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Abstract: The nondeterministic property of the optoelectronic random bit generator (RBG) 
based on laser chaos are experimentally analyzed from two aspects of the central limit 
theorem and law of iterated logarithm. The random bits are extracted from an optical 
feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. 
Our experimental results demonstrate that the generated random bits have no statistical 
distance from the Brownian motion, besides that they can pass the state-of-the-art industry-
benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable 
evidence that the ultrafast random bit generator based on laser chaos can be used as a 
nondeterministic random bit source. 
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1. Introduction 
In communications, the ultrafast and large-amount generation of nondeterministic random bit 
sequences is a mandatory requirement for the information-theoretically secure cipher, ‘one-
time pad’. 

One can easily generate random bits utilizing some certain algorithms and seeds, but they 
are deterministic and commonly called as pseudo-random bits. For instance, cryptographic 
hash functions (SHA1, SHA2, and SHA3) and symmetric key block ciphers (AES and TDES) 
have been widely used to design pseudo-random bit generators . However, they may not 
satisfy the properties of randomness and thus be distinguished from a uniformly chosen 
sequence, even though these pseudo-random bit generators success to pass the existing 
statistical tests (e.g., NIST SP800-22 [1]). 

Employing stochastic physical processes, one can generate nondeterministic random 
strings. For example, the radioactive decay [2], atmospheric noise [3] and thermal noise [4] 
have been extensively used to construct random bit generator (RBG) in practice. However, 
these conventional nondeterministic RBGs are limited to a very slow bit rate at Mb/s. It is far 
below the current communication rates at Gb/s. 

In recent years, the optoelectronic RBG based on laser chaos attract considerable attention 
due to its brilliant bit rate [5–17]. For instance, Uchida et al. initiated the study of fast random 
bit generations using the physical chaos in laser diodes and produced experimentally 1.7 Gb/s 
random bit outputs in 2008 [5]. Then, Reidler et al. enhanced chaotic the generation rates to 
12.5 Gb/s and 300 Gb/s [6,7]. Our previous studies also reported that random bits can be 
generated in a real-time rate of 4.5 Gb/s using optoelectronic techniques [8,9]. More recently, 
Tang et al. even analyzed the feasibility of Tb/s random bit generation using chaotic lasers 
[15]. 

However, there has been a dispute whether the outputs of the RBGs based on laser chaos 
are nondeterministic. Empirical statistical test suites [1, 18,19] are only can be used in 
determining whether or not a generator produces high-quality random bits, but not in ensuring 
the non-deterministic property. For example, NIST SP800-22 proposed a state of the art 
statistical test technique to determine whether a RBG is suitable for a particular cryptographic 
application [1]. For an in-depth analysis, NIST SP800-22 recommends that some additional 
statistical tests such as χ2-test should be performed. But, the NIST SP800-22 test suite still has 
several drawbacks. Barker, one of the chief designers of the NIST SP800-22 test suite, 
pointed out that we are not really sure how good these tests are. Moreover, Yongge Wang et 
al. also demonstrated that the NIST SP800-22 test suite has inherent limitations, which mean 
the straightforward Type II errors [20,21]. 

                                                                                                Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15823 



In fact, Feller proved that a nondeterministic random binary string can be rigorously and 
mathematically convinced by two fundamental limit theorems. One is the central limit 
theorem and the other is the law of iterated logarithm (LIL) [22]. The NIST SP800-22 test 
suite includes several frequency related tests, which cover the central limit theorem. “the 
cumulative sums test” in the test suite even covers the limit distribution of the maximum of 

the absolute values of the partial sums nS . That is firstly obtained by Erdös and Kac [23]. But 
the NIST SP800-22 test suite does not include any test for the LIL. The LIL says that, for a 
nondeterministic random sequence, the value Slil should stay in [-1, 1] range and reach both 
ends infinitely often when the sequence length n goes to infinite. In other words, the LIL 
gives a complete characterization of the Wiener process, often called as Brownian motion. 

In this paper, we experimentally analyze the nondeterministic property of the RBG based 
on laser chaos from two aspects of the central limit theorem and the LIL. In particular, we 
investigate the Brownian motion property of the RBG according to the LIL, considering the 
NIST SP800-22 testing suite has covered the central limit theorem. Specifically, 100 GBytes ( 
= 800 Gbits) random bits are used, which is extracted from a chaotic laser diode using a 
multi-bit extraction technique. The results demonstrate that the random bits from the chaotic 
RBG can simulate the Brownian motion perfectly. All our experiments give a mathematically 
proved evidence that the output of the RBG based laser chaos is nondeterministic. 

2. Experimental setup 

 

Fig. 1. Experimental setup. DFB-LD, distributed feedback laser diode; PC, polarization 
controller; OC, optical coupler; VOA, variable optical attenuator; M, fiber mirror; EDFA, 
erbium-doped fiber amplifier; PD, photodetector; 8-bit ADC, 8-bit analog-to-digital converter; 
LSBs, least significant bits. 

The schematic of the optoelectronic RBG based on laser chaos is illustrated in Fig. 1. As 
plotted in the dash box, the chaotic laser consists of a DFB laser diode (DFB-LD) with optical 
feedback, working at 1.6 times its threshold current (22 mA) and in 1.55 μm band. The DFB-
LD connects to an 60:40 optical coupler (OC) whose secondary output passes through a 
variable optical attenuator (VOA) onto a fiber mirror (M), forming a feedback cavity with a 
time-delay of 105.453 ns and a feedback strength of 1.32%. Such an optical feedback drives 
the DFB-LD into a chaotic oscillation, whose polarization is adjusted through a polarization 
controller (PC). The chaotic light exiting the 60% port of the OC passes through an erbium-
doped fiber amplifier (EDFA) onto a 50 GHz bandwidth of photoelectric detector (PD). The 
PD converts the chaotic light into the corresponding chaotic electrical signal. Then we use 
this chaotic electrical signal to generate high-speed random bit sequences in the following 
way. The detected chaotic signal is sampled and quantized by an electrical 8-bit analog-to-
digital converter (8-bit ADC). Every sample point will correspond to 8-bit Boolean values. 
Through retaining just the 2 least significant bits (LSBs), we can harvest random bit 
sequences. 

3. Chaos characterisitcs and random bit generation 
Figure 2 shows the measured temporal waveform of the chaotic signal and its associated RF 
spectrum detected by the 50 GHz PD (u2T XPDV2120RA). Comparing with the background 
noise floor obtained by extinguishing the DFB-LD (WTD VDM5S752), the chaotic signal 
possesses a large intensity fluctuation and high bandwidth. This high signal level may make 
the random bit extraction not very susceptible to bias from small nonrandom external 
perturbations including temperature fluctuations. 
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Fig. 2. (a) Measured temporal waveform, (b) RF spectrum and (c) AC function of the chaotic 
signal. 

 

Fig. 3. Random bit extraction procedure from the chaotic signal. Blue dots denote the sample 
points. 

Figure 3 is the partial enlargement of Fig. 2(a) from 300 to 330 ns. The extraction of 
random bits is illustrated through a flowchart at the top right corner. Every sample point [blue 
dot] is firstly converted into an 8-bit binary Boolean sequence by the 8-bit ADC in a 36 GHz 
bandwidth oscilloscope (Lecory LabMaster10-36Z). The sampling rate of the 8-bit ADC is 
set at 40 GSa/s. Through discarding the first 6 bits and only retaining the 1-st and 2-ed LSBs, 
the ultrafast random bits can be harnessed. Benefit from the high sampling rate of 40 GSa/s 
and 2 LSBs remained in the experiment, our RBG possesses a bit rate of 80 Gb/s ( = 40 GSa/s 
× 2). Note, there is no strict requirement for the sampling rate, except that it should not be in 
proportion to the time-delay (TD) of the laser external cavity. 

 

Fig. 4. (a) Bias of the generated 80 Gb/s random bit sequence with different lengths n = 1, …, 
16 Mbits, where the solid line is its three-standard-deviation line, 3σbias = (3n-1/2)/2. (b) AC 
coefficients as a function of the delay bit for the random bit sequence with a length n = 16 
Mbits where the solid line is its three-standard-deviation line, 3σAC = 3n-1/2. 

Figures 4(a) and 4(b) give preliminary measurements of the bias and the normalized 
autocorrelation (AC) coefficient of the obtained 80 Gb/s random bit stream, respectively. 
Both of them are then estimated using the Gaussian distribution estimation N (0, σ2), where 
the standard deviation σ for the bias σbias = (n-1/2)/2 but for the AC coefficient σAC = n-1/2. Note, 
the number n denotes the length of the used random bit stream. The red solid lines in Figs. 
4(a) and 4(b) are their corresponding three-standard-deviation lines, 3σbias and 3σAC. It is 
obvious that both the bias and AC coefficient keep below their own three-standard-deviations, 
so the generated random bit sequence can be considered to be statistically unbiased and 
independent. 
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4. Non-deterministic property analysis 
As aforementioned, Feller has proved that a nondeterministic random binary string can be 
rigorously and mathematically convinced by the two fundamental limit theorems: the central 
limit theorem and the LIL [22]. Therefore, our nondeterministic property analysis on the RBG 
will be executed in two steps. 

In the first step, we use the state-of-the-art NIST SP800-22 test suite to qualify the 
statistical randomness of the RBG, because its frequency-related tests and the cumulative 
sums test cover the central limit theorem. The NIST SP800-22 test suite contains 15 types of 
statistical tests. Here, 1000 samples of 1 Mb random bits are applied and the significant level 
α is chosen to be 0.01. In this case, the passing criterion is that the uniformity of the p-values 
(the P-value) is larger than 0.0001 and the proportion of the sequences satisfying p-value > α 
is in the range of 0.99 ± 0.0094392. Figure 5 is a typical result of the NIST SP800-22 tests, 
where the left and right diagram shows the P-value and passed proportion of each tests, 
respectively. The numbers on the horizontal axis represent 15 different statistical tests in 
NIST testing suite, which are named as ‘Frequency’, ‘Block frequency’, ‘Cumulative sums’, 
‘Runs’, ‘Longest-run’, ‘Rank’, ‘FFT’, ‘Non-periodic templates’, ‘Overlapping templates’, 
‘Universal’, ‘Approximate entropy’, ‘Random excursions’, ‘Random excursions variant’, 
‘Serial’ and ‘Linear Complexity’, respectively. This result indicates that all NIST tests have 
been passed. Especially, the success of all frequency-related tests and the cumulative sums 
test demonstrates that the random bits from our RBG satisfy the central limit theorem very 
well. 

 

Fig. 5. Typical results of NIST statistical tests. Using 1000 samples of 1-Mb data and 
significance level  = 0.01, for “Success,” the P-value (uniformity of p-values) should be 
larger than 0.0001 and the proportion should be greater than 0.9805608. The numbers on the 
horizontal axis represent 15 different statistical tests in the NIST test suite, which are named as 
‘Frequency’, ‘Block frequency’, ‘Cumulative sums’, ‘Runs’, ‘Longest-run’, ‘Rank’, ‘FFT’, 
‘Non-periodic templates’, ‘Overlapping templates’, ‘Universal’, ‘Approximate entropy’, 
‘Random excursions’, ‘Random excursions variant’, ‘Serial’ and ‘Linear Complexity’, 
respectively. 

In the second step, we introduce the LIL to analyze the Brownian motion property of the 
RBG. The LIL describes the exact �uctuation scales of a random walk. Use a random binary 
sequence ξ to describe a random walk of a particle and assume that the particle starts from 
position 0 at time 0. The particle moves one position up if the next bit is 1 and one position 
down if the next bit is 0. Then, the particle position at time n can be characterized by the 
value S(ξ[0..n-1]) and the value n-S(ξ[0..n-1]) . Herein, S(ξ[0..n-1]) denotes the number of 1s 
within the string ξ[0..n-1], whereas n-S(ξ[0..n-1]) represents the number of 0s. For a random 
walk, a particle could reach any positive and any negative position when n is large enough. 
That is, n-2 × S(ξ[0..n-1]) tends to infinity when n tends to infinity. In order to exactly 
characterize the path of a random walk, one commonly uses the reduced number S*(ξ[0..n-1]) 
of 1s within ξ[0..n-1]. 

Specifically, the following values are defined firstly for a nonempty string x∈{0, 1}*: 
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, where S(x) denotes the number of 1s in x and S*(x) denotes the reduced number of 1s in x. 

S*(x) amounts to measuring the deviations of S(x) from x /2 in units of x /2. The law of 

large numbers says that, for a random sequence ξ, the limit of S(ξ[0..n-1])/n is 1/2, which 
corresponds to the frequency test in NIST SP800-22. But it says nothing about the reduced 
deviation S*(ξ[0..n-1]). It is intuitively clear that S*(ξ[0..n-1]) for a random sequence ξ will 
sooner or later take on arbitrary large values (though slowly). The law of LIL, which was first 

discovered by Khintchine [24], gives an optimal upper bound 2 ln ln n  for the fluctuations of 
S*(ξ[0..n-1]). Based on this fact, for a sequence ξ∈{0, 1}∞, we can define: 
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Then, for each random sequence ξ∈{0, 1}∞, we have both ( )limsup 1lil
n

S nξ
→∞

= and 

( )liminf 1liln
S nξ

→∞
= − . 

 

Fig. 6. Density functions for distributions μn
U with n = 219, …, 225. 

We will use this function ( )
lil

S nξ   to execute the LIL technique . The distribution induced 

by the function ( )
lil

S nξ   defines a probability measure on the real line R. Let { }0,1
n

R ⊂ be a 

set of m sequences with a uniform probability definition. That is, for each 0x R∈ , 

let 0[ ] 1/Prob x x m= = . Then each set { }0,1
n

R ⊂ induces a probability measure 

( ) ( ) ,R
n lilI Prob S x I x Rμ = ∈ ∈   for each Lebesgue measurable set I on R. For { }0,1

n
U = , 

we use U
nμ to denote the corresponding probability measure. If Rn is the collection of all length 

n sequences generated by a nondeterministic RBG, the difference between U
nμ and nR

nμ is 

negligible. For a uniformly chosen ξ, the distribution of ( )*S nξ  could be approximated by a 

Gaussian distribution of mean 0 and variance 1 with error bounded by 1/n [25]. In other 
words, the measure U

nμ can be calculated 

as ((- , ])U
n xμ ∞  � ( )(x 2ln ln n ) = 2ln ln 2ln ln

x
n y ndyφ

−∞
Φ          . Figure 6 shows the 

distributions U
nμ for 19 252 , , 2n =  . For the reason of convenience, we will use Ɓ as the 

discrete partition of the real line R defined 

by ( ) [ ){ } [ ){ },1 , 1, ] 0.05 1,0.05 0.95 : 0 39x x x∞ ∞ − − ≤ ≤ . 
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Fig. 7. Density functions for distributions μn
Rlaser for n = 219, …, 225 with 6000 bit strings from 

our generator 

 

Fig. 8. LIL plot for the laser chaos based RBG with 6000 × 17 MB strings 

There are various definitions of statistical distances for probability measures. In our 

analysis, we will consider the total variation distance ( ) ( )( , ) = suplaser laserR RU U
n n n n

A B

d A Aμ μ μ μ
⊆

−   

[26]. For nondeterministic m sequences, the expected distance d(μn
Rlaser, μn

U) should be 
smaller than 4.6983 × m-0.57. In our experiment, 100 GB ( = 800 Gb) random bits from the 
RBG are divided into 6000 sequences so that each sequence consists of 17 MB ( = 143165576 
bits) data. After calculating, we get that the total variation distance for our generated 6000 
sequences is 0.029, smaller than the expected total variation distance d(μn

Rlaser, μn
U) = 4.6983 

× 6000-0.57 = 0.033. 
Our analysis results can be also visually illustrated in Figs. 7 and 8. Figure 7 is the 

associated distributions of μn
Rlaser for n = 219, …, 225. These curves are plotted on top of the 

expected distribution U
nμ in Fig. 6. From Fig. 7, it can be clearly observed that our results 

have nearly no distance from the expected distribution for an ideal nondeterministic random 
bit generator. As aforementioned, we can interpret each sequence ξ as a particle. That is, it 
locates at the position 0 at time 0 and at the position S*(ξ[0..n-1]) at time n. By using x-axis to 
denote the time and y-axis to denote the particle’s position, we can get the position curves of 
the 6000 particles corresponding to the 6000 sequences, as shown in Fig. 8. If the 6000 
sequences are nondeterministic, the corresponding 6000 particles position curves should 
follow the Brownian motions curves. That is, they should mainly move between the y-axis 
interval [-1, 1] and reach both the line y = −1 and y = 1 infinitely often. The curves in Fig. 8 
visually show that the output of our RBG can simulate the Brownian motion perfectly. All of 
them demonstrate that the laser chaos based RBG also satisfies the LIL. 

5. Discussions 
5.1 Justification why the bit truncation is used and why just 2-LSBs are retained 

The reason why the bit truncation is used in our random bit generator (RBG) comes from two 
aspects. One is the asymmetric distribution of chaotic amplitudes, which can be roughly 
observed from Fig. 2(a). The other is the so-called “time-delay (TD) signature” which is an 
inherent weakness of the chaotic laser with optical feedback. Specifically, the TD signature is 
induced by the external feedback cavity. It can be located through the autocorrelation (AC) 
function in Fig. 2(c). From Fig. 2(c), one can see that a residual correlation peak with an AC 
coefficient about 0.100 appears at the delay time of 105.453 ns. The residual peak 
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corresponds to the TD signature of the chaotic laser adopted in our experiment and the 
associated AC coefficient is a quantitative indicator for the TD signature. 

The bit truncation is a common post-processing method for improving the distribution 
uniformity and for destroying the TD signature in the chaotic dynamics [6,7, 10–17]. Figure 9 
shows the normalized distributions of the decimal quantization values (in integer 
representation) generated by retaining m-LSBs: (a) m = 1; (b) m = 2; (c) m = 3; (d) m = 4; (e) 
m = 5; (f) m = 6; (g) m = 7; (h) m = 8. From Fig. 9(h), one can see clearly that the 8-LSBs 
completely inherit the feature of asymmetric distribution from the original chaotic signal [Fig. 
2]. With the decrease of the number m, the distribution uniformity gets gradually improved 
from Fig. 9(g) to Fig. 9(d). In particular, the distributions become totally uniform when only 
3-LSBs or lower are retained as shown from Fig. 9(c) to Fig. 9(a). At the same time, it can be 
verified that the TD signatures within the associated binary sequences have also been 
substantially reduced through retaining 3-LSBs or lower. Figure 10(a-i), 10(a-ii) and 10(a-iii) 
depict the AC functions of the binary sequences by retaining 1-LSB, 2-LSBs and 3-LSBs, 
respectively. Note, the m-LSBs binary sequences are obtained by interleaving 1-st LSB to m-
th LSB together, as commonly done in Refs [6,7, 10–17]. 

 

Fig. 9. Normalized distributions for the decimal quantization values (in integer representation) 
generated by retaining m-LSBs for cases: (a) m = 1, (b) m = 2, (c) m = 3, (d) m = 4, (e) m = 5, 
(f) m = 6, (g) m = 7 and (h) m = 8. 

However, it must be pointed that the 3-LSBs binary sequences fail to simulate the 
Brownian motion in our experiment, although they can successfully pass all the NIST tests. 
Only when we retain 2-LSBs and 1-LSB, the corresponding binary sequences can 
simultaneously satisfy the NIST test suite and the Brownian motion. Therefore, only 2-LSBs 
(not 3-LSBs) are selected to generate random bit in our system. To figure out the reason why 
the 3-LSBs fails, we calculate the AC functions of the independent (not interleaved) binary 
sequences by retaining 1-st LSB, 2-nd LSB and 3-rd LSB, as shown from Fig. 10(b-i) to Fig. 
10(b-iii). It can be observed clearly that there is a great difference between the AC functions 
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of the 3-LSBs [Fig. 10(a-iii)] and 3-th LSB [Fig. 10(b-iii)]. That is, the TD signature in 3-
LSBs actually has not been thoroughly eliminated when 3-th LSB is observed alone. 

In addition, we point that the generated bit rate is determined by the product of the 
selected number m of LSBs and the sampling rate of the adopted ADC. Only 2-LSBs are 
retained and the 8-bit ADC works at a sampling rate of 40 GSa/s in our experiment, so the 
associated bit rate of our RBG is 80 Gb/s ( = 2 × 40 GSa/s). The more the alternative LSBs 
are, the faster the generated bit rate will be. 

 

Fig. 10. AC functions of the digitized binary sequences from (a) interleaved m-LSBs and (b) 
independent m-th LSB: (a-i) 1-LSBs, (a-ii) 2-LSBs, (a-iii) 3-LSBs, (b-i) 1-st LSB, (b-ii) 2-nd 
LSB and (b-iii) 3-rd LSB. The insets in (a-iii) and (b-iii) are the magnified ranges 
corresponding to the TD signature of the chaotic dynamics. 

5.2 Requirement on the physical side to guarantee the non-determinism property 

From the discussions on Figs. 9 and 10 aforementioned, we can get at least two necessary 
conditions for a random bit generator (RBG) based on the laser chaos and multi-bit extraction 
technique to simulate Brownian motion perfectly. One is that all decimal quantization 
windows should be equiprobable. The other is that every independent (not interleaving) 
binary bit sequences by retaining m-th LSB (not m-LSBs) must have no residual correlations 
inherited from the original chaotic laser (i.e., the TD signature). In the scenario using the bit 
truncation to generate random bits, the latter necessary condition is more crucial than the 
former. 

Ideally, it is the favorite that the TD signature level of chaotic signal should be 0. Note, 
the TD signature level denotes the AC coefficient at the TD location. However, it is very 
difficult to completely eliminate the TD signature of a chaotic laser with optical feedback 
from the root, especially when the external cavity is long. The operation state in Fig. 2 is the 
optimum obtained in our experiment after we carefully adjusted the external parameters such 
as the injection current, external cavity time-delay, feedback strength and polarization. In this 
optimized state, we only get a TD signature level about 0.1. 

Nevertheless, there is still an experience worth to be mentioned on the TD selection of the 
chaotic laser. In the process of optimizing the operation state of our chaotic laser, we find that 
an incommensurable external cavity is the key, after the other external parameters are 
optimal. That is, the external-cavity TD τ should satisfy the criterion l × τ≠ t × τsampling for any 
low order integers l and t, where τsampling is the sampling interval of the adopted ADC. This 
criterion is empirical, but it can be convinced through a simulation based on the Lang-
Kobayashi (LK) equations. The chaotic system with time-delayed optical feedback from an 
external mirror can be modeled by the following two rate equations. 
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Herein, E(t) and N(t) denote the slowly varying complex electric field and carrier density of 
the chaotic laser, respectively. To approach the operation state in experiment, these adopted 
parameters are listed as follows: external feedback strength κf = 0.01, transparency carrier 
density N0 = 1.5 × 108 µm−3, differential gain Gn = 1.414 × 10−3 µm−3ns−1, carrier lifetime τe = 
2.5 ns, photon lifetime τp = 1.2 ps, line-width enhancement factor α = 5, gain saturation 
parameter ε = 5 × 10−5 µm3 and injection current J = 1.6Jth (where threshold current Jth = 22 
mA). The time-delay τ induced by the external feedback cavity will be specified later. In the 
simulation, we use the fourth-order Runge-Kutta algorithm with a 1 ps time-step to perform 
Eqs. (3) and (4). The simulated chaotic signals are recorded with a fixed sampling interval of 
25 ps, corresponding to the 40 GHz sampling rate of the 8-bit ADC adopted in the 
experiment. Figure 11 show the RF spectrums and AC functions for two simulated chaotic 
signal. One has a commensurable external cavity with the sampling rate of 40 GHz, whose 
time-delay τ equals to 100.000 ns. Figure 11(a-i) and 11(a-ii) is its simulated RF spectrum and 
AC function. The other has an incommensurable external cavity which has the same time-
delay τ = 105.453 ns as the adopted chaotic laser in the experiment. Figure 11(b-i) and 11(b-
ii) is the associated RF spectrum and AC function for the latter chaotic signal. The TD 
signature level of 0.098 in Fig. 11(b-ii) is obviously lower than that in Fig. 11(a-ii). This 
verifies our empirical criterion for the selection of an incommensurable external cavity 
length. 

 

Fig. 11. Simulated RF spectrum and AC function for two different time-delays of chaotic 
signals. (a-i) and (a-ii) correspond to the RF spectrum and AC function for the chaotic signal 
with a time-delay of τ = 100.000 ns, whereas (b-i) and (b-ii) are the counterparts for the other 
chaotic signal with the same incommensurable time-delay of τ = 105.453 ns as the chaotic 
laser in experiment. 

The introduction of the bit truncation can substantially reduce the level of the TD 
signature in the original chaotic signal further. However, it must be kept in mind that the bit 
truncation is not omnipotent. Figure 12 depicts all the calculated AC functions of independent 
m-th LSB from the aforementioned two simulated chaotic signals. Figure 12(a) illustrates 
these AC functions corresponding to the chaotic signal with a TD signature level of 0.140 
[Fig. 11(a)]. Figure 12(b) illustrates these AC functions corresponding to the chaotic signal 
with a TD signature level of 0.098 [Fig. 11(a)]. These plots marked with Roman numerals i, 
ii, iii, iv, v, vi, vii and viii corresponds to the AC functions of the associated 1-th, 2-nd, 3-rd, 
4-th, 5-th, 6-th, 7-th and 8-th LSB binary sequence. Through extracting every TD signature 
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levels, we can illustrate a variation trend of the TD signature level as a function of the m-th 
LSB in Fig. 13. From Fig. 13, it can be seen clearly that the TD signature level is gradually 
reduced with the decrease of the number m. Moreover, when the level of the TD signature of 
the 8-th LSB binary sequence is too high, the bit truncation will fail even if only the 1-LSB is 
retained. 

 

Fig. 12. AC functions of the independent m-th LSB binary sequences from the two simulated 
chaotic signal with different TD signature levels, where m = 1, 2, 3, 4, 5, 6, 7 and 8. Note, the 
first and second columns correspond to the chaotic signal with a high TD signature level of 
0.140 in Fig. 8(a), while the third and fourth columns correspond to the other chaotic signal 
with a low TD signature level of 0.098 in Fig. 8(b). Inset numbers from i to viii in the plot 
corresponds to m value from 1 to 8 in order. 

 

Fig. 13. Extracted TD signature levels from Fig. 12 as a function of m-th LSB, where m = 1, 2, 
3, 4, 5, 6, 7 and 8. Note, the dots and squares corresponds to the TD signature levels in Fig. 
12(a) and Fig. 12(b), respectively. 

Next, we attempt to figure out a quantitative requirement for the TD signature (a crucial 
physical quantity) of the chaotic laser. Our investigation is based on the second necessary 
condition for the RBG to simulate Brownian motion perfectly mentioned at the beginning. 
Through checking the simulation results in Fig. 13 carefully, we can quantitatively determine 
that 2 LSBs can be retained when the TD signature level of the 8-th LSB binary sequence is 
0.06. In other words, when the TD signature level of an 8-th LSB binary sequence is lower 
than 0.06, it can be guaranteed that at least 1 LSB have no residual correlation of the TD 
signature. Therefore, a tolerable TD signature level of the 8-th LSB binary sequence can be 
determined below the value of 0.06. 
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We notice that there is a direct relevance between the AC function of the extracted 8-th 
LSB (also called as 1-st most significant bit (MSB) in an 8-bit ADC) binary sequence and that 
of the associated chaotic signal. The 8-th LSB sequence is obtained by comparing the time 
series of the chaotic signal with its median value. Therefore, the 8-th LSB binary sequence is 
equivalent to the output of a 1-bit ADC with a threshold, which is equal to the median value 
of the chaotic signal. Perfect 1-bit analog-to-digital conversion suggests that the digitized 
binary sequence should inherit all the information from the analog signal. That means that the 
AC function of 8-th LSB binary sequence should be appropriately equal to that of the signal 
to be digitized in theory. However, some of the information will inevitably be lost during the 
conversion, due to the quantization error. So the AC function of 8-th LSB binary sequence is 
usually lower than that of the signal to be digitized in practice. Based on this fact, we can 
conservatively give a requirement on the physical side to guarantee the non-determinism 
property of the RBG. This requirement is that the TD signature level of the original chaotic 
laser should be lower than 0.06, although a higher level may be also tolerated actually. 

6. Conclusions 
In conclusion, we have experimentally analyzed the stochastic properties of the optoelectronic 
RBG based on laser chaos from the aspects of the central limit theorem and LIL. The 
Brownian motion performance of the RBG is mainly investigated. The experimental results 
show that the random bits extracted from the chaotic laser diode have no statistical distance 
from the Brownian motion. All of our results demonstrate that the ultrafast RBG based on 
laser chaos can be used as a nondeterministic randomness source. 
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