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Abstract. Problems of secure communication and computation have been stud-
ied extensively in network models, for example, Franklin and Yung have studied
secure communications in the general networks modeled by hypergraphs. Radio
networks have received special attention in recent years. For example, the Blue-
tooth and IEEE 802.11 networks are all based on radio network technologies. In
this paper, we use directed colored-edge multigraphs to model the radio networks
and study reliable and private message transmissions in radio networks.
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1 Introduction

If two parties are connected by a private and authenticated channel, then secure com-
munication between them is guaranteed. However, in most cases, many parties are only
indirectly connected, as elements of an incomplete network of private and authenti-
cated channels. In other words they need to use intermediate or internal nodes. Achiev-
ing participants cooperation in the presence of faults is a major problem in distributed
networks. The interplay of network connectivity and secure communication have been
studied extensively (see, e.g., [2, 5, 9, 10, 16]). For example, Dolev [9] and Dolev et al.
[10] showed that, in the case of k Byzantine faults, reliable communication is achiev-
able only if the system’s network is 2k + 1 connected. Hadzilacos [16] has shown that
connectivity k + 1 is required to achieve reliable communication in the presence of k
faulty participants even if those faults are not malicious.

Goldreich, Goldwasser, and Linial [15], Franklin and Yung [14], Franklin and Wright
[13], and Wang and Desmedt [20] have initiated the study of secure communication and
secure computation in multi-recipient (multicast) models. A “multicast channel” (such
as Ethernets) enables one participant to send the same message—simultaneously and
privately—to a fixed subset of participants. Franklin and Yung [14] have given a neces-
sary and sufficient condition for individuals to exchange private messages in multicast
models in the presence of passive adversaries (passive gossipers). For the case of ac-
tive Byzantine adversaries, many results have been presented by Franklin and Wright
[13], and, Wang and Desmedt [20]. Note that Goldreich, Goldwasser, and Linial [15]
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have also studied fault-tolerant computation in the public multicast model (which can
be thought of as the largest possible multirecipient channels) in the presence of active
Byzantine adversaries. Specifically, Goldreich, Goldwasser, and Linial [15] has made
an investigation of general fault-tolerant distributed computation in the full-information
model. In the full information model no restrictions are made on the computational
power of the faulty parties or the information available to them. (Namely, the faulty
players may be infinitely powerful and there are no private channels connecting pairs of
honest players). In particular, they present efficient two-party protocols for fault-tolerant
computation of any bivariate function.

There are many examples of multicast channels. A simple example is a local area
network like an Ethernet bus or a token ring. Another example is the Bluetooth or IEEE
802.11 network.

We consider a radio network in which stations can communicate with each other
using frequencies allocated to them. Let F be the set of frequencies. Each station knows
a subset of F . However at any given time it can only use a subset of its allocated
frequencies, according to a defined frequency schedule. Communication can be jammed
due to intentional or accidental jamming. The aim of this paper is to analyze these
networks and construct protocols that allow reliable communication when it is possible.

The radio networks studied in [1] is similar to our model. In particular, they con-
sidered a special case of jamming as follows: a processor receives no messages if it is
the recipient of of two or more partial broadcasts simultaneously. However, they do not
consider privacy.

Note that a special case of frequencies allocation problem is the random key pre-
destribution problem. Recently, Eschenauer and Gligor [12] constructed a specific ran-
dom key distribution scheme and used it to build random sensor networks.

The outline of the paper is as follows. We introduce our model in Section 2. In Sec-
tions 3, 4, and 5, we study reliable message transmission against passive adversaries,
jamming adversaries, and active adversaries in radio networks respectively. We study
probabilistically reliable and perfectly private message transmission in certain radio net-
works in Section 7, and discuss the radio networks with minimal number of frequencies
in Section 8. We conclude our paper with some open problems in Section 9.

2 Model

A radio network is a directed colored-edge multigraph R(V,E, F, c), where V is the
node set (corresponding to radio stations), E is the directed edge set (there might be
more than one directed edge from one node to another one), F is the frequency (color)
set, and c is a map from E to F (the map c assigns a frequency to each edge).

In a radio network, we assume that any message sent by a node v on a frequency f
will be received identically by all nodes u such that there is a directed edge e ∈ E from
v to u and c(e) = f , whether or not v is faulty, and no other party (even if it has an
incoming edge with frequency f originated from another node or it can use frequency
f to broadcast to other nodes) learns anything about the content of the message.



Franklin and Yung [14] used hypergraphs1 to model the multicast networks. A hy-
pergraph H is a pair (V,E) where V is the node set and E is the hyperedge set. Each
hyperedge e ∈ E is a pair (v, v∗) where v ∈ V and v∗ is a subset of V . In a hypergraph,
any message sent by a node v will be received identically by all nodes in v∗, whether
or not v is faulty, and all parties outside of v∗ learn nothing about the content of the
message. Unless specified otherwise, we will use radio networks throughout our paper
and will not use hypergraph networks.

It is easy to see that Franklin-Yung’s hypergraph networks is a special case of our
radio networks (the difference will be clear from the adversary model which we will
give later).

Let v, u ∈ V be two nodes of the radio network R(V,E, F, c). We say that there is
a “direct link” from node v to node u if there exists a directed edge e from v to u. We
say that there is an “undirected link” from v to u if there is a directed link from v to u
or a directed link from u to v. If there is a directed (undirected) link from vi to vi+1 for
every i, 0 ≤ i < k, then we say that there is a “directed path” (“undirected path”) from
v0 to vk.

Throughout the paper, we consider receiver-jamming, sender-jamming, destroy-
jamming, and multicast as our only communication primitives.

1. A node v can receiver-jam on a frequency f if there is a directed edge e from v to
some node u with c(e) = f . The result of receiver-jamming by v on frequency f is
that for any node u such that there is a directed edge e from v to u, u cannot receive
any message transmitted on the frequency f by any node.

2. A node v can sender-jam on a frequency f if there is a directed edge e from v to
some node u with c(e) = f . The result of sender-jamming by v on frequency f is
that for any node u such that there is a directed edge e from v to u, u cannot send
any message on the frequency f to any node.

3. A node v can destroy-jam on a frequency f if there is a directed edge e from v to
some node u with c(e) = f . The result of destroy-jamming by v on frequency f is
that for any node u such that there is a directed edge e from v to u, u cannot receive
or send any message on any frequency.

4. A message that is multicast by a node v on a frequency f in a radio network
R(V,E, F, c) shall be received by all nodes u satisfying the following conditions
with privacy (that is, other nodes learn nothing about what was sent) and authenti-
cation (that is, the node u is guaranteed to receive the value that was multicast and
to know which node multicast it)2

– There is a directed edge e from v to u and c(e) = f .
– u is not being jammed on the frequency f .

In addition to the intentional jamming by a malicious adversary, communications in ra-
dio networks can be accidentally jammed by honest users when a well planned schedule
is not followed. Consider the following scenario, if both nodes u and v try to send mes-
sages to the node w on the same frequency f at the same time slot, then it is clear that

1 Franklin-Yung’s hypergraphs are different from the the standard definition in [3].
2 Note that this is reasonable assumption if both u and v can share a private key. However, if
u and v does not share a private key, then no authenticity is guaranteed since nodes v′ might
impersonate v if there is a directed edge e′ from v′ to u.



the node w will be “jammed”. We call this kind of jamming accidental jamming. Acci-
dental jamming is more or less a design problem and we will not further our study on
this topic in this paper (more details could be found in [4]).

We assume that all nodes in the radio network know the complete protocol spec-
ification and the complete structure of the radio network. In a message transmission
protocol, the sender A starts with a message MA drawn from a message space M with
respect to a certain probability distribution. At the end of the protocol, the receiver B
outputs a message MB . We consider a synchronous system in which messages are sent
via multicast in rounds. During each round of the protocol, each node receives any mes-
sages that were multicast for it at the end of the previous round, flips coins and perform
local computations, and then possibly multicasts a message. We will also assume that
the message space M is a subset of a finite field F.

Throughout this paper k denotes the number of faults under the control of the ad-
versary. We write |S| to denote the number of elements in the set S. We write x ∈R S
to indicate that x is chosen with respect to the uniform distribution on S.

We consider three kinds of adversaries. A passive adversary (or gossiper adversary)
is an adversary who can only observe the traffic through k internal nodes. A jamming
adversary is an adversary who can observe the traffics through some k internal nodes
and/or jam from these k internal nodes. An active adversary (or Byzantine adversary)
is an adversary with unlimited computational power who can control k internal nodes.
That is, an active adversary will not only listen to the traffics through the controlled
nodes, but also control the message (might be jamming noise) sent by those controlled
nodes. All kinds of adversaries are assumed to know the complete protocol specifica-
tion, message space, and the complete structure of the radio network. At the start of the
protocol, the adversary chooses the k faulty nodes. (An alternative interpretation is that
k nodes are collaborating adversaries.) The power of the adversaries is listed as follows
(weakest first).

k-passive adversary→ k-jamming adversary→ k-active adversary

Throughout the paper, we assume that an active adversary can mount jamming at-
tacks automatically. We will mainly consider three kinds of jamming in this paper:
receiver-jamming, receiver-and-sender-jamming, and destroy-jamming. Thus, we will
respectively have three kinds of active adversaries according to their jamming ability:
rj-active adversary, rsj-active adversary, and dj-active adversary.

For any execution of the protocol, let adv be the adversary’s view of the entire
protocol. We write adv(M, r) to denote the adversary’s view when MA = M and
when the sequence of coin flips used by the adversary is r.

Definition 1. 1. A message transmission protocol is δ-reliable if, with probability at
least 1 − δ, B terminates with MB = MA. The probability is over the choices of
MA and the coin flips of all nodes.

2. A message transmission protocol is reliable if it is 0-reliable.
3. A message transmission protocol is ε-private if, for every two messages M0,M1 and

every r,
∑

c |Pr[adv(M0, r) = c]− Pr[adv(M1, r) = c]| ≤ 2ε. The probabilities
are taken over the coin flips of the honest parties, and the sum is over all possible
values of the adversary’s view.



4. A message transmission protocol is perfectly private if it is 0-private.
5. A message transmission protocol is (ε, δ)-secure if it is ε-private and δ-reliable.
6. An (ε, δ)-secure message transmission protocol is efficient if its round complexity

and bit complexity are polynomial in the size of the network, log 1
ε (if ε > 0) and

log 1
δ (if δ > 0).

3 Achieving perfect privacy and reliability against passive
adversaries

Let R(V,E, F, c) be a radio network, and S ⊂ V be a node set. Then the reduced radio
network R(V \S, EV \pS , F, c) is defined by letting EV \pS = E \Ep

S , where Ep
S is the

set of the following directed edges:

1. all edges originated from nodes in S.
2. all incoming edges of nodes in S.
3. all edges e from u to v such that there is an edge e′ from u to some node in S and

c(e) = c(e′).

Theorem 1. Reliable and perfectly private message transmission from u to v in a ra-
dio network R(V,E, F, c) is possible against a k-passive adversary if and only if the
following conditions are satisfied:

1. There is a directed path from u to v in R(V,E, F, c).
2. For any k-node set S, there is an undirected path from u to v in the reduced radio

network R(V \ S, EV \pS , F, c).

Proof. The proof is the same as that in Franklin and Yung [14] for reliable and
perfectly private message transmission in hypergraphs. Q.E.D.

4 Achieving reliability against jamming adversaries

We first give a sufficient and necessary condition for achieving reliability against receiver-
jammers. Let R(V,E, F, c) be a radio network, and S ⊂ V be a node set. Then the radio
network R(V \ S, EV \rjS , F, c) is defined by letting EV \rjS = E \Erj

S , where Erj
S is

the set of the following directed edges:

1. all edges originated from nodes in S.
2. all edges e from u to v such that there is an edge e′ from some node in S to v and

c(e) = c(e′).

Theorem 2. Reliable message transmission from u to v in a radio network R(V,E, F, c)
against a k-receiver-jamming adversary is possible if and only if for any k-node set S,
there is a directed path from u to v in the reduced radio network R(V \S, EV \rjS , F, c).



Proof. If the condition is not satisfied, then there is a k-node set S such that there is
no directed path from u to v in the reduced radio network R(V \S, EV \rjS , F, c). Thus
if the k-receiver-jammer controls all the nodes in S and keeps receiver-jamming on all
available frequencies, all message transmissions from u to v will be blocked.

If the condition of the Theorem is satisfied, then for each k-node set S, there is a
directed path pS from u to v in the reduced radio network R(V \S, EV \rjS , F, c). Thus
u can transmit the message along all such paths (there are

(|V |−2
k

)
such paths) with

different
(|V |−2

k

)
time slots. Q.E.D.

Now we give similar necessary and sufficient conditions for achieving reliability
against receiver-and-sender-jammers and destroy-jammers. Let R(V,E, F, c) be a radio
network, and S ⊂ V be a node set. Then the radio network R(V \ S, EV \rsjS , F, c) is
defined by letting EV \rsjS = E \Ersj

S , where Ersj
S is the set of the following directed

edges:

1. all edges originated from nodes in S.
2. all edges e from u to v such that there is an edge e′ from some node in S to v or u

and c(e) = c(e′).

Similarly, the radio network R(V \ S, EV \djS , F, c) is defined by letting EV \djS =
E \ Edj

S , where Edj
S is the set of the following directed edges:

1. all edges originated from nodes in S.
2. all edges e from u to v such that there is an edge e′ from some node in S to v or u.

Theorem 3. Reliable message transmission from u to v in a radio network R(V,E, F, c)
against a k-receiver-and-sender-jamming adversary (resp. k-destroy-jamming adver-
sary) is possible if and only if for any k-node set S, there is a directed path from u to v
in the reduced radio network R(V \ S, EV \rsjS , F, c) (resp. R(V \ S, EV \djS , F, c)).

Proof. The proof is the same as that of Theorem 2. Q.E.D.
In this section, we have studied receiver-only jamming, receiver-and-sender jam-

ming, and destroy-jamming. We will not discuss sender-jamming since a sender-jammer
can easily mount receiver-jamming attacks.

5 Achieving reliability against active adversaries

Definition 2. Let R(V,E, F, c) be a radio network, and u, v ∈ V be distinct nodes of
R. u, v are k-separable in R, k ≥ 0, if there is a node set W ⊂ V with at most k nodes
such that any directed path from u to v goes through at least one node in W . We say
that W separates u, v.

We have the following result.

Theorem 4. The nodes u, v of a radio network R is not 2k-separable if and only if for
all k-node sets V1 ⊂ V there is a set SV1 of directed paths from u and v such that for
all k-node sets V2 ⊂ V \ V1, the following conditions hold:



– the paths in SV1 are free of nodes in V1,
– there is at least one directed path in SV1 which is free of the nodes in V2.

Proof. First consider the case when u, v are not 2k-seperable. We shall prove that
the conditions are satisfied. For any k-node set V1 ⊂ V , let SV1 be the set of all paths
from u to v which are free of nodes in V1. Now assume that there is one k-node set
V2 ⊂ V such that all paths in SV1 go through V2. Then V1 ∪ V2 separates u and v in R.
That is u and v are 2k-separable in R which is a contradiction.

For the converse observe that the conditions on the paths SV1 make it impossible to
have a k-node set V2 ⊂ V such that V1 ∪ V2 separates u and v. Indeed if there where
such a set V ′ = V1 ∪ V2 to separate u and v then there would be no path in SV1 free of
the of V1 and V2. Q.E.D.

For a radio network R(V,E, F, c) and a node set S ⊂ V , the reduced radio networks
R(V \S, EV \rjS , F, c), R(V \S, EV \rsjS , F, c), and R(V \S, EV \djS , F, c) are defined
in Section 4. In the next Theorem, we give a sufficient and necessary condition for
achieving reliable communication against a k-active adversary over radio networks.

Theorem 5. A necessary and sufficient condition for reliable message transmission
against a k-rj-active (resp. k-rsj-active and k-dj-active) adversary from u to v is that for
any s-node set S (s < k), u and v are not 2(k − s)-separable in the reduced radio net-
work R(V \S, EV \rjS , F, c) (resp. R(V \S, EV \rsjS , F, c) and R(V \S, EV \djS , F, c) ).

Proof. First assume that for any s-node set S (s < k), u and v are not 2(k − s)-
separable in the reduced radio network R(V \ S, EV \rjS , F, c) (respectively, R(V \
S, EV \rsjS , F, c) and R(V \ S, EV \djS , F, c)). Let P be the set of all directed paths
from u to v. The paths in P will be used for transmitting messages by u to v. Let mu

be a message selected by u for transmission via these paths. Now apply Theorem 4. For
any s-node set S, let V1 be a (k− s)-node set and PV1 be the set of paths in P ∩R(V \
S, EV \rjS , F, c) (resp. P ∩ R(V \ S, EV \rsjS , F, c) and P ∩ R(V \ S, EV \djS , F, c))
which are free of nodes in V1. Then:

– If the adversary mounts jamming attacks in the s nodes from S and send malicious
message from the k − s nodes in V1, v will receive the same messages mu via all
the paths in PV1 (since the adversary is bounded to k nodes and PV1 is free of the
nodes in V1).

– If the adversary mounts jamming attacks in the s nodes from S and send malicious
messages from some node outside V1, there is a set V2 which contains all these
nodes. By the property of P , there will be a directed path P ∈ PV1 which is free
from the nodes controlled by the adversary. In this case the messages received by v
via the paths PC1 may not all be the same, if the adversary is active.

Assuming that v knows the jamming nodes set S, then it follows that v can distinguish
the case when the message mu is corrupted by the adversary from the case when it is
not, by testing the messages received via the paths PV1 , for the s-node set S and each
(k − s)-node set V1. However, an active adversary may try to control a node w in such
a way that it will jam on some frequencies available to w and send malicious messages
on other available frequencies to w. An active adversary could also send out malicious



message no matter it has been receiver-jammed or not. Thus, the node v generally can-
not learn from the received messages which set is the S. To achieve reliability, u sends
to v via the paths PV1 the message mu labeled by (S, V1), for each s-node set S and
each (k− s)-node set V1. v checks the messages received via the paths in PV1 , for each
label (S, V1). After receiving all these messages, v recover the message according the
the following rules: First, for the 0-node set S = ∅ and each k-node set V1, v tries to
recover the message from the messages received from the paths in PV1 . If v succeeds
then v outputs the message. Otherwise, for each possible 1-node set S (possible jam-
mers) and each (k − 1)-node set V1, v tries to recover the message from the messages
received from the paths in PV1 . If v succeeds, then v outputs the message. v repeat
the above steps until v finds the message. ¿From our discussion above, v will find the
correct the message with 100%-reliability.

Next assume that there exists an s-node set S (s < k) such that u and v can be
separated by a 2(k−s)-node set W in the reduced radio network R(V \S, EV \rjS , F, c)
(resp. R(V \S, EV \rsjS , F, c) and R(V \S, EV \djS , F, c)). Suppose that π is a message
transmission protocol from u to v and let W = W0∪W1 be a 2(k−s)-node separation of
u and v with W0 and W1 each having at most k−s nodes. Let m0 be the message that u
transmits. The adversary will attempt to maintain a simulation of the possible behavior
of u by executing π for message m1 6= m0. In addition to controlling the nodes in
S, the strategy of the adversary is to flip a coin and then, depending on the outcome,
decide which set of W0 or W1 to control. Let Wb be the chosen set. In each execution
step of the transmission protocol, the adversary sends receiver-jamming (resp. receiver-
and-sender jamming and destroy-jamming) messages on all nodes in S and causes each
node in Wb to follow the protocol π as if the protocol were transmitting the message m1.
This simulation will succeeds with nonzero probability. Since v does not know whether
b = 0 or b = 1, at the end of the protocol v cannot decide whether u has transmitted
m0 or m1 if the adversary succeeds. Thus with nonzero probability, the reliability is not
achieved. Q.E.D.

6 Achieving reliability and perfect privacy against active
adversaries

Theorem 6. Reliable and perfect private message transmission from u to v in a ra-
dio network R(V,E, F, c) against a k-rj-active (resp. k-rsj-active and k-dj-active) ad-
versary is possible if for any k-node set S, reliable message transmission against a
k-rj-active (resp. k-rsj-active and k-dj-active) adversary is possible in the reduced ra-
dio network R(V \ S, EV \pS , F, c), where EV \pS = E \ Ep

S and Ep
S is the set of the

following directed edges:

1. all edges going to nodes in S.
2. all edges e from u to v such that there is an edge e′ from u to some node in S and

c(e) = c(e′).

Proof. Let Γ = {S1, . . . , St} be a list of all k-node subsets of V and mu be the
message that u wants to send to v. u constructs a t-out-of-t secret sharing scheme
(su

1 , . . . , su
t ) of mu. For each i ≤ t, u reliably sends su

i to v via the reduced radio



network R(V \ Si, EV \pSi
, F, c). For each i ≤ t, v reliably receives sv

i on the reduced
radio network R(V \Si, EV \pSi

, F, c). Now assume that the adversary control all nodes
in Si0 , then the adversary will learn no information about su

s0
. Thus the above protocol

is perfectly private. It suffices to show that the above protocol is reliable. It is straight-
forward to show that v reliably receives all correct shares (sv

1, . . . , s
v
t ) = (su

1 , . . . , su
t ).

Thus the above protocol is (0, 0)-secure. Q.E.D.

7 Probabilistically reliable and perfectly private message
transmission in certain radio networks

In this section, we briefly discuss the possibility of migrating Franklin and Wright’s
[13] message transmission protocol from neighbor networks to radio networks. Many
radio networks have the property that each station can use all available frequencies
to him/her both to receive messages and to multicast messages. We call such kind of
radio networks bi-directional radio networks. Two nodes u and v in a bi-directional
radio network R(V,E, F, c) is weakly (n, k)-connected if there are n paths p1, . . . , pn

between u and v such that for any k-node set S ⊂ V , there exists a path pi such that
there is neither edge from a node in S to a node on Pi nor edge from a node on pi to a
node in S.

Theorem 7. If two nodes u and v in a bi-directional radio network R(V,E, F, c) is
weakly (n, k)-connected for some n > k, then there is an efficient probabilistically
reliable and perfectly private message transmission between u and v.

Proof. The proof is the same as that for the corresponding result in neighbor net-
works by Wang and Desmedt [20]. Q.E.D.

A similar example as in Desmedt and Wang [7] can be used to show that weak
(n, k)-connectivity is not a necessary condition for achieving probabilistically reliable
and perfectly private message transmissions in bi-directional radio networks. Also,
similar example as in Desmedt and Wang [7] shows that there is a radio network
where probabilistically reliable message transmission is possible though private mes-
sage transmission is impossible.

8 Minimizing the number of frequencies in certain radio networks

In this section, we study a specific case of radio networks initially studied in [6]. Let
F = {f1, . . . , fm}, and B = {B1, . . . , Bn} where Bi ⊆ F . Assume that there are
n participants, and each participants pi is given a set of frequency set Bi. Each par-
ticipant is able to send messages with any frequency fj ∈ Bi, and each participant
who has the same frequency will receive the message. This scenario can be described
by the radio network R(V,E, F, c) as follows: Let V = {p1, . . . , pn}, F = ∪iBi,
E = ∪i{(pi, pj)f : f ∈ Bi ∩Bj , i 6= j}, and c((pi, pj)f ) = f .

By using Theorem 2, we derive a sufficient and necessary condition for robust fre-
quency broadcast systems against receiver-jammers. We first introduce some notations.
Let F = {f1, . . . , fm}, and B = {B1, . . . , Bn} where Bi ⊆ F .



– A system (F,B) is called a cover free family CFF (m,n, k) [11] if for any distinct
i, i1, . . . , ik ≤ n, we have Bi 6⊆ (Bi1 ∪ . . . ∪Bik

) .

– A system (F,B) is called a key distribution pattern [17] KDP (m,n, k) if for
any i1, . . . , ik ≤ n and i, j ≤ n (i, j are different from i1, . . . , ik), we have
(Bi ∩Bj) 6⊆ (Bi1 ∪ . . . ∪Bik

) .

– A system (F,B) is called a semi key distribution pattern SKDP (m,n, k) if for
any i1, . . . , ik ≤ n and i, j ≤ n (i, j are different from i1, . . . , ik), at least one of
the following conditions holds:

1. (Bi ∩Bj) 6⊆ (Bi1 ∪ . . . ∪Bik
) ,

2. there exist s1, . . . , st for some t ≤ n−2 such that (Bi ∩Bs1) 6⊆ (Bi1 ∪ . . . ∪Bik
),

. . ., (Bst
∩Bj) 6⊆ (Bi1 ∪ . . . ∪Bik

)

Obviously a KDP (m,n, k) is a SKDP (m,n, k), and a SKDP (m,n, k) is a
CFF (m,n, k).

Theorem 8. Let V = {p1, . . . , pn} be the participant set, F = {f1, . . . , fm} be
the frequency set, and Bi ⊂ F be the frequency set assigned to the participant pi.
Then any two participants can communicate reliably in the presence of a k-receiver-
jamming adversary if and only if the system (F,B) is a semi key distribution pattern
SKDP (m,n, k).

Proof. This follows from Theorem 2 and the above definitions. Q.E.D.
For practical efficient designs, we may be interested in minimizing the number of

frequencies to be used while maximizing the possible number k of jammers. For any
given n and k, let

– CFF (n, k) denote the minimal m such that a CFF (m,n, k) exists,
– SKDP (n, k) denote the minimal m such that a SKDP (m,n, k) exists,
– KDP (n, k) denote the minimal m such that a KDP (m,n, k) exists.

From [11] and [19] we know that for any given k, there exist an integer c1 such that
c1 log n ≤ CFF (n, k), and an integer c2 such that KDP (n, k) ≤ c2 log n. That is, for
a given k there exist integers c1 and c2 such that the following inequalities hold.

c1 log n ≤ CFF (n, k) ≤ SKDP (n, k) ≤ KDP (n, k) ≤ c2 log n.

Thus it shows that there exists an infinite family of radio networks with reliable
communication against receiver-jamming adversary, requiring only O(log n) frequen-
cies for n participants (nodes). We can even give constructions of SKDP with the as-
ymptotically optimal number of frequencies if the network topology can be designed
as desired (e.g a complete network in [6]). An interesting question is: if the network
topology is fixed and given, how can we design the corresponding SKDP such that the
number frequencies is as small as possible? We don’t know to to do it, and it seems to
be a difficult problem.



9 Conclusion and open problems

In this paper, we have established necessary and sufficient conditions for reliable mes-
sage transmissions against jamming adversaries and active adversaries. It is easy to
show that it is NP-hard to check whether these conditions hold for a radio network, and
most of our protocols for the sufficient condition has exponential bit-complexity in the
size of the radio network. A more general and natural problem is: does there exist more
efficient reliable message transmission protocols when the sufficient condition is met?
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