
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/cose
On statistical distance based testing of pseudo
random sequences and experiments with PHP and
Debian OpenSSL*
Yongge Wang a,*, Tony Nicol b

a Dept. SIS, UNC Charlotte, Charlotte, NC 28223, USA
b University of Liverpool, UK
a r t i c l e i n f o

Article history:

Received 10 July 2014

Received in revised form

10 April 2015

Accepted 21 May 2015

Available online 2 June 2015

Keywords:

Statistical testing

Pseudorandom generators

The law of the iterated logarithm

Web security

NIST randomness testing

Statistical distance

OpenSSL

PHP random generator
* An extended abstract of this paper appea
* Corresponding author.
E-mail addresses: yongge.wang@uncc.edu
URL: http://www.sis.uncc.edu/~yonwang/

http://dx.doi.org/10.1016/j.cose.2015.05.005
0167-4048/© 2015 Elsevier Ltd. All rights rese
a b s t r a c t

NIST SP800-22 (2010) proposed the state of the art statistical testing techniques for testing

the quality of (pseudo) random generators. However, it is easy to construct natural func-

tions that are considered as GOOD pseudorandom generators by the NIST SP800-22 test

suite though the output of these functions is easily distinguishable from the uniform

distribution. This paper proposes solutions to address this challenge by using statistical

distance based testing techniques. We carried out both NIST tests and LIL based tests on

commonly deployed pseudorandom generators such as the standard C linear congruential

generator, Mersenne Twister pseudorandom generator, and Debian Linux (CVE-2008-0166)

pseudorandom generator with OpenSSL 0.9.8c-1. Based on experimental results, we illus-

trate the advantages of our LIL based testing over NIST testing. It is known that Debian

Linux (CVE-2008-0166) pseudorandom generator based on OpenSSL 0.9.8c-1 is flawed and

the output sequences are predictable. Our LIL tests on these sequences discovered the

flaws in Debian Linux implementation. However, NIST SP800-22 test suite is not able to

detect this flaw using the NIST recommended parameters. It is concluded that NIST SP800-

22 test suite is not sufficient and distance based LIL test techniques be included in statis-

tical testing practice. It is also recommended that all pseudorandom generator imple-

mentations be comprehensively tested using state-of-the-art statistically robust testing

tools.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The weakness in pseudorandom generators could be used to

mount a variety of attacks on Internet security. It is reported

in the Debian Security Advisory DSA-1571-1 [5] that the
red in ESORICS 2014.

(Y. Wang), tonynicol@in

rved.
random number generator in Debian's OpenSSL release CVE-

2008-0166 is predictable. The weakness in Debian pseudo-

random generator affected the security of OpenSSH, Apache

(mod_sl), the onion router (TOR), OpenVPN, and other appli-

cations (see, e.g., (Ahmad, 2008)). These examples show that it

is important to improve the quality of pseudorandom
box.com (T. Nicol).

mailto:yongge.wang@uncc.edu
mailto:tonynicol@inbox.com
http://www.sis.uncc.edu/~yonwang/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2015.05.005&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4 45
generators by designing systematic testing techniques to

discover these weak implementations in the early stage of

system development.

Statistical tests are commonly used as a first step in

determining whether or not a generator produces high quality

random bits. For example, NIST SP800-22 Revision 1A (Rukhin

et al., 2010) proposed the state of art statistical testing tech-

niques for determining whether a random or pseudorandom

generator is suitable for a particular cryptographic applica-

tion. In a statistical test of Rukhin et al. (2010), a significance

level a2[0.001,0.01] is chosen for each test. For each input

sequence, a P-value is calculated and the input string is

accepted as pseudorandom if P-value �a. A pseudorandom

generator is considered good if, with probability a, the se-

quences produced by the generator fail the test. For an in-

depth analysis, NIST SP800-22 recommends additional sta-

tistical procedures such as the examination of P-value distri-

butions (e.g., using c2-test). In Section 3, we will show that

NIST SP800-22 test suite has inherent limitations with

straightforward Type II errors. Furthermore, our extensive

experiments (based on over 200 TB of random bits generated)

show that NIST SP800-22 techniques could not detect the

weakness in the above mentioned pseudorandom generators.

In order to address the challenges faced by NIST SP800-22,

this paper designs a “behavioristic” testing approach which is

based on statistical distances. Based on this approach, the

details of LIL testing techniques are developed. As an example,

we carried out LIL testing on the flawed Debian Linux (CVE-

2008-0166) pseudorandom generator based on OpenSSL

0.9.8c-1 and on the standard C linear congruential generator.

As we expected, both of these pseudorandom generators

failed the LIL testing since we know that the sequences pro-

duced by these two generators are strongly predictable.

However, as we have mentioned earlier, our experiments

show that the sequences produced by these two generators

pass the NIST SP800-22 test suite using the recommended

parameters. In other words, NIST SP800-22 test suite with the

recommended parameters has no capability in detecting

these known deviations from randomness. Furthermore, it is

shown that for several pseudorandom generators (e.g., the

linear congruential generator), the LIL test results on output

strings start off fine but deteriorate as the string length in-

creases beyond that which NIST can handle since NIST testing

tool package has an integer overflow issue.

The paper is organized as follows. Section 2 introduces

notations. Section 3 points out the limitation of NIST SP800-22

testing tools. Section 4 discusses the law of iterated logarithm

(LIL). Section 5 reviews the normal approximation to binomial

distributions. Section 6 introduces statistical distance based

LIL tests. Section 7 reports distance based LIL testing experi-

mental results, and Section 8 reports some experimental re-

sults on LIL curves of commonly used random generators.

Section 9 contains general discussions on OpenSSL random

generators.
2. Notations and pseudorandom generators

In this paper, N and Rþ denotes the set of natural numbers

(starting from 0) and the set of non-negative real numbers,
respectively. S ¼ {0,1} is the binary alphabet, S* is the set of

(finite) binary strings, Sn is the set of binary strings of length n,

and S∞ is the set of infinite binary sequences. The length of a

string x is denoted by jxj. For strings x,y2S*, xy is the

concatenation of x and y, x8y denotes that x is an initial

segment of y. For a sequence x2S*∪S∞ and a natural number

n � 0, x^n ¼ x½0::n� 1� denotes the initial segment of length n

of x (x^n ¼ x½0::n� 1� ¼ x if jxj � n) while x[n] denotes the nth bit

of x, i.e., x[0..n�1]¼x[0]…x[n�1].

The concept of “effective similarity” by Goldwasser and

Micali (Goldwasser and Micali, 1984) and Yao (Yao, 1982) is

defined as follows: Let X ¼ {Xn}n2N and Y ¼ {Yn}n2N be two

probability ensembles such that each of Xn and Yn is a distri-

bution over Sn. We say that X and Y are computationally (or

statistically) indistinguishable if for every feasible algorithmA

(or every algorithmA), the difference dAðnÞ ¼ jProb½AðXnÞ ¼ 1� �
Prob½AðYnÞ ¼ 1�j is a negligible function in n.

Let l:N/ Nwith l(n) � n for all n2N and G be a polynomial-

time computable algorithm such that jGðxÞj ¼ lðjxjÞ for all

x2S*. Then G is a polynomial-time pseudorandom generator

if the ensembles {G(Un)}n2N and {Ul(n)}n2N are computationally

indistinguishable.
3. Limitations of NIST SP800-22

In this section, we show that NIST SP800-22 test suite has

inherent limitations with straightforward Type II errors. Our

first example is based on the following observation: for a

function F that mainly outputs “random strings” but, with

probability a, outputs biased strings (e.g., strings consisting

mainly of 0's), F will be considered as a “good” pseudo-

random generator by NIST SP800-22 test though the output

of F could be distinguished from the uniform distribution

(thus, F is not a pseudorandom generator by definition). Let

RANDc,n be the sets of Kolmogorov c-random binary strings

of length n, where c � 1. That is, for a universal Turing

machine M, let

RANDc;n ¼ fx2f0;1gn : if MðyÞ ¼ x thenjyj � jxj � cg: (1)

Let a be a given significance level of NIST SP800-22 test and

ℛ2n ¼ ℛn
1∪ℛ

n
2 where

ℛn
13RAND2;2n and

��ℛn
1

�� ¼ 2nð1� aÞ
ℛn

23f0nx : x2f0;1gng and
��ℛn

2

�� ¼ 2na:

Furthermore, let fn : f0;1gn/ℛ2n be an ensemble of

random functions (not necessarily computable) such that f(x)

is chosen uniformly at random from ℛ2n. Then for each n-bit

string x, with probability 1�a, fn(x) is Kolmogorov 2-random

and with probability a, fnðxÞ2ℛn
2.

It should be noted that, for each given significance level

a � 0.1 and each test T from the 15 NIST SP800-22 tests, the

following condition is satisfied:

jfx2f0; 1gn : x fails test T at significance level agj � 2n

cT

for a constant cT[10. Thus one can construct a Turing ma-

chine Ma,T with the following properties: for each string x of

length n that fails the test T at the significance level a, there

exists another string y such that Ma,T(y)¼x and jyj � n� 3. In

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 446
other words, we can compress x for at least 3 bits. It follows

that all Kolmogorov 2-random strings are guaranteed to pass

NIST SP800-22 test at significance level a � 0.1 and all strings

in ℛn
2 fail NIST SP800-22 test at significance level a for large

enough n, the function ensemble {fn}n2N is considered as a

“good” pseudorandom generator by NIST SP800-22 test suite.

On the other hand, a similar proof as in Wang (Wang, 2002,

1997, 1996a, 1996b; Calude et al., 2001) can be used to show

that ℛ2n could be efficiently distinguished from the uniform

distribution with a non-negligible probability. Thus {fn}n2N is

not a cryptographically secure pseudorandom generator.

As another example, let ff 0ngn2N be a pseudorandom

generator with f 0n : f0;1gn/f0; 1glðnÞ where l(n) > n. Assume

that ff 0ngn2N is a good pseudorandom generator by NIST SP800-

22 in-depth statistical analysis of the P-value distributions

(e.g., using c2-test). Define a new pseudorandom generators

{fn}n2N as follows:

fnðxÞ ¼
�
f 0nðxÞ if f 0nðxÞ contains more 0’s than 1’s
f 0nðxÞ41lðnÞ otherwise

(2)

Then the following Theorem 3.1 shows that {fn}n2N is also a

good pseudorandom generator by NIST SP800-22 in-depth

statistical analysis of the P-value distributions (e.g., using c2-

test). However, the output of {fn}n2N is trivially distinguishable

from the uniform distribution.

Theorem 3.1. Let f 0n : f0;1gn/f0;1glðnÞ and ff 0ngn2N be defined by

the equation (2). Then for each x2{0,1}n, the P-values for f(x) and

f 0ðxÞ are the same for all of the 15 NIST SP800-22 testing.

Proof. The theorem can be proved for all of the 15 NIST

SP800-22 testing using the symmetric properties (when 0s and

1s are flipped) of the corresponding probability distributions.

In the following, we prove the theorem for themonobit testing

of NIST SP800-22. For NIST SP800-22 monobit testing, the P-

value on a binary string y is defined by

P� valueðyÞ ¼ erfc

0
BBB@

�����
Pjyj�1

i¼0 2y½i� � jyj
�����ffiffiffiffiffiffiffiffi

2jyjp
1
CCCA (3)

where

erfcðzÞ ¼ 2ffiffiffi
p

p
Z∞
z

e�u2du

Thus it is straightforward that P-value(f(x))¼P-valueðf 0ðxÞÞ
for all x2{0,1}n.

The above two examples shows the limitation of testing

approaches specified in NIST SP800-22. The limitation is

mainly due to the fact that NIST SP800-22 does not fully realize

the differences between the two common approaches to

pseudorandomness definitions as observed and analyzed in

Wang (Wang, 2002). In other words, the definition of pseudo-

random generators is based on the indistinguishability con-

cepts though techniques in NIST SP800-22mainly concentrate

on the performance of individual strings. In this paper, we

propose testing techniques that are based on statistical dis-

tances such as root-mean-square deviation or Hellinger dis-

tance. The statistical distance based approach is more
accurate in deviation detection and avoids above type II errors

in NIST SP800-22. Our approach is illustrated using the LIL test

design.

4. Stochastic properties of long
pseudorandom sequences

The law of the iterated logarithm (LIL) describes the fluctua-

tion scales of a random walk. For a nonempty string x2S*, let

SðxÞ ¼
Xjxj�1

i¼0

x½i� and S*ðxÞ ¼ 2$SðxÞ � jxjffiffiffiffiffiffijxjp

where S(x) denotes the number of 1s in x and S*(x) denotes the

reduced number of 1s in x. S*(x) amounts to measuring the de-

viations of S(x) from jxj
2 in units of 1

2

ffiffiffiffiffiffijxjp
.

The law of large numbers states that, for a pseudo random

sequence x, the limit of Sðx^nÞ
n is ½, which corresponds to the

frequency (Monobit) test in NIST SP800-22 (Rukhin et al., 2010).

But it states nothing about the reduced deviation S*ðx^nÞ. It is
intuitively clear that, for a pseudorandom sequence x, S*ðx^nÞ
will sooner or later take on arbitrary large values (though

slowly). The law of the iterated logarithm (LIL), whichwas first

discovered by Khinchin (Khinchin, 1924), gives an optimal

upper bound
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln lnn

p
for the fluctuations of S*ðx^nÞ. Based on

this fact by Khinchin (Khinchin, 1924), we will use the

following function in this paper

SlilðxÞ ¼ S*ðxÞffi
2 ln lnjxjp ¼ 2$SðxÞ � jxjffi

2jxjln lnjxjp (4)

It is shown inWang (2000) that p-randomsequences satisfy

common statistical laws such as the law of the iterated loga-

rithm. Thus it is reasonable to expect that pseudorandom

sequences produced by pseudorandom generators satisfy

these laws also.
5. Normal approximations to Slil

In this section, we provide several results on normal approx-

imations to the function Slil(,) that will be used in following

sections. The DeMoivre-Laplace theorem is a normal

approximation to the binomial distribution, which states that

the number of “successes” in n independent coin flips with

head probability 1/2 is approximately a normal distribution

with mean n/2 and standard deviation
ffiffiffi
n

p
=2. We first review a

few classical results on the normal approximation to the

binomial distribution.

Definition 5.1. The normal density function with mean m and

variance s is defined as

fðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p e�
ðx�mÞ2
2s2 ; (5)

For m ¼ 0 and s ¼ 1, we have the standard normal density

function 4(x) and the standard normal distribution function F(x):

4ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�
x2
2 and FðxÞ ¼

Zx

�∞

4ðyÞdy (6)

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 1 e Density functions for distributions mU
n with

n¼226, …, 234

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4 47
The following DeMoivre-Laplace limit theorem is derived

from the approximation theorem on page 181 of Feller (1968).

Theorem 5.2. For fixed x1,x2, we have

lim
n/∞

Prob
�
x1 � S*ðx^nÞ � x2

� ¼ Fðx2Þ � Fðx1Þ: (7)

The growth speed for the above approximation is bounded by

max{k2/n2,k4/n3} where k ¼ Sðx^nÞ � n
2. That is,

��Prob�x1 � S*ðx^nÞ � x2

�� ðFðx2Þ �Fðx1ÞÞ
�� � max

�
k2

n2
;
k4

n3

�

for all n>0.
In this paper, we only consider tests for n � 226 and

x2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln lnn

p
. Thus

k ¼ Sðx^nÞ � n
2
x

ffiffiffi
n

p
2
S*ðx^nÞ �

ffi
2n ln ln n

p

2
:

Hence, we have max{k2/n2,k4/n3} ¼ k2/n2 ¼ (1�a)2lnlnn/

2n<2�22

By Theorem 5.2, the approximation probability calculation

errors in this paper will be less than 2�22 which is negligible.

Unless stated otherwise, we will not mention the approxi-

mation errors in the remainder of this paper.

6. Snapshot LIL tests and random generator
evaluation

The distribution induced by the function Slil defines a proba-

bility measure on the real line R. Let ℛ3Sn be a set of m se-

quences with a standard probability definition on it. That is,

for each x02ℛ, let Prob[x¼x0] ¼ 1/m. Then each set ℛ3Sn in-

duces a probability measure mℛ
n on R by letting

mℛ
n ðIÞ ¼ Prob½SlilðxÞ2I; x2ℛ�

for each Lebesgue measurable set I on R. For U ¼ Sn, we use mU
n

to denote the corresponding probability measure induced by

the uniform distribution. By definition, if ℛn is the collection

of all length n sequences generated by a pseudorandom

generator, then the difference between mU
n and mℛn

n is

negligible.

By Theorem5.2, for a uniformly chosen x (that is, each bit of

x is chosen uniformly at random from {0,1}), the distribution

induced by the function S�ðx^nÞ could be approximated by a

normal distribution of mean 0 and variance 1, with error

bounded by 1/n (see (Feller, 1968)). In other words, the mea-

sure mU
n can be calculated as

mU
n ðð �∞; x�ÞxFðx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln lnn

p
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln lnn

p Zx

�∞

fðy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln lnn

p
Þdy:

(8)

Based on Equation (8), Fig. 1 shows the distributions of mU
n

for n¼226, …, 234. For the reason of convenience, in the

remaining part of this paper, we will use B as the discrete

partition of the real line R defined by

fð∞;1Þ; ½1;∞Þg∪f½0:05x� 1; 0:05x� 0:95Þ : 0 � x � 39g:
With this partition, Table 1 lists values mU

n ðIÞ on B with

n¼226,…, 234. Since mU
n ðIÞ is symmetric, it is sufficient to list the
distribution in the positive side of the real line. As an example,

the cell at row [0.00,0.05) and column 226 contains the value

.047854, this means that mU
226 ð½0:00;0:05ÞÞ ¼ :047854:

In order to evaluate a pseudorandom generator G, first

choose a list of testing points n0, …, nt (e.g., n0 ¼ 226þt). Sec-

ondly use G to generate a set ℛ4Snt of m sequences. Lastly

compare the distances between the two probability measures

mℛ
n and mU

n for n ¼ n0, …,nt.

A generator G is considered “good”, if for sufficiently large

m (e.g., m � 10,000), the distances between mℛ
n and mU

n are

negligible (or smaller than a given threshold). There are

various definitions of statistical distances for probability

measures. In our analysis, we will consider the total variation

distance (Clarkson and Adams, 1933)

d
�
mℛ
n ;m

U
n

	 ¼ sup
A4B

��mℛ
n ðAÞ � mU

n ðAÞ
�� (9)

Hellinger distance (Hellinger, 1909)

H
�
mℛ
n

mU
n

	 ¼ 1ffiffiffi
2

p
ffiX
A2B

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mℛ
n ðAÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mU
n ðAÞ

q �2
vuut (10)

and the root-mean-square deviation

RMSD
�
mℛ
n ;m

U
n

	 ¼
ffiP
A2B

�
mℛ
n ðAÞ � mU

n ðAÞ
	2

jB j

vuut
: (11)

7. Distance based LIL experimental results

As an example to illustrate the importance of LIL tests, we

carried out both NIST SP800-22 tests (NIST, 2010) and LIL tests

on the following commonly used pseudorandom bit genera-

tors: The standard C linear congruential generator, Mersenne

Twister generators, PHP web server random bit generators

(both MT and LCG), and Debian (CVE-2008-0166) random bit

generator with OpenSSL 0.9.8c-1. Among these generators,

linear congruential generators and Debian Linux (CVE-2008-

0166) pseudorandom generators are not cryptographically

strong. Thus they should fail a good statistical test. As we

expected, both of these generators failed LIL tests. However,

neither of these generators failed NIST SP800-22 tests which

shows the limitation of NIST SP800-22 test suite.

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Table 1 e The distribution mU
n induced by Slil for n¼226, …,234

226 227 228 229 230 231 232 233 234

[0.00,0.05) .047854 .048164 .048460 .048745 .049018 .049281 .049534 .049778 .050013

[0.05,0.10) .047168 .047464 .047748 .048020 .048281 .048532 .048773 .049006 .049230

[0.10,0.15) .045825 .046096 .046354 0.04660 .046839 .047067 .047287 .047498 .047701

[0.15,0.20) .043882 .044116 .044340 .044553 .044758 .044953 .045141 .045322 .045496

[0.20,0.25) .041419 .041609 .041789 .041961 .042125 .042282 .042432 .042575 .042713

[0.25,0.30) .038534 .038674 .038807 .038932 .039051 .039164 .039272 .039375 .039473

[0.30,0.35) .035336 .035424 .035507 .035584 .035657 .035725 0.03579 .035850 .035907

[0.35,0.40) .031939 .031976 .032010 .032041 .032068 .032093 .032115 .032135 .032153

[0.40,0.45) .028454 .028445 .028434 .028421 .028407 .028392 .028375 .028358 .028340

[0.45,0.50) .024986 .024936 .024886 .024835 .024785 .024735 .024686 .024637 .024588

[0.50,0.55) .021627 .021542 .021460 .021379 .021300 .021222 .021146 .021072 .020999

[0.55,0.60) .018450 .018340 .018234 .018130 .018029 .017931 .017836 .017743 .017653

[0.60,0.65) .015515 .015388 .015265 .015146 .015032 .014921 .014813 .014709 .014608

[0.65,0.70) .012859 .012723 .012591 .012465 .012344 .012227 .012114 .012004 .011899

[0.70,0.75) .010506 .010367 .010234 .010106 .009984 .009867 .009754 .009645 .009541

[0.75,0.80) .008460 .008324 .008195 .008072 .007954 .007841 .007733 .007629 .007530

[0.80,0.85) .006714 .006587 .006466 .006351 .006241 .006137 .006037 .005941 .005850

[0.85,0.90) .005253 .005137 .005027 .004923 .004824 .004730 .004640 .004555 .004474

[0.90,0.95) .004050 .003948 .003851 .003759 .003672 .003590 .003512 .003438 .003368

[0.95,1.00) .003079 .002990 .002906 .002828 .002754 .002684 .002617 .002555 .002495

[1.00,∞) .008090 .007750 .007437 .007147 .006877 .006627 .006393 .006175 .005970

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 448
It should be noted that NIST SP800-22 test suite (NIST, 2010)

checks the first 1,215,752,192 bits (x145 MB) of a given

sequence since the software uses 4-byte int data type for

integer variables only. For NIST SP800-22 tests, we used the

parameter a ¼ 0.01 for all experiments. For each pseudo-

randomgenerator, we generated 10,000� 2 GB sequences. The

results, analysis, and comparisons are presented in the

following sections.
7.1. The standard C linear congruential generator

A linear congruential generator (LCG) is defined by the recur-

rence relation

Xnþ1 ¼ aXn þ c modm

where Xn is the sequence of pseudorandom values, m is the

modulus, and a,c < m. For any initial seeding value X0, the

generated pseudorandom sequence is x ¼ X0X1/ where Xi is

the binary representation of the integer Xi.

Linear congruential generators (LCG) have been included in

various programming languages. For example, C and Cþþ
functions drand48(), jrand48(), mrand48(), and rand48() pro-

duce uniformly distributed random numbers on Borland C/

Cþþ rand() function returns the 16e30 bits of

Xnþ1 ¼ 0x343FD$Xn þ 0x269EC3mod232:

LCG is also implemented in Microsoft Visual Studio, Jav-

a.Util.Random class, Borland Delphi, and PHP. In our experi-

ments, we tested the standard linear congruential generator

used in Microsoft Visual Studio.

In our experiments, we generated 10,000 � 2 GB sequences

by calling Microsoft Visual Studio stdlib function rand() which

uses the standard C linear congruential generator. Each

sequence is generated with a 4-byte seed from www.random.

org (RANDOM.ORG). For the 10,000 � 2 GB sequences, we used

a total of 10,000�4-byte seeds from www.random.org. The
rand() function returns a 15-bit integer in the range [0,0x7FFF]

each time. Since LCG outputs tend to be correlated in the

lower bits, we shift the returned 15 bits right by 7 positions. In

other words, for each rand() call, we only use the most sig-

nificant 8 bits. This is a common approach that most pro-

grammers will do to offset low bit correlation and missing

most significant bits (MSB).

Since linear congruential generator is predictable and not

cryptographically strong, we expected that these 10,000 se-

quences should fail both NIST SP800-22 tests and LIL tests. To

our surprise, the collection of 10,000 sequences passed NIST

SP800-22 (NIST, 2010) testing with the recommended param-

eters. Specifically, for the randomly selected 10 sequences, all

except one of the 150 non-overlapping template tests passed

the NIST test (pass ratio ¼ 0.965). In other words, these se-

quences are considered as random by NIST SP800-22 testing

standards. On the other hand, these sequences failed LIL tests

as described in the following.

Based on snapshot LIL tests at points 226, …,234, the cor-

responding total variation distance dðmcLCG
n ;mU

n Þ, Hellinger dis-

tance HðmcLCG
n

mU
n Þ, and the root-mean-square deviation

RMSDðmcLCG
n ;mU

n Þ at sample size 1000 are calculated and shown

in Table 2. It is observed that at the sample size 1000, the

average distance between mcLCG
n and mU

n is larger than 0.10 and

the root-mean-square deviation is larger than 0.01. It is clear

that this sequence collection is far away from the true random

source.

Fig. 2 shows that the distributions of mcLCG
n for n ¼ 226, …,234

are far away from the expected distribution in Fig. 1.

Furthermore, Fig. 3 shows the LIL-test result curves for the

10,000 sequences. For a good random bit generator, the LIL

curves should be distributed within the y-axis interval [�1,1]

through the entire x-axis according to the normal distribution.

For example, a good curve should look like the picture in Fig. 5.

However, LIL curves for the standard C LCG generated se-

quences in Fig. 3 start reasonably well but deteriorate as the

string length increases.

http://www.random.org
http://www.random.org
http://www.random.org
http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Table 2 e Total variation and Hellinger distances for Standard C LCG.

n 226 227 228 229 230 231 232 233 234

d .061 .097 .113 .156 .176 .261 .324 .499 .900

H .064 .088 .126 .167 .185 .284 .387 .529 .828

RMSD .004 .006 .008 .010 .011 .017 .021 .031 .011

Fig. 2 e Density functions for distributions mcLCG
n with

n ¼ 226, …,234 for 10,000£ 2 GB strings.

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4 49
7.2. Mersenne Twister generators

Mersenne Twister (MT) is a pseudorandom generator

designed by Matsumoto and Nishimura (Matsumoto and

Nishimura, 1998) and it is included in numerous software

packages such as R, Python, PHP, Maple, ANSI/ISO Cþþ, SPSS,

SAS, andmany others. The commonly usedMersenne Twister

MT19937 is based on the Mersenne prime 219937�1 and has a

long period of 219937�1. The Mersenne Twister is sensitive to

the seed value. For example, too many zeros in the seed can

lead to the production of many zeros in the output and if the

seed contains correlations then the output may also display

correlations.
Fig. 3 e LIL curves for the standard
In order to describe the pseudorandom bit generation

process MT19937, we first describe the tempering transform

function t(x) on 32-bit strings. For x2S32, t(x) is defined by

y1 :¼ x4ðx> >11Þ
y2 :¼ y14

��
y1 < <7

	
AND 0x9D2C5680

	
y3 :¼ y24

��
y2 < <15

	
AND 0xEFC60000

	
tðxÞ :¼ y34

�
y3 > >18

	
Let x0,x2, …, x6232S32 be seeding values of 32�624 ¼ 19968

bits for the MT19937 pseudorandom generator. Then the

MT19937 output is the sequence t(x624)t(x625)t(x626)/where for

k¼0,1,2,3,/, we have x624þk ¼ x397þk4(xk[0]xkþ1[1..31])A and A

is the 32�32 matrix

A ¼
�

0 I31
a31 ða30;/;a0Þ

�

with a31a30 … a0 ¼ 0 x9908B0DF. For a 32 bit string x, xA is

interpreted asmultiplying the 32 bit vector x bymatrix A from

the right hand side.

Using the source code provided in Matsumoto and Nishi-

mura (Matsumoto and Nishimura, 1998), we generated

10,000 � 2 GB sequences. The collection of these sequences

passedNIST SP800-22 (NIST, 2010) test with the recommended

parameters. The following discussion shows that these se-

quences have very good performance in LIL testing also. Thus

we can consider these sequences passed the LIL test.

Based on snapshot LIL tests at points 226, …, 234, the cor-

responding total variation distance dðmMT19937
n ;mU

n Þ, Hellinger

distance HðmMT19937
n

mU
n Þ, and the root-mean-square deviation
C LCG for 10,000£ 2 GB strings.

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 4 e Density functions for distributions mMT19937
n at

n ¼ 226, …, 234 with 1000 (first) and 10,000 (second) strings.

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 450
RMSDðmMT19937
n ;mU

n Þ at sample size 1000 (resp. 10,000) are

calculated and shown in Table 3. In Table 3, the subscript 1 is

for sample size 1000 and the subscript 2 is for sample size

10,000.

Fig. 4 shows the distributions of mMT19937
n for n ¼ 226, …, 234

where the curves are plotted on top of the expected distribu-

tion in Fig. 1. Furthermore, Fig. 5 shows the LIL-test result

curves for the 10,000 sequences. The plot in Fig. 5 is close to

what we are expecting for a random source.
Fig. 5 e LIL curve for Mersenne Twister M
7.3. PHP web server random bit generators

PHP is a server side processing language and its random

number generator is very important for guaranteeing Web

server security. In the experiments, we installed an Apache

web server together with PHP v5.3.5. By default, PHP supports

rand(), which is a linear congruential random bit generator,

and m_rand() which is a Mersenne Twister random bit

generator. The random bit outputs from these two generators

are tested in the experiments. By modifying php.ini script in

PHP 5.3, one may also use the OpenSSL pseudorandom

generator via the openssl_random_pseudo_bytes() function

call.

7.3.1. PHP Mersenne Twister
In Section 7.2, we showed that the output of the correctly

implemented Mersenne Twister pseudorandom generators

has very good performance and passes both the NIST and LIL

testing. However, if the Mersenne Twister in PHP imple-

mentation is not properly post-processed, it generates

completely non-random outputs. This is illustrated by our

experiments on the PHP Mersenne Twister implementation.

Since the PHP server script is slow in generating a large

amount of pseudorandom bits, we only generated 6�2 GB

random bit strings from the PHP Mersenne Twister m_rand()

function call. It is estimated to take 2 years for our computer to

generate 10,000 � 2 GB random bit strings since each 2 GB

sequence takes 90 min to generate.

As discussed earlier, it is expected that LIL values stay

within the interval [�1,1]. However, LIL curves for the 6 PHP

MT generated sequences display a range from 0 to�2000. This

indicates that these sequences are overwhelmed with zeros

which get worse as the sequence gets longer.

By checking the rand.c code in PHP 5.3.27, it seems that

programmers are prepared to make arbitrary changes with

arbitrary post-processing. In particular, for the PHP Mersenne
T19937 with 10,000£ 2 GB strings.

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Table 3 e Total variation and Hellinger distances for MT19937.

n 226 227 228 229 230 231 232 233 234

d1 .057 .068 .084 .068 .063 .075 .073 .079 .094

H1 .056 .077 .072 .069 .065 .083 .074 .080 .081

RMSD1 .004 .004 .005 .004 .004 .005 .005 .005 .006

d2 .023 .025 .026 .021 .020 .025 .026 .027 .020

H2 .022 .022 .024 .021 .021 .026 .024 .023 .020

RMSD2 .001 .002 .002 .001 .001 .002 .002 .002 .001

Fig. 6 e LIL curves for PHP LCG generated sequences (first)

and density functions for distributions m
phpLCG
n (second) of

6£2 GB PHP LCG sequences with n ¼ 226,⋯,234

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4 51
Twister, it will output an integer in the range [0,0x7FFFFFFF]

each timewhile the source code inMatsumoto and Nishimura

(Matsumoto and Nishimura, 1998) that we used in Section 7.2

outputs an integer in the range [0,0xFFFFFFFF] each time. This

difference is not realized by some PHP implementers as

illustrated in the following comments of PHP rand.c. Thus it is

important to use the LIL test to detect these weak

implementations.

The experiments show that all of 6 PHP Mersenne Twister

generated sequences fail NIST SP800-22 tests, illustrating the

effect of users not accommodating the limitations of the PHP

31 bit implementation.

7.3.2. PHP linear congruential generator
Since it is slow to generate a large amount of random bits

using PHP script, we only generated 6�2 GB sequences using

the PHP rand() function call (similarly, it is estimated to take 2

years for our computer to generate 10,000� 2 GB randombits).

All of the sequences have similar LIL curves as shown in the

first picture of Fig. 6. The second picture in Fig. 6 shows that

the distributions of mphpLCG
n at n¼226, …, 234 are far away from

the expected distribution in Fig. 1. One may also compare the

second picture in Fig. 6 against the density distributions by the

standard C linear congruential generator in Fig. 3. In sum-

mary, the PHP implementation of the linear congruential

generator comprehensively failed NIST and LIL tests.

7.4. Flawed Debian's OpenSSL package

It is reported in Debian Security Advisory DSA-1571-1 (Debian)

that the random number generator in Debian Linux (CVE-

2008-0166) pseudorandom generator based on OpenSSL

0.9.8c-1 is predictable since the following line of code in

md_rand.c has been removed by one of its implementors.

Note that the code MD_Update(&m,buf,j) is responsible

for adding the entropy into the state that is passed to the

random bit generation process from the main seeding func-

tion. By commenting out this line of codes, the generator will

have small number of states which will be predictable.
Wegenerated 10,000� 2 GB sequences using this version of

the flawed Debian OpenSSL with multi-threads (the single

thread results are much worse). The snapshot LIL test result

for this flawed Debian OpenSSL implementation is shown in

Fig. 7, where the first picture is for the sample size of 1000 and

the second picture is for the sample size of 10,000. In partic-

ular, Fig. 7 shows the distributions of mDebian
n for n¼226, …, 234

where the curves are plotted on top of the expected distribu-

tion in Fig. 1.As a comparison, we carried out snapshot LIL test

on the standard OpenSSL pseudorandom generator

(OpenSSL). We generated 10,000 � 2 GB sequences using the

standard implementation of OpenSSL (with single thread).

The snapshot LIL test result for this standard OpenSSL

implementation is shown in Fig. 8, where the first picture is for

the sample size of 1000 and the second picture is for the

sample size of 10,000. In particular, Fig. 8 shows the distribu-

tions of mOpenSSL
n for n¼226, …, 234 where the curves are plotted

on top of the expected distribution in Fig. 1.

The results in Figs. 7 and 8 indicate that the flawed Debian

pseudorandom generator has a very large statistical distance

from the uniform distribution while the standard OpenSSL

pseudorandom generator has a smaller statistical distance

from the uniform distribution. In other words, statistical

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 7 e Density functions for distributions mDebian
n with

n¼226, …, 234

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 452
distance based LIL tests could be used to detect such kinds of

implementation weakness conveniently.

While the Debian Linux implementation of openSSL

pseudorandom generator fails the LIL test obviously, the ex-

periments show that the collection of the 10,000 sequences

passed the NIST SP800-22 testing with the recommended

parameters.
Fig. 8 e Density functions for distributions m
OpenSSL
n with

n¼226, …, 234
7.5. Distance convergence and discussion

It is important to determine the required number of strings for

each distance-based statistical testing and to investigate the

distributions of the statistics in distance based statistical tests

since they are very different from NIST SP800-22 recom-

mended testing. For example, the same a in one test could

indicate a very different level of sensitivity when running

another test.

Though it is important to investigate the relationsihp be-

tween LIL testing parameter selection criteria and the P-value

a in NIST SP800-22 testing suite, this paper will focus on the

threshold parameter selection criteria for LIL distance based

testing. Indeed, wewould recommend that all of the 15 testing

techniques in NIST SP800-22 should be converted to distance

based testing approach. Thus new parameters (instead of the

current P-value a) for each of the 15 testing in NIST SP800-22

should be determined.

One question that could be raised is whether the specific

parameter selection for the LIL distance based tests could be

the reason why some random generators (such as the flawed

Debian Linux OpenSSL) failed LIL test but passed NIST SP800-

22 tests. The answer to this question is no. A weak random

generator could pass NIST SP800-22 tests for various reasons.

For the specific case of the flawed Debian Linux OpenSSL

randomness generator, it passed the NIST SP800-22 tests due

to the limitation that we point out in Theorem 3.1 of Section 3.

The experimental results in previous sections show that

statistical distances obtained from Mersenne Twister gener-

ators could be used as general threshold distances for LIL

testing. In this section, we try to get the approximate

threshold distances for LIL statistical testing. Fig. 9 shows total

variation, Hellinger, and root-mean-square deviation arith-

meticmean distances for Mersenne Twister, standard C linear

congruential generator, flawed Debian OpenSSL generator

with single thread, flawed Debian OpenSSL generator with

multiple threads, standard OpenSSL generator without

external seed, standard OpenSSL generator with external

seed, Microsoft crypto pseudorandom generator, and NIST

DRBG-SHA256 generator. Graphs in the Figure are generated at

the sample sizes: 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000,

9000, and 10000. In these graphs, we use a unit of 1 in x-axis 1

to denote 1000 sample size. From these graphs, it is clear that

standard C linear congruential generator has the worst dis-

tances from a true random source, Debian OpenSSL generator

with single thread has the secondworst distances, and Debian

OpenSSL generator with multiple threads has the third worst

distances. Other distance trends coincide well with the dis-

tance trend for Mersenne Twister generator. The collection of

arithmetic mean distances that are used to plot Fig. 9 are

shown in Table 4. Table 4 lists total variation, Hellinger, and

root-mean-square deviation arithmetic mean distances for

Mersenne Twister, standard C linear congruential generator,

Debian OpenSSL generator with single thread, Debian

OpenSSL generator with multiple threads, OpenSSL generator

without external seed, OpenSSL generator with external seed,

Microsoft crypto pseudorandom generator, and NIST DRBG-

SHA256 generator. Distances are presented for sample sizes:

1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, and 10000.

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 9 e Total variation (first picture), Hellinger (second

picture), and root-mean-square deviation (third picture)

arithmetic mean distances.

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4 53
For any given sample size, it is feasible to use Mersenne

Twister generator to randomly generate a collection of

random sequences of the given sample size and then obtain

the corresponding threshold distance for LIL testing at this

sample size. However, it is also possible to approximate the

threshold distance using power functions. We combined a

total of 55,000 � 2GB (¼110 TB) of random sequences gener-

ated using Mersenne Twister generator and calculated the

total variation, Hellinger, and root-mean-square deviation

arithmeticmean distances at sample sizes 5 K, 10 K, 15 K, 20 K,

25 K, 30 K, 35 K, 40 K, 45 K, 50 K, and 55 K as shown in Table 5.

Using arithmetic mean distances from Table 5, we can

obtain the approximate power functions for threshold dis-

tances as follows

y ¼ 4:6983x�0:57 for total variation distances
y ¼ 3:3809x�0:541 for Hellinger distances
y ¼ 0:3404x�0:583 for root�mean� square deviation distances

where x represents sample size of sequences to be generated

and y represents the threshold distance for a LIL test to pass at
the sample size x. As an example, Fig. 10 shows the curves for

total variation distance and the trend line y ¼ 4.6983x�0.57 for

55,000 � 2GB generated sequences.

7.6. Summary of distance based experiments

As a summary, Table 6 lists the results of both NIST SP800-22

testing and LIL testing on commonly used pseudorandom

generators. In the table, we listed the expected testing results

for MT19937 as “pass” since MT19937 was designed to be k-

distributed to 32-bit accuracy for every 1 � k � 623. In other

words, the output of MT19937 is uniformly distributed and

should pass all statistical tests even though the output is not

cryptographically strong. The results in Table 6 show that the

LIL testing techniques always produce expected results while

NIST SP800-22 test suite does not.
8. LIL curves for commonly used pseudo
random generators

Section 7 presents experimental results on distance based LIL

testing where density function curves are used to demon-

strate the testing results. Several LIL curves are also presented

in Figs. 3, 5 and 6 to illustrate the testing results. Since the

function Slil is the heart for distance based LIL testing and it is

related to the distribution of Wiener process (the Brownian

motions), it is useful to interpret LIL curves as Brownian mo-

tions. Specifically, a good pseudo random generator should

generate LIL curves as in Fig. 5 instead of Figs. 3 and 6. In this

section, we present some experiments on the LIL curves for

commonly used pseudo random generators. It should be

noted that the results in this section are not analyzed using

the distance based LIL testing distribution. We present the

experimental results for LIL curves to motivate the potential

future testing design using LIL curves.

8.1. Java SHA1PRNG API based sequences

The SHA1PRNG API in Java generates sequences SHA10(s,0)
SHA10(s,1)…, where s is an optional seeding string of arbitrary

length, the counter i is 64 bits long, and SHA10(s,i) is the first 64

bits of SHA1(s,i). When no seed is provided, Java provides

random seeds itself. In our experiments, we generated one

hundred of sequences without seeds and another one hun-

dred of sequences with 32 bytes random seeds. For each

sequence generation, the “random.nextBytes()” method of

SecureRandomClass is called 226 times and a 20-byte output is

requested for each call. This produces sequences of 1.34 GB

long. The LIL test is then run on these sequences and we

observed similar trend curves for all sequences. Specifically,

we observed that Slil(x[0..n�1])� 0.5 for n > 5MB on average and

then �0.75 � Slil(x[0…n�1]) � 0.3 for n > 6MB on average. We

also observed that the value Slil is smaller than 0 for majority

parts of each sequence. This means that these sequences

generally contain more zeros than ones. We suspected that

the smaller (or negative) values of Slil were caused by sparse

values in the counter since it is 64 bits long and we only feed

values between 0 to 226 to it. In order to verify our conjecture,

we generated one hundred of sequences SHA10(x1)SHA10(x2)…

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Table 4 e Total variation, Hellinger, and root-mean-square deviation arithmetic mean distances.

Generator 1 K 2 K 3 K 4 K 5 K 6 K 7 K 8 K 9 K 10 K

MT d .0730 .0519 .0445 .0372 .0326 .0299 .0278 .0253 .0246 .0237

H .0729 .0491 .0407 .0353 .03007 .0288 .0259 .0237 .0233 .0224

RMSD .0047 .0033 .0028 .0024 .0021 .0019 .0017 .0016 .0016 .0015

C LCG d .2873 .2819 .2767 .2731 .2738 .2731 .2733 .2728 .2725 .2714

H .2955 .2865 .2837 .2807 .2808 .2799 .2797 .2789 .2786 .2781

RMSD .0235 .0232 .0229 .0226 .0226 .0226 .0226 .0226 .0226 .0225

Debian S-thread d .1535 .1203 .0854 .0944 .0963 .0837 .0887 .0907 .0941 .0961

H .1533 .1161 .0852 .0920 .0922 .0821 .0859 .0870 .0899 .0907

RMSD .0099 .0079 .0057 .0062 .0063 .0055 .0058 .0059 .0061 .0062

Debian M-thread d .0924 .0770 .0689 .0658 .0624 .0611 .0608 .0596 .0585 .0588

H .0891 .0745 .0670 .0633 .0607 .0590 .0579 .0566 .0560 .0557

RMSD .0060 .0050 .0045 .0042 .0040 .0040 .0040 .0039 .0038 .0038

OpenSSL No Seed d .0765 .0529 .0433 .0359 .0326 .0282 .0257 .0237 .0228 .0220

H .0729 .0494 .0413 .0346 .0310 .0273 .0250 .0232 .0221 .0212

RMSD .0048 .0033 .0027 .0022 .0020 .0017 .0016 .0015 .0014 .0014

OpenSSL with Seed d .0769 .0499 .0439 .0376 .0328 .0310 .0280 .0267 .0246 .0236

H .0826 .0510 .0438 .0369 .0322 .0297 .0272 .0259 .0239 .0228

RMSD .0051 .0031 .0027 .0023 .0020 .0019 .0017 .0016 .0015 .0015

MSFT d .0716 .0495 .0401 .0378 .0358 .0331 .0293 .0276 .0258 .0252

H .0685 .0461 .0371 .0351 .0327 .0301 .0272 .0261 .0239 .0233

RMSD .0046 .0031 .0025 .0024 .0023 .0021 .0019 .0018 .0016 .0016

DRBG-SHA256 d .0754 .0522 .0533 .0423 .0355 .0312 .0302 .0283 .0268 .0248

H .0698 .0503 .0524 .0418 .0350 .0313 .0294 .0274 .0258 .0240

RMSD .0047 .0033 .0034 .0027 .0022 .0020 .0019 .0018 .0017 .0016

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 454
using SHA1PRNG API without seeds, where x1x2x3… are

pseudorandom sequences generated by AES128 with different

keys and each xi is 64 bits long. We then run the LIL test and

observed that Slil values for these sequences take larger values

though they still fail the LIL test.

Fig. 11 shows three typical LIL test results. The black line is

for a sequence with seed s ¼ SHA256(0xD2029649D2029649).

The blue line (in web version) is for a sequencewithout a seed.

The red line (in web version) is for a sequence without a seed

but with counters replaced by random strings from

x1x2x3… ¼ AES(k,0)AES(k,1)…, where

k ¼ 0x0E14533E1F056F7C7E192B3F4C4D7E6F:

To reduce the size of the figure, we use the scale 10000n2 for

the x-axis. In other words, Fig. 11 shows the values Slil(x[0…

10000n2�1]) for 1 � n � 1037. The readers may ask: does Slil(x

[0…m�1]) reach either 1 or �1 for 10000n2 < m < 10000(nþ1)2?

For each sequence, we generated the curve using the scale 8n

also (that is, we take values at the end of each byte of the

sequence) and the result is similar to the scale 10000n2. The

reason is that the values of Slil change very slowly when n is

large.

Fig. 12 shows another result on six sequences generated by

SHA1PRNG API using the same scale 10000n2 for the x-axis.

The first three lines (black, blue, red (in web version)) are for
Table 5 e Total variation, Hellinger, and root-mean-square de
sequences.

5 K 10 K 15 K 20 K 25 K

d .0370 .0252 .0200 .0160 .0147

H .0343 .0233 .0186 .0157 .0142

RMSD .0024 .0016 .0013 .0010 .0009
sequences that are generated by SHA1PRNG API without

seeds. The fourth line (purple (in web version)) is for a

sequence that is generated by SHA1PRNG API without a seed

but with a decreasing counter. That is, it is for the sequence

SHA10(226)SHA10(226�1)… The fifth and sixth lines (green and

orange (in web version)) are for sequences that are generated

by SHA1PRNG API with 64 bytes and 70 bytes of random seeds

respectively.
8.2. NIST SP800-90A based sequences

NIST SP800.90A specifies three kinds of DRBG generators: hash

function based, block cipher based, and ECC based. For DRBG

generators, the maximum number of calls between reseeding

is 248 for hash function and AES based generators (the number

is 232 for T-DES and ECC-DRBG generators). For sequences that

we have generated, no reseeding is needed according to this

rule.

8.2.1. Block cipher based DRBG
For block cipher based generators, we generated 100 se-

quences in the format of AES128(k,V)AES128(k,Vþ1)… and

DES(k,V)DES(k,Vþ1)… where k is the random key and V is

derived from random seeds. The value of V is revised after the

primitive is called 212 times according to (Barker and Kelsey,
viation arithmetic mean distances for 55,000 £2 GB

30 K 35 K 40 K 45 K 50 K 55 K

.0128 .0118 .0112 .0107 .0100 .0097

.0125 .0118 .0110 .0104 .0097 .0095

.0008 .0008 .0007 .0007 .0006 .0006

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 10 e Total variation distance trend line.

Fig. 11 e Typical results for Java SHA1PRNG API.

Fig. 12 e More results for Java SHA1PRNG API.

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4 55
2012). Each sequence is 2.15 GB long. The LIL test is run on

these sequences and we observed that Slil(x[0..n�1])2

[�0.95,0.95] on average. It is interesting to mention that the

values of Slil fluctuate evenly in the interval [�0.9,0.9] for these

block cipher based sequences. This is different from the re-

sults for hash function based sequences for which the values

Slil are more biased with smooth fluctuation (cf. the results in

Section 8.1 and the results later in this section). When n in-

creases, the value Slil for all block cipher based sequences

tends not to go above 0.99.

As an example, Fig. 13 shows the LIL test results on three

sequences generated by AES128 andDES. Similarly, we use the

scale 10000n2 for the x-axis. E1(,) and E2(,) denote AES128 and

DES encryption functions respectively. These lines are for

sequences E1(k,ctr0)E1(k,ctr0þ1)…, E2(k1,0)E2(k1,1)…, and

E2(k2,ctr0)E2(k2,ctr0þ1)… respectively, where k,k1,k2 are random

keys and ctr0 is a random value of 8 bytes.

Dual ECC-DRBG NIST SP800-90A recommends a dual EC-

DBRG where the underlying elliptic curve is defined by

y2¼ x3�3xþb (mod p). SP800-90A recommends three curves for

the random bits generation: P-256, P-384, and P-521. The

initialization parameter includes two points P and Q on the

curve. The random bits are generated from stages and the

random generator has its internal state. For simplicity, we use

a number s2Fq to denote the internal state of the generator.

When the state is si, the generator first calculates a point

Ri¼siQ on the elliptic curve and outputs as random bits the

least significant 240 bits (respectively, 368 bits and 504 bits) of

the x-coordinate of Ri for P-256 (respectively, P-384 and P-521).

After outputting the random bits, the internal state of the
Table 6 e NIST SP800-22 and LIL testing results.

Generator NIST SP800-22 LIL Expected result

Standard C LCG Pass Fail Fail

MT19937 Pass Pass Pass

PHP LCG Fail Fail Fail

PHP MT19937 Fail Fail Fail

flawed Debian

openSSL

Pass Fail Fail

standard

openSSL

Pass Pass Pass
generator is updated to siþ1 ¼ x(siP) where x(siP) denotes the x-

coordinate of the elliptic curve point siP. In our experiments,

we generated 16 random sequences lilDataecc0nistP256, /,

lilDataecc15nistP256 using the curve P-256 with the initial

states s0 ¼ SHA(0), …, s0¼SHA(15) respectively. For each

sequence generation, we make 222 calls to elliptic exponenti-

ation primitives and each call outputs 240 bits. Thus each

sequence is 120 MB long. Since it takes 26 h for the DELL

Optiplex 755 computer (with Bouncy Castle ECC Library for

Java Netbeans) to generate one sequence, we have not tried to

generate longer sequences. Fig. 14 shows the test results for

these 16 random sequences.

Hash function based DRBG For hash function based DRBG

in NIST SP800.90A, a hash function G is used to generate se-

quences G(V)G(Vþ1)G(Vþ2)… where V is a seedlen-bit counter

that is derived from the secret seeds, seedlen is 440 for SHA1,
Fig. 13 e Results for AES and DES based generators.

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 14 e Results for ECC-DRBG Fig. 16 e Results for non-NIST SHA1/SHA2/SHA3-DRBG.

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 456
and the value of V is revised after at most 219 bits are output.

We generated several hundreds of sequences with randomly

chosen seeds for SHA1 and SHA256 based DRBG. As an

example, Fig. 15 shows the test results on six typical se-

quences generated by SHA1-based DRBG with the scale

10000n2 for the x-axis.
8.3. Other hash function based generators

In order to analyze the randomness properties of hash func-

tions from different angles, we also generated hash function

based pseudorandom sequences without following the pro-

cedures in NIST SP800.90A. We used different sizes of seed

values (e.g., 4 bytese100 bytes) and different counter styles

(e.g., a counter begins from 0 instead of V or use decremental

counters). The results show that Slil curves for SHA1-based

and SHA256-based sequences are similar. But they are

different from Slil curves for Keccak256-based sequences.

Specifically, if we use 4 bytes of seeds and 8 bytes of counters

that start from 0, then for large enough n, Slil(x[0..n�1]) � 0 for

SHA1/SHA256 based sequences and Slil(x[0..n�1]) � 0 for Kec-

cak256 based sequences. These results seem to reveal the

non-random property of SHA1/SHA2/Keccak functions and

show that Keccak (SHA3) may not have better stochastic

properties than SHA1/SHA2.

Fig. 16 shows the test results on three typical sequences

generated by SHA1, SHA256, and Keccak256 using the scale

1000n2 for the x-axis. These sequences are generated with

empty seeds and with a 32-bit counter starting at 12345678.

The hash functions are called 226 times. Thus the SHA1 based

sequence is 1.34 GB and the SHA256/Keccak256 based
Fig. 15 e Results for NIST SHA1-DRBG.
sequences are 2.15 GB. It is observed that, for SHA1 and

SHA256 based sequences, we have Slil(x[0..n�1]) � 0 when n is

sufficiently large and, for sequences generated using Kec-

cak256, we have Slil(x[0..n�1]) � 0 when n is sufficiently large.

Fig. 17 shows another LIL test result on nine sequences

based on the SHA1 hash function using the scale 10000n2 for

the x-axis. Each sequence is 1.34 GB long (226 calls to the hash

function). In the following, we use G1 to represent the SHA1

hash function and all random integers and random seeds are

taken from a sequence generated by AES128 in counter mode.

The line SHA1NoSeedDesc is for the sequence G1(ctr0)…G1(0)

with a 4-byte decreasing counter that starts at ctr0 ¼ 226�1.

Line SHA1NoSeedLargeCtr is for the sequence G1(ctr0)

G1(ctr0þ1)…G1(ctr0þ226�1) where ctr0 is a random 4-byte

integer. The line SHA1w4BR10B0 is for the sequence

G1(s,v0,0)…where s is a 4-byte random seed, v0 is 10 bytes of 0,

and ctr is a 4-byte counter starting at 0. The line SHA1w4BR is

for the sequence G1(s,0)G1(s,1)… where s is a 4-byte random

seed and ctr is a 4-byte counter starting at 0. The line

SHA1w10BR is for the sequence G1(s,0)G1(s,1)…where s is a 10-

byte random seed and ctr is a 4-byte counter starting at 0. The

line SHA1w70BR is for the sequence G1(s,0)… where s is a 70-

byte random seed and ctr is a 4-byte counter starting at 0.

The line SHA1w100BR is for G1(s,ctr0)G1(s,ctr0þ1)…where s is a

100-byte random seed and ctr0 is a 4-byte random integer. The

line SHA1wRS64CTR is for the sequence G1(s,0)G1(s,1)… with a

8-byte counter and a 8-byte random seed s. The line SHA14B4B

is for G1(s,ctr0)G1(s,ctr0þ1)… where s is a 4-byte random seed

and ctr0 is a 4-byte random integer.

Fig. 18 shows some LIL test results on 12 sequences based

on SHA256 and Keccak256 hash functions using the scale
Fig. 17 e Results for some sequences based on SHA1.

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 18 e Results for some sequences based on SHA2/SHA3.

Fig. 19 e Results for Fortuna-PRNG.

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4 57
10000n2 for the x-axis. Each sequence is 2.15 GB long (226 calls

to the hash function). In the following, we use G2 and G3 to

denote SHA256 and Keccak256 respectively. All random in-

tegers and random seeds are taken from random positions of

a pseudorandom sequence generated by AES128 in counter

mode with a random key. The line SHA210BRrctr is for the

sequence G2(s,ctr0)G2(s,ctr0þ1)… where ctr0 is a 4-byte random

integer and s is a 210-byte random seed. The line SHA2Rctr is

for the sequence G2(ctr0)G2(ctr0þ1)… where ctr0 is a 4-byte

random integer. Line SHA2w30BRrctr is for the sequence

G2(s,ctr0)G2(s,ctr0þ1)… where s is a 30-byte random seed and

ctr0 is a 4-byte random integer. The line SHA2Desc is for the

sequence G2(2
26�1)G2(2

26�2)…G2(0) where the counter is a 4-

byte integer. The line SHA2wAES is for the sequence

G2ðx0ÞG2ðx1Þ/G2ðx226�1Þ where x0x1… is a pseudorandom

sequence and xi is 8 bytes. The line SHA24BR4Bctr is for the

sequence G2(s,ctr0)G2(s,ctr0þ1)… where ctr0 is a 4-byte random

integer and s is a 24-byte random seed. The line SHA2RS is for

the sequence G2(s,0)G2(s,1)… where s is a 500-byte random

seed the counter is 4 bytes. Line SHA2RDDesc is for the

sequence G2(s,2
26�1)G2(s,2

26�2)…G1(s,0) where s is a 100-byte

random seed and the counter is 4 bytes. The line SHA3Desc

is for the sequence G3(2
26�1)G3(2

26�2)…G3(0) where ctr0 is a 4-

byte random integer. The line SHA3w30BRrctr is for the

sequence G3(s,ctr0)G3(s,ctr0þ1)… where s is a 30-byte random

seed and ctr0 is a 4-byte random integer. The line SHA3wRB is

for G3(s,0)G3(s,1)… where s is a 4-byte random seed and the

counter is 4 bytes. The line SHA3wRBDesc is for the sequence

G3(s,2
26�1)G3(s,2

26�2)…G3(s,0) where s is a 8-byte random seed

and the counter is 4 bytes.

8.4. Fortuna PRNG

Fortuna pseudorandom number generator (Schneier and

Ferguson (Ferguson and Schneier, 2003)) uses block ciphers

such as AES in countermode and the key is changed each time

after atmost 1MB of data is generated.We uses AES-128 as the

underlying block cipher to instantiate Fortuna PRNG. In total,

we generated 100 sequences: fortunaAES0, …, fortunaAES99.

Each of these sequence is 1 GB long. Specifically, for the gen-

eration of sequence fortunaAESi, we run AES-128 in counter

mode and use keys SHA1(ikj) for 0�j�210. Each of the AES key

SHA1(ikj) is used to encrypt 216 consecutive counters. Fig. 19

shows the LIL-test results for the sequences fortunaAES0, …,

lilDatafortunaAES15. In Fig. 19, most of the curves lie strictly
within a proper sub-interval of [�1,1] though one line reaches

�1. Thus we may or may not claim that Fortuna-PRNG-AES

passes the LIL test. More testing is needed to confirm

whether Fortuna PRNG passes the LIL-test.
9. General discussion on OpenSSL random
generators

It is noted in Ahmad (2008) that the serious flaws in Debian

OpenSSL had not been noticed for more than 2 years. A key

contributor to this problem was the lack of documentation

and poor source code commenting of OpenSSL making it very

difficult for a maintainer to understand the consequences of a

change to the code. This section provides an analysis of the

OpenSSL default RNG. We hope this kind of documentation

will help the community to improve the quality of OpenSSL

implementations.

Fig. 20 illustrates the architecture of the OpenSSL RNG. It

consists of a 1023 byte circular array named state which is

the entropy pool from which random numbers are created.

state and some other global variables are accessible from all

threads. Crypto locks protect the global data from thread

contention except for the update of state as this improves

performance.

state is the entropy pool that is a declared array of 1023þ
MD_DIGEST_SIZE bytes. However the RNG algorithmonly uses

state[0…1022] in a circular manner. There are two index

markers state_num and state_index on state which mark

the region of state to be accessed during reads or updates. md

is the global message digest produced by the chosen one-way

hash function which defaults to SHA1 making

MD_DIGEST_LENGTH ¼ 20. md is used and updated by each

thread as it seeds the RNG.

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 20 e High Level view of OpenSSL RNG.

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 458
Each thread maintains a count of the number of message

digest blocks used during seeding. This counter is copied to

the global md_count enabling other threads to read it as

another entropy source. The global variable entropy records

the entropy level of the entropy pool. This value is checked

when generating random numbers to ensure they are based

on sufficient entropy. initialized is a global flag to indicate

seed status. If not initialized, entropy collection and seeding

functions are called.

9.1. OpenSSL entropy collection

Entropy data is required to seed the RNG. OpenSSL caters for a

number of entropy sources ranging from its default source

through to third party random bit generators. This section

discusses the OpenSSL library-supplied entropy collection

process. Once entropy data is collected, it is passed to

ssleay_rand_add or ssleay_rand_seed to be added into the

RNG's entropy pool.

RAND_poll is the key entropy collection function. Default

entropy data sources for Windows installations are illustrated

in Fig. 21. A check is made to determine the operating system

and if Windows 32 bit, ADVAPI32.DLL, KERNEL32.DLL and
NETAPI32.DLL are loaded. These libraries include Windows

crypto, OS, and network functions. Following is an overview of

the default entropy collection process.

1. Collect network data netstatget(NULL, L“LanmanWork-

station”, 0, 0, &outbuf). By using LanmanWork-

station, netstatget returns a STAT_WORKSTATION_0

structure in outbuf containing 45 fields of data including:

time of stat collection, number of bytes received and sent

on LAN, number of bytes read from and written to disk etc.

Each field is estimated as 1 byte of entropy. netstatget is

also called with LanmanServer to obtain another 17 bytes

of entropy in STAT_SERVER_0.

2. Collect random data from cryptographic service provided

by ADVAPI32. Use the cryptographic service provider in

hProvider to call CryptGenRandom and obtain 64 bytes of

random data in buff. the RAND_add function is passed 0 as

the entropy estimate despite this data coming from an

SHA-based crypto RNG so presumably the OpenSSL pro-

grammer does not trust this source. An attempt is made to

access the processor's on-chip RNG and if successful 64

bytes of random data are passed to RAND_add with a 100%

entropy value.

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 21 e OpenSSL entropy sources on Windows.

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4 59
3. Get entropy data from Windows message queue, 4-byte

foreground window handle, and 2-byte cursor position.

However, dynamically tracing these operations identified

an OpenSSL coding error discussed in Section 9.2.

4. Get kernel-based entropy data by taking a snapshot of the

heap status then walking the heap collecting entropy from

each entry. Similarly walk the process list, thread list and

module list. The depth that each of the four lists is tra-

versed is determined as follows: the heap-walk continues

while there is another entry and either the good flag is false

OR a timeout has not expired AND the number or iterations

has not exceeded a max count. This ensures loop termi-

nation in a reasonable time. However, setting the good flag

is suspicious as it is set if randomdata is retrieved from the

Microsoft crypto library or from the hardware DRNG. This

is odd as zero was assigned as the entropy value for the

crypto library numbers and data from the DRNG may be

unavailable yet the good flag is still set which limits the

amount of kernel data collected.

5. Add the state of global physical and virtual memory. The

current process ID is also added to ensure that each thread

has something different than the others.
9.2. Potential bugs in OpenSSL entropy collection

In above OpenSSL code, a static trace implies that all 20

bytes of CURSOR_INFO are added into the entropy pool as

ci.cbsize is set to the size of the CURSORINFO structure. The

programmer has decided that this data is worth an entropy

value of 2 which is passed to RAND_add. However, a dynamic

code trace shows that ci.cbsize is set to zero after the call to

cursor(&ci), where cursor is defined as:

user is a DLL module handle containing function GetCur-

sorInfo, which returns true on success and ci.cbsize is

initialized to sizeof (CURSORINFO) before the call. However,

MSDNdoes not promise tomaintain the fields in this structure

on return yet the OpenSSL code relies on it. Our experiments

showthe ci.cbsize is zeroyet is attributedanentropyvalueof 2.

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 460
RAND_add calls ssleay_rand_add. The local variables in

ssleay_rand_add are shown in the following.
According to the code, the ssleay_rand_add function in-

crements the global entropy value by 2 if there is not enough

current entropy. However, in the Windows environment, the

ci.cbsize is always 0 yet it has 2 bytes of entropy added and

if timing causes this to happen multiple times due to other

threads also incrementing the entropy counter, there could

potentially be a situation where there is substantially less

entropy than that reported. Specifically, once the entropy

threshold of 32 is reached, entropy is no longer updated.

9.3. Optional additional entropy sources

In OpenSSL RNG, additional entropy is not gathered by the

default RAND_poll function. Thus it requires programmers to

explicitly call the collection functions. It should be also noted

that the Unix version of RAND_poll is quite different to the

Windows version as it reflects the differences in architecture.

In UNIX, the version of RAND_poll is selected by a conditional

compilation switch.

In OpenSSL RNG, additional entropy can be added by call-

ing RAND_load_file function in randfile.c. This mixes file

content into the RNG using RAND_add. randfile.c also contains

RAND_write_file which calls RAND_bytes to collect random

data from state to overwrite the seed file providing fresh en-

tropy for when it is read next. Care needs to be taken with

these functions since RAND_write_file does not take a size

parameter to specify the number of bytes to write and is fixed

at 1024 by a declaration #define RAND_DATA 1024. So if a 1 MB

file of random data was used as a seed data, only 1 KB of it will

be overwritten by RAND_write_file with seed data so on

successive reads of the seed file, 99.9% of the seed data is the

same every time. For Windows-based systems, three more

entropy gathering functions are available in rand_win.c:

RAND_event, readtimer and readscreen. RAND_event col-

lects entropy from key presses and mouse movement, read-

timer collects data from the high speed counters and

readscreen adds the hash values from each line of screen

data. In each instance, the collected data is added into the

entropy pool using RAND_add.

9.4. Seeding the RNG

To seed the RNG, RAND_add is called and the collected entropy

data, its length and an entropy estimate are passed in as

function parameters. For flexibility, this function is a wrapper

for the actual entropy addition function to enable alternatives

to be chosen by RAND_get_rand_method so the function

binding is dynamic through a pointer to meth->add.
RAND_get_rand_method returns the addresses of the

preferred functions. For example, it checks for an external

device and if not found it returns the address of the default

functions in a structure of type RAND_METHOD which holds
pointers to the functions. Of the five available functions,

RAND_add() calls meth->add() which in this case points to

the physical function ssleay_rand_add. Studying ssleay_r-

and_add reveals that the entropy data passed to it is hashed

directly into the RNG's state.
A byte buffer buf of length num containing data, ideally

from a good entropy source, is passed to this function to be

mixed into the RNG. add is the entropy value of the data in

buff estimated by the programmer. For system generated

entropy, the value is not calculated but presumably estimated

by the OpenSSL developers. RAND_add is available to the caller

to addmore or better entropy if required. In a summary, Fig. 22

describes the seeding flowchart for OpenSSL random number

generators.

OpenSSL provides a second function ssleay_rand_seed

to seed the RNG, but this simply calls ssleay_rand_add,

providing the buffer size as the entropy value, i.e., it assumes

100% entropy.

9.5. Summary of OpenSSL RNG

In a summary, OpenSSL generates pseudorandom bits using

the following process:

1. Set crypto lock to protect global data updates.

2. Copy global variables into local variables to avoid conflict

from other threads. The global message digest md is an

entropy source if multithreading as other threads update it

so copy it to local_md. However, in a single threaded

application this value will not change.

3. Add num entropy bytes in buf to the global state_index

(wrapping if needed) so another thread will access state

from there. This thread starts from st_idx.

4. Initialize the m in EVP_MD_CTX structure with pointers to

crypto functions and data blocks for hash operations. The

key structure within m is the digest substructure as this

contains pointers to the main hash functions and the

message digest.

5. Partially hash local_md into m by calling MD_update.

6. Adjust global state_num to be greater than or equal to

state_index to mark the region of state to be modified by

the entropy data in buf.

7. In chunks of MD_DIGEST_LENGTH do

� Compute the hash output m as

SHA1ðlocalmdk20bytesof statek20bytesofbufkmdc½0�kmd c½1�Þ
The resultant digest in m is copied into local_md ready to

be mixed into state.

� Increment the local md counter md_c[1]

� Add MD_DIGEST_LENGTH to buf to point to the next bytes of

entropy.

� XOR the 20 byte hash in local_md into state from state

[st_idx] incrementing st_idx on each write. Note: no

lock is applied to state during this update to improve per-

formance. However, the data is XORed into state as

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 22 e Seeding the OpenSSL random number generator.

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4 61
simply copying it in would overwrite any data added by

other threads.

� Continue until num bytes of buf have been hashed into the

pool.

8. Securely clean-up and release RAM: EVP_MD_CTX_

cleanup(&m).

9. Set crypto lock to enable exclusive update to global data.

10. XOR local_md into the global md. This value will be

used as entropy when read by the current or another

thread.

11. If there is less than required 256 bits of entropy then

increase it by entropy estimate add passed into

ssleay_rand_add.

12. Release the lock.
9.6. Get Random Numbers

There are two simple top level functions to request random

numbers from OpenSSL. The first is to use ssleay_r-

and_nopseudo_byteswhere the required andomnumbers do

not need to be cryptographically strong. This is achieved by

calling ssleay_rand_bytes with the pseudo flag set to 0. Thus

ssleay_rand_bytes returns all random numbers in buf

whether secure or not. The second approach is to use

ssleay_rand_bytes with the pseudo flag set to 1 to generate

secure random bits (the details are shown in Fig. 23). The

difference between the two approaches is that for the non-

secure request, the entropy value is ignored while for the

secure request, if entropy is too low then an error is flagged

but the number extraction is exactly the same in both cases.
In reference to Fig. 23, ssleay_rand_bytes starts by

creating a message digest context using EVP_MD_CTX_init to

create a structure mwith the appropriate digest functions and

structures for hashing. A crypto lock is applied to provide

exclusive access to global variables. If the RNG has not been

initialized, RAND_poll is called to seed the RNG with system

generated entropy. The flag ok is set if the entropy level has

reached ENTROPY_NEEDEDwhich is defined as 32. If not ok, the

global variable entropy is reduced by the number of random

numbers requested. Entropy added to the RNG within this

function is distributed throughout the state structure; this is

referred to inOpenSSLas “stirring thepool”. This involvesusing

a dummy seed: #define DUMMY_SEED “…” These 20 characters

are hashed into the RNG state using ssleay_rand_add:

ssleay rand addðDUMMY SEED;MD DIGEST LENGTH; 0:0Þ;
The hash is continually applied in groups of 20 across the

whole of state to distribute new entropy. If there is enough

entropy (ok flag is set), the pool will not be stirred again as the

stirred_pool flag is set and is a static variable so will be

“remembered” next time the function is called. It is probably

declared volatile to avoid the compiler optimizing it into a

register thus hiding it from other threads: static volatile

int stirred_pool ¼ 0; The function makes a copy of global

variables: state_index and state_num to mark the 20

element section of state to work on. Message digest counters

and a previously created message digest will be used as

further entropy sources during the extraction of random

numbers. Once these variables have been copied, the crypto

lock is removed. The random number extraction iterative

process then begins until all the requested numbers have been

copied into the provided buffer buf. The following is a step-

http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

Fig. 23 e Get random numbers.

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 462
by-step high level explanation of random bit extraction. first

set crypto lock and copy global variables into local variables.

The global variable md holds the previously generatedmessage

digest, possibly from a different thread, so is used as an en-

tropy source. The md counters are another small entropy

source as these have been incremented, possibly by other

threads as well as the current thread.

1. For num bytes in buf in chunks of 20 do (get random)

(a) The local_md (copy of global md) is partially hashed

into m.

(b) Partially hash local md counter md_c (copy of the global

counters) into m.

(c) Partially hash 10 bytes of the caller's uninitialized

buffer buf into m. Note: this is the second statement

removed by the Debian maintainer but is harmless.

This statement can be conditionally compiled-out

using the PURIFY switch enabling users to utilizes

tools such as valgrind or purify which forbid the use of

uninitialized data.

(d) Partially hash 10 bytes of data from state[st_idx] to

state[st_idxþ9] (circularly) into m.

(e) Finalize the hash value in m and copy it to local_md.

local_md ¼ SHA1(mdkmd_ck10 bytes of bufk10 bytes of state)

local_md now holds 20 bytes of random data.

(f) XOR the lower 10 bytes of local_md into state

[st_idx…st_idxþ9] as new entropy. The RNG is

continually suppliedwith new self-generated seed data.

(g) Take the top 10 bytes of local_md and copy into buf as

10 bytes of random data to be returned to the caller.
(h) Increment st_idx and buf pointer to repeat the process

until all num random bytes have generated and copied

into the buf.

2. End of the iterative process of creating random numbers

for the user.

Once the buffer contains the requested numbers,

MD_Update is called several times to create a new hash for the

global md:

md ¼ SHA1ðmd c½0�kmd c½1�klocal mdkmdÞ
where md is used as entropy by other threads, or by the current

thread if there is only one, next time the function is called. If

non-crypto random bits were requested, the function returns

0. If crypto random bits were requested and enough entropy

was used during generation then 1 is returned. If crypto

randombitswere requested but not enough entropywas used,

0 is returned and an error RAND_R_PRNG_NOT_SEEDED is

generated.
9.7. OpenSSL documentation error

If a user requests secure random numbers but the entropy is

inadequate, an error message is generated pointing them to:

http://www.openssl.org/support/faq.html. The FAQ under

“Why do I get a ‘PRNG not seeded’ error message?” states: “As

of version 0.9.5, the OpenSSL functions that need randomness

report an error if the random number generator has not been

seeded with at least 128 bits of randomness”. Yet in the code,

entropy is defined in rand_lcl.h as 32 (bytes) which is

256 bits.

http://www.openssl.org/support/faq.html
http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 4 63
9.8. Several single pont failures for OpenSSL RNG

In this section, we briefly describe several single points of

failure for OpenSSL random number generator. The attacks

don't attempt to crash the application as this would be quickly

discovered; they aim to force the RNG to generate weak

randomnumbers in anticipation of the attack going unnoticed

to then enable the hacker to compromise security operations

dependent on those random numbers.

The first single point of failure for OpenSSL RNG is the

function MD_Final. Entropy is added to the RNG state using

sequential calls to MD_Update but the final hash is not created

until MD_Final is called. If MD_Final is not called then the

hash value is not added into the state. There are three places

where MD_Final could be attacked. One of these is chosen to

demonstrate the effect of an attack of this type. The source

code was modified to determine the effect. By removing the

MD_Final call at the point in the file md_rand.c, the RNG is

severely compromised causing its period to be reduced to

MD_DIGEST_LENGTH/2 which in this case is 10 bytes. In our

experiments, we were able to carry out this attack on the bi-

nary distributions of the codes. We searched the executable

for a string of machine code bytes identifying the call to

MD_Final, the call was effectively removed by replacing the 5

byte call instructionwith XCHG EAX,EAXwhich is op code 0x90

(a no operation (NOP)).

The second single point of failure is made by forcing

_EVP_DigestFinal to return before doing anything of value.

This is so damaging because it is the only function responsible

for returning the hash value so will negate all calls to

MD_Final. This is effected by simply searching string “8B 45 08

8B 08 83 79 08 40” and overwriting a single byte in the

executable with the op code C3 (ret). After this modification,

the OpenSSL RNG output is a string of 0's. Care needs to be

taken with these attacks to avoid misaligning the stack and

crashing the executable. Finding the precise attack points will

be a little more involved generally but they will be fixed and

identifiable so can be found whether within static or dynamic

libraries.

For the third single point of failure, we use RAND_poll

function. This function is wholly responsible for collecting

system generated entropy or entropy EGD etc.We can attack a

single global flag initialized by setting its value to 1. Then

RAND_poll can be bypassed completely leaving no entropy at

all unless external seeding functions are called. However,

OpenSSL does detect that the entropy value is below 32 so

returns an error which if trapped can alert the user. But if a

second global variable entropy is also attacked, then the RNG

will, unless extra seeding functions are called, generate the

same numbers every time.

For the fourth example, we attack the ssleay_rand_bytes

function. There is a check for buf length of zero and if

detected it returns 1 which means function returned suc-

cessfully. The simulated attack overrides the number of bytes

requested setting num ¼ 0 to prove the function returns

without error. As this function does not return the number of

bytes read, the caller assumes the returned buffer contains

all the bytes they asked for but in fact, the buffer contents are

unchanged. If the buffer is uninitialized, its contents may

even look random but it will be the same every time. By
analyzing the machine code, the attack point is identified: We

remove the jump instruction by overwriting with NOP in-

struction 0x90 so the function will always return with 1 hav-

ing done nothing. If the caller has asked for 300 numbers, they

will use 300 bytes from their buffer believing them to be

random. This was emulated in a test program then the attack

was carried out on the OpenSSL.exe by searching for a specific

string of bytes then overwriting two bytes with 0x90.
10. Conclusion

This paper proposed statistical distance based LIL testing

techniques. This technique has been used to identify flaws in

several commonly used pseudorandom generator imple-

mentations that have not been detected by NIST SP800-22

testing tools. It is concluded that the distance based LIL

testing technique is an important tool and should be used for

statistical testing. Though distance based LIL testing is

important, it only covers the law of the iterated logarithm. In

the NIST SP800-22 testing suite, test techniques for 15 statis-

tical laws are designed. For the short term, we recommend

that all pseudorandom generators be tested using both NIST

SP800-22 testing tools and our distance based LIL testing. For

the long term, we recommend that new testing tools be

designed using distance based techniques. That is, for each of

the 15 statistical laws in NIST SP800-22 testing suite, a corre-

sponding distance based test should be designed. In this

paper, we also provided a detailed documentation on OpenSSl

random generators and described several potential attacks.

Acknowledgements

Our thanks to the reviewers for their comments and

suggestions.
r e f e r e n c e s

Ahmad D. Two years of broken crypto: debian's dress rehearsal
for a global pki compromise. Secur Priv IEEE 2008;6(5):70e3.

Barker E, Kelsey J. NIST SP 800-90A: Recommendation for random
number generation using deterministic random bit
generators. NIST; 2012.

Calude C, Hertling P, Khoussainov B, Wang Y. Recursively
enumerable reals and chaitin's U numbers. Theor Comput Sci
2001;255:125e49.

Clarkson JA, Adams CR. On definitions of bounded variation for
functions of two variables. Tran AMS 1933;35(4):824e54.

Debian. Debian security advisory dsa-1571-1. available at: http://
www.debian.org/security/2008/dsa-1571.

Feller W. Introduction to probability theory and its applications,
vol. I. New York: John Wiley & Sons, Inc.; 1968.

Ferguson Niels, Schneier Bruce. Practical cryptography, vol. 141.
New York: Wiley; 2003.

Goldwasser S, Micali S. Probabilistic encryption. J Comput Sys Sci
1984;28(2):270e99.

Hellinger E. Neue begründung der theorie quadratischer formen
von unendlichvielen ver€anderlichen. J. für die reine Angew
Math 1909;136:210e71.

http://refhub.elsevier.com/S0167-4048(15)00069-3/sref1
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref1
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref1
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref2
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref2
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref2
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref3
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref3
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref3
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref3
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref4
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref4
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref4
http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref5
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref5
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref5
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref6
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref6
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref7
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref7
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref7
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref8
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref8
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref8
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref8
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref8
http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

c om p u t e r s & s e c u r i t y 5 3 (2 0 1 5) 4 4e6 464
Khinchin A. Über einen satz der wahrscheinlichkeitsrechnung.
Fund Math 1924;6:9e20.

Matsumoto M, Nishimura T. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random
number generator. ACM TOMACS 1998;8(1):3e30.

NIST. Test suite. 2010. http://csrc.nist.gov/groups/ST/toolkit/rng/.
OpenSSL. Openssl implementation from http://www.openssl.

com/.
RANDOM.ORG. Random.org http://www.random.org/.
Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, et al. A

statistical test suite for random and pseudorandom number
generators for cryptographic applications. NIST SP 800e822.
2010.

Wang Yongge. Randomness, stochasticity and approximations.
In: RANDOM; 1997. p. 213e25.

Wang Y. Catetory, measure, and polynomial time
approximations. SIAM J Comput 1999a;28:394e408.

Wang Y. A separation of two randomness concepts. Inf Proccess
Lett 1999b;69:115e8.

Wang Yongge. Resource bounded randomness and
computational complexity. Theor Comput Sci 2000;237:33e55.

Wang Yongge. A comparison of two approaches to
pseudorandomness. Theor Comput Sci 2002;276(1):449e59.

Yao AC. Theory and applications of trapdoor functions. In: Proc.
23rd IEEE FOCS; 1982. p. 80e91.
Yongge Wang received his PhD degree from the University of
Heidelberg of Germany. Since then, Dr. Wang has worked in the
industry for a few years until he joined UNC Charlotte in 2002. In
particular, Dr. Wang has worked in Certicom (now a division of
RIM) as a cryptographic mathematician specializing in efficient
cryptographic techniques for wireless communications. Dr. Wang
has been actively participated in and contributed to standard
bodies such as IETF, W3C XML Security protocols, IEEE 1363
standardization groups for cryptographic techniques, ANSI X9
group for the financial services industry standards, and ANSI T11
groups for SAN network security standards. Dr. Wang is the in-
ventor of Secure Remote Password authentication protocol SRP5
which is an IEEE 1363.2 standard and the inventor of identity
based key agreement protocol WANG-KE which is an IEEE 1363.3
standard. Dr. Wang has also worked with Cisco researchers and
American Gas Association researchers to design security pro-
tocols for the SCADA industry. Dr. Wang has published exten-
sively on research topics including computational complexity,
algorithmic information theory, randomness and pseudor-
andomness, critical infrastructure protection, perfectly secure
message transmission, cryptography and secure authenticated
communications, and statistical testing.

Tony Nicol is a Master student at University of Liverpool, UK.

http://refhub.elsevier.com/S0167-4048(15)00069-3/sref9
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref9
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref9
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref10
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref10
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref10
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref10
http://csrc.nist.gov/groups/ST/toolkit/rng/
http://www.openssl.com/
http://www.openssl.com/
http://www.random.org/
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref12
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref12
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref12
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref12
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref12
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref13
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref13
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref13
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref14
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref14
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref14
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref15
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref15
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref15
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref16
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref16
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref16
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref17
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref17
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref17
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref18
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref18
http://refhub.elsevier.com/S0167-4048(15)00069-3/sref18
http://dx.doi.org/10.1016/j.cose.2015.05.005
http://dx.doi.org/10.1016/j.cose.2015.05.005

	On statistical distance based testing of pseudo random sequences and experiments with PHP and Debian OpenSSL
	1. Introduction
	2. Notations and pseudorandom generators
	3. Limitations of NIST SP800-22
	4. Stochastic properties of long pseudorandom sequences
	5. Normal approximations to Slil
	6. Snapshot LIL tests and random generator evaluation
	7. Distance based LIL experimental results
	7.1. The standard C linear congruential generator
	7.2. Mersenne Twister generators
	7.3. PHP web server random bit generators
	7.3.1. PHP Mersenne Twister
	7.3.2. PHP linear congruential generator

	7.4. Flawed Debian's OpenSSL package
	7.5. Distance convergence and discussion
	7.6. Summary of distance based experiments

	8. LIL curves for commonly used pseudo random generators
	8.1. Java SHA1PRNG API based sequences
	8.2. NIST SP800-90A based sequences
	8.2.1. Block cipher based DRBG

	8.3. Other hash function based generators
	8.4. Fortuna PRNG

	9. General discussion on OpenSSL random generators
	9.1. OpenSSL entropy collection
	9.2. Potential bugs in OpenSSL entropy collection
	9.3. Optional additional entropy sources
	9.4. Seeding the RNG
	9.5. Summary of OpenSSL RNG
	9.6. Get Random Numbers
	9.7. OpenSSL documentation error
	9.8. Several single pont failures for OpenSSL RNG

	10. Conclusion
	Acknowledgements
	References

