
Quantum Resistant Random Linear Code Based Public Key
Encryption Scheme RLCE

Yongge Wang
Department of SIS, UNC Charlotte, USA.

yongge.wang@uncc.edu

April 14, 2016

Abstract

Lattice based encryption schemes and linear code based encryption schemes have received extensive
attention in recent years since they have been considered as post-quantum candidate encryption schemes.
Though LLL reduction algorithm has been one of the major cryptanalysis techniques for lattice based
cryptographic systems, key recovery cryptanalysis techniques for linear code based cryptographic sys-
tems are generally scheme specific. In recent years, several important techniques such as Sidelnikov-
Shestakov attack, filtration attacks, and algebraic attacks have been developed to crypt-analyze linear
code based encryption schemes. Though most of these cryptanalysis techniques are relatively new, they
prove to be very powerful and many systems have been broken using them. Thus it is important to design
linear code based cryptographic systems that are immune against these attacks. This paper proposes lin-
ear code based encryption scheme RLCE which shares many characteristics with random linear codes.
Our analysis shows that the scheme RLCE is secure against existing attacks and we hope that the security
of the RLCE scheme is equivalent to the hardness of decoding random linear codes. Example parameters
for different security levels are recommended for the scheme RLCE.

Key words: Random linear codes; McEliece Encryption scheme; secure public key encryption scheme;
linear code based encryption scheme

MSC 2010 Codes: 94B05; 94A60; 11T71; 68P25

1 Introduction

With rapid development for quantum computing techniques, our society is concerned with the security of
current Public Key Infrastructures (PKI) which are fundamental for Internet services. The core compo-
nents for current PKI infrastructures are based on public cryptographic techniques such as RSA and DSA.
However, it has been shown that these public key cryptographic techniques could be broken by quantum
computers. Thus it is urgent to develop public key cryptographic systems that are secure against quantum
computing.

Since McEliece encryption scheme [24] was introduced more than thirty years ago, it has withstood
many attacks and still remains unbroken for general cases. It has been considered as one of the candidates for
post-quantum cryptography since it is immune to existing quantum computer algorithm attacks. The original
McEliece cryptographic system is based on binary Goppa codes. Several variants have been introduced to
replace Goppa codes in the McEliece encryption scheme. For instance, Niederreiter [27] proposed the
use of generalized Reed-Solomon codes and later, Berger and Loidreau [5] proposed the use of sub-codes
of generalized Reed-Solomon codes. Sidelnikov [32] proposed the use of Reed-Muller codes, Janwa and
Moreno [17] proposed the use of algebraic geometry codes, Baldi et al [1] proposed the use of LDPC codes,

1



Misoczki et al [26] proposed the use of MDPC codes, Löndahl and Johansson [20] proposed the use of
convolutional codes, and Berger et al [4] and Misoczki-Barreto [25] proposed quasi-cyclic and quasi-dyadic
structure based compact variants of McEliece encryption schemes. Most of them have been broken though
MDPC/LDPC code based McEliece encryption scheme [1, 26] and the original binary Goppa code based
McEliece encryption scheme are still considered secure.

Goppa code based McEliece encryption scheme is hard to attack since Goppa codes share many char-
acteristics with random codes. Motivated by Faugere et al’s [15] algebraic attacks against quasi-cyclic and
quasi-dyadic structure based compact variants of McEliece encryption schemes, Faugere et al [14] designed
an efficient algorithm to distinguish a random code from a high rate Goppa code. Márquez-Corbella and
Pellikaan [21] simplified the distinguisher in [14] using Schur component-wise product of codes.

Sidelnikov and Shestakov [31] showed, for the generalized Reed-Solomon code based McEliece en-
cryption scheme, one can efficiently recover the private parameters for the generalized Reed-Solomon code
from the public key. Using component-wise product of codes and techniques from [31], Wieschebrink [37]
showed that Berger and Loidreau’s proposal [5] could be broken efficiently also. Couvreur et al [9] pro-
posed a general distinguisher based filtration technique to recover keys for generalized Reed-Solomon code
based McEliece scheme and Couvreur, Márquez-Corbella, and Pellikaan [10] used filtration attacks to break
Janwa and Moreno’s [17] algebraic geometry code based McEliece encryption scheme. The filtration attack
was recently used by Couvreur et al [11] and Faugere et al [16] to attack Bernstein et al’s [6] wild Goppa
code based McEliece scheme.

General Goppa code based McEliece schemes are still immune from these attacks. However, based on
the new development of cryptanalysis techniques against linear code based cryptographic systems in the
recent years, it is important to systematically design random linear code based cryptographic systems de-
feating these attacks. Motivated by this observation, this paper presents a systematic approach of designing
public key encryption schemes using any linear code. For example, we can even use Reed-Solomon codes to
design McEliece encryption scheme while it is insecure to use Reed-Solomon codes in the original McEliece
scheme. Since our design of linear code based encryption scheme embeds randomness in each column of
the generator matrix, it is expected that, without the corresponding private key, these codes are as hard as
random linear codes for decoding.

The most powerful message recovery attacks (not key recovery attacks) on McEliece cryptosystem is
the information-set decoding attack which was introduced by Prange [29]. In an information-set decoding
approach, one finds a set of coordinates of a received ciphertext which are error-free and that the restriction
of the code’s generator matrix to these positions is invertible. The original message can then be computed
by multiplying the ciphertext with the inverse of the sub-matrix. Improvements of the information-set de-
coding attack have been proposed by Lee-Brickell [18], Leon [19], Stern [33], May-Meurer-Thomae [22],
Becker-Joux-May-Meurer [3], and May-Ozerov [23]. Bernstein, Lange, and Peters [7] presented an ex-
act complexity analysis on information-set decoding attack against McEliece cryptosystem. The attacks in
[3, 7, 18, 19, 22, 23, 33] are against binary linear codes and are not applicable when the underlying field
is GF(pm) for a prime p. Peters [28] presented an exact complexity analysis on information-set decoding
attack against McEliece cryptosystem over GF(pm). These information-set decoding techniques (in partic-
ular, the exact complexity analysis in [7, 28]) are used to select example parameters for RLCE scheme in
Section 5.

Unless specified otherwise, we will use q = 2m or q = pm for a prime p and our discussion are based on
the field GF(q) through out this paper. Bold face letters such as a,b, e, f, g are used to denote row or column
vectors over GF(q). It should be clear from the context whether a specific bold face letter represents a row
vector or a column vector.

2



2 Goppa codes and McEliece Public Key Encryption scheme

In this section, we briefly review Goppa codes and McEliece scheme. For given parameters q, n ≤ q,
and t, let g(x) be a polynomial of degree t over GF(q). Assume that g(x) has no multiple zero roots and
α0, · · · , αn−1 ∈ GF(q) be pairwise distinct which are not roots of g(x). The following subspace CGoppa(g)
defines the code words of an [n, k, d] binary Goppa code where d ≥ 2t+1. This binary Goppa code CGoppa(g)
has dimension k ≥ n − tm and corrects t errors.

CGoppa(g) =

c ∈ {0, 1}n :
n−1∑
i=0

ci

x − αi
≡ 0 mod g(x)

 .
Furthermore, if g(x) is irreducible, then CGoppa(g) is called an irreducible Goppa code. The parity check
matrix H for the Goppa codes looks as follows:

Vt(x, y) =


1 1 · · · 1
α1

0 α1
1 · · · α1

n−1

. . . . . .
. . . . . .

αt
0 αt

1 · · · αt
n−1




1
g(α0)

. . .
1

g(αn−1)

 (1)

where x = [α0, . . . , αn−1] and y =
[

1
g(α0) , . . . ,

1
g(αn−1)

]
.

The McEliece scheme [24] is described as follows. For the given parameters n and t, choose a binary
Goppa code based on an irreducible polynomial g(x) of degree t. Let Gs be the k × n generator matrix for
the Goppa code. Select a random dense k × k nonsingular matrix S and a random n × n permutation matrix
P. Note that the permutation matrix P is required only if the support α0, · · · , αn−1 is known to the public.
Then the public key is G = S GsP which generates a linear code with the same rate and minimum distance
as the code generated by Gs. The private key is Gs.
Encryption. For a k-bit message block m, choose a random row vector e ∈ {0, 1}n of length n and weight t.
Compute the cipher text y = mG + e
Decryption. For a received ciphertext y, first compute y′ = yP−1. Next use an error-correction algorithm to
recover m′ = mS and compute the message m as m = m′S −1.

3 Random linear code based encryption scheme RLCE

The protocol for the Random Linear Code based Encryption scheme RLCE proceeds as follows:
Key Setup. Let n, k, d, t > 0, and r ≥ 1 be given parameters such that n − k + 1 ≥ d ≥ 2t + 1. Let
Gs = [g0, · · · , gn−1] be a k × n generator matrix for an [n, k, d] linear code such that there is an efficient
decoding algorithm to correct at least t errors for this linear code given by Gs.

1. Let C0,C1, · · · ,Cn−1 ∈ GF(q)k×r be k × r matrices drawn uniformly at random and let

G1 = [g0,C0, g1,C1 · · · , gn−1,Cn−1] (2)

be the k × n(r + 1) matrix obtained by inserting the random matrices Ci into Gs.

2. Let A0, · · · , An−1 ∈ GF(q)(r+1)×(r+1) be dense nonsingular (r + 1) × (r + 1) matrices chosen uniformly
at random and let

A =


A0

A1
. . .

An−1

 (3)

3



be an n(r + 1) × n(r + 1) nonsingular matrix.

3. Let S be a random dense k × k nonsingular matrix and P be an n(r + 1)× n(r + 1) permutation matrix.

4. The public key is the k × n(r + 1) matrix G = S G1AP and the private key is (S ,Gs, P, A).

Encryption. For a row vector message m ∈ GF(q)k, choose a random row vector e = [e0, . . . , en(r+1)−1] ∈
GF(q)n(r+1) such that the Hamming weight of e is at most t. The cipher text is y = mG + e.
Decryption. For a received cipher text y = [y0, . . . , yn(r+1)−1], compute

yP−1A−1 = [y′0, . . . , y
′
n(r+1)−1] = mS G1 + eP−1A−1

where

A−1 =


A−1

0
A−1

1
. . .

A−1
n−1

 (4)

Let y′ = [y′0, y
′
r+1, · · · , y

′
(n−1)(r+1)] be the row vector of length n selected from the length n(r + 1) row vector

yP−1A−1. Then y′ = mS Gs + e′ for some error vector e′ ∈ GF(q)n. Let e′′ = eP−1 = [e′′0 , · · · , e
′′
n(r+1)−1]

and e′′i = [e′′i(r+1), . . . , e
′′
i(r+1)+r] be a sub-vector of e′′ for i ≤ n − 1. Then e′[i] is the first element of e′′i A−1

i .
Thus e′[i] , 0 only if e′′i is non-zero. Since there are at most t non-zero sub-vectors e′′i , the Hamming
weight of e′ ∈ GF(q)n is at most t. Using the efficient decoding algorithm, one can compute m′ = mS and
m = m′S −1. Finally, calculate the Hamming weight w = weight(y −mG). If w ≤ t then output m as the
decrypted plaintext. Otherwise, output error.
Comment 1. In the design of RLCE scheme, the permutation matrix P has two purposes. The first pur-
pose is to hide the supports of the underlying encoding scheme generator matrix (this is necessary if the
supports of the underlying encoding scheme are unknown). The second purpose is to hide the positions and
combinations of the column vectors gi and Ci.
Comment 2. In the RLCE decryption process, one checks whether the Hamming weight w = weight(y −
mG) is smaller than t. This step is used to defeat chosen ciphertext attacks (CCA). In a CCA atack, an
adversary gives a random vector y = [y0, . . . , yn(r+1)−1] (which is not a valid ciphertext) to the decryption
oracle to learn a decrypted value. This decrypted value could be used to obtain certain information about the
private generator matrix Gs (see Section 4.2 for details). Alternatively, one may use an appropriate padding
scheme to pad a message before encryption. Then it is sufficient for the decryption process to verify whether
the decrypted message has the correct padding strings to defeat the CCA attacks.

4 Robustness of RLCE codes against existing attacks

4.1 Randomness of generator matrix columns

We first use the following theorem to show that any single column of the underlying generator matrix Gs

could be completely randomized in a RLCE public key G.

Theorem 4.1 Let Gs = [g0, · · · , gn−1] ∈ GF(q)k×(n−1) be a linear code generator matrix. For any randomly
chosen full rank k×(r+1) matrix R0 ∈ GF(q)k×(r+1), there exists a k×k nonsingular matrix S , a (r+1)×(r+1)
matrix A0, and a k × r matrix C0 ∈ GF(q)k×r such that

R0 = S [g0,C0]A0 (5)

4



Proof. By the fundamental properties of matrix equivalence, for two m × n matrices A, B of the same
rank, there exist invertible m × m matrix P and n × n invertible matrix Q such that A = PBQ. The theorem
could be proved using this property and the details are omitted here. �

Let R = [R0, . . . ,Rn−1] ∈ GF(q)k×n(r+1) be a fixed random linear code generator matrix. Theorem
4.1 shows that for any generator matrix Gs (e.g., a Reed-Solomon code generator matrix), we can choose
matrices S and A0 so that the first r + 1 columns of the RLCE scheme public key G (constructed from Gs)
are identical to R0. However, we cannot use Theorem 4.1 to continue the process of choosing A1, . . . , An−1
to obtain G = R since S is fixed after A0 is chosen. Indeed, it is straightforward to show that one can use
Theorem 4.1 to continue the process of choosing A1, . . . , An−1 to obtain G = R if and only if there exists a
k × k nonsingular matrix S such that, for each i ≤ n − 1, the vector S gi lies in the linear space generated by
the column vectors of Ri. A corollary of this observation is that if Ri generates the full k dimensional space,
then each linear code could have any random matrix as its RLCE public key.

Theorem 4.2 Let R = [R0, . . . ,Rn−1] ∈ GF(q)k×n(r+1) and Gs = [g0, · · · , gn−1] ∈ GF(q)k×n be two fixed
MDS linear code generator matrices. If r + 1 ≥ k, then there exist A0, · · · , An−1 ∈ GF(q)(r+1)×(r+1) and
C0, · · · ,Cn−1 ∈ GF(q)k×r such that R = [g0,C0, · · · , gn−1,Cn−1]A where A is in the format of (3).

Proof. Without loss of generality, we may assume that r = k − 1. For each 0 ≤ i ≤ n − 1, choose a
random matrix Ci ∈ GF(q)k×r such that Gi = [gi,Ci] is an k × k invertible matrix. Let Ai = G−1

i Ri. Then the
theorem is proved. �

Theorem 4.2 shows that in the RLCE scheme, we must have r < k − 1. Otherwise, for a given public
key G ∈ GF(q)k×n(r+1), the adversary can choose a Reed-Solomon code generator matrix Gs ∈ GF(q)k×n

and compute A0, · · · , An−1 ∈ GF(q)r×r and C0, · · · ,Cn−1 ∈ GF(q)k×r such that G = [g0,C0, · · · , gn−1,Cn−1]A.
In other words, the adversary can use the decryption algorithm corresponding to the generator matrix Gs to
break the RLCE scheme.

Theorem 4.2 also implies an efficient decryption algorithm for random [n, k] linear codes with suffi-
ciently small t of errors. Specifically, for an [n, k] linear code with generator matrix R ∈ GF(q)k×n, if
t ≤ n−k2

2k , then one can divide R into m = 2t + k blocks R = [R0, · · · ,Rm−1]. Theorem 4.2 can then be
applied to construct an equivalent [m, k] Reed-Solomon code with generator matrix Gs ∈ GF(q)k×m. Thus
it is sufficient to decrypt the equivalent Reed-Solomon code instead of the original random linear code. For
McEliece based encryption scheme, Bernstein, Lange, and Peters [7] recommends the use of 0.75 (= k/n)
as the code rate. Thus Theorem 4.2 has no threat on these schemes.

For t ≤ n−k2

2k , the adversary is guaranteed to succeed in breaking the system. Since multiple errors might
be located within the same block Ri with certain probability, for a given t that is slightly larger than n−k2

2k , the
adversary still has a good chance to break the system using the above approach. It is recommended that t is
significantly larger than n−k2

2k . For the RLCE scheme, this means that r should be significantly smaller than
k. This is normally true since k is very larger for secure RLCE schemes.

In following sections, we list heuristic and experimental evidences that the RLCE public key G shares
the properties of random linear codes. We believe that the security of the RLCE scheme is equivalent to
decoding a random linear code.

4.2 Chosen ciphertext attacks (CCA)

In this section, we show that certain information about the private generator matrix Gs is leaked if the
decryption process does neither include padding scheme validation nor include ciphertext correctness vali-
dation. However, it is not clear whether this kind of information leakage would help the adversary to break
the RLCE encryption scheme. We illustrate this using the parameter r = 1.

5



Assume that G1 = [g0, r0, g1, r1, · · · , gn−1, rn−1] and G = S G1AP. The adversary chooses a random
vector y = [y0, . . . , y2n−1] ∈ GF(q)2n−1 and gives it to the decryption oracle which outputs a vector x ∈

GF(q)k. Let yP−1A−1 = [y′0, . . . , y
′
2n−1] and Ai =

[
ai,00 ai,01
ai,10 ai,11

]
. Then we have

xG − y = xS [g0, r0, g1, r1, · · · , gn−1, rn−1]AP − y
= [· · · , xS [gi, ri]Ai, · · ·]P − y
= [· · · , [y′2i, xS ri]Ai, · · ·]P + e − y
= [· · · , [y′2i, y

′
2i+1]Ai, · · ·]P + [· · · , [0, xS ri − y′2i+1]Ai, · · ·]P + e − y

= y + [· · · , [0, xS ri − y′2i+1]Ai, · · ·]P + e − y
= [· · · , [(xS ri − y′2i+1)ai,10, (xS ri − y′2i+1)ai,11], · · ·]P + e

(6)

where e is a row vector of Hamming weight at most t. From the identity (6), one can calculate a list of
potential values for ci = ai,10/ai,11. The size of this list is

(
2n
2

)
. For each value in this list, one obtains the

corresponding two column vectors [f0, f1] = S [gi, ri]Ai from the public key G. Then one has

[f0, f1]
[

1 0
−ci 1

]
= S [gi, ri]

[
ai,00 ai,01

ciai,11 ai,11

] [
1 0
−ci 1

]
= S [gi, ri]

[
ai,00 − ciai,01 ai,01

0 ai,11

]
(7)

That is, f0 − cif1 = (ai,00 − ciai,01)S gi. Thus, for each candidate permutation matrix P, one can calculate
a matrix S GsB where B = diag[a0,00 − c0a0,01, · · · , an−1,00 − cn−1an−1,01] is an n × n diagonal matrix with
unknown diagonal elements a0,00 − c0a0,01, · · ·, and an−1,00 − cn−1an−1,01.

On the other hand, for each ciphertext y = [y0, . . . , y2n−1] ∈ GF(q)2n−1, let yP−1 = [z0, z1, · · · , z2n−1].
The codeword corresponding to the secret generator matrix S Gs is [y′0, y

′
2, . . . , y

′
2n−2] where yP−1A−1 =

[y′0, . . . , y
′
2n−1]. By the fact that

[y′2i, y
′
2i+1] = [z2i, z2i+1]A−1

i =
1
|Ai|

[z2i, z2i+1]
[

ai,11 −ai,01
−ciai,11 ai,00

]
,

one has y′2i =
ai,11
|Ai |

(z2i − ciz2i+1). For each candidate permutation matrix P, one first chooses k independent
messages x0, · · · , xk−1 and calculates the corresponding k independent ciphertexts y0, · · · , yk−1. Using P and
the above mentioned technique, one obtains a generator matrix Ga = S ′Gsdiag

[a0,11
|A0 |

, · · · ,
an−1,11
|An−1 |

]
. Thus in

order to decode a ciphertext y, it is sufficient to decode the error correcting code given by the generator
matrix Ga. This task becomes feasible for certain codes. For example, this task is equivalent to the prob-
lem of attacking a generalized Reed-Solomon code based McElience encryption scheme if Gs generates a
generalized Reed-Solomon code.

In order for the attacks in the preceding paragraphs to work, the adversary needs to have the knowledge
of the permutation matrix P. Since the number of candidate permutation matrices P is huge, this kind of
attacks is still infeasible in practice.

4.3 Niederreiter’s scheme and Sidelnikov-Shestakov’s attack

Sidelnikov and Shestakov’s cryptanalysis technique [31] was used to analyze Niederreiter’s scheme which
is based on generalized Reed-Solomon codes. Let α = (α0, . . . , αn−1) be n distinct elements of GF(q) and let
v = (v0, . . . , vn−1) be nonzero (not necessarily distinct) elements of GF(q). The generalized Reed-Solomon
(GRS) code of dimension k, denoted by GRS k(α, v), is defined by the following subspace.

GRS k(α, v) = {(v0 f (α0), . . . , vn−1 f (αn−1)) : f (x) ∈ GF(q)[x]k)}

6



where GF(q)[x]k is the set of polynomials in GF(q)[x] of degree less than k. GF(q)[x]k is a vector space of
dimension k over GF(q). For each code word c = (v0 f (α0), . . . , vn−1 f (αn−1)), f (x) = f0 + f1x+ . . .+ fk−1xk−1

is called the associate polynomial of the code word c that encodes the message ( f0, . . . , fk−1). GRS k(α, v) is
an [n, k, d] MDS code where d = n − k + 1.

Niederreiter’s scheme [27] replaces the binary Goppa codes in McEliece scheme using GRS codes. The
first attack on Niederreiter scheme is presented by Sidelnikov and Shestakov [31]. Wieschebrink [36] revised
Niederreiter’s scheme by inserting random column vectors into random positions of Gs before obtaining the
public key G. Couvreur et al [9] showed that Wieschebrink’s revised scheme is insecure under the product
code attacks.

Berger and Loidreau [5] recommend the use of sub codes of Niederreiter’s scheme to avoid Sidelnikov
and Shestakov’s attack. Specifically, in Berger and Loidreau’s scheme, one uses a random (k − l) × k matrix
S ′ of rank k − l instead of the k × k matrix S to compute the public key G = S ′Gs.

For smaller values of l, Wieschebrink [37] shows that a private key (α, v) for Berger and Loidreau scheme
[5] could be recovered using Sidelnikov-Shestakov algorithm. For larger values of l, Wieschebrink used
Schur product code to recover the secret values for Berger-Loidreau scheme. Let G = S Gs be the (k − l)× n
public key generator matrix for Berger-Loidreau scheme, r0, · · · , rk−l−1 be the rows of G, and f0, · · · , fk−l−1
be the associated polynomials to those rows. For two row vectors a,b ∈ GF(q)n, the component wise
product a ∗ b ∈ GF(q)n is defined as

a ∗ b = (a0b0, · · · , an−1bn−1) (8)

By the definition in (8), it is straightforward to observe that

ri ∗ r j = (v2
0 fi(α0) f j(α0), · · · , v2

n−1 fi(αn−1) f j(αn−1)). (9)

For 2k − 1 ≤ n − 2, if the code generated by ri ∗ r j equals GRS 2k−1(α, v′) for v′ = (v2
0, · · · , v

2
n−1), then the

Sidelnikov-Shestakov algorithm could be used to recover the values α and v. For 2k − 1 ≤ n − 2, if the
code generated by ri ∗ r j does not equal GRS 2k−1(n, v′), then the attack fails. Wieschebrink claimed that
the probability that the attack fails is very small. For the case of 2k − 1 > n − 2, Wieschebrink applied
Sidelnikov-Shestakov algorithm on the component wise product code of a shortened code of the original
GRS k(α, v).

The crucial step in Sidelnikov and Shestakov attack is to use the echelon form E(G) = [I|G′] of the public
key to get minimum weight codewords that are co-related to each other supports. In the encryption scheme
RLCE, each column of the public key G contains mixed randomness. Thus the echelon form E(G) = [I|G′]
obtained from the public key G could not be used to build any useful equation system. In other words, it is
expected that Sidelnikov and Shestakov attack does not work against the RLCE scheme.

4.4 Filtration attacks

Using distinguisher techniques [14], Couvreur et al. [9] designed a filtration technique to attack GRS code
based McEliece scheme. The filtration technique was further developed by Couvreur et al [11] to attack
wild Goppa code based McEliece scheme. In the following, we briefly review the filtration attack in [11].
For two codes C1 and C2 of length n, the star product code C1 ∗ C2 is the vector space spanned by a ∗ b for
all pairs (a,b) ∈ C1 × C2 where a ∗ b is defined in (8). For C1 = C2, C1 ∗ C1 is called the square code of C1.
It is showed in [11] that

dimC1 × C2 ≤

{
n, dimC1 dimC2 −

(
dim(C1 ∩ C1)

2

)}
. (10)

7



Furthermore, the equality in (10) is attained for most randomly selected codes C1 and C2 of a given length
and dimension. Note that for C = C1 = C2 and dimC = k, the equation (10) becomes dimC∗2 ≤
min

{
n,

(
k+1

2

)}
.

Couvreur et al [11] showed that the square code of an alternant code of extension degree 2 may have
an unusually low dimension when its actual rate is larger than its designed rate. Specifically, Couvreur et al
created a family of nested codes (called a filtration) defined as follows:

Ca(0) ⊇ Ca(1) ⊇ · · · ⊇ Ca(q + 1). (11)

where a ∈ {0, · · · , n−1}. Roughly speaking, Ca( j) consists of codewords of C corresponding to polynomials
which have a zero of order j at position a. The first two elements of this filtration are just punctured and
shortened versions of C and the rest of them can be computed from C by computing star products and
solving linear systems. The support values α0, · · · , αn−1 (the private key) for the Goppa code could be
recovered using this nested family of codes efficiently.

The crucial part of the filtration technique is the efficient algorithm to compute the nested family of
codes in (11). For our RLCE scheme, the public key generator matrix G contains random columns. Thus
linear equations constructed in Couvreur et al [11] could not be solved and the nested family (11) could not
be computed correctly. Furthermore, the important characteristics for a code C to be vulnerable is that one
can find a related code C1 of dimension k such that the dimension of the square code of C1 has a dimension
significantly less than min

{
n,

(
k+1

2

)}
.

To get experimental evidence that RLCE codes share similarity with random linear codes with respect to
the above mentioned filtration attacks, we carried out several experiments using Shoup’s NTL library [30].
The source code for our experiments is available at [35]. In the experiments, we used Reed-Solomon codes
over GF(210). The RLCE parameters are chosen as the 80-bit security parameter n = 560, k = 380, t = 90,
and r = 1 (see Section 5 for details). For each given 380 × 560 generator matrix Gs of Reed-Solomon code,
we selected another random 380 × 560 matrix C ∈ GF(210)380×560 and selected 2 × 2 matrices A0, . . . , A559.
Each column ci in C is inserted in Gs after the column gi. The extended generator matrix is multiplied
by A = diag[A0, . . . , A559] from the right hand side to obtain the public key matrix G ∈ GF(210)380×1120.
For each i = 0, · · · , 1119, the matrix Gi is used to compute the product code, where Gi is obtained from
G by deleting the ith column vector. In our experiments, all of these product codes have dimension 1119.
We repeated the above experiments 100 times for 100 distinct Reed-Solomon generator matrices and the
results remained the same. Since min

{
1119,

(
381
2

)}
= 1119, the experimental results meet our expectation

that RLCE behaves like a random linear code. We did the same experiments for the dual code of the above
code. That is, for a 180 × 560 generator matrix Gs of the dual code, the same procedure has been taken.
In this time, after deleting one column from the resulting public key matrix, the product code always had
dimension 1119 which is the expected dimension for a random linear code.

4.5 Algebraic attacks

Faugere, Otmani, Perret, and Tillich [15] developed an algebraic attack against quasi-cyclic and dyadic
structure based compact variants of McEliece encryption scheme. In a high level, the algebraic attack
from [15] tries to find x∗, y∗ ∈ GF(q)n such that Vt(x∗, y∗) is the parity check matrix for the underlying
alternant codes of the compact variants of McEliece encryption scheme. Vt(x∗, y∗) can then be used to break
the McEliece scheme. Note that this Vt(x∗, y∗) is generally different from the original parity check matrix
Vt(x, y) in (1). The parity check matrix Vt(x∗, y∗) was obtained by solving an equation system constructed
from

Vt(x∗, y∗)GT = 0, (12)

8



where G is the public key. The authors of [15] employed the special properties of quasi-cyclic and dyadic
structures (which provide additional linear equations) to rewrite the equation system obtained from (12) and
then calculate Vt(x∗, y∗) efficiently.

Faugere, Gauthier-Umaña, Otmani, Perret, and Tillich [14] used the algebraic attack in [15] to design an
efficient Goppa code distinguisher to distinguish a random matrix from the matrix of a Goppa code whose
rate is close to 1. For instance, [14] showed that the binary Goppa code obtained with m = 13 and r = 19
corresponding to a 90-bit security key is distinguishable.

It is challenging to mount the above mentioned algebraic attacks on the RLCE encryption scheme.
Assume that the RLCE scheme is based on a Reed-Solomon code. Let G be the public key and (S ,Gs, A, P)
be the private key. The parity check matrix for a Reed-Solomon code is in the format of

Vt(α) =


1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
. . .

...

1 αt+1 α2(t+1) · · · α(t+1)(n−1)

 . (13)

The algebraic attack in [14, 15] requires one to obtain a parity check matrix Vt(α∗) for the underlying
Reed-Solomon code from the public key G, where α∗ may be different from α. Assume that Vt(α∗) =

[v0, · · · , vn−1] ∈ GF(q)(t+1)×n is a parity check matrix for the underlying Reed-Solomon code. Let V ′t (α∗) ∈
GF(q)(t+1)×n(r+1) be a (t + 1) × n(r + 1) matrix obtained from Vt(α∗) by inserting r column vectors 0 after
each column of Vt(α∗). That is,

V ′t (α∗) = [v0, 0, v1, 0, · · · , vn−1, 0]. (14)

Then we have
V ′t (α∗)GT

1 = V ′t (α∗)[g0,C0, · · · , gn−1,Cn−1]T

= Vt(α∗)[g0, · · · , gn−1]T

= Vt(α∗)GT
s

= 0.

(15)

We cannot build an equation system for the unknown V ′t (α∗) from the public key G = S G1AP directly
since the identity (15) only shows the relationship between V ′t (α∗) and G1. In other words, in order to build
an equation system for V ′t (α∗), one also needs to use unknown variables for the non-singular matrix A and
the permutation matrix P. That is, we have

V ′t (α∗)(A−1)T (P−1)TGT = V ′t (α∗)(GP−1A−1)T = V ′t (α∗)GT
1 S T = 0. (16)

with an unknown α∗, an unknown permutation matrix P, and an unknown matrix A = diag[A0, · · · , An−1]
which consists of n dense nonsingular (r+1)×(r+1) matrices Ai ∈ GF(q)(r+1)×(r+1) as defined in (3). In order
to find a solution α∗, one first needs to take a potential permutation matrix P−1 to reorganize columns of the
public key G. Then, using the identity V ′t (α∗)(A−1)T (P−1)TGT = 0, one can build a degree (t + 1)(n − 1) + 1
equation system of k(t +1) equations in n(r +1)2 +1 unknowns. In case that k(t +1) ≥ n(r +1)2 +1, one may
use Buchberger’s Gröbner basis algorithms as in [15] to find a solution α∗. However, this kind of algebraic
attacks are infeasible due to the following two challenges. First the number of permutation matrices P is too
large to be handled practically. Secondly, even if one can manage to handle the large number of permutation
matrices P, the Gröbner basis (or the improved variants such as F4 or F5 in Faugere [13, 12]) are impractical
for such kind of equation systems.

The Gröbner basis algorithm eliminates top order monomial (in a given order such as lexicographic
order) by combining two equations with appropriate coefficients. This process continues until one obtains
a univariate polynomial equation. The resulting univariate polynomial equation normally has a very high

9



degree and Buchberger’s algorithm runs in exponential time on average (the worst case complexity is double
exponential time). Thus Buchberger’s algorithm cannot solve nonlinear multicariate equation systems with
more than 20 variables in practice (see, e.g., Courtois et al [8]). But it should also be noted that though the
worst-case Gröbner basis algorithm is double exponential, the generic behavior is generally much better. In
particular, if the algebraic system has only a finite number of common zeros at infinity, then Gröbner basis
algorithm for any ordering stops in a polynomial time in dn where d = max{di : di is the total degree of fi}
and n is the number of variables (see, e.g., [2]).

5 Practical considerations

In order to reduce the message expansion ratio which is defined as the rate of ciphertext size and corre-
sponding plaintext size, it is preferred to use a smaller r for the RLCE encryption scheme. Indeed, the
experimental results show that r = 1 is sufficient for RLCE to behave like a random linear code. As men-
tioned in the introduction section, the most powerful message recovery attack (not private key recovery
attack) on McEliece encryption schemes is the information-set decoding attack. For the RLCE encryption
scheme, the information-set decoding attack is based on the number of columns in the public key G instead
of the number of columns in the private key Gs. For the same error weight t, the probability to find error-free
coordinates in (r + 1)n coordinates is different from the probability to find error-free coordinates in n coordi-
nates. Specifically, the cost of information-set decoding attacks on an [n, k, t; r]-RLCE scheme is equivalent
to the cost of information-set decoding attacks on a standard [(r + 1)n, k; t]-McEliece scheme.

Taking into account of the cost of recovering McEliece encryption scheme secret keys from the public
keys and the cost of recovering McEliece encryption scheme plaintext messages from ciphertexts using the
information-set decoding methods, we generated a recommended list of parameters for RLCE scheme in
Table 1 using the PARI/GP script by Peters [28]. For the recommended parameters, the default underlying
linear code is taken as the Reed-Solomon code over GF(q) and the value of r is taken as 1. For the purpose of
comparison, we also list the recommended parameters from [7] for the binary Goppa code based McEliece
encryption scheme. The authors in [7, 28] proposed the use of semantic secure message coding approach so
that one can store the public key as a systematic generator matrix. For the binary Goppa code based McEliece
encryption scheme, the systematic generator matrix public key is k(n−k) bits. For RLCE encryption scheme
over GF(q), the systematic generator matrix public key is k(n(r + 1)− k) log q bits. It is observed that RLCE
scheme generally has larger but acceptable public key size. Specifically, for the same security level, the
public key size for the RLCE scheme is approximately four to five times larger than the public key size for
binary Goppa code based McEliece encryption scheme. For example, for the security level of 80 bits, the
binary Goppa code based McEliece encryption scheme has a public key of size 56.2KB, and the RLCE-MDS
scheme has a public key of size 267 ≈ 5 × 56.2KB.

Table 1: Parameters for RLCE: n, k, t, q, key size (r = 1 for all parameters), where “360, 200, 80, 101KB”
under column “RLCE-MDS code” represents n = 360, k = 200, t = 80.

Security RLCE-MDS code binary Goppa code [7]
60 360,200, 80, 101KB 1024, 524, 50, 19.8KB
80 560, 380, 90, 267KB 1632, 1269, 34, 56.2KB
128 1020, 660, 180, 0.98MB 2960, 2288, 57, 187.7KB
192 1560, 954, 203, 2.46MB 4624, 3468, 97, 489.4KB
256 2184, 1260, 412, 4.88MB 6624, 5129, 117, 0.9MB

10



6 Conclusions

In this paper, we presented techniques for designing general random linear code based public encryption
schemes using any linear code. Heuristics and experiments encourages us to think that the proposed schemes
are immune against existing attacks on linear code based encryption schemes such as Sidelnikov-Shestakov
attack, filtration attacks, and algebraic attacks. In addition to being a post-quantum cryptographic tech-
nique, our scheme RLCE has recently been used by Wang and Desmedt [34] to design fully homomorphic
encryption schemes.

Acknowledgments

I would like to thank several colleagues for very detailed comments and suggestionsto improve the presen-
tation of this paper.

References

[1] M. Baldi, M. Bodrato, and F. Chiaraluce. A new analysis of the mceliece cryptosystem based on
qc-ldpc codes. In Security and Cryptography for Networks, pages 246–262. Springer, 2008.

[2] M. Bardet, J.-C. Faugere, and B. Salvy. On the complexity of Gröbner basis computation of semi-
regular overdetermined algebraic equations. In Proc. Int. Conference on Polynomial System Solving,
pages 71–74, 2004.

[3] A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes in 2n/20: How
1 + 1 = 0 improves information set decoding. In EUROCRYPT 2012, pages 520–536. Springer, 2012.

[4] T.P. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmañi. Reducing key length of the mceliece cryptosys-
tem. In Progress in Cryptology–AFRICACRYPT 2009, pages 77–97. Springer, 2009.

[5] T.P Berger and P. Loidreau. How to mask the structure of codes for a cryptographic use. Designs,
Codes and Cryptography, 35(1):63–79, 2005.

[6] D. Bernstein, T. Lange, and C. Peters. Wild McEeliece. In Selected Areas in Cryptography, pages
143–158. Springer, 2011.

[7] D.J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece cryptosystem. In
Post-Quantum Cryptography, pages 31–46. Springer, 2008.

[8] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving overdefined systems
of multivariate polynomial equations. In EUROCRYPT 2000, pages 392–407. Springer, 2000.

[9] A. Couvreur, P. Gaborit, V. Gauthier-Umaña, A. Otmani, and J.-P. Tillich. Distinguisher-based attacks
on public-key cryptosystems using Reed–Solomon codes. Designs, Codes and Cryptography, pages
1–26, 2013.

[10] A. Couvreur, I. Márquez-Corbella, and R. Pellikaan. A polynomial time attack against algebraic ge-
ometry code based public key cryptosystems. In Proc. ISIT, pages 1446–1450. IEEE, 2014.

[11] A. Couvreur, A. Otmañi, and J.-P. Tillich. Polynomial time attack on wild McEliece over quadratic
extensions. In Advances in Cryptology–EUROCRYPT 2014, pages 17–39. Springer, 2014.

11



[12] J.-C. Faugere. A new efficient algorithm for computing Gröbner bases without reduction to 0 (F5). In
Proc. ISSAC, pages 75–83.

[13] J.-C. Faugere. A new efficient algorithm for computing Gröbner bases (F4). J. Pure and Applied
Algebra, 139(1):61–88, 1999.

[14] J.-C. Faugere, V. Gauthier-Umaña, A. Otmani, L. Perret, and J.-P. Tillich. A distinguisher for high-rate
mceliece cryptosystems. Information Theory, IEEE Transactions on, 59(10):6830–6844, 2013.

[15] J.-C. Faugere, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic cryptanalysis of McEliece variants
with compact keys. In Eurocrypt 2010, pages 279–298. Springer, 2010.

[16] J.-C. Faugere, L. Perret, and F. De Portzamparc. Algebraic attack against variants of mceliece with
goppa polynomial of a special form. In Advances in Cryptology–ASIACRYPT 2014, pages 21–41.
Springer, 2014.

[17] H. Janwa and O. Moreno. Mceliece public key cryptosystems using algebraic-geometric codes. De-
signs, Codes and Cryptography, 8(3):293–307, 1996.

[18] P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key cryptosystem. In
EUROCRYPT’88, pages 275–280. Springer, 1988.

[19] J. Leon. A probabilistic algorithm for computing minimum weights of large error-correcting codes.
IEEE Trans. Information Theory, 34(5):1354–1359, 1988.

[20] C. Löndahl and T. Johansson. A new version of mceliece pkc based on convolutional codes. In
Information and Communications Security, pages 461–470. Springer, 2012.

[21] I. Márquez-Corbella and R. Pellikaan. Error-correcting pairs for a public-key cryptosystem. arXiv
preprint arXiv:1205.3647, 2012.

[22] A. May, A. Meurer, and E. Thomae. Decoding random linear codes in Õ(20.054n). In ASIACRYPT
2011, pages 107–124. Springer, 2011.

[23] A. May and I. Ozerov. On computing nearest neighbors with applications to decoding of binary linear
codes. In EUROCRYPT 2015, pages 203–228. Springer, 2015.

[24] R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN progress report,
42(44):114–116, 1978.

[25] R. Misoczki and P. Barreto. Compact mceliece keys from goppa codes. In Selected Areas in Cryptog-
raphy, pages 376–392. Springer, 2009.

[26] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. Barreto. MDPC-McEliece: New McEliece variants
from moderate density parity-check codes. In Information Theory Proceedings (ISIT), 2013 IEEE
International Symposium on, pages 2069–2073. IEEE, 2013.

[27] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob. Control and Infor-
mation Theory, 15(2):159–166, 1986.

[28] C. Peters. Information-set decoding for linear codes over Fq. In Post-Quantum Cryptography, pages
81–94. Springer, 2010.

12



[29] E. Prange. The use of information sets in decoding cyclic codes. IRE Trans. Information Theory,
8(5):5–9, 1962.

[30] Victor Shoup. NTL: A library for doing number theory, 2001.

[31] V. M Sidelnikov and S. Shestakov. On insecurity of cryptosystems based on generalized Reed-Solomon
codes. Discrete Mathematics and Applications, 2(4):439–444, 1992.

[32] V.M. Sidelnikov. A public-key cryptosystem based on binary reed-muller codes. Discrete Mathematics
and Applications, 4(3):191–208, 1994.

[33] J. Stern. A method for finding codewords of small weight. In Coding theory and applications, pages
106–113. Springer, 1989.

[34] Y. Wang and Y. Desmedt. Towards fully homomorphic encryption schemes from codes. In Submitted,
pages 1–1. Springer Press, 2015.

[35] Yongge Wang. Random linear code based public key encryption implementation http://webpages.uncc.
edu/yonwang/rlce.html, 2015.

[36] C. Wieschebrink. Two NP-complete problems in coding theory with an application in code based
cryptography. In Proc. IEEE ISIT, pages 1733–1737. IEEE Press, 2006.

[37] C. Wieschebrink. Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. In
Post-Quantum Cryptography, pages 61–72. Springer, 2010.

13


