Ki,j
2 , S asks the challenger to generate the MAC tag asi,j for the message m =

(IDi, IDj , Ri, Rj) where Rj is the random component received from the other
oracle. S lets Πs

i,j reply with (Ri, a
s
i,j).

(b) i 6= I or j 6= J or s 6= s0. S computes the session keying material skIDAK

and runs the H2-queries to obtain Ki,j
2 = H1(skIDAK). S computes asi,j =

MACKi,j
2

(IDi, IDj , Ri, Rj) and lets Πs
i,j reply with (Ri, a

s
i,j), where Rj is

the random component received from the other oracle.
3. X 6= λ and the transcript of the oracle Πs

i,j is not empty. In this case, Πs
i,j is the

protocol initiator or responder and should have sent out the first message already.
S then distinguishes the following two cases:
(a) i = I and j = J and s = s0. If there is a matching oracleΠs′0

J,I forΠs0
I,J , then S

aborts the simulation with failure. Otherwise, let asj,i be the received MAC tag
for the message m = (IDj , IDi, Rj , Ri). S outputs asj,i as the guessed MAC
tag for the message m = (IDj , IDi, Rj , Ri) (S can terminate the simulation
now. However, for easy analysis of the probability, we continue the simulation).
S then asks the challenger whether this MAC tag is valid. If the challenger’s
answer is yes, S marks Πs

i,j as completed/accepted and terminate the simula-
tion. If the challenger’s answer is no, S marks Πs

i,j completed/rejected. Note
that, according to the IDAKC protocol, if the oracle Πs

i,j is the protocol initia-
tor, then it should send the message authentication tag to the responder as the
last message. However, by the new definition matching oracles, this message
does not matter.

(b) i 6= I or j 6= J or s 6= s0. If Πs
i,j is the protocol responder, then S should

have computed the shared secretKi,j
2 already. S computes the MAC tag asj,i =

MACKi,j
2

(IDj , IDi, Rj , Ri) whereRj is the random component received from
the other oracle and compares this tag with the received tag. S marks Πs

i,j as
completed/accepted if the two tags are the same, and marks it completed/rejected
if the two tags are different. For the case that Πs

i,j is the protocol initiator, S
computes the session keying material skIDAK and runs the H2-queries to ob-
tainKi,j

2 = H1(skIDAK). S computes asi,j = MACKi,j
2

(IDi, IDj , Ri, Rj) and
lets Πs

i,j reply with asi,j , where Rj is the random component received from the
other oracle.

For a Reveal(Πs
i,j) query, if “i = I and j = J and s = s0” or “Πs

i,j is the
matching oracle for Πs0

I,J” then S aborts the simulation. Otherwise, S computes the
session keying material skIDAK, runs the H1-queries to get Ki,j

1 = H1(skIDAK), and
responds with Ki,j

1 . For a Corrupt(i) query, if i = I or i = J , then S aborts the
simulation. Otherwise, S responds with dIDi = gαIDi .

Claim: If S does not abort the simulation, then A’s view is identical to its view in the
real attack.
Proof of Claim: It is straightforward. �

Suppose that the simulation process makes at most qE H-queries and qN be the
maximum number of IDAKC key agreement sessions that the algorithm A initiates for
each participant. We next calculate the probability that S succeeds in forging an MAC
tag on a message that the challenger has not authenticated.

We first calculate the probability that S does not abort the simulation. The proba-
bility that S does not abort for Send queries is (q2EqN − 2)/q2EqN . The probability that
S does not abort for Reveal queries is (q2EqN − 2)/q2EqN . The probability that S does
not abort for Corrupt queries is (qE − 2)/qE . Therefore, the probability that S does
not abort during the simulation is (qE − 2)(q2EqN − 2)2/q5Eq

2
N .

If the algorithm A is successful during that simulation (the probability is at least
εk), then there is a completed/accepted oracle Πs

i,j that has no matching oracle. Since
there are at most q2EqN oracles during the simulation, the probability for this oracle to
be the oracle Πs0

I,J is 1/q2EqN . Thus the probability that the oracle Πs0
I,J is marked as

completed/accepted is at least(
(qE − 2)(q2EqN − 2)2/q5Eq

2
N

)
· εk ·

(
1/q2EqN

)
= εk(qE − 2)(q2EqN − 2)2/q7Eq

3
N .

If the oracle Πs0
I,J is marked as completed/accepted, then S output a guessed valid

MAC tag asJ,I for the message m = (IDJ , IDI , RJ , RI). We next calculate the proba-
bility that the challenger has never been asked for the MAC tag on this message and the
probability thatA does not guess correctly about the keying materials held by the oracle
Πs0
I,J (that is, the probability that the MAC tag is generated without knowing the secret

key or asking the challenger to generate it). Since there is no matching oracle and A is
not allowed to ask the challenger for MAC tags, A generates this tag asJ,I by one of the
following three approaches: (1). S asked the challenger to generate the MAC tag for the
messagem = (IDJ , IDI , RJ , RI) for another oracleΠs′

J,I . SinceΠs′

J,I is not the match-
ing oracle for Πs0

I,J , the event in this case happens only with probability 1/22k. Here
we assume that the messages RI and RJ are all k bits long. (2). A guessed correctly
about the session keying material skIDAK for the oracle Πs0

I,J and computed the MAC
tag asJ,I by herself. By Theorem 3, this probability is bounded by some negligible value
δk. (3). A generated the MAC tag asJ,I by random choice or by using other techniques
(e.g., by using flaws in the MAC scheme). According to the security definition of MAC
schemes, the forgery on the MAC tag is successful when the events in case (3) happens.
Thus, by excluding the probabilities for the cases (1) and (2), the probability that MAC
forgery experiment is successful under the condition that the oracle Πs0

I,J is marked as
completed/accepted is at least (1−(1/22k))(1−δk) = (22k−1)(1−δk)/22k. In a sum-
mary, the probability that S successfully forged the MAC code on the un-authenticated
message m = (IDJ , IDI , RJ , RI) is at least

εk(22k − 1)(1− δk)(qE − 2)(q2EqN − 2)2/q7Eq
3
N22k

which is non-negligible since εk is non-negligible and δk is negligible. This completes
the proof of the Theorem. �

9 Practical considerations and applications

9.1 The function π

Though in the security proof of IDAK key agreement protocol, π is considered as a
random oracle. In practice, we can use following simplified π functions.

– π is a random oracle (secure hash function) from G×G to Z∗
2dlog qe/c

(e.g., c = 2).
– If g1 = (xg1 , yg1), g2 = (xg2 , yg2) ∈ G are points on an elliptic curve, then

let π(g1, g2) = x̄g mod 2|xg|/2 where x̄g = xg1 ⊕ xg2 . That is, π(g1, g2) is the
exclusive-or of the second half parts of the first coordinates of the elliptic curve
points g1 and g2.

– π is a random oracle that the output only depends on the the first input variable or
any of the above function restricted in such a way that the output only depends on
the the first input variable. In another word, π : G→ Z∗q .

It should be noted any π function, for which Lemma 3 holds, can be used in the IDAK
protocol. Though we do not know whether Lemma 3 holds for π functions that we have
listed above, we have strong evidence that this is true. First, if we assume that the group
G2 is a generic group. Then we can prove that Lemma 3 holds for the above π functions.
Secondly, if the distribution G(gx, gr, gα, gβ , gγ , gβx0) in Lemma 3 is restricted to the
distribution:

{gf(x,r,α,β,γ,βx0,y) : f a linear function, y a tuple of uniform-random values from Zq}.

Then we can prove that Lemma 3 holds for the above π functions. We may conjecture
that the adversary algorithm A can only generate gA and gγy0 according to the above
distribution unless CDH-Assumption fails for G. Thus, under this conjecture (without
the condition that G2 is a generic group), the above list of π functions can be used in
IDAK protocol securely.

9.2 Performance

Our analysis in this section will be based on the assumption that π is a random oracle
(secure hash function) from G×G to Z∗

2dlog qe/2
. Since the computational cost for Alice

is the same as that for Bob. In the following, we will only analyze Alice’s computation.
First, Alice needs to choose a random number x and compute gxIDA in the group

G. In order for Alice to compute sk = ê
(
gsBIDB ·RB , g

(x+sA)hα
IDA

)
, she needs to do 1.5

exponentiation in G, one multiplication in G, and one pairing. Thus in total, she needs
to do 2.5 exponentiation in G, one multiplication in G, and one pairing.

Alternatively, Alice can compute shared secret sk = ê
(
gsBIDB ·RB , g

α
IDA

)(x+sA)h
.

Thus for the entire IDAK protocol, Alice needs to do 1.5 exponentiation in G (one for
gxIDA and 0.5 for gsBIDB), one multiplication in G, one pairing, and one exponentiation in
G1.

The IDAK protocol could be sped up by letting each participant do some pre-
computation. For example, Alice can compute the values of gxIDA , ghαIDA , gxhαIDA

before

the protocol session. During the IDAK session, Alice can compute the shared secret as
sk = ê

(
gsBIDB ·RB , g

xhα
IDA
· gsAhαIDA

)
which needs 1 exponentiation in G (0.5 for gsBIDB

and 0.5 for gsAhαIDA
), 2 multiplications in G, and one pairing. Alternatively, Alice can

compute the shared secret as sk = ê
(
gsBIDB ·RB , g

hα
IDA

)x+sA which needs 0.5 exponen-
tiation in G, one multiplication in G, one pairing, and one exponentiation in G1. In a
summary, Figure 1 lists the computational cost for Alice.

without pre-computation with pre-computation
choice 1 choice 2 choice 1 choice 2

pairing 1 1 1 1
exponentiation in G 2.5 1.5 1 0.5
multiplication in G 1 1 2 1

exponentiation in G1 0 1 0 1

Fig. 1. IDAK Computational Cost for Alice

9.3 One-pass IDAK and comparison with signcryption

In some case, one may need an off-line version for the IDAK protocol. For example,
when Bob is not on-line or Bob has extremely limited computational resources. One-
pass IDAK protocol could be used for these scenarios. For the one-pass IDAK protocol,
the Setup and Extract algorithms are the same as the IDAK protocol. The Exchange
algorithm proceeds as follows.
Exchange: For two participants Alice and Bob whose identification strings are IDA and
IDB respectively, the algorithm proceeds as follows.

1. Alice selects x ∈R Z∗q , computes RA = gxIDA , and sets RB = gIDB . Alice then
computes sA = π(RA, RB), sB = π(RB , RA), and the shared secret skAB as

ê(gIDA , gIDB)(x+sA)(1+sB)hα = ê
(
gsBIDB ·RB , g

(x+sA)hα
IDA

)
.

2. Alice sends RA to Bob.
3. Bob sets RB = gIDB , computes sA = π(RA, RB), sB = π(RB , RA), and the

shared secret skBA as

ê(gIDA , gIDB)(x+sA)(1+sB)hα = ê
(
gsAIDA ·RA, g

(1+sB)hα
IDB

)
.

If π takes values from [1, 2dlog q/2e], then in the one-pass IDAK protocol, Alice
needs to do two exponentiations and one pairing. While Bob only needs to do one
exponentiation and one pairing.

The one-pass IDAK protocol could be used for off-line communications as follows.
Alice chooses random RA and computes the shared secret. Alice can then encrypt the

message it wants to send to Bob and sends RA and the ciphertext to Bob at the same
time. After Bob receives the message, it can compute the shared secret and decrypt
the message. Since IDAK is a secure key agreement protocol, when Bob decrypts the
message which has sufficient redundancy, Bob has confidence that the message is re-
ally from Alice. In another word, one-pass IDAK with message encryption could be
regarded as a variant of signcryption schemes. Note that the difference here is that the
signature could only be verified by Bob but not others. In recent years, several identity
based signcryption schemes have been proposed. All of these schemes requires the re-
cipient to do two or more pairing computation (while the sender may not need to do any
pairing computation). In the one-pass IDAK scheme, the recipient only needs to do one
pairing. This property could be useful in several applications.

9.4 Applications

IDAK key agreement protocol could be used in all these environments that identity-
based public parameters are deployed (e.g., these environments discussed in [4]). One
of the most promising applications could be the VoIP environments. VoIP systems are
become more and more popular. However, Internet environment is generally not as
secure as the traditional phone networks. Eavesdropping is dramatically easy in Internet
environments than in traditional phone networks. Though VPN could be one of the
potential tools that could be used to protect the VoIP systems, recent experiments show
that there are many disadvantages for VPN based VoIP (the most important one is the
delays in several routers which could worsen VoIP quality). On the other hand, we
really do not expect each VoIP phone will get a public key certificate and each time
when we make a phone call, we need to import the certificate for the target phone first.
Identity based key agreement protocol provides a promising solution for VoIP systems.
The public key for each phone could be based on its identity (e.g., the phone number).
Each time, when we make a phone call, the two phones will use the IDAK protocol to
establish a session key for conversation encryption/authentication. The public key for
each phone could be “permanent” (e.g., based on the phone number) or temporary (e.g.,
based on the identity consisting of phone number and time-stamps).

10 Related protocols

In this section, we briefly review the related protocols.
Smart protocol Smart [17] proposed an identity-based and authenticated key agree-

ment protocol without security proofs. Briefly, Smart’s protocol works as follows: The
trusted authority needs to publish the public key gα first (note that our protocol does
not require a public key) and distributes the private keys gαIDA and gαIDB to Alice and
Bob respectively. During the key agreement session, Alice selects x ∈R Z∗q and sends
gx to Bob, Bob selects y ∈R Z∗q and sends gy to Alice. Then both parties com-
pute the shared secret skNS = ê(gxIDB · g

y
IDA

, gα) = ê(gxIDB , g
α) · ê(gyIDA , g

α) =
ê(gxIDB , g

α) · ê(gαIDA , g
y) = ê(gαIDB , g

x) · ê(gyIDA , g
α). A simple analysis shows that

Smart’s protocol requires the computation of two exponentiations and two pairings for
each party. Meanwhile, the only pre-computation that each party could do is to select

the random value x (respectively, y) and compute the value of gx (respectively, gy).
Thus with pre-computation, Smart’s protocol still requires one exponentiation and two
pairings for each party. It is straightforward to show that Smart’s protocol is not secure
against key revealing attacks and does not have perfect forward secrecy if both parties’
private keys were leaked.

Chen and Kudla protocol Chen and Kudla [6] proposed an efficient identity-based
and authenticated key agreement protocol. Briefly, Chen-Kudla’s protocol works as fol-
lows: The trusted authority distributes the private keys gαIDA and gαIDB to Alice and Bob
respectively (similar to our protocol, no public key is required). Alice selects x ∈R Z∗q
and sends gxIDA to Bob, Bob selects y ∈R Z∗q and sends gyIDB to Alice. Then both par-
ties compute the shared secret skCK = ê(gIDB , gIDA)(x+y)α = ê(gxIDB ·g

y
IDB

, gαIDA) =
ê(gαIDB , g

x
IDA
· gyIDA).

One disadvantage of Chen-Kudla protocol is that this protocol does not have the
perfect forward secrecy property. That is, if the private keys of Alice and Bob are cor-
rupted at some time, then the adversary can compute all past session keys used between
Alice and Bob. Another serious disadvantage of Chen-Kudla protocol is that its secu-
rity is indeed unproved. Chen and Kudla [6] proved that their protocol is secure in the
Bellare-Rogaway [2] secure key agreement model. However, Cheng et al. [7] pointed
out that the proof in [6] is flawed and their protocol is not secure against key revealing
attacks. Since the key revealing attack is the fundamental property in Bellare-Rogaway
model [2], a security model for key agreement protocol without modelling key revealing
attacks has limited value.

Scott protocol Scott [15] proposed a key exchange protocol with password au-
thentications for the private key. Briefly, Scott’s protocol works as follows: The trusted
authority needs to choose a master secret α and distributes the private keys gαIDA and
gαIDB to Alice and Bob respectively. Alice may choose a password a to store her private
key as: gα−aIDA

. In the following discussion, we will omit the password protection part.
During the key agreement session, Alice selects x ∈R Z∗q and sends ê(gIDA , gIDB)αx

to Bob. Bob selects y ∈R Z∗q and sends ê(gIDA , gIDB)αy to Alice. The shared secret
is ê(gIDA , gIDB)αxy . This protocol is not secure according to Definition 2. The ad-
versary may choose a random number c and change the message from Alice to Bob to
ê(gIDA , gIDB)αxc and change the message from Bob to Alice to ê(gIDA , gIDB)αyc. Both
Alice and Bob will then compute the shared secret ê(gIDA , gIDB)αxyc. Since the oracle
at Alice side is not a matching oracle for at Bob’s oracle, the adversary could reveal
Bob’s session key before testing Alice’s session key. Thus the adversary will succeed
in the testing query.

McCullagh and Barreto protocol McCullagh and Barreto [10] proposed an ID-
based key agreement protocol as follows. Assume that the system wide master secret is
α, Alice’s identity is mapped to an integer aA ∈ Z∗q , and Bob’s identity is mapped to an
integer aB ∈ Z∗q . Then Alice and Bob’s public keys are gα+aA and gα+aB respectively.
Their secret keys are g(α+aA)−1

and g(α+aB)−1

respectively. During the key agreement
session, Alice selects x ∈R Z∗q and sends gx(α+aB) to Bob. Bob selects y ∈R Z∗q and
sends gy(α+aA) to Alice. The shared secret is computed as ê(g, g)xy . McCullagh and
Barreto [11] revised their protocol by letting the shared secret as ê(g, g)x+y . But this
modified protocol obviously does not achieve perfect forward secrecy.

11 Conclusion

In this paper we proposed an identity based key agreement protocol IDAK and proved
its security in Bellare-Rogaway model. Indeed, our informal analysis shows that IDAK
is also provably secure in the stronger Canetti and Krawczyk’s security model [5].

Acknowledgement

The author would like to thank Zhaohui (Michael) Cheng, Raymond Choo, and Paulo
Barreto for many useful discussions related to this paper. We thanks the anonymous
referees for comments.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: a paradigms for designing efficient
protocols. In: Proc. 1st ACM CCS, pages 62–73, ACM Press, 1993.

2. M. Bellare and P. Rogaway. Entity authentication and key distribution. In: Advances in Cryp-
tology, Crypto 93, LNCS 773 (1993), 232–249.

3. D. Boneh. The decision Diffie-Hellman problem. In: ANTS-III, LNCS 1423 (1998), 48–63.
4. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Com-

puting 32(3):586–615, 2003.
5. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building

secure channels. In: Eurocrypt 01, LNCS 2045 (2001), 453–474.
6. L. Chen and C. Kudla. Identity based authenticated key agreement protocols from pairing.

In: Proc. 16th IEEE Security Foundations Workshop, pages 219–233, 2003.
7. Z. Cheng, M. Nistazakis, R. Comley, and L. Vasiu. On indistinguishability-based security

model of key agreement protocols-simple cases. In Proc. of ACNS 04, June 2004.
8. A. Joux. A one round protocol for tripartite Diffie-Hellman. In: Algorithmic number theory

symposium, ANTS-IV, LNCS 1838, pages 385–394, 2000.
9. H. Krawczyk. HMQV: a high-performance secure Diffie-Hellman protocol. In: Proc. Crypto

05, Springer, 2005.
10. P. McCullagh and P. Barreto. A new two-party identity-based authenticated key agreement.

Proc. of CT-RSA 2005, pages 262-274, LNCS 3376, Springer Verlag, 2005.
11. P. McCullagh and P. Barreto. A new two-party identity-based authenticated key agreement.

http://eprint.iacr.org/2004/122.pdf
12. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random func-

tions. In: 38th Annual Symposium on Foundations of Computer Science, IEEE Press, 1998.
13. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.

J. Cryptology 13(3):361–396, 2000.
14. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In: 2000 Symp. on

Cryptography and Information Security (SCIS 2000), Okinawa, Japan 2000.
15. M. Scott. Authenticated ID-based key exchange and remote log-in with insecure token and

PIN number. http://eprint.iacr.org/2002/164.pdf
16. A. Shamir. Identity-based cryptosystems and signature schemes. In: Advances in Cryptology,

Crypto 84, LNCS 196, pages 47–53, Springer Verlag 1984.
17. N. P. Smart. Identity-based authenticated key agreement protocol based on Weil pairing.

Electronics Letters 38(13):630–632, 2002.
18. K. Tanaka and E. Okamoto. Key distribution system for mail systems using ID-related infor-

mation directory. Computers and Security 10:25–33, 1991.

