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Abstract. Redundancy has been utilized to achieve fault tolerant com-
putation and to achieve reliable communication in networks of proces-
sors. These techniques can only be extended to computations solely based
on functions in one input in which redundant hardware or software
(servers) are used to compute intermediate and end results. However,
almost all practical computation systems consist of components which
are based on computations with multiple inputs. Wang, Desmedt, and
Burmester have used AND/OR graphs to model this scenario. Roughly
speaking, an AND/OR graph is a directed graph with two types of ver-
tices, labeled ∧-vertices and ∨-vertices. In this case, processors which
need all their inputs in order to operate could be represented by ∧-
vertices, whereas processors which can choose one of their “redundant”
inputs could be represented by ∨-vertices. In this paper, using the results
for hardness of approximation and optimization problems, we will design
dependable computation systems which could defeat as many malicious
faults as possible. Specifically, assuming certain approximation hardness
result, we will construct k-connected AND/OR graphs which could de-
feat a ck-active adversary (therefore a ck-passive adversary also) where
c > 1 is any given constant. This result improves a great deal on the
results for the equivalent communication problems.

1 Introduction

Redundancy has been utilized to achieve reliability, for example to achieve fault
tolerant computation and to achieve reliable communication in networks of pro-
cessors. One of the primary objectives of a redundant computation system is
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to tolerate as many faults (accidental or malicious) as possible. Hence, one of
the crucial requirements in designing redundant computation systems is to use
the least resources (redundancy) to achieve dependable computation against the
most powerful adversaries. It has been proven (see, e.g., Hadzilacos [15], Dolev
[10], Dolev, Dwork, Waarts, and Yung [11], and Beimel and Franklin [4]) that
in the presence of a k-passive adversary (respectively k-active adversary) the
processors in a network can communicate reliably if and only if the network is
k + 1-connected (respectively 2k + 1-connected).

All these works mentioned above assume processors with one type of input,
while in practice it is often the case that processors need more than one type of
inputs. For example, for the national traffic control system, we need data from the
aviation, rail, highway, and aquatic vehicles, conduits, and support systems by
which people and goods are moved from a point-of-origin to a destination point in
order to support and complete matters of commerce, government operations, and
personal affairs. In addition, each component of the traffic control system is again
a system consisting of computations with multiple inputs, e.g., the processors of
the aviation control system need data from several sources such as the airplane’s
speed, current position, etc., to determine the airplane’s next position. Wang,
Desmedt, and Burmester [22] have used AND/OR graphs to model this scenario.
Originally AND/OR graphs have been used in the context of artificial intelligence
to model problem solving processes (see [17]). Roughly speaking, an AND/OR
graph is a directed graph with two types of vertices, labeled ∧-vertices and ∨-
vertices. The graph must have at least one input (source) vertex and one output
(sink) vertex. In this case, processors which need all their inputs in order to
operate could be represented by ∧-vertices, whereas processors which can choose
(using some kind of voting procedure) one of their “redundant” inputs could be
represented by ∨-vertices. A solution graph, which describes a valid computation
of the system, is a minimal subgraph of an AND/OR graph with the following
properties: If an ∧-vertex is in the solution graph then all of its incoming edges
(and incident vertices) belong to the solution graph; If an ∨-vertex is in the
solution graph then exactly one of its incoming edges (and the incident vertex)
belongs to the solution graph. Wang, Desmedt, and Burmester [22] showed that
it is NP-hard to find vertex disjoint solution graphs in an AND/OR graph
(though there is a polynomial time algorithm for finding vertex disjoint paths
in networks of processors with one type of inputs). This result shows that in
order to achieve dependable computation, the computation systems (networks
of processors) must be designed in such a way that it is easy for the honest
stations/agents to find the redundant information in the systems. A similar
analysis as for the case of networks of processors with one type of inputs shows
that in the presence of a k-passive adversary (respectively k-active adversary)
the computation system modeled by an AND/OR graph is dependable if and
only if the underlying graph (that is, the AND/OR graph) is k + 1-connected
(respectively 2k+1-connected) and both the input vertices and the output vertex
know the set of vertex disjoint solution graphs in the AND/OR graph. Later in



this paper, we will use G∧∨ to denote AND/OR graphs and G to denote standard
undirected graphs unless specified otherwise.

What happens if we want to tolerate more powerful adversaries? Adding more
channel is costly, so we suggest a simpler solution: designing the AND/OR graph
in such a way that it is hard for the adversary to find a vertex separator of the
maximum set of vertex disjoint solution graphs (that is, find at least one vertex
on each solution graph in the maximum set of vertex disjoint solution graphs),
whence the adversary does not know which processors to block (or control). In
order to achieve this purpose, we need some stronger results for approximation
and optimization problems. There have been many results (see, e.g., [1, 21] for a
survey) for hardness of approximating an NP-hard optimization problem within
a factor c from “below”. For example, it is hard to compute an independent set1

V ′ of a graph G(V,E) (note that here G is a graph in the standard sense instead
of being an AND/OR graph) with the property that |V ′| ≥ k

c for some given
factor c, where k is the size of the maximum independent set of G. But for our
problem, we are more concerned with approximating an NP-hard optimization
problem from “above”. For example, given a graph G(V,E), how hard is it to
compute a vertex set V ′ of G with |V ′| ≤ ck such that V ′ contains an optimal
independent set of G, where k is the size of the optimal independent set of G?
We show that this kind of approximation problem is also NP-hard. Then we
will use this result to design dependable computation systems such that with k
redundant computation paths we can achieve dependable computation against a
ck-active (Byzantine style) adversary (therefore against a ck-passive adversary
also), where c > 1 is any given constant. This result improves a great deal on the
equivalent communication problems (see our discussion on related works below).

The organization of this paper is as follows. We first prove in Section 2 the
following result: For any given constant c > 1, it is NP-hard to compute a
vertex set V ′ of a given graph G(V,E) with the properties that |V ′| ≤ ck and
V ′ contains an optimal independent set of G(V,E), where k is the size of the
optimal independent set of G(V,E). Section 3 surveys a model for fault tolerant
computation and describes the general threats to dependable computation sys-
tems. In Section 4 we demonstrate how to use AND/OR graphs with trap-doors
to achieve dependable computation against passive (and active) adversaries. In
Section 5 we outline an approach to build AND/OR graphs with trap-doors. We
conclude in Section 6 with remarks towards practical solutions and we present
some open problems.

Related work

Achieving processor cooperation in the presence of faults is a major problem in
distributed systems. Popular paradigms such as Byzantine agreement have been
studied extensively. Dolev [10] (see also, Dolev, Dwork, Waarts, and Yung [11])
showed that a necessary condition for achieving Byzantine agreement is that the

1 An independent set in a graph G(V, E) is a subset V ′ of V such that no two vertices
in V ′ are joined by an edge in E.



number of faulty processors in the system is less than one-half of the connectivity
of the system’s network (note that in order to achieve Byzantine agreement, one
also needs that n > 3k where n is the number of processors in the network
and k is the number of faulty processors). Hadzilacos [15] has shown that even
in the absence of malicious failures connectivity k + 1 is required to achieve
agreement in the presence of k faulty processors. Beimel and Franklin [4] have
shown that if authentication techniques are used, then Byzantine agreement is
achievable only if the graph of the underlying network is k+1 connected and the
union of the authentication graph and the graph of the underlying network is
2k + 1 connected in the presence of k faulty processors. All these works assume
processors with one type of inputs. Recently, Wang, Desmedt, and Burmester [22]
have considered the problem of dependable computation with multiple inputs,
that is, they considered the networks of processors where processors may have
more than one type of inputs. While there is a polynomial time algorithm for
finding vertex disjoint paths in networks of processors with one type of inputs,
Wang, Desmedt, and Burmester’s work shows that the equivalent problem in
computation with multiple inputs is NP-hard.

Approximating an NP-hard optimization problem within a factor of 1 + ε
means to compute solutions whose “cost” is within a multiplicative factor 1+ε of
the cost of the optimal solution. Such solution would suffice in practice, if ε were
close enough to 0. The question of approximability started receiving attention
soon after NP-completeness was discovered [14, 20] (see [14] for a discussion).
The most successful attempt was due to Papadimitriou and Yannakakis [18], who
proved that MAX-3SAT (a problem defined by them) is complete for MAX-SNP
(a complexity class defined by them), in other words, any approximability result
for MAX-3SAT transfers automatically to a host of other problems. Among other
results, they have shown that there is a constant ε > 0 such that it is NP-hard
to compute a k

1+ε size independent set of a given graph G, where k is the size
of the maximum independent set of G. The results in [18] have been improved
by many other authors, especially, after the emergence of the PCP theorem [2,
3], that is, PCP (log n, 1) = NP (for a survey, see, e.g., [1, 21]). For example,
Arora, Lund, Motwani, Sudan, and Szegedy have shown that it is NP-hard to
nδ-approximate an independent set for some δ > 0. However, all these results are
related to approximating the independent set from “below”, that is, to compute
an independence set whose size is smaller than the optimal independent set.
We will show that it is easy to convert these results to the results of hardness of
approximating an independent set from “above” instead of from “below” as done
in [1, 21], that is, it is hard to delete some vertices from a given graph such that
the resulting graph contains an optimal independent set of the original graph.

2 Optimization and approximation

In this section we present some graph theoretic results which will be used in later
sections. First we remind the reader of the graphs defined in the transformation



from 3SAT to Vertex Cover2 in Garey and Johnson [14, pp. 54–56] and we give
such kind of graphs a special name.

Definition 1. Let n and m be two positive integers. A graph G(V,E) is called an
n+m-SAT-graph if there are n+m subgraphs L1(VL1 , EL1), . . ., Ln(VLn , ELn),
T1(VT1 , ET1), . . ., Tm(VTm , ETm) of G with the following properties:

1. V = (∪n
i=1VLi) ∪ (∪m

i=1VTi).
2. For each i ≤ n, |VLi | = 2 and ELi consists of the one edge connecting the

two vertices in VLi .
3. For each i ≤ m, Ti is a triangle, which is isomorphic to the undirected graph

T = (VT , ET ) where VT = {v1, v2, v3} and ET = {(v1, v2), (v2, v3), (v3, v1)}.
4. There is a function f : (∪m

i=1VTi
) → (∪n

i=1VLi
) such that the edge set of G is

E = (∪n
i=1ELi

) ∪ (∪m
i=1ETi

) ∪ {(v, f(v)) : v ∈ ∪m
i=1VTi

}.

The following results are straightforward from the definitions.

Lemma 1. Given an n + m-SAT-graph G(V,E), the following conditions hold.

1. The size of an independent set of G is at most n + m.
2. The size of a vertex cover of G is at least n + 2m.

The following result is proved in [14, pp. 54–56].

Lemma 2. (see [14]) Given a 3SAT formula C with n variables and m clauses,
there is an n + m-SAT-graph G(V,E) with the following properties:

1. C is satisfiable if and only if there is an independent set of size n + m in
G(V,E).

2. C is satisfiable if and only if there is vertex cover of size n+2m in G(V,E).

Corollary 1. It is NP-hard to decide whether there is an independent set of
size n + m in an n + m-SAT-graph.

In addition to the problem of deciding whether an n + m-SAT-graph has an
independent set of size n + m, we are also interested in the following approxi-
mation problem: for some constant ε > 0 and each n + m-SAT-graph G, can we
compute in polynomial time an independent set of size k/(1+ε) in G, where k is
the size of the maximum independent set of G? Papadimitriou and Yannakakis
[18] (see also, [13, 2]) have proved the following result (note that their original
result is for general graphs though their proof is for n + m-SAT-graphs).

Definition 2. For a rational number ε > 0, an algorithm is said to compute
(1 + ε)-approximation to the maximum independent set if given any graph G its
output is an independent set of G with size at least k/(1 + ε) where k is the size
of the maximum independent set of G.

2 A vertex cover of a graph G(V, E) is a subset V ′ of V such that every edge in E is
incident to a vertex in V ′.



Theorem 1. (see [18, 13]) There is a constant ε > 0 such that approximating
an independent set of an n + m-SAT-graph G(V,E) within a factor 1 + ε is
NP-hard.

Arora, Lund, Motwani, Sudan, and Szegedy [2] have proved the following
stronger result.

Theorem 2. (see [2]) There is a constant δ > 0 such that approximating an
independent set of a graph G within a factor nδ is NP-hard, where n is the
number of vertices in G.

Note that Theorem 2 is only for general graphs. The following variants of
Theorems 1 and 2 are useful for our discussions.

Theorem 3. (see [18, 13]) There is a constant ε > 0 and a polynomial time
algorithm to construct for each 3SAT clause C an n + m-SAT-graph G with the
following properties:

1. If C is satisfiable, then G has an independent set of size n + m.
2. If C is not satisfiable, then k < n+m

1+ε , where k is the size of the maximum
independent set in G.

Proof. It follows from the proof of Theorem 1. ut

Theorem 4. (see [2, 5]) There is a constant δ > 0 and a series of pairs of
positive integers (s1, c1), (s2, c2), . . . such that cn

sn
≥ nδ for large enough n and

from each 3SAT clause C we can construct in a polynomial time a graph G with
the following properties:

1. If C is satisfiable, then k ≥ cn, where k is the size of the maximum indepen-
dent set in G and n is the number of vertices in G.

2. If C is not satisfiable, then k ≤ sn, where k is the size of the maximum
independent set in G and n is the number of vertices in G.

Proof. It follows from the proof of Theorem 2. ut

Given a graph G(V,E), an edge set E′ ⊆ E is said to be independence eligible
if there is an independent set V ′ = {u : there is a v ∈ V such that the unordered
pair (u, v) ∈ E′} of size |E′| in G. Note that given an independence eligible
edge set E′, it is easy to compute an independent set of size |E′| (by a standard
algorithm of computing a satisfying assignment of a 2SAT formula).

Theorem 5. Let ε be the constant in Theorem 3. Then it is NP-hard to compute
an edge set E′ of a given n + m-SAT-graph G with the following properties:

1. |E′| ≤ (1 + ε)k, where k is the size of a maximum independent set of G.
2. E′ contains an independence eligible edge set E′′ such that |E′′| = k.

Proof. It follows from Theorem 3. ut



Theorem 6. There is a constant ε > 0 such that it is NP-hard to compute an
edge set E′ ⊆ E of a graph G(V,E), with the following properties:

1. |E′| ≤ knε, where k is the size of the maximum independent set of G and
n = |V |.

2. E′ contains an independence eligible edge set E′′ such that |E′′| ≥ k
2 .

Proof. Let sn, cn and δ be the constants in Theorem 4. And let ε = δ
2 . We

reduce the NP-complete problem 3SAT to the problem of this Theorem. For
each 3SAT formula C, construct a graph G(V,E) satisfying the conditions of
Theorem 4. Let E′ be an edge set satisfying the conditions of the Theorem.
Then it suffices to show that if |E′| ≥ cn

2 then k ≥ cn (therefore C is satisfiable)
else k ≤ sn (therefore C is not satisfiable). If |E′| ≥ cn

2 then, by the condition
that |E′| ≤ knε, we have cn

2 ≤ knε. That is,

k ≥ cn

2nε
>

cn

nδ
≥ sn.

Whence k ≥ cn. Otherwise |E′| < cn

2 , and

k

2
≤ |E′′| ≤ |E′| < cn

2
.

That is, k < cn. Whence k ≤ sn. ut

Corollary 2. There is a constant ε > 0 such that it is NP-hard to compute a
vertex set V ′ ⊆ V of a graph G(V,E) with the following properties:

1. |V ′| ≤ knε, where k is the size of the maximum independent set of G and
n = |V |.

2. V ′ contains an independent set V ′′ of G(V,E) such that |V ′′| ≥ k
2 .

3 General threats and models for dependable
computations

General threats A simple attack to defend against is of a restricted adversary
(called passive adversary) who is allowed only to monitor communication chan-
nels and to jam (denial of service) several processors in the computation system,
but is not allowed to infiltrate/monitor the internal contents of any processor
of the computation system. Of course, a more realistic adversary is the active
adversary (Byzantine faults) that can monitor all communication between pro-
cessors and which in addition is also trying to infiltrate the internal contents of
several processors.

A passive adversary with the power of jamming up to k processors is called a
k-passive adversary. An active adversary (Byzantine faults) may mount a more
sophisticated attack, where he manages to comprise the security of several inter-
nal processors of the system, whereby he is now not only capable of monitoring
the external traffic pattern and capable of jamming several processors but is also



capable of examining and modifying every message and data (that is, creating
bogus messages and data) which passes through (or stored at) these infiltrated
processors. Thus, we define a k-active adversary, an adversary that can monitor
all the communication lines between processors and also manages to examine
and to modify the internal contents of up to k processors of the system. (Similar
definitions were considered in the literature, see, for example [7, 8, 12, 19] and
references therein).

Achieving processor cooperation in the presence of faults is a major prob-
lem in distributed systems, and has been studied extensively (see, e.g, [4, 10,
11, 15]). All these works assume processors with one type of inputs. Recently,
Wang, Desmedt, and Burmester [22] have considered the problem of dependable
computation with multiple inputs, that is, they considered the networks of pro-
cessors where processors may have more than one type of inputs. While there is
a polynomial time algorithm for finding vertex disjoint paths in networks of pro-
cessors with one type of inputs, Wang, Desmedt, and Burmester’s work shows
that the equivalent problem in computation with multiple inputs is NP-hard.
In this paper, we will consider redundant computation systems with multiple
inputs which can be modeled by AND/OR graphs which we now briefly survey.

Definition 3. (see [22]) An AND/OR graph G∧∨(V∧, V∨, INPUT, output;E)
is a directed graph with a set V∧ of ∧-vertices, a set V∨ of ∨-vertices, a set
INPUT of input vertices, an output vertex output ∈ V∨, and a set of directed
edges E. The vertices without incoming edge are input vertices and the vertex
without outgoing edge is the output vertex.

It should be noted that the above definition of AND/OR graphs is different
from the standard definition in artificial intelligence (see, e.g., [17]), in that the
directions of the edges are opposite. The reason is that we want to use the
AND/OR graphs to model redundant computation systems.

Assume that we use the AND/OR graph to model a fault tolerant compu-
tation. So, information (for example, mobile codes) must flow from the input
vertices to the output vertex. And a valid computation in an AND/OR graph
can be described by a solution graph (the exact definition will be given below).
However, if insider vertices may be faulty or even malicious, then the output ver-
tex cannot trust that the result is authentic or correct. Firstly we assume that
there is only one k-passive adversary at any specific time. The theory of fault
tolerant computation (see, Hadzilacos [15]), trivially adapted to the AND/OR
graph model, tells us that if there are k+1 vertex disjoint paths (solution graphs)
of information flow in the AND/OR graph then the vertex output will always
succeed in getting at least one copy of the results. Secondly we assume that there
is one k-active adversary at any specific time. Then the theory of fault tolerant
computation (see, e.g., Dolev [10], Dolev et al. [11], and Beimel and Franklin [4])
tells us that if there are 2k+1 vertex disjoint paths (solution graphs) of informa-
tion flow in the AND/OR graph then the vertex output will always succeed in
getting at least k +1 identical results computed from the input vertices through
vertex disjoint solution graphs, if output knows the layout of the graph. This



implies that if output knows the layout of the graph then it can use a majority
vote to decide whether the result is correct or not. It follows that in order to
achieve dependable computation with redundancy, it is necessary to find a set
of vertex disjoint solution graphs in a given AND/OR graph.

Definition 4. (see [22]) Let G∧∨(V∧, V∨, INPUT, output;E) be an AND/OR
graph. A solution graph P = (VP , EP ) is a minimum subgraph of G∧∨ satisfying
the following conditions.

1. output ∈ VP .
2. For each ∧-vertex v ∈ VP , all incoming edges of v in E belong to EP .
3. For each ∨-vertex v ∈ VP , there is exactly one incoming edge of v in EP .
4. There is a sequence of vertices v1, . . . , vn ∈ VP such that v1 ∈ INPUT, vn =

output, and (vi→vi+1) ∈ EP for each i < n.

Moreover, two solution graphs P1 and P2 are vertex disjoint if (VP1 ∩ VP2) ⊆
(INPUT ∪{output}). An AND/OR graph is called k-connected if the following
conditions are satisfied.

1. There are k vertex disjoint solution graphs in G∧∨.
2. There do not exist k + 1 vertex disjiont solution graphs in G∧∨.

In order for an adversary to attack the computation system, s/he does not
need to find all vertex disjoint solution graphs in an AND/OR graph. For a
passive adversary, s/he can choose to jam one vertex on each solution graph to
corrupt the system. An active adversary needs to find one half of the vertices of
a vertex separator (defined in the following).

Definition 5. Let G∧∨ be a k-connected AND/OR graph, and P = {P1, . . . , Pk}
be a maximum set of vertex disjoint solution graphs in G∧∨. A set S = {v1, . . . , vk}
of vertices in G∧∨ is called a vertex separator of P if for each solution graph
Pi ∈ P (i = 1, . . . , k), vi ∈ VPi

.

Remark: The problem of finding a vertex separator in an AND/OR graph
is NP-hard which will be proved in Section 5.

The question we are addressing in this paper is how to design AND/OR
graphs with less vertex disjoint solution graphs to achieve dependable computa-
tion against more powerful passive or active adversaries.

4 Dependable computation with trap-doors

In this section, we show how to design dependable computation systems with
trap-doors such that the following condition is satisfied:

– The computation system modeled by a k-connected AND/OR graph is ro-
bust against a k′-active adversary (therefore robust against a k′-passive ad-
versary also) where k′ ≤ ck and c > 1 is any given constant.



The idea is to use the fact that it is NP-hard to approximate a vertex
separator of an AND/OR graph from “above” (see Section 2 for details about
approximating an NP-hard optimization problem from “above”). It follows that
if one designs the AND/OR graph in such a way that the trusted participants can
easily find vertex disjoint solution graphs in it (using some trap-doors), and the
input vertices always initiate a computation through all solution graphs in the
maximum set of vertex disjoint solution graphs, then dependable computation
is possible. The benefit from using trap-doors in a computation system with
multiple inputs is obvious. If we do not use trap-doors then, by extending the
conventional fault tolerant computation theory (see, e.g., [4, 7, 10, 11, 15]), a k-
connected AND/OR graph is only robust against k′-passive adversaries and only
robust against k′′-active adversaries respectively, when k′ < k and k′′ < k

2 . Since
if the adversary has the power to jam k vertices in the AND/OR graph and s/he
can find a vertex separator of size k, then s/he can jam all of the vertices in
the vertex separator and corrupt the system. Indeed, if the adversary has the
power to examine and modify messages and data in bk

2 c+1 processors, then the
adversary may let the bk

2 c+1 faulty processors create and send faulty messages to
the output processor claiming that they come from some bogus solution graphs.
This will convince the output vertex to accept the bogus message since the
majority messages are faulty. However, if we use trap-doors in the design of
AND/OR graphs, then with high probability, a k-connected AND/OR graph
is robust against k′-active adversaries (therefore against k′-passive adversaries)
where k′ ≤ ck and c > 1 is any given constant. The reason is that even though the
adversary has the power to jam or control k′ > k vertices in the AND/OR graph,
he does not know which vertices to corrupt, that is, the corrupted vertices (in
his control) will appear on at least half of the k vertex disjoint solution graphs.

So one of the main problems is to design AND/OR graphs in which it is
hard on the average case to approximate at least one half of a vertex separator
from “above”. In Section 5, we will outline an approach to generate such kind
of AND/OR graphs. In the remaining part of this section we will demonstrate
how to use these AND/OR graphs to achieve dependability.

Protocol I

1. Alice generates a k-connected AND/OR graph G∧∨ such that the graph G∧∨
can implement the desired computation and such that finding a ck size set of
vertices which contains at least one half of the elements of a vertex separator
is hard, where c > 1 is any given constant. (The details will be presented in
Section 5).

2. Using a secure channel, Alice sends the input vertices the method of initiating
a computation and sends the output vertex a maximum set of vertex disjoint
solution graphs in G∧∨.

3. In order to carry out one computation, Alice initiates the computation
through all solution graphs in the maximum set of vertex disjoint solution
graphs.



4. When the output vertex gets all possible outputs, he compares the results
from the k vertex disjoint solution graphs (note that the output vertex knows
the maximum set of vertex disjoint solution graphs) and chooses the authen-
tic result using a majority vote.

Note that our above protocol is not secure against a dynamic adversary who
after observing one computation will change the vertices he controls. Indeed,
it is an interesting open problem to design protocols which are secure against
dynamic adversaries.

Now assume that Mallory is a k′-active adversary (or a k′-passive adversary)
where k′ ≤ ck for the constant c > 1, and P = {P1, . . . , Pk} is a maximum set of
vertex disjoint solution graphs in the AND/OR graph used in Protocol I. Since
Mallory does not know how to find a k′ size set of vertices which contains at least
one half of the elements of a vertex separator for P (finding such a set is very
hard), she does not know which vertices to corrupt so that she can generate at
least bk

2 c+1 bogus messages to convince the output vertex to accept (or so that
all these k solution graphs will be jammed), even though she has the power to
corrupt k′ = ck vertices. It follows that the system is robust against a k′-active
adversary (therefore robust against a k′-passive adversary also) where k′ ≤ ck.

5 AND/OR graphs with trap-doors

In this section, we outline an approach for constructing AND/OR graphs with
trap-doors. We first show that it is NP-hard to approximate at least half of the
elements of a vertex separator of an AND/OR graph from “above”.

Theorem 7. Given an AND/OR graph G∧∨(V∧, V∨, INPUT, output;E), it is
NP-hard to compute a vertex set S′ ⊆ (V∧ ∪ V∨) with the following properties:

1. If G∧∨ is k-connected then |S′| ≤ ck.
2. For some vertex separator S of G∧∨, |S ∩ S′| ≥ k

2 .

Proof. We reduce the problem of Theorem 6 to the problem of this Theorem.
For a given graph G′(V ′, E′), we construct an AND/OR graph G′′

∧∨(V ′′
∧ , V ′′

∨ ,
INPUT ′′, output′′; E′′) as follows. Assume that V ′ = {v1, . . . , vn}. Let INPUT ′′ =
{Ii, Ii,j : i, j = 1, . . . n}, V ′′

∨ = {output}, V ′′
∧ = {ui,j : i, j = 1, . . . n} ∪ {ui : i =

1, . . . , n}, and E′′ be the set of the following edges.

1. For each i = 1, . . . , n, there is an edge Ii→ui.
2. For each pair i, j = 1, . . . , n, there is an edge Ii,j→ui,j .
3. For each pair i, j = 1, . . . , n, such that (vi, vj) ∈ E′, there are four edges

ui,j→ui, ui,j→uj , uj,i→ui, and uj,i→uj .
4. For each i, there is an edge ui→output′′.

It is clear that two solution graphs P1 and P2 in G′′
∧∨ which go through ui

and uj respectively are vertex disjoint if and only if there is no edge (vi, vj) in
E′. Hence there is a size k independent set in G′ if and only if there are k vertex



disjoint solution graphs in G′′
∧∨. And from k vertex disjoint solution graphs in

G′′
∧∨ one can compute in linear time a size k independent set in G′. Whence it

is sufficient to show that from each vertex set S′ satisfying the conditions of the
Theorem, one can compute in polynomial time an edge set ES′ ⊆ E′ with the
following properties:

1. If G∧∨ is k-connected (that is, if the optimal independent set in G′ has size
k) then |ES′ | ≤ ck.

2. ES′ contains an independence eligible edge set of size at least k
2 .

The following algorithm will output an edge set ES′ with the above proper-
ties. In the following S′ is the vertex set satisfying the conditions of the Theorem.

– Let ES′ = ∅. For i = 1, . . . , ck, we distinguish the following two cases:
1. si = uj for some j ≤ n. Let ES′ = ES′ ∪{(vj , v

′
j)} where v′j is any vertex

in G′ which is incident to vj .
2. si = uj1,j2 for some j1, j2 ≤ n. Let ES′ = ES′ ∪{(vj1 , vj2)} if (vj1 , vj2) ∈

E′ and ES′ = ES′ otherwise.

By the property of S′, it is clear that ES′ has the required properties.
By Theorem 6, we have completed the proof of the Theorem. ut

In the remaining part of this section, we outline how to construct AND/OR
graphs with trap-doors.

Construction First generate a graph G′(V ′, E′) and a number k which satisfy
the conditions of Theorem 3 (or Theorem 4). Secondly use the method in the
proof of Theorem 7 to generate an AND/OR graph G′′

∧∨ with the property that it
is hard to approximate at least half of the elements of a vertex separator of G′′

∧∨
from “above”. The AND/OR graph G∧∨ is obtained by replacing all vertices
ui,j of G′′

∧∨ with the AND/OR graph G1
∧∨, where G1

∧∨ is the AND/OR graph
which can implement the desired computation. As a summary, the construction
proceeds as follows.

graph G′ → AND/OR graph G′′
∧∨

G1
∧∨→ AND/OR graph G∧∨

6 Towards practical solutions

In the previous section, we considered the problem of designing AND/OR graphs
with trap-doors. Specifically, we constructed AND/OR graphs which is robust
against ck-active adversaries (therefore robust against ck-passive adversaries
also). However, these constructions are inefficient and are only of theoretical
interests. One of the most interesting open questions is how to efficiently gen-
erate hard instances of AND/OR graphs, especially, for arbitrary number k. If
we do not require that c be an arbitrary given constant, then Theorem 5 can be
used to construct AND/OR graphs which are more “efficient” (though still have



enormous complexity) than the AND/OR graphs constructed in the previous
section and which are robust against (1 + ε)k-passive adversaries where ε < 1
is a small positive rational number. However, in order to construct AND/OR
graphs which are robust against ck-active adversaries for c > 1

2 , we have to use
Theorem 6 in our construction. And the size of the graph G in Theorem 6 will
be impractical if we want to make the security of the system to be at least as
hard as an exhaustive search of a 1024-bit space.

We should also note that, in order to construct the AND/OR graphs in
the previous section, we need to construct standard graphs which satisfy the
conditions of Theorem 3 (or Theorem 4). That is, we need an algorithm to build
graphs whose independent sets are hard to approximate in the average case (note
that Theorem 7 only guarantees the worst-case hardness instead of average-
case hardness). Whence it is interesting (and open) to prove some average-case
hardness results for the corresponding problems.

In the following, we consider the problem of constructing practical average-
case hard AND/OR graphs which are robust against k + c-passive adversaries,
where c is some given constant. Our following construction is based on the hard-
ness of factoring a large integer and we will not use the approximation hardness
results.

Construction Let N be a large number which is a product of two primes p
and q. We will construct an AND/OR graph G∧∨ with the following property:
given the number N and a vertex separator for G∧∨, one can compute efficiently
the two factors p and q. Let x1, . . . , xt and y1, . . . , yt be variables which take
values 0 and 1, where t = blog Nc. And let (xt . . . x1)2 and (yt . . . y1)2 to denote
the binary representations of

∑
xi2i−1 and

∑
yi2i−1 respectively. Then use the

relation
(xt . . . x1)2 × (yt . . . y1)2 = N (1)

to construct a 3SAT formula C with the following properties:

1. C has at most O(t2) clauses.
2. C is satisfiable and, from a satisfying assignment of C, one can compute in

linear time a assignment of x1, . . . , xt, y1, . . . , yt such that the equation (1) is
satisfied. That is, from a satisfying assignment of C, one can factor N easily.

Now use Lemma 2 to construct an n + m-SAT-graph G′(V ′, E′) and a number
k = O(t2) with the property that: from a size k independent set of G′ one can
compute in linear time a satisfying assignment of C. Lastly, use the method in
the proof of Theorem 7 to generate an AND/OR graph G∧∨ with the property
that, from a vertex separator of G∧∨, one can compute in linear time a size k
independent set of G′ (note that, instead of approximating a vertex separator,
here we need to know a whole set of vertex separator). As in the proof of Theorem
7, from a vertex separator of G∧∨ one can easily compute a size k independence
eligible edge set of G′, from which one can compute in linear time a size k
independent set of G′ (using the method of computing a satisfying assignment
of a 2SAT formula).



It is straightforward to see that the above constructed AND/OR graph G∧∨
is robust against k + c-passive adversaries if factoring N is hard, where c is any
given constant.
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