
A Secure Agent Architecture for Sensor Networks

Zhaoyu Liu, Yongge Wang
{zhliu, yonwang}@uncc.edu

Department of Software and Information Systems
University of North Carolina at Charlotte

9201 University City Boulevard
Charlotte, NC 28223

Abstract

Advances in sensor and wireless technologies will en-
able thousands, or even millions of small but smart sen-
sors to be deployed for a wide range of monitoring ap-
plications. The sensor networks must be dynamically
configurable and adaptive in order to response actively
to events. Security must also be built into sensor net-
works at the very initial design stage to prevent any po-
tential threats. This paper presents a design of a generic
software architecture based on tiny active agents for
sensor networks. The architecture has built-in security
components. This architecture will significantly bene-
fit the dynamic and secure deployment and configura-
tion tasks of large sensor networks for various applica-
tions.

Keywords: adaptivity, security, tiny active agent, digi-
tal authenticator, sensor networks,

1 Introduction

Advances in sensor and wireless technologies will en-
able thousands, or even millions of small but smart sen-
sors to be deployed for a wide range of monitoring ap-
plications [12]. Typical applications of sensor networks
include, but are not limited to, natural event monitor-
ing, emergency response information, energy manage-
ment, medical monitoring, logistics and inventory man-
agement, and battlefield management. The sensor net-
works must be dynamically configurable and adaptive
in order to response actively to events. Security must
also be built into sensor networks at the very initial de-
sign stage to prevent any potential threats.

Flexibility and adaptivity are very important for sen-
sor networks in practice. For example, in a natural event
monitoring application, most sensor nodes are in hi-
bernation state under normal situation in order to save
energy. But under certain events, the sensors need to

switch to an active state. Active responses are also
needed during attacks or faulty cases, in order to contain
the damages [7]. Agents have been applied extensively
to wired infrastructure to achieve flexibility and adap-
tivity [15, 7, 1]. It is challenging to apply active agent
technology to sensor networks, mainly due to the sensor
node’s resources constraints, such as limited processing
power, storage (RAM, ROM, and etc.), bandwidth, and
energy.

Security system must also be built into sensor net-
works to achieve secure communications. Secure
communications have been extensively studied by re-
searchers in the Internet scenario [3, 14]. Though these
results could not be applied to sensor networks directly,
some general approaches that have been exploited pre-
viously could be adapted to sensor networks. The major
difference between sensor networks and other networks
is that, by design, sensors are inexpensive, low-power
devices. Only if cheap sensors could be built, a large
deployment of sensor networks is possible.

In this paper, we present a generic software archi-
tecture based on tiny active agents for adaptive and se-
cure sensor networks. Security mechanisms are built-in
components of this software architecture. Survivable
sensor networks can be achieved by using the software
architecture. Our software architecture will facilitate
the following sensor node functions or features (see,
e.g., [2]) that are of critical importance to the success
of sensor networks:

• to support uniformly a variety of network functions
on different nodes (e.g., base stations, gateway, or-
dinary sensor node) through dynamic reconfigura-
tion;

• to require only a minimal pre-configuration prior
to deployment, and to add new processing func-
tionalities dynamically and remotely;

• to support energy-efficient networking to exchange
data locally and remotely;

• to support application-specific security services;
and

• to provide an essential base of countermeasure-
ments.

This paper is organized as follows. Section 2
presents some background information. Section 3 de-
scribes the design of our agent-based architecture in de-
tail. Section 4 concludes the paper.

2 Background

A typical sensor network consists of nodes, which are
small battery powered devices, and base stations. Sen-
sor nodes communicate wirelessly with more powerful
base stations, which in turn may be connected to an
outside wired network. The numbers of base stations
and sensors vary according to the purpose of sensor net-
works. For example, in a national natural event moni-
toring systems, there could be hundreds of base stations
and thousands of or millions of sensors. On the other
hand, for a small system such as the SmartDust sensor
network [12], there is one or a few base stations and less
than one hundred sensor nodes. Generally sensor nodes
communicate over a wireless network and broadcast is
the fundamental communication primitive. In addition
to base stations and normal sensor nodes, some sen-
sor networks could contain special sensor nodes with
relatively stronger capabilities, such as having replace-
able batteries. These special sensor nodes could be used
for special purposes such as routing or data aggregation
and forwarding. In particular, similar to normal sen-
sor nodes, these special sensor nodes could also be built
significantly cheap (compared to base stations), thus be
deployed in a relatively large scale.

In this paper, we consider generic sensor networks
in which nodes are geographically distributed in a large
scale of unattended area. Base stations may not be able
to communicate with sensor nodes directly and sensor
nodes may also not be able to communicate with base
station directly.

3 Software Architecture

This section describes the major components of our ar-
chitecture and describes the security model that forms
the basis of interaction among these components. Our
architecture is based on executable tiny active agents. A
tiny active agent carries concise dynamical configura-
tion information, customized or tailored for a particular
application or device. The information include secu-
rity policies and mechanisms. The other components in

our architecture include agent control and management,
the software framework, the evaluation/enforcement en-
gines, and the symmetric cipher based key distribution
and management system. Agent control and manage-
ment consists of a distributed network of agent adminis-
trators, software framework component repositories and
agent servers. These management entities are trusted
and reside at base stations. The agent administrator is
responsible for verifying, validating and certifying the
code inside the agent, and for authenticating the agent,
based on the key distribution and management system.

The agent administrator can additionally manage
the distribution of the agents using a secure channel.
Trusted applications or sensors may be allowed to cre-
ate their own agents. Each protection domain typically
has one or more agent administrators that are collec-
tively responsible for the integrity of the agents.

The agent uses a software framework for context.
For example, a software framework may include a hi-
erarchical structure of object-oriented classes of nec-
essary security policies. Typically this framework is
componentized and arranged so that the components
themselves can be downloaded from the software com-
ponent framework repository using a secure channel.
Each node, typically a sensor device, acts as an eval-
uation/enforcement engine in its address space. This
engine can also be customized according to the context
and its components can be preconfigured in advance or
be dynamically downloaded by using the secure chan-
nel. The agents are evaluated in the execution environ-
ment provided by this engine by instantiating the con-
text of the software framework. The engine also en-
forces the result of the evaluation. We give a detailed
description of these components next.

3.1 Agent Format

Software

(for context)
framework

 Agent_Type Executable Code Fragment Authenticator

Figure 1: Generic Agent Content

The format of a generic agent is shown in Figure 1.
The first field is similar to a header and contains infor-
mation about the type of the agent. For instance, the
agent type ACCESS_CONTROL indicates that the agent
encodes an access control policy. The second field is the
most important part of the agent. Ideally it can contain

an arbitrary piece of code, which specifies the policies,
mechanisms, and/or other dynamic configuration infor-
mation for a particular application. We use a software
framework that can provide a context for the code field
of the agent. The agent code can use the components
of this software framework and impose additional con-
straints on their usage, leveraging the expressive power
of the underlying framework. We describe one partic-
ular instance of this framework later. The framework
implements an application platform and an access con-
trol policy in a modular and composable fashion. In
addition, the agent can use the features provided by
the underlying language and add conditional process-
ing, based on timestamps, or accumulated credits, to
specify timeouts and to impose limits on resource uti-
lization, etc. The flexibility afforded by this approach is
limited only by the language syntax. For efficient trans-
mission purpose, this field needs to be optimized and to
be as small as possible.

The last field is the digital authenticator. Typically
the agent is created by an agent administrator or a
trusted entity. This entity is responsible for the integrity
of the agent, and attests to this by authenticating the
agent. In our distributed architecture, each protection
domain has one or a small number of replicated agent
administrators. A public key infrastructure is not suit-
able for sensor networks. We propose a simple and ef-
ficient key distribution and management system that is
based on symmetric cipher. Our architecture uses the
system for the authenticator generation and verification.

The agent provides an interface that exports at least
the following methods:

• evaluate

• bind

The evaluate method is called by the evalua-
tion/enforcement engine. This method causes the ex-
ecutable code in the agent to be evaluated, and controls
the configuration enforcement requested by the appli-
cation. The bind method is used to bind agents to ap-
plications and aids in the retrieval of the context in the
evaluation/enforcement engine. This list is not exhaus-
tive and additional methods can be added to extend the
functionality and create new agent types.

3.2 Software Framework

This section describes a particular example of a soft-
ware framework that can be used to provide a context
for the agents [4]. The framework is implemented in
a composable and extensible object-oriented way. This
framework has a GUI front-end that simplifies the pro-
cess of specifying the policies and configuration param-
eters. The GUI functionalities reside at base station of

sensor networks. This allows users to specify configu-
rations tailored to their specific operational needs.

The software framework itself is a hierarchy of
classes as shown in Figure 2. It is dynamically config-
urable and extensible. The classes at the bottom of the
framework are mostly abstract, and are mainly used to
represent mathematical concepts such as sets and map-
pings. These classes form the basis for a hierarchy of
successively specialized classes representing concepts
such as labels and access control lists. Finally, at the
top of the framework are classes used to represent a pol-
icy form. This framework provides a platform for agent
evaluation and security policy specifications. We use
Role-Based Access Control (RBAC) policy [13] in our
architecture for resource access control.

OS Interfaces

Primitives

RBAC

Software Platform

Figure 2: Component-level Map of the Software Frame-
work

3.3 Evaluation/Enforcement Engine

This section describes the evaluation/enforcement en-
gine component of our architecture. Figure 3 shows
the representation of this component. The evalua-
tion/enforcement engine consists of an agent cache,
run-time resolvable references to customizable agent
evaluation environment, and run-time resolvable ref-
erences to a customizable, componentized software
framework. The agent cache is used to cache agents
that do not change very often and provides a fast pro-
cessing path for commonly used or default mechanisms
and policies. Different agent types require different
contexts. By providing the run-time resolvable refer-
ences, we can download the additional software com-
ponents that form the context from a trusted repository,
on the top of pre-configured ones. The pre-downloaded
and pre-configured components would be sufficient for
regular operations. An execution environment imposes

static and dynamic constraints on the code that runs in-
side it.

 Customizable

 Components
 Framework
 Software

 Customizable

Agent Evaluation
Environment

Agent Cache

Figure 3: Evaluation and Enforcement Engine

The execution environment can also customize the
evaluation of the agents or trusted applications. The
established secure channel between a sensor node and
base station can be used to obtain the agents and the
downloadable software framework and execution en-
vironment components. The enforcement is done af-
ter evaluation. The evaluation/enforcement engine can
subsume the concept of a traditional reference moni-
tor. Typically when the application makes a call that
accesses a specific resource or requires the use of a spe-
cific mechanism, the request is encapsulated and passed
to the evaluation engine. The engine builds the context
and evaluates the agent associated with the configura-
tions requested by the application. Depending on the
result of this evaluation, the engine can either grant or
deny the application configuration request. The engine
must either notify applications that the configuration re-
quest is denied or allocate the appropriate resources,
thereby implementing and enforcing the configurations
specified in the agent.

Since the evaluation/enforcement engine reside on
sensor nodes, the efficiency would be the major chal-
lenging research issue. Optimization techniques need
to be investigated with the consideration of resources
constraints of sensor nodes.

Framework
Software

Component Agent Server

Agent Administrator

Repository

Figure 4: Agent Control and Management

3.4 Agent Control and Management

The agent control and management are handled by base
stations. The agent administrator is equivalent to a
trusted third party as in a traditional security model. It is
responsible for validating and attesting to the integrity
of the agents. For example, using our proposed key sys-
tem described later, the agent administrator can authen-
ticate agents, and other entities, like applications and
evaluation/enforcement engines, can perform authenti-
cator verification. Typically the administrator is also
responsible for the creation of the agents using the in-
terface provided by the software framework. Although
agents can carry arbitrary code, the creation interface
provided by the framework can restrict the agents to
well-formed optimized expressions and can perform
static type checking and verification to make sure that
the code in the agent cannot compromise the security
of the underlying system. In addition, the communica-
tion channel between the administrator and the evalua-
tion/enforcement engine needs to be secure. The agent
administrator itself may be implemented as one central-
ized entity in a base station, or its functionality can be
distributed throughout several base stations in one pro-
tection domain. There may be multiple instances of the
agent administrator to achieve load balancing, scalabil-
ity and fault tolerance. The agent server acts as a front-
end to an agent administrator’s agent repository. This
server may be a part of the administrator or may be an-
other entity, closely coupled with the functionality of
the agent administrator.

3.5 Security Services

The aims of security component in the software archi-
tecture are:

• confidentiality: only authorized parties have ac-
cess to the content of the messages;

• integrity: unauthorized parties should not be able
to modify the messages in transit;

• authentication: only authorized parties could initi-
ate mobile agents for a specific task or command;

• access control: a flexible role based access con-
trol mechanisms to control the participation in the
sensor network management and communications;
and

• ease of use: most components are transparent and
the systems should not be difficult to use.

In order to build a security-aware software architec-
ture for sensor networks, it is necessary:

• to understand the essential security threats in a dis-
tributed sensor network;

• to design enabling security technologies for ex-
tremely resource constrained devices (e.g., sensor
nodes);

• to integrate these enabling security technologies
into the design of software architecture so that they
are the essential components of the architecture;
and

• to design upper layer security mechanisms so that
these mechanisms could be provided as application
services above the software architecture.

The primary challenge in developing security mech-
anisms for sensor networks is the extremely constrained
capability of sensor nodes. Public key cryptography
is too expensive for sensor networks since it generally
requires extensive computation and high energy con-
sumption at sensor nodes. Even symmetric key encryp-
tion and authentication mechanisms for conventional
networks are not suitable for sensor networks since they
may require large overhead per packet. Larger message
overhead per packet is generally not acceptable in sen-
sor networks. For example, in a typical Supervisory
Control & Data Acquisition System (SCADA) network
for power grids which uses “poll-response” model, poll
messages should typically be small (e.g., 16 bytes) and
responses should be ready in a very short time period.
This kind of requirement excludes the possibility of us-
ing computation intensive symmetric ciphers. The se-
curity components of our software architecture should

be flexible and their design should take all kinds of re-
quirements into consideration. In particular, efficient
stream ciphers (such as RC4) and hash function-based
one time authentication scheme (such as [6]) will be
used to design data authentication and broadcast au-
thentication schemes. Indeed, Lamport’s one-way hash
function based authentication scheme [6] has been used
in design for network broadcast schemes (e.g., TESLA
[9, 10] and µTESLA [11]). In addition, key manage-
ment mechanisms will be essential in the security com-
ponents of the architecture.

In our model, we assume that each sensor has a built-
in master key stored in a tamper-resistant component.
The master key of each sensor can initially be trans-
ferred to the base station manually when sensor nodes
are deployed. Our software architecture will support
Kerberos-like key distribution schemes, where base sta-
tions can serve as Kerberos-like authentication servers.
The term of “Kerberos-like” means that key distribution
scheme for sensor networks is not the Kerberos scheme.
Indeed, it is impossible to deploy the Kerberos scheme
on sensor networks due to the constrained capabilities
(note that Kerberos is based on Needham-Schroeder
protocol [8]). Energy and computation efficient prov-
able secure key distribution and authentication schemes
for sensor networks will be designed and embedded into
the software architecture.

The key establishment protocols and approaches for
distributed sensor networks must satisfy several security
and functional requirements. The key protocol must es-
tablish a shared key (or several shared keys) that can
be used by two or more sensor nodes to provide confi-
dentiality and group-level authentication of application
data. The protocol must establish a key between all sen-
sor nodes that need exchange application data securely.
A single key may protect data over a large portion of the
network, or just a pair of nodes.

Each agent carries a digital authenticator so that the
host (either a sensor node or a base station) can check
the authenticity (including integrity) of the agent. In our
scheme, symmetric key based authentication schemes
will be used to generate authenticators for agents. For
example, when a base station wants to send an agent to a
specific sensor node, the symmetric key shared between
the base station and the sensor node or a random session
key (protected by the long term shared key) can be used
to generate the authenticator. When a sensor node wants
to send an agent to another sensor node, a session key
needs to be agreed first, either by the key distribution
scheme or by the key agreement scheme discussed later.
Then the sensor node can use this agreed session key
to generate the authenticator. If a base station wants to
broadcast an agent or to send an agent to carry out a task
over several sensor nodes, then efficient one-way hash

function based authentication schemes will be used to
generate a single authenticator (similar authentication
schemes has been used in design for network broadcast
schemes and sensor broadcast schemes, such as TESLA
[9, 10] and µTESLA [11]).

Although each sensor node has a built-in master key
that is shared between the sensor node and the base sta-
tion, it is impractical for each pair of sensor nodes to
share a secret in a large sensor network that could have
millions of sensor nodes. Thus in order for two sen-
sors to communicate securely, they have to contact base
stations first to get a session key for them to communi-
cate. In certain environments or applications, this may
be difficult to achieve or may not be necessary (note that
in our sensor network model, sensors may not be able
to reach base station directly and base stations may not
be able to reach a specific sensor node directly).

We will study the fundamental technologies for two
sensor nodes to share a secret without contacting a
trusted third party and without using public key tech-
nologies that is too expensive for sensor networks to
implement. Our technologies will be based on our pre-
vious research results [3], which are for conventional
networks without the consideration of constrained de-
vice capabilities.

3.6 Application Examples

Secure routing is critical for sensor networks [5]. Our
software architecture allows tiny active agents to route
themselves among sensor nodes towards a node of in-
terest, to configure dynamically the routing algorithms
in use, or to change the routing information contained in
host sensor nodes. All these operations are performed
with proper security configurations. Other critical ser-
vices that will be built upon our software architecture
include active responses. When some intrusions are de-
tected, authenticated mobile agents could be initiated to
dynamically change the configurations (including secu-
rity parameters) of the sensor network and to repair the
damages that have been caught by the intrusions.

4 Conclusion

Achieving adaptive and secure communications in sen-
sor networks is becoming one of the most important
problems in designing sensor networks. Active agents
and generic software architectures based on them have
been extensively studied and designed for wired com-
puting systems and networks. Although these tech-
niques have been developed to demonstrate the advan-
tages of the active agents and software architectures, it
is challenging to apply these techniques to sensor de-

vices beneficially due to the inherent resources con-
straints of such devices. This paper presents a design
of a generic software architecture based on tiny ac-
tive agents for sensor networks and identify the key
research issues for optimizing the architecture for the
constrained environment in sensor networks. Security
mechanisms are built-in components of the software ar-
chitecture. Using the software architecture we could de-
velop survivable sensor networks with different security
features.

References

[1] Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas,
Prasad Naldurg, and Seung Yi. Seraphim: dynamic in-
teroperable security architecture for active networks. In
IEEE OPENARCH 2000, Tel-Aviv, Israel, March 26–
27, 2000.

[2] D. Carman, P. Kruus, and B. Matt. Constraints and Ap-
proaches for Distributed Sensor Network Security (fi-
nal), DARPA Project report, (Cryptographic Technolo-
gies Group, Trusted Information System, NAI Labs),
September 1, 2000

[3] Y. Desmedt and Y. Wang. Perfectly secure message
transmission revisited. In: Proc. Eurocrypt ’02, pages
502–517, Lecture Notes in Computer Science 2332,
Springer-Verlag, 2002.

[4] Tim Fraser. An object-oriented framework for secu-
rity policy representation. Master’s thesis, Department
of Computer Science, University of Illinois at Urbana-
Champaign, December 1996.

[5] C. Karlof and D. Wagner. Secure routing in wireless
sensor networks: attacks and countermeasures. In Pro-
ceedings of the first International Workshop on Sensor
Network Protocols and Applications, November, 2003.

[6] L. Lamport. Password authentication with inse-
cure communication. Communication of the ACM,
24(11):770–772, 1981.

[7] Zhaoyu Liu, Roy H. Campbell, and M. Dennis Micku-
nas. Active security support for active networks. IEEE
Transactions on Systems, Man and Cybernetics, Special
Issue on Technologies that promote computational intel-
ligence, openness and programmability in networks and
Internet services. Accepted.

[8] R. Needham, and M. Schroeder. Using Encryption for
Authentication in Large Networks of Computers. Com-
munications of the ACM, 21(12):993–999, December
1978.

[9] A. Perrig, R. Canetti, D. Song, and J. Tygar. Effi-
cient and secure source authentication for multicast. In
Network and Distributed System Security Symposium
(NDSS), 2001.

[10] A. Perrig, R. Canetti, J. Tygar, and D. Song Efficient au-
thentication and signing of multicast streams over lossy
channels. In IEEE Symposium on Security and Privacy,
2000.

[11] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler.
SPINS: Security protocols for sensor networks. Wireless
Networks 8:521–534, 2002.

[12] K. Pister, J. Kahn, and B. Boser. SmartDust: wireless
networks of millimeter-scale sensor nodes. Highlight
Article in 1999 Electronics Research Laboratory Re-
search Summary, 1999.

[13] R. S. Sandhu and E. J. Coyne. Role-based access control
models. IEEE Computer, 29(2), February 1996.

[14] Y. Wang, Y. Desmedt, and M. Burmester. Models for
dependable computation with multiple inputs and some
hardness results. Fundamenta Informaticae, 42(1):61–
73, 2000.

[15] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS:
a toolkit for building and dynamically deploying net-
work protocols. In IEEE OPENARCH’98, San Fran-
cisco, CA, April 1998.

