
Efficient and Secure Storage Systems Based on Peer-to-Peer Systems

Yongge Wang, Yuliang Zheng, and Beitseng Chu
University of North Carolina at Charlotte�

yonwang, yzheng, billchu � @uncc.edu

Abstract

Two fundamental problems that confront peer-to-peer
applications are to efficiently locate the node that stores
a data object and to achieve data security (e.g., con-
fidentiality, integrity, authentication, and authorization).
This paper presents a model for secure distributed ap-
plications based on peer-to-peer systems and presents
Chord � , a distributed lookup protocol that address the
data object location problem in peer-to-peer systems. The
protocol Chord � is a novel combination of Chord and
Tapestry/Plaxton-Rajaraman-Richa with provable better
performance. In particular, node insertion in our scheme
could be finished in �����	��
����� steps (all other existing
node insertion algorithms for peer-to-peer systems take
����������
������ � � steps—see the summary in Hildrum et al.).

1 Introduction
The Internet is growing well beyond the intent of its de-

signers. One important future driver for the further growth
of Internet is the home media networks [2] and personal
digital stores [1]. Another important future driver for fur-
ther growth of the Internet is the emergence of small, in-
expensive and low-powered devices with the capability to
support different types of functionalities and to perform
regular tasks. These devices can be deployed in large num-
bers and can be embedded, pervasively and unobtrusively,
in the environment. In pursuing transparency, an imme-
diate question is how to provide persistent information
to these new applications such as home media networks,
personal digital stores, and small embedded devices? As
pointed out in [7], persistent information is necessary for
transparency since it permits the behavior of devices to be
independent of the devices themselves, allowing an em-
bedded component to be rebooted or replaced without los-
ing vital configuration information. Further, the loss or de-
struction of a device does not lead to lost data.

The contributions of this paper are: a scalable archi-
tecture for distributed storage services, efficient security
mechanisms for this service, and an efficient and scalable
protocol for data object lookup in a dynamic peer-to-peer
system.

2 Distributed storage service requirements
Networked storage systems make distributed storage

services simple and possible. On the other hand, con-
fidentiality, reliability, availability, and durability of net-
worked storage systems are relatively difficult to imple-
ment. Only after these problems are solved for networked
storage systems, distributed storage services are possible.
For distributed storage services, we have the following dis-
tinguishing requirements: (1) The storage systems and cus-
tomers should be connected to each other through some
sorts of media and this kind of connection should be possi-
ble for mobility. (2) The information in these storage sys-
tems should be extremely durable and survivable, and the
customers need absolute trust and confidence in the stor-
age service (the same trust and confidence that customers
have in banks). (3) Data availability should always be
guaranteed. (4) Customers do not rely on storage service
providers (SSP) such as data banks to protect their privacy.
(5) When customers store their encrypted data in data bank
or SSP sites, the keys should only be held by customers
themselves. (6) The systems are survivable against mali-
cious attacks.

In practice, there are several analogies to survivable data
storage systems. For example, in the telecommunication
industry, there are two kinds of companies. Some compa-
nies build the underlying communication infrastructures,
and other companies sell communication services such as
phone services and data network services. In order to use
some telecommunication services, customers could just
ask the service company to set up all the services or the
customers could first build a local area network (such as
LAN) and ask the service company to connect the world-
wide network to their local network.

In order to build survivable and distributed storage ser-
vices, one could certainly incorporate the advantages of the
analog models into the storage service model and avoid the
disadvantages of them. Indeed, one can build survivable
and distributed storage services as follows: There is a data
storage infrastructure pool in the world. Each data stor-
age infrastructure builder contributes (sells) their data stor-
age infrastructures to this pool. In addition, there are data
storage service companies which sells the storage from

these pool to the customers. There are also separate key
banks for data storage services so that customers can store
their shares of keys (kinds of key-escrow or secret sharing
schemes) in these banks for future key recovery. In the next
sections, we will present detailed specifications and mech-
anisms for each part of the storage services. Distributed
applications could be easily built on this kind storage ser-
vices. For example, this service could provide virtual pri-
vate storage (VPS) services for enterprises (that is, if an
enterprise chooses to outsource their storage service, they
will be able to get a virtual private storage system). Dis-
tributed web services could be conveniently embedded in
this kind of storage infrastructure (data in this kind of ser-
vice requires write-access control though no read-access
control). It is also convenient to provide storage services
for small devices from this service. A small device has
only a few line of codes (BIOS) stored in its ROM. All
other data including operating systems are fetched from the
storage infrastructure (this should be globally accessible).
Lastly, personal digital store could easily be built on this
kind of storage services.

3 Survivable storage service infrastructure
and system overview

The underlying infrastructure pool is basically a col-
lection of inter-connected storage device nodes. A stor-
age infrastructure builder could add (sell) new storage de-
vices to this pool and existing storage devices could leave
the pool due to crash or close of business. Storage ser-
vice providers sell the storage capacity to end users and
users pay a monthly subscription fee to one specific stor-
age service provider to access certain amount of storage
capacity in the global pool. The storage service should
be highly available from anywhere in the world. For ex-
ample, small diskless embedded devices can access the
storage pool wirelessly from airports, offices, and cafete-
ria. Diskless server computers, desktop personal comput-
ers, laptops, and digital home media networks can access
the storage pool via high-speed networks. When a device
(either small device or big ones such as server computers)
is broken, the only thing that one needs to do is to replace
it with a new device and install appropriate authentication
tokes for accessing the storage pool. The infrastructure
will have the following distinguished characteristics: dura-
bility, untrusted infrastructure, locality, stability, decentral-
ization, and easy to use key recovery banks.

4 Approaches to the infrastructure design
Similar to several other peer-to-peer systems (e.g.,

Chord [11], Tapestry [7, 5], Plaxton/Rajaraman/Richa [8],
Pastry [4], and CAN [9]), consistent hashing mechanism
[11, 6] is used in our scheme to keep even distribution
of data objects in the storage infrastructure pool. We

will assume that � is a fixed integer (e.g., ��� �����
if

SHA-1 is used as the underlying hash function). Specif-
ically, Chord � provides efficient mapping of data objects
to nodes responsible for them. In previous schemes such
as Chord, Tapestry, or Pastry, the consistent hashing func-
tion is used to balance the load of each node. That is, with
high probability, all nodes receive the same number of data
objects. This is not an ideal solution for global storage
infrastructure since different nodes may have different vol-
ume capacity. Chord � improves the scalability of volume
capacity by taking variable identifiers for storage nodes.
A Chord � node needs only to know a small amount of
“routing” information about other nodes. In the storage
infrastructure, each node maintains information about at
most �
	��� ����

� other nodes where � is any fixed integer
(e.g., ��� �������������

etc.) and � is the bit number of iden-
tifiers, and a data object lookup requires at most �� �	��

�
queries. When a node with an �� -bit identifier string joins
or leaves the network, Chord � must update the routing in-
formation for each node. A join or leave requires at most
������� � ��� �����! � message (including data objects) ex-
changes.

4.1 Node and data object identifiers
Each data object (this could a data block–sector–on

a hard disk or an entire file of data or anything else
depending on applications) in our system is assigned
an � -bit identifier using a base hash function such as
SHA-1. A data object’s identifier is produced by hash-
ing data object owner’s ID and other auxiliary informa-
tion. For example, if the data object is the first sec-
tor of Alice’s computer computer1.alice.org, then the data
object identifier could be the hash value of the string
“computer1.alice.org "#" sectorone "#"Alice "#" etc”, where “etc”
is a field that could be used to put other information. For
example, in order to keep data availability, each data ob-
ject should be stored in several geographically different lo-
cations (we will further discuss this later) and this is done
by using different values of “etc” for each data object and
store copies of the data object under these different iden-
tifiers. The “etc” field could also contain a private key of
Alice so that no one else can trace Alice’s data object loca-
tions. The length � of the identifier strings should be large
enough so that the probability of two different data objects
hashing to the same identifier is negligible. We will use the
term “data object” to refer to both the data object itself and
its identifiers under the hash function.

Each node $ in the storage infrastructure pool is as-
signed an �� -bit (�%�'&(�) identifier string according
to its volume capacity. The larger the node volume capac-
ity, the smaller the value of �� . For example, for a node
$ with a volume capacity of petabytes, the value of � �
could be 140, and for a node) with a volume capacity of

terabytes, the value of ��� could be 150. A node’s identifier
is chosen by taking the leftmost � � bits of hashing output
of the node’s IP address and other auxiliary information
such as node owner’s ID. This is done generally when the
node registers itself to the storage infrastructure pool. The
node identifiers should meet the following requirements:
1) no node identifier is a prefix of another node identifier;
2) no node identifier is equal to another node identifier. In
order to guarantee that no node identifier is a prefix of an-
other node identifier, when an � � -bit identifier is assigned
to a node, we need to make sure that no other node has
been assigned a identifier) which has $ as its prefix. This
can always be achieved by changing the information in the
auxiliary field of the hash inputs at the registration time. In
a large network, it could happen that we cannot find a gap
for node identifiers with the required property. This prob-
lem could be solved by reserving some prefixes for cer-
tain capacity nodes. For example, all identifiers beginning
with “0101010101”, “1010101010”, . . . could be reserved
for nodes of capacity larger than petebyte.

For the reason of convenience, we convert an � � -bit
node identifier ID to an � -bit identifier ID � by repeatedly
appending 1’s to the end of ID. From now on, we assume
that all node identifiers are � bits via the above conversion.
We will use the term “node” to refer to both the node and
the � -bit identifier.

Both node identifiers and data object identifiers could
be ordered on an identifier circle modulo

� �
. A data ob-

ject with identifier ID � is stored on the first node whose
identifier equals to or follows the identifier ID � in the iden-
tifier circle (see Figure 1). As in Chord [11], this node is
called the successor node of the data object ID � , denoted
by �����	�	
��������� ID � � . If identifiers are represented as a cir-
cle of numbers from

�
to
����� �

, then �����	�	
�������� ID � � is
the first node clockwise from ID � .

000000

Data ID d

node ID=successor(ID)d

Figure 1: Data objects are stored in their successor nodes

Another way to interpret the identifier circle is to map
the identifiers on the identifier circle to the leafs of a tree
(if the identifiers are represented by binary strings, then
the tree is a binary tree; however, if the identifiers are rep-
resented by base � digits, then the tree is a � -branch tree).
For example, if identifier strings are represented by base �
strings, and � � �

, then the points on the identifier cir-

cle could be interpreted as the leafs of the tree in Figure 2.
Note that in the interpretation, we glue the identifier 000 to
the right side of the identifier 333 to make it cyclic.

110 111 112 113 320 321 322 323

... ...

...

... ...

... ...

0 1 2 3

0
1 2 3 0 1 2

3

0 1 2 3 0 1 2 3

Figure 2: Identifiers are leafs of the tree

As pointed out in [11], one advantage of storing data
objects in their successors is that nodes enter and leave the
storage infrastructure with minimal disruption. To main-
tain the consistency of the storage infrastructure, certain
data objects need to be relocated when nodes join and
leave. In our scheme, if a node $ joins the storage in-
frastructure, some data objects stored in $ ’s successor are
relocated to $, and if a node $ leaves the storage infras-
tructure, data objects stored in $ are moved to its succes-
sor. In a commercial storage infrastructure environment,
this can be achieved much efficiently and in a volunteer-
participant-based storage environment, this could also be
achieved with relative efficiency.

In all other peer-to-peer based systems, each node is
assigned an identifier string of the same length (e.g., 160
bits if SHA-1 is used). The advantages of our scheme are:
1) efficient routing for these nodes with short identifiers;
2) balance of the load to nodes in the pool (node with a
larger volume capacity receives more data objects propor-
tionally according to its identifier length). Note that in
Chord CFS [3] and PAST [4], the volume capacity prob-
lem is addressed by letting larger capacity server running
multiple “virtual servers” or splitting the node into several
nodes. Theoretically, the approach taken by Chord CFS is
equivalent to our approach. However, our solution is more
natural and much more efficient.

For an � -digit identifier $ and an integer � &�� , we
will use $�� ��� to denote the � -th digit of $ (that is, $ �
$�� � ������� $�� ���), and $�� � ��� ��� to denote $�� � ������� $�� ��� .
4.2 Routing

The routing protocol in our scheme is a novel combi-
nation of the “Scalable Key Location” algorithm in Chord
[11] and the longest prefix routing algorithm in Plaxton-
Rajamaran-Richa [8] and Tapestry [7, 5] (note that the
longest prefix routing algorithm is similar to the algorithm
for CIDR IP address allocation architecture in IETF RFC-
1518). In Chord, the location of a data object is claimed to
be determined with ��������
 � � queries (with high probabil-
ity, this claim is correct. However, this is not true for the

worst case). The advantage of Chord � is that the location
of a data object could be determined in �%� ����

� queries
(with high probability, the number of queries is bounded
by �	��
 � �), which could significantly improve the perfor-
mance if � is chosen appropriately. Note that ��������
 � �
entries for the location of other nodes need to be stored at
each node for routing purpose in Chord � , this is similar
to Plaxton-Rajamaran-Richa and Tapestry. One advantage
of Chord � over Plaxton-Rajamaran-Richa and Tapestry is
the simplicity of implementation (similar to Chord).

The identifiers of nodes and data objects are fixed
bit sequences (remember that for node identifiers, this is
achieved by appending 1’s to the end of their � � -bit iden-
tifiers) represented by a common base � (e.g., 40 hexadec-
imal digits representing 160 bits). In the following, we
assume that the base � is fixed and identifiers have � digits
under this common base � (that is, � � �� ����

�). Each
node in the storage infrastructure pool acts both as a router
and as a storage server.

Each node $ has a multiple level finger map which
is a novel combination of the neighbor map in Plaxton-
Rajamaran-Richa [8] and Tapestry [7, 5] and the finger ta-
ble in Chord [11]. A finger map consists of � levels and
each level consists of � entries. In another word, a fin-
ger map for a node $ is an � � � matrix

� � . Each level
of the finger map represents a matching “prefix” up to a
digit position in the identifier. A given level of the finger
map contains a number of entries “close” to the base of the
identifier, where the � -th entry (

� & ��� �) in the � -th level
(� & �) is the identifier and location of the first node $��
	 �
that succeeds the identifier $�� � ��� � �%� � � � ����� � on the identi-
fier circle. That is, $��
	 � � �����	�	
�������� $�� � ��� � � � � � � ����� � � .
In another word,

� � ��� � ��� �� $��
	 � � location of $���	 ��� . It is
easy to see that the entry nodes in $ ’s � -th level (� & �)
finger map distributes evenly in an interval of size ��� � �����
containing the node $. For example, the 8th entry in the
5th level for node 234AC478CB is the successor node of
234A800000. In addition to the finger map table, each
node maintains pointers to its successor and predecessor.
An example of finger map is shown in Figure 3.

successor
predecessor

... ...

S(0000)
S(1000)
S(2000)

S(2000)
S(2100)
S(2200)

S(2300)
S(2310)
S(2320)
...

... ...

... ...

... ...

... ...

finger map for node 234A, S(.)=successor(.)

level 1 level 2 level 3

entry 1
entry 2
entry 3
... ...

0000

234A

Figure 3: The finger map of node 234A

When a node $ needs to know the location of the node

which has stored or will store a data object with identi-
fier ID � , the node $ searches its entire finger map (all
levels) for a node $ � whose identifier most immediately
succeeds ID � , and asks $ � for the location of the data ob-
ject ID � . By repeating this process, the location of the
node with the identifier ��� ���	
�������� ID � � will be returned
to $. For a node $ and a data object identifier ID � , let
$ � � $ � �	� ��
���� ��� �	��
�
�������� � ID � � be the unique node in
$ ’s finger map (including predecessor) such that there is
no other node $ � � in $ ’s finger map with the property that
$ � � � � ID � � $ � � .

When a node $ executes $ � �	� ��
���� ��� �	��
�
�������� � ID � � ,
it first computes the longest shared prefix $�� � ��� � ��� � �
ID ��� � � � � � � � between $ and ID � . Then it returns the value� � � ID � � � � � � � in the ID � � � � -th entry of the � -th level of the
$ ’s finger map.
$�� ! ��� � �����	�	
�������� ID � � works by finding the imme-

diate successor node of the data object identifier in $ ’s
finger map (including the predecessor). If after

� � re-
cursive calls of the procedure $�� ! ��� � �����	�	
�������� ID � � , $
still does not find the successor of ID � , then $ initiates
an exhaustive search concurrently: Queries for the identi-
fier ��� �	��
�������� ID � � is passed around the identifier circle
via the successor pointers. Thus, if pointers to successor
nodes in the system are correct, then it is guaranteed to find
the successor node of ID � even if other parts of the finger
maps are incorrect. In the following, we will show that
if the finger maps are consistent, then this routing method
guarantees that the location of the node ��� ���	
�������� ID � �
is returned in � � �%� �	��

� recursive calls of the routine
$�� ! ��� � �����	�	
�������� ID � � , where � is the bit-length of the
data object identifier and � is the digit base (e.g., if hex-
adecimal digit is used, then � � ���

).

Theorem 4.1 Assume that the information contained in
all finger maps are correct. Then for any data object
with identifier ID � , the number of nodes that must be con-
tacted to find the location of �����	�	
�������� ID � � is bounded
by � . With high probability, the number of nodes that
must be contacted to find the location of ��� ���	
�������� ID � �
is bounded by ��������
 � ��� .

Recall that in Chord, the number of nodes that must
be contacted to find the location of �����	�	
�������� ID � � is
bounded by ��������
� ��� with high probability (and is
bounded by � with probability 1). In several scenarios, the
improvement of contacted nodes to ��������
 � ��� with high
probability (and to � deterministically) by Chord � is pre-
ferred. In a summary, Chord � inherits the advantages of
Chord [11], Plaxton-Rajaraman-Richa [8], and Pastry [4],
and overcomes the disadvantages of these schemes. In par-
ticular, Chord � has the following advantages:

� The location of each data object is determined by
making a logarithmic number queries.

� Data objects are well balanced even if the storage
nodes do not have equal volume capacity.

� Similar to Chord, Chord � is substantially less com-
plicated than other schemes.

� The base � could be increased (thus the size of the fin-
ger map is increased) to reduce the number of queries
in the routing process.

There has been an active research on distributed ob-
ject location algorithms in the past few years. For exam-
ple, attenuated Bloom filters, minimality and locality bal-
ance techniques have been proposed for OceanStore [7, 5].
Some of these technologies could be used to improve the
performance of Chord � also (we will address these issues
in a different paper).
4.3 Node insertion and deletion
4.3.1 Node join

In a dynamic network, node can join and leave at any time.
Thus special mechanisms should be designed to preserve
the ability to locate each data object in the network. Simi-
lar to Chord, this could be achieved by preserving the two
invariants:

1. Each node’s successor is correctly maintained.

2. For each data object with identifier ID � , node
�����	�	
��������� ID � � is responsible for it.

The correct finger map for each node is also necessary for
fast data objects lookups.

When a new node $ is added to the storage infrastruc-
ture pool, three things need to be done to preserve the in-
variants mentioned above:

1. Initialize the finger map of $.

2. Update the finger maps of existing nodes to reflect the
addition of $.

3. Initiate the transfer of data objects for which $ is re-
sponsible from other nodes to $.

We assume that the new node $ learns the identity of an
existing Chord � node $ � by bootstrap mechanisms such as
out of band communication. Node $ uses $ � to initialize
its finger map and to add it to the storage infrastructure.
Populating the finger map and updating finger maps
of existing nodes: Node $ learns its finger map at each
level by asking $ � to look up ��� ���	
�������� $ � and updating
and copying finger maps along each hop from $ � . Start-
ing with node $ � , node $ attempts to route to node $,

and updates the finger map for the � -th hop $ � (note that
$�� � $ �) if necessary. That is, if $ lands between)�����	 ��� �
$ � � � ��� � � � � � � ����� � and $ � � 	 � � � �����	�	
��������) � � 	 � � � , and� ��� ��� � � � � � � � � $ � � 	 � � � � � , then $ � updates this entry
by letting

� ��� � � � � � � � � � � $ � location of $�� . Assume
that the last hop is $
	 and $ and $
	 shares a � � -digit prefix,
where � � � � . Then $ copies entries in the updated level�

, . . . , and level ��� � �
of $ 	 ’s finger map. $ fills level

��� � � , . . . , and level � of its finger map by computation on
the information contained in �����	�	
�������� $ � ’s finger map.

By Theorem 4.1, the subroutine takes at most
�����	��
�� ��� steps in an � -node network. Thus with high
probability, the above algorithm for populating the new
node finger map and updating existing node finger maps
takes at most �����	��
 � ��� steps in an � -node network.
Further updating finger maps of existing nodes: In
the process of “Populating the finger map and updat-
ing finger maps of existing nodes”, the finger maps
of these nodes that were contacted by the subroutine
$ � � ! ��� � �����	�	
��������� $ � have already been updated. Node
$ may need to be entered into the finger maps of other
existing nodes also. Let $��� ��� ��
���
��	
��������� $ � and
����� ������������� $�� � � � � � � $� � � � � � ��� . Assume that there
are more than two existing nodes already in the network.
For any existing node)��� $, � � � , and � & � , let
) �
	 � � �) � � � � � � � � � � ����� � . Assume that

� � � � � ��� �) � � � � .
Then) ’s finger map needs to be updated if and only if
$ � �) ��	 � �) � � for some � ��� and � & � . In this
case,) can update its finger map by letting

� ��� ��� � ��� � �
 $ � location of $�� . The challenging problem is how to
find all these nodes) efficiently. If $ � �)��
	 � �) � � , then
) �
	 � � � $� � $ � (otherwise, since $! � �) � � $ � we have
$� � �) �
	 � � $ � whence $� � �) ��	 � �) � � , which is a con-
tradiction with the fact that

� � ��� � ��� �) � � � �). Thus if) ’s
finger map needs to be updated only if one of the following
two conditions hold:

1.) � � � � ���	� � $�� � � � �"��� ;
2.) � � � � � � � � $ � � ��� � � � for some � � � � � and $ �
$ � � ��� � � � � � � ��� � � .

We can use this fact to search for all nodes whose finger
maps need to be updated.

For an � -node network, the expected distance between
every two nodes is ��� � � � ��� . Thus with high probability,
$ and $ share a prefix of ��������
 � ��� -digits. Hence, with
high probability, the value of � � is around �����	��
� ��� . Sim-
ilar arguments show that there are constant number nodes
whose identifiers begin with the prefix $ � � ��� � � � . It takes
�����	��
�� ��� steps to find all such kinds of nodes. Thus with
high probability, updating all existing nodes’ finger maps
takes around ��������
 � ��� steps.

It should be noted that in our scheme, a node insertion
could be finished in �����	��
� ��� steps. All other existing
node insertion algorithms take ����������
 � ��� � � steps (see the
summary in [5]).
Transferring data objects: Another operation that has to
be performed when a node $ joins the network is to move
responsibility for all data objects for which node $ is now
the successor. Node $ can become the successor only for
data objects that were previously the responsibility of the
node immediately following $. Thus this operation can be
finished by communications between $ and �����	�	
��������� $ � .

Concurrent joins and stabilization will be discussed in
the full version of this paper.

4.3.2 Node departure

When a node $ leaves the storage infrastructure pool, two
things need to be done to preserve the invariants mentioned
at the beginning of this section.

1. Update the finger maps of remaining nodes to reflect
the deletion of $.

2. Initiate the transfer of data objects for which $ is re-
sponsible to ��� �	��
�������� $ � .

A node can actively inform the relevant parties of its de-
parture using its pointers and transferring its data objects
to its successor, or just leave the pool and rely on the sys-
tem to remove it over time. In practice, the first choice
should always be taken whenever possible since it will re-
move the burden for the system to remove it. If a node
leaves the infrastructure pool without transferring its data
objects to its successor node, then these data objects should
be recovered from other nodes and copied to its successor
during the stabilization process. In order to deal with node
departure without notification, (similar to Chord) each en-
try of the node finger map maintains “successor-list” of �
consecutive successors instead of one successor.

In our storage infrastructure (generally a commercial
environment), we assume that the node insertion and de-
parture are generally predictable (different from the as-
sumption for peer-to-peer systems). Thus system con-
sistency could be achieved without significant impact on
the system performance by: 1) running the dynamic sta-
bilization algorithms at the node insertion and departure
time manually; 2) running the dynamic stabilization al-
gorithms automatically at a fixed period (though less fre-
quently compared to peer-to-peer systems) to remove non-
notified node departure or to find out network configuration
changes..

Approaches to survivability will be discussed in the full
version of this paper.

References
[1] G. Bell. A personal digital store. CACM, 44(1):86–

91, 2001.

[2] G. Bell and J. Gemmell. A call for the home media
network. CACM, 45(7):71–75, 2002.

[3] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage CFS. In
Proc. of the 18th ACM SOSP, pages 202–215, Banff,
Canada, 2001.

[4] P. Druschel and A. Rowstron. PAST: a large-scale
persistent peer-to-peer storage utility. Proc. HotOS
Conf., IEEE Computer Soc. Press, 2001.

[5] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao.
Distributed object location in a dynamic network. In
Proc. SPAA’02, August, 2002.

[6] D. Karger, E. Lehman, F. Leighton,
M. Levine,D. Lewin, and R. Panigrahy. Consis-
tent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide
Web. In: Proc. of the 29th ACM STOC, pages
654–663, 1997.

[7] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaten, D. Geels, R. Gummadi, S. Rhea, H. Weath-
erspoon, W. Weimer, C. Wells, B. Zhao. OceanStore:
An architecture for global-scale persistent storage.
ASPLOS 2000.

[8] C.Plaxton, R. Rajaraman, and A. Richa. Accessing
nearby copies of replicated objects in a distributed
environment. In: Proceedings of ACM SPAA, ACM
Press, June 2001.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network.
Proc. SIGCOMM Conf., pages 161–172, ACM Press,
New York, 2001.

[10] A. Rowstron and P. Druschel. Pastry: scalable,
distributed object location and routing for large-
scale peer-to-peer systems. In: Proc. of the 18th
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001), Nov. 2001.

[11] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,
M. Kaashoek, and F. Dabek. Chord, a scalable peer-
to-peer lookup protocol for Internet applications.
Proc. SIGCOMM Conf., ACM Press, New York,
2001.

