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Abstract. Problems of unconditionally secure communication have been stud-
ied extensively in network models. Dolev-Dwork-Waarts-Yung considered the
Byzantine threats model, in which the adversary can only take over a number of
nodes bounded by a threshold. They studied two cases:

1. all communication links (edges in the graph) are two-way communication,
2. all communication links are one-way communication, and there is no feed-

back.
The node sets that the adversary can take over was generalized by Hirt-Maurer to
an adversary structure. At PODC 2002, Kumar-Goundan-Srinathan-Rangan gen-
eralized Dolev-Dwork-Waarts-Yung’s first scenario to the case of a general adver-
sary structure. In this paper we generalize Dolev-Dwork-Waarts-Yung’s second
scenario to the case of a general adversary structure. As in Dolev-Dwork-Waarts-
Yung, our work relies on the use of secret sharing.

Keywords: Network security, Byzantine threats, Secret Sharing, adversary struc-
ture, unconditional security.

1 Introduction

Originally work on secure distributed computation (see, e.g., [1,3]) assumed that the par-
ties were connected by a complete network of reliable and private point-to-point com-
munication channels, with an adversary that could control up to k (Byzantine) nodes.

In practical networked environments it is often the case that two parties are not con-
nected with a private and authenticated channel. They then need to use intermediate
nodes to help them to carry out secure communication and secure multiparty computa-
tions. In this case, it is important to design secure communication protocols to achieve
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participant cooperation in the presence of faults. Dolev, Dwork, Waarts, and Yung [6]
initiated the study of reducing the requirements for network connectivity in secure mul-
tiparty computation by providing protocols that achieve private and reliable communi-
cation. In the case of k Byzantine faults, they studied the cases:

1. all communication links (edges in the graph) are two-way communication. Reliable
and private communication is achievable if and only if the communication network
is 2k + 1 connected.

2. all communication links are one-way communication, and there is no feedback.
Then 3k + 1 connectivity is necessary and sufficient for reliable and private com-
munications.

In 2002, Desmedt and Wang [4] extended this to the case when there are feedback
channels.

The Byzantine faults model typically addresses threat scenarios in which the faults
are independent. This assumption is unrealistic when dealing with computer viruses,
such as the ILOVEYOU [11] virus and the Internet virus/worm [7] that only spread to
Windows, respectively Unix. A hacker who can exploit a weakness in one platform,
can with almost the same ease attack many computers, if not all, on that same platform.
There is therefore a need to design a model in which nodes on the same platform can be
distinguished. One such model, the adversary structure model, was proposed by Hirt
and Maurer [10] for secure multiparty computation (for an earlier version see [9]). In
this model the adversary is characterized by a structure (or family) of subsets of the
set of parties, which are the sets that the adversary can corrupt. Hirt and Maurer gave
necessary and sufficient conditions for secure multiparty computation in this adversary
model. Similar to the classical results for multiparty computation, Hirt and Maurer as-
sumed that communication networks are complete.

As in Dolev, Dwork, Waarts, and Yung [6], in this paper, we study the problem of
reducing the requirements for network connectivity in secure multiparty computation
in the sense of Hirt and Maurer [10] under the adversary structure model. We give nec-
essary and sufficient conditions on the communication network, with respect to a given
adversary structureZ , such that we have reliable and private point-to-point communica-
tion. It should be noted that results for not necessarily complete bi-direction networks
have been obtained by Kumar-Goundan-Srinathan-Rangan in [13]. They used an in-
duction argument to prove the sufficient condition. There are two essential differences
between our results and the results in [13].

– The secure message transmission protocols in [13] only apply to networks in which
all links are two-way. That is, one can send messages in two directions. Our proto-
cols work for networks that are not necessarily complete and the links are one-way.
That is, one may send message from one direction though not the other direction.

– Our protocols for secure transmissions are slightly more efficient than these in [13]
due to the induction processes in [13]. Specifically, our protocols will use minimal
Z-connected path-sets. We shall find a bound on the number of paths in such path-
sets, and show that it is sharp. Although we focus on point-to-point networks, our
results can easily be extended to broadcast networks.
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The organization of this paper has as follows. In Section 2, we describe our model and
give definitions. In Section 3 we find necessary and sufficient conditions for secure
communication in our adversary model and propose secure transmission protocols. In
Section 4 we propose bounds.

2 Model and Background

2.1 Threshold Secret Sharing Schemes

Let F be a finite field, and let k, n be integers such that 0 ≤ k < n. A (k + 1)-out-of-n
secret sharing scheme is a probabilistic function S: F → Fn with the property that: for
any M ∈ F and S(M) = (v1, . . . , vn), no information about M can be inferred from
any k entries of (v1, . . . , vn), whereas M can be recovered from any k + 1 entries of
(v1, . . . , vn).

2.2 The Adversary

We employ an unconditional setting. That is, the adversary has unlimited resources.
The adversary is characterized by an adversary structure Z [10] that consists of all sets
of parties that the adversary can corrupt. Formally, let P be a party set. A subset ΓP
of the power set 2P of P is called an access structure on P [12]. It is monotone if and
only if ∅ �∈ ΓP and supersets of elements ΓP also belong to ΓP , i.e., we require that
if A ∈ ΓP and A ⊆ A′ ⊆ P , then A′ ∈ ΓP . Let ZP = ΓP . We call ZP ⊂ 2P , or
simply Z when there is no confusion, an adversary structure on P if its complement,
i.e., Zc

P = 2P \ ZP is a monotone access structure.
If Z1 and Z2 are adversary structures for P , then Z1 + Z2 = {Z1 ∪ Z2 : Z1 ∈

Z1, Z2 ∈ Z2} is also an adversary structure for P . 2Z and 3Z are the adversary struc-
tures Z + Z and Z + Z + Z respectively. Finally, a set of parties Z ∈ Z is maximal
if: Z ′ ⊃ Z ⇒ Z ′ /∈ Z . In the remaining part of the paper, we will use 2Z and 3Z to
denote the adversary structures Z + Z and Z + Z + Z respectively.

We consider two kinds of adversary: a passive and an active adversary. A passive
adversary (or gossiper adversary) can only read the traffic (the variables in the view)
of the parties in Z . An active adversary has unlimited computational power and can
read the traffic of Z and also control the parties in Z . Both kinds of adversary are
assumed to know the complete protocol specification, message space, and the complete
structure of the graph. In this paper, we shall not consider dynamic adversaries who can
change the parties they corrupt from round to round, but only static adversaries. That
is, the adversary selects which set of parties Z ∈ Z to corrupt, before the start of the
protocol.

2.3 The Communication Network

We model the communication network by a directed graph G = G(V, E) whose nodes
are the parties and whose edges are point-to-point reliable and private communication
channels.
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2.4 Message Transmission Protocols

Let π be a message transmission protocol, let A be the sender and B the receiver, and let
Z be an adversary structure. The sender A selects a message MA drawn from a message
space M with a certain probability distribution. At the beginning of the protocol, the
adversary flips coins and chooses a set Z ∈ Z of nodes to corrupt. At the end of protocol
π, the receiver B outputs a message MB ∈ M. We will assume that the message space
M is a subset of a finite field F (our results easily extend to message spaces of tuples
over F).

For any message transmission protocol we denote by adv the adversary’s view of
the execution of the protocol and by adv(M, r) the view when MA = M and when the
sequence of coin flips used by the adversary is r.

Definition 1. Let π be transmission protocol, let MA the message selected by A and
MB the message output by B, let Z be an adversary structure.

1. We say that π is Z-reliable if B outputs MB = MA with probability 1. (The
probability is taken over the choices of MA and the coin flips of all nodes.)

2. We say that π is perfectly Z-private if for any two messages M0, M1, and for any
coin tosses r, we have Pr[adv(M0, r) = c] = Pr[adv(M1, r) = c]. The probabili-
ties are taken over the coin flips of the honest parties.

3. We say that π is perfectly Z-secure if it is Z-reliable and perfectly Z-private.

2.5 Connectivity

Definition 2. Let G(V, E) be a directed graph, A, B be nodes in G(V, E), and Z be a
an adversary structure on V \ {A, B}.

– A, B are Z-separable in G, if there is a set Z ∈ Z such that all paths from A to B
go through at least one node in Z . We say that Z separates A and B.

– A, B are (Z + 1)-connected if they are not Z-separable in G.

Observe that if (A, B) ∈ E, then A, B are (Z+1)-connected for any Z on V \{A, B}.
The following result will be needed in our later discussions.

Theorem 1. Let G = G(V, E) be a directed graph, A, B be nodes in G, and Z1,Z2

be adversary structures on V \{A, B}. Then A, B are (Z1 +Z2 +1)-connected if, and
only if: for all sets Z1 ∈ Z1 there is a set SZ1 of paths between A and B such that,

– the paths in SZ1 are free from nodes of Z1,
– for every Z2 ∈ Z2 there is at least one path in SZ1 that is free from nodes of Z2.

Proof. First consider the case when A, B are (Z1 + Z2 + 1)-connected. We prove that
the conditions are satisfied. For any set Z1 ∈ Z1, let SZ1 be the set of all paths from A
to B free from nodes of Z1. Assume that there is a set Z2 ∈ Z2 such that all paths of
SZ1 go through Z2. Then Z1 ∪ Z2 separates A, B in G. That is, A, B are (Z1 + Z2)-
separable in G. This is a contradiction.

For the converse observe that the conditions on the paths SZ1 make it impossible to
have a set Z2 ∈ Z2 such that Z = Z1 ∪ Z2 separates A, B. Indeed if there where such
a set Z separating A, B then there would be no path in SZ1 free of Z1 and Z2.
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3 Secure Message Transmissions

We start by discussing message transmissions that tolerate passive adversaries. First we
briefly describe the intuition behind our protocols by observing that, whereas in the
Byzantine threats model the sender and receiver use vertex disjoint paths, for general
adversary structures this is not necessarily the case.

Theorem 2. Let G = G(V, E) be a directed graph, A, B be two nodes in G, and Z be
an adversary structure on V \ {A, B}. Suppose that the adversary is passive.

1. We have polynomial time (in the graph size) Z-reliable message transmission from
A to B if, and only if, A, B are ({∅} + 1)-connected in G.

2. We have polynomial time (in the graph size) perfectly Z-secure message transmis-
sion from A to B if, and only if, A, B are (Z + 1)-connected in G.

Proof. Result 1 is straightforward. For Result 2, first observe that if A, B are
Z-separable in G, then there is a set Z ∈ Z such that all paths from A go through
Z . Therefore Z-private message transmission from A to B is impossible. Next suppose
that A, B are (Z + 1)-connected in G. In the following we describe a polynomial time
(in the graph size) protocol for A to securely send a message MA to B (our protocol is
similar to a protocol in [8, Lemma 2]).

1. Let G′(V ′E′) be the maximum subgraph of G(V, E) such that for each node v ∈
V ′, there is a direct path from v to B.

2. For each edge (u, v) ∈ E′, u chooses a random message (group elements chosen
according to the uniform distribution) ru,v and sends it to the node v.

3. Every node computes the sum of messages it has received and substracts the sum
of messages it has sent out. If the node is the actual sender A, then it adds to this
total the messsage MA. Call this sum the “final result” for this node.

4. Each final result from Step 3, except for the final result held by the actual receiver
B, is propagated by the nodes openly to the receiver B through a series of trans-
missions. The sum of all final results, including the final result held by the receiver
B, is the message MB .

Using a similar proof to that in [8, Lemma 2], we can show that the above protocol is a
Z-secure message transmission from A to B if A, B are (Z + 1)-connected in G.

Next we consider secure message transmission protocols for active adversaries.

Theorem 3. Let G = G(V, E) be a directed graph, A, B be nodes in G, and Z be an
adversary structure on V \ {A, B}. We have Z-reliable message transmission from A
to B if, and only if, A, B are (2Z + 1)-connected in G.

Proof. First assume that A, B are (2Z + 1)-connected in G, and let S be the set of all
directed paths from A to B. The paths in S will be used by the sender A to transmit
messages to B. Let MA be the message that A wants to send to B. For each path p ∈ S,
A sends MA to B over p. At the end of the protocol, B receives MB

p through each path
p ∈ S. Then by using Theorem 1, B finds a node set Z1 ∈ Z whose path set SZ1 is
such that the same message is received on all its paths. Let MB be this message. It is
sufficient to show that MB = MA. Suppose that the adversary selects Z2 ∈ Z . We
have:
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– If Z1 ∩ Z2 = ∅ then MA = MB .
– If Z1∩Z2 �= ∅ then by Theorem 1, since A, B are (2Z+1)-connected, there will be

a path p0 ∈ SZ1 free from nodes of Z2. On this path MB
p0

= MA. Since B receives
the same message from all paths in SZ1 , we must have MA = MB

p0
= MB .

It follows that B can reliably recover the message MA.
Next assume that A, B are not (2Z + 1)-connected in G. That is, there are sets

Z1, Z2 ∈ Z such that all directed paths from A to B passes through some nodes in
Z1 ∪ Z2. Let M0 be the message that A transmits. The adversary will attempt to main-
tain a simulation of the possible behavior of A by executing the message transmission
protocol for some other message M1. The strategy of the adversary is to flip a coin and
then, depending on the outcome, decide which set of Z1 or Z2 to control (our model is
not dynamic, so the selection is done before the protocol starts). Let Zb be the chosen
set. In each execution step of the transmission protocol, the adversary causes each node
in Zb to follow the protocol as if the transmitted message were M1. Since B does not
know whether b = 1 or b = 2, with probability better than 1/2, at the end of the protocol
B cannot decide whether A has transmitted M0 or M1 with probability better than 1/2.

Theorem 4. Let G = G(V, E) be a directed graph, A, B be nodes in G, and Z be an
adversary structure on V \ {A, B}. If there are no directed paths from B to A, then
we have perfectly Z-secure message transmission from A to B if and only if, A, B are
(3Z + 1)-connected in G.

Proof. First we show that the condition is sufficient. We shall describe a message trans-
mission protocol π that is perfectly Z-secure. Let Z = {Z1, . . . , Zt} be the adversary
structure (to make our protocol more efficient, we could take a list of maximal adversary
sets) and let MA be the message that A wants to send to B. The sender A first uses a t-
out-of-t secret sharing scheme to get shares (sA

1 , . . . , sA
t ) of the message MA. For each

i ≤ t, A reliably sends sA
i to B via the reduced graph GV \Zi

= GV \Zi
(V \Zi, EV \Zi

),
where EV \Zi

= E \ {(u, v) : u ∈ Zi or v ∈ Zi}. For each i ≤ t, B reliably receives
sB

i on the reduced graph GV \Zi
, and hence recovers the message MB from the shares

(sB
1 , . . . , sB

t ). Now assume that the adversary controls all nodes in Zi0 . Then the ad-
versary will learn no information about MA from sA

i0 . Therefore the transmission pro-
tocol π is perfectly Z-private. It remains to show that π is Z-reliable. Since A, B are
(3Z+1)-connected, it is straightforward to see that for each Zi ∈ Z , the reduced graph
GV \Zi

is (2Z + 1)-connected. From Theorem 3 we get that B receives reliably all the
shares (sA

1 , . . . , sA
t ). It follows that the protocol is perfectly Z-secure.

Next we show that the condition is necessary. Assume that A, B are not (3Z + 1)-
connected. Then there are sets Z1, Z2, Z3 ∈ Z such that all directed paths from A to
B pass through some nodes in Z1 ∪ Z2 ∪ Z3. Let M0 be the message that A transmits.
The adversary will attempt to maintain a simulation of the possible behavior of A by
executing the transmission protocol π for some other message M1. The strategy of the
adversary is to flip coins and then, depending on the outcome, decide which set of Z1,
Z2 or Z3 to control. Let Zb be the chosen set. In each execution step of the transmission
protocol, the adversary causes each node in Zb to follow the protocol π as if the protocol
were transmitting the message M1. At the end of the protocol, the view of B could
be divided into three parts viewZ1 , viewZ2 , and viewZ3 , where viewZi (i = 1, 2, 3)
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consists of all the information that the nodes in Zi have learned. Since neither A nor
B knows whether b = 1, b = 2 or b = 3, and since π is a perfectly private message
transmission protocol, MA cannot be recovered from any single viewZi . Since π is a
reliable message transmission protocol and the adversary controls one of Z1, Z2, or
Z3, B should be able to recover the secret message from two of these three views.
That is, if we regard (viewZ1 , viewZ2 , viewZ3) as shares of MA in a 2-out-of-3 secret
sharing scheme, then this scheme should be able to detect and simultaneously correct
one error. However 2-out-of-3 secret sharing schemes can only detect one error, and
cannot correct any errors (see, e.g., [14]). So we get a contradiction. This proves that
there is no perfectly secure message transmission protocol from A to B when A, B are
only 3Z-connected.

4 Bounds and Other Properties

4.1 Introduction

A threshold adversary structure Z is a structure whose maximal sets Z have cardinality
bounded by a threshold k. An example of such a structure is the classical Byzantine
faults structure. Evidently if one restricts oneself to threshold adversary structures, then
there is a description of the adversary structure which is logarithmic in the number
of elements in it. In this context, it should be noted that the “polynomial” algorithms
for multiparty computation in Hirt and Maurer [10] are polynomial in the size of the
adversary access structure which is generally exponential in the size of the network.
Hirt and Maurer do not study the problem for restricted access structures.

For a threshold adversary structure Z we get Z-tolerable communication in both the
passive and active case [5,6] via path-sets S for which,

– the paths are vertex-disjoint, and so
– the number of paths is polynomially bounded (in the size of the graph).

The goal of this section is to show that both properties are false in the general adver-
sary case, when limiting the adversary structures. Our results do not rely on unproven
assumptions.

We shall use a family of specific adversary structures Z that was informally intro-
duced in [2]. This structure consists of sets Z of nodes of a colored graph that have at
most k colors (e.g. computers running the same/different operating system are respec-
tively colored with the same/different color). In other words, the adversary can corrupt
any set of nodes provided it has no more than k colors. Evidently the number of nodes
in Z can be much larger than k (if many nodes have the same color). We now define
this structure formally.

Definition 3. A colored graph is a tuple G = G(V, E, C, f), with V the node set, E
the edge set, C the color set, and f a map from V onto C. The structure

ZC,k = {Z | Z ⊂ V and |f(Z)| ≤ k}.
is called a k-color adversary structure.

Note that if all nodes of the colored graph have different colors then we have the clas-
sical Byzantine faults structure, with no colors.
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4.2 Bounds

To study the properties of path-sets that we shall use for Z-tolerable communication we
define the following. (This definition can also be used for general adversary structures,
not based on colors.)

Definition 4. Let G(V, E) be a directed graph, A, B be nodes in G, S be a set of
simple paths in G between A and B, and GS be the graph obtained by removing all
nodes and edges of G not in S. Let Z be an adversary structure. We say that S is a
minimal (Z + 1)-connected path-set from A to B in G, if

1. A and B are (Z + 1)-connected in GS , and
2. for each path p ∈ S, A and B are Z-separable in GS\{p}.
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Fig. 1. A minimal (ZC,k + 1)-connected path-set of a graph with 5 colors for a 2-color adversary
structure (c = 5, k = 2)

Lemma 1. Let G = G(V, E, C, f) be a colored graph, S be a minimal (ZC,k + 1)-
connected path-set between A and B, and c be the number of colors in the graph. Then
|S| ≤ (

c
k

)
. This bound is tight.

Proof. We apply Theorem 1 with Z1 = {∅} and Z2 = ZC,k, and construct a minimal
path-set, starting with S = ∅. For every maximal Z2 ∈ Z2, find a path free from nodes
of Z2, label it Z2, and add it to S. If there is already such a path in S, then just add the
extra label Z2 to this path.

Note that non-maximal sets do not add extra paths. Indeed, if after running this
construction one takes a set Z ′

2 ⊂ Z2, then the path with label Z2 will also receive the
Z ′

2 label. Since all the different sets Z2 ∈ Z2 have been considered, the set S will be
(ZC,k + 1)-connected (by Theorem 1).

Now note that a maximal set Z2 must have k colors and Z2 must contain all nodes
with these colors. So there are

(
c
k

)
maximal sets in Z2. Combining this with the previous

argument we get |S| ≤ (
c
k

)
.
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To show that the bound is tight we describe an appropriate colored graph G =
G(V, E, C, f) and a minimal path-set S. Figure 1 illustrates our proof for c = 5 and
k = 2.

Let c ≥ k+1. We construct V and E as follows. Start with V = {A, B} and E = ∅.
Then add

(
c
k

)
node-disjoint paths connecting A to B as follows:

For i from 1 till
(

c
k

)
do:

Step 1 Select a not yet selected subset C′ ⊂ C of k colors.
Step 2 Add c − k new nodes vi,1, . . . , vi,c−k to V .
Step 3 Color these c− k new nodes with the C \C′ different colors, in such a way that

each gets a different color.
Step 4 Add the edges (A, vi,1), (vi,1, vi,2), . . . , (vi,c−k−1, vi,c−k), (vi,c−k, B) to E.

end-for-loop.

It is easy to verify that we get a minimal (ZC,k + 1)-connected path-set from A to
B. Indeed, if one picks a maximal element from ZC,k and removes all its nodes (which
is equivalent to picking any k colors and removing all nodes with these colors) one is
left with just one path. So, A and B are (ZC,k + 1)-connected. This also implies that if
one removes a single path from this path-set then A, B become ZC,k-separable.

Remark 1. Though the minimal path-set in Lemma 1 is super-polynomial in k, it is still
polynomial in the graph size. The construction in the proof of Lemma 1 will be used to
prove Theorem 5.

Theorem 5. There are directed graphs G(V, E) and adversary structures Z for which
the number of paths in a minimal (Z + 1)-connected path-set from A to B is super-
polynomial in the size of the graph.

Proof. We modify the colored graph G(V, E, C, f) constructed in Lemma 1 to get a
graph G′(V ′, E′) as follows. Take |C| = 2k + 1 (so c − k = k + 1) and construct G′

with |E′| = |E| and |V ′| = (k + 1)2 + 2. Start from G. For each path in this graph
reorder linearly the nodes accordingly to their colors (if the colors are labeled 1, 2, . . .
put the nodes with the smallest color label the closest to A). Make the graph directed,
i.e. the paths go from A to B. Write the nodes and their colors in a

(
c
k

)× (k +1) matrix
T = [(vi,j , f(vi,j)].

Now we explain how V ′ is constructed. In each column of T collapse the nodes
with the same color: that is, if f(vi,j) = f(vi′,j) then v′i,j = v′i′,j . From elementary
combinatorics we get that the number of different nodes that remain in each column is
k + 1. So, we have a total of (k + 1)2 + 2 different nodes including A and B. It is now
easy to verify that the size of this path-set is super-polynomial.

Observe that the paths of the minimal path-set in Lemma 1 are not node-disjoint.

Remark 2. Though the number of paths in a minimal (Z+1)-connected path-set for the
directed graph G(V, E) in Theorem 5 is super-polynomial in the graph size, one may
still be able to design polynomial time algorithms (in the size of the graph) for perfect
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secure communication. Indeed, for the case of privacy against a passive adversary, we
have an algorithm that runs in polynomial time in the graph size, which is more effi-
cient than in polynomial time in the graph and adversary size (see Theorem 2). It is an
open problem whether there exists a graph such that all perfect secure communication
protocols are super-polynomial in the graph size.

More details for colored graphs are given in the full version of this paper.

4.3 Other Results for Color Adversary Structures

Since color adversary structures are of interest on their own (to model platform depen-
dent attacks) [2], we prove the following result:

Theorem 6. Let G = G(V, E, C, f) be a colored graph which is (ZC,k+1)-connected.
If the number of colors is minimal then the paths in a minimal path-set are node-
disjoint and each path is monochrome (all nodes on one path have the same color).

Proof. Using Lemma 1 we see that the number of colors must be at least k + 1. We
now prove that we can have k + 1 colors and that there is a minimal path-set with k + 1
monochrome paths. Apply Theorem 1 with Z1 = {∅} and Z2 = ZC,k to construct
a minimal path-set. Start with S = ∅. Let Z2 be a maximal subset of Z2. Obviously
Z2 contains nodes of k different colors. Moreover, due to its maximality, it contains all
nodes that have these colors. Then by Theorem 1 there must be at least one path which
is free from the nodes of Z2, that is, free from the k colors of Z2. Since there are only
k + 1 colors, this path must be monochrome. Add one of these paths to S. Continue
with a new maximal Z ′

2 ∈ Z2 with at least one color different from Z2 until all k-color
sets are exhausted. In this way we get a minimal path-set consisting of k + 1 paths, one
for each color. Clearly these paths are disjoint.
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