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Abstract

The topic of this thesis is the study of randomness concepts and their applications in
computational complexity theory. In Chapter 3, we discuss the classical notions of ran-
domness. We give a systematic study of various notions of randomness, especially, of the
following concepts defined in terms of typicalness: Martin-Löf randomness, rec-randomness,
Schnorr randomness, Ko randomness, and Kurtz randomness. We study each notion of
typicalness by using three different approaches: the approach based on constructive null
covers, the approach based on martingales and the approach based on Solovay style criteria
(the first Borel-Cantelli lemma-like condition).

Schnorr has shown that Martin-Löf randomness is a proper refinement of rec-randomness,
and he left open the question whether rec-randomness is a proper refinement of Schnorr
randomness. In the sequel, the later was conjectured to be true by van Lambalgen and
Lutz. We prove this conjecture, thereby completely clarifying the relations among the
above cited important randomness concepts. At the same time, we will show that there is
a Schnorr random sequence which is not Church stochastic.

In Chapter 4, we extend Kurtz recursion theoretic notion of n-randomness to the recur-
sion theoretic notions of rec- and Schnorr n-randomness.

Notions of resource bounded randomness have been introduced by several authors.
Though it was known that most of these notions are different, the relations among them
were not fully understood. In Chapter 5, we give a survey of these notions and show their
relations to each other. Moreover, we introduce several new notions of resource bounded
randomness corresponding to the classical notions of randomness discussed in Chapter 3.
We show that the notion of polynomial time bounded Ko randomness is independent of
the notions of polynomial time bounded rec-, Schnorr and Kurtz randomness. Lutz has
conjectured that, for a given time or space bound, the corresponding resource bounded rec-
randomness is a proper refinement of resource bounded Schnorr randomness. We answer
this conjecture affirmatively. Moreover, we show that resource bounded Schnorr random-
ness is a proper refinement of resource bounded Kurtz randomness too. In contrast to this
result, however, we also show that the notions of polynomial time bounded rec-, Schnorr
and Kurtz randomness coincide in the case of recursive sets, whence it suffices to study the
notion of resource bounded rec-randomness in the context of complexity theory.

The stochastic properties of resource bounded random sequences (i.e., resource bounded
typical sequences) will be discussed in detail. Schnorr has already shown that the law
of large numbers holds for p-random sequences. We show that another important law in
probability theory, the law of the iterated logarithm, holds for p-random sequences too. (In
fact, we can show that all the standard laws (e.g., the α lnn-gap law for α < 1) in probability
theory which only depend on the 0-1 distributions within the sequences hold for p-random
sequences.) Hence almost all sets in the exponential time complexity class are “hard” from
the viewpoint of statistics. These laws also give a quantitative characterization of the density
of p-random sets. And, when combined with an invariance property of p-random sets, these
laws are useful in proving that some classes of sets have p-measure 0.

Polynomial time safe and unsafe approximations for intractable sets were introduced
by Meyer, Paterson, Yesha, Duris, Rolim and Ambos-Spies, respectively. The question of
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which sets have optimal safe and unsafe approximations has been investigated extensively.
Recently, Duris, Rolim and Ambos-Spies showed that the existence of optimal polynomial
time approximations for the safe and unsafe cases is independent. Using the law of the
iterated logarithm for p-random sequences discussed in Chapter 5, we extend this observation
by showing that both the class of ∆-levelable sets and the class of sets which have optimal
polynomial time unsafe approximations have p-measure 0. Hence p-random sets do not have
optimal polynomial time unsafe approximations. We will also show the relations between
resource bounded genericity concepts (introduced by Ambos-Spies et al., Fenner and Lutz)
and the polynomial time safe (unsafe) approximation concept.

In the last chapter, we show that no P-selective set is ≤p
tt-hard for NP unless NP is

small.
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Chapter 1

Introduction and Notation

1.1 Introduction

Random sequences were first introduced by von Mises [79] as a foundation for probability
theory. Von Mises thought that random sequences were a type of disordered sequences,
called “Kollektivs”. The two features characterizing a Kollektiv are: the existence of lim-
iting relative frequencies within the sequence and the invariance of these limits under the
operation of an “admissible place selection rule”. Here an admissible place selection rule is
a procedure for selecting a subsequence of a given sequence ξ in such a way that the decision
to select a term ξ[n] does not depend on the value of ξ[n]. But von Mises’ definition of an
“admissible place selection rule” is not rigorous according to modern mathematics. After
von Mises introduced the concept of “Kollektivs”, the first question raised was whether this
concept is consistent. Wald [99] answered this question affirmatively by showing that, for
each countable set of admissible place selection rules, the corresponding set of “Kollektivs”
has Lebesgue measure 1. The second question raised was whether all “Kollektivs” satisfy
the standard statistical laws. For a negative answer to this question, Ville [98] constructed a
counterexample in 1939. He showed that, for each countable set of admissible place selection
rules, there exists a “Kollektiv” which does not satisfy the law of the iterated logarithm.
The example of Ville defeated the plan of von Mises to develop probability theory based
on “Kollektivs”, that is to say, to give an axiomatisation of probability theory with “ran-
dom sequences” (i.e., “Kollektivs”) as a primitive term. Later, admissible place selection
rules were further developed by Tornier, Wald, Church, Kolmogorov, Loveland and others.
This approach of von Mises to define random sequences is now known as the “stochastic
approach”.

A completely different approach to the definition of random sequences was proposed
by Kolmogorov and, independently, by Chaitin, and further developed by Levin, Schnorr
and others (see, e.g., Uspenskii, Semenov and Shen [97]). In this approach, a notion of
chaoticness is used for a definition of random sequences: The complexity of a finite string x
is defined to be the length of the minimal string y from which x can be generated effectively.
Then an infinite sequence is chaotic if all of its initial segments have the maximal possible
complexity (modulo some additive constant).

1



2 CHAPTER 1. INTRODUCTION AND NOTATION

Finally, Martin-Löf [74] developed a third, quantitative (measure-theoretic) approach
to the notion of random sequences. This approach is free from those difficulties connected
with the frequency approach of von Mises. The idea underlying this approach is to identify
the notion of randomness with the notion of typicalness. A sequence is typical if it is in
every large set of sequences, that is to say, if it is not in any small set of sequences. Of
course, if we take small sets as the Lebesgue measure 0 sets, then no typical sequence exists.
The solution to this problem given by Martin-Löf is to define the small sets to be certain
constructive null sets. A different characterization of Martin-Löf’s randomness concept was
given by Solovay (see, e.g., Chaitin [30] or Kautz [44]), which is in the style of the first
Borel-Cantelli Lemma. Later, the notion of “typicalness” was further studied by Schnorr,
Kurtz, Ko, Solovay, Lutz and others.

Schnorr [89] used the martingale concept to give a uniform description of various notions
of randomness. In particular, he gave a characterization of Martin-Löf’s randomness con-
cept in these terms. Moreover, he criticized Martin-Löf’s concept as being too strong and
proposed a less restrictive concept as an adequate formalization of a random sequence. In
addition Schnorr introduced a refinement of Martin-Löf randomness and some intermediate
notion between Martin-Löf and Schnorr randomness. This latter concept coincides with the
notion of rec-randomness introduced by van Lambalgen [57] and Lutz [65]. Schnorr left open
the question whether rec-randomness is a proper refinement of Schnorr randomness, which
was conjectured to be true by van Lambalgen and Lutz. We will show that rec-randomness
is strictly weaker than Martin-Löf randomness and that it is strictly stronger than Schnorr
randomness, thereby proving van Lambalgen and Lutz’s conjecture. At the same time, we
will show that there is a Schnorr random sequence ξ and a recursive place selection rule ϕ
in the sense of Church such that the selected subsequence of ξ by ϕ is 111 · · ·. This shows
that the notion of Schnorr randomness seems to us less adequate to our intuition than the
notions of Martin-Löf and rec-randomness.

Ko [48] introduced a pseudorandomness concept which is based on the notion of efficient
tests. In this thesis, we introduce the randomness concept corresponding to Ko’s pseudo-
randomness concept, and we prove that this concept coincides with Schnorr’s randomness
concept. Using this new concept, we give a characterization of Schnorr’s randomness con-
cept in terms of finite unions of basic open sets instead of recursively open sets, which can
be used to give a Solovay style criterion for the notion of Schnorr randomness.

Kurtz [54] introduced a notion of weak randomness using recursively open sets of Lebesgue
measure one. We characterize this notion in terms of constructive null covers, martingales
and a Solovay style criterion.

In Chapter 3, we study the notions of classical randomness mentioned above and we an-
alyze the relations among them. We characterize the concepts of Martin-Löf, Lutz, Schnorr,
Ko and Kurtz typical sequences in different equivalent ways (for example, in terms of mar-
tingales, in terms of Borel-Cantelli Lemma style criteria, and in terms of constructive null
covers). The main theorem of this chapter is Theorem 3.2.2: rec-randomness is a proper
refinement of Schnorr randomness. Together with other theorems in this chapter, we obtain
a complete characterization of the relations among these notions of typicalness mentioned
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above. That is to say, we have the following diagram:

M-RAND ⊂ L-RAND ⊂ K-RAND = S-RAND ⊂ W-RAND,

where these sets are the sets of Martin-Löf, Lutz, Ko, Schnorr and Kurtz random sequences,
respectively.

At the end of Chapter 3, we discuss notions of randomness in terms of chaoticness and
stochasticity. In particular, we address the invariance properties of random sequences. We
list some of Schnorr’s [89] results about the invariance properties of random sequences and,
as an analog, we show the invariance properties of Kurtz random sequences.

Chapter 4 is devoted to notions of n-randomness. These refinements of effective ran-
domness, which correspond to the levels of the arithmetical hierarchy, are of interest in
recursion theory. The results in this chapter can be considered as relativizations of the
results in Chapter 3.

In the second part of this thesis we study applications of randomness concepts in com-
plexity theory. For computational complexity classes, several definitions of pseudorandom
sequences have been proposed. Blum and Micali [18] and Yao [115] gave a relatively weak
definition of resource bounded random sequences. Schnorr [89] and Ko [48] introduced re-
source bounded versions of the notions of Martin-Löf and Kolmogorov randomness. More
recently, Lutz [63, 65] further pursued these ideas and systematically developed a resource
bounded measure theory. In particular, he introduced a feasible measure concept, of which
he and others have shown that it is a natural tool for the quantitative analysis of the class
E. For example, Mayordomo [76] and Juedes and Lutz [42] have shown that both the class
of P-bi-immune sets and the class of p-incompressible sets have p-measure 1.

Chapter 5 is devoted to the study of notions of resource bounded randomness. First,
we introduce various notions of resource bounded randomness in terms of typicalness and
investigate their relations to each other. We will show that:

1. For polynomial time bounds, the notion of rec-randomness is stronger than the notion
of Schnorr randomness and the notion of Schnorr randomness is stronger than the
notion of Kurtz randomness. The former was conjectured to be true by Lutz [65].
We also show, however, that if we consider only recursive sets, then these randomness
concepts coincide.

2. For polynomial time bounds, the notion of Ko randomness is independent of the
notions of rec-randomness, Schnorr randomness and Kurtz randomness.

Moreover, we study notions of resource bounded stochasticity. Here we concentrate our
attention on the stochastic properties of resource bounded rec-random sequences and we
show that the important laws in probability theory hold for p-random sequences. The law of
large numbers and the law of the iterated logarithm, which require that all random sequences
should have some stochastic properties (cf. von Mises’ definition of random sequences), are
the two most important laws in probability theory. They play a central role in the study
of probability theory (see, e.g., [33]) and in the study of classical randomness concepts
(see, e.g., [44, 74, 89, 98]). In the study of classical randomness concepts, the crucial point
is to ensure that each random sequence withstands all “standard” statistical tests, hence
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satisfies the two laws mentioned above. We will show that these two laws hold for p-random
sequences also. (In particular, we can show that all the standard laws (e.g., the α lnn-gap
law for α < 1) in probability theory, which only depend on the 0-1 distributions within the
sequences, hold for p-random sequences. However, we do not carry out this tedious work of
verification in this thesis.) These two laws give a quantitative characterization of the density
of p-random sets. It is well known that all p-random sets have symmetric density. By the
law of large numbers and by the law of the iterated logarithm for p-random sequences, it
is obvious that all p-random sets have a stochastic distribution on their elements, hence
the density of most intractable sets is just “one half”. When combined with an invariance
property of p-random sequences, these laws are also useful in proving that some complexity
classes have p-measure 0.

Chapter 6 will establish the relations between the concepts of resource bounded random-
ness and the concepts of approximations. The notion of polynomial time safe approximations
was introduced by Meyer and Paterson in [78] (see also [49]). In Orponen et al. [83], the
existence of optimal safe approximations was phrased in terms of P-levelability. The no-
tion of unsafe approximations was introduced by Yesha in [116]. Duris and Rolim [32] and
Ambos-Spies [4] further investigated unsafe approximations and introduced two levelability
concepts, ∆-levelability and weak ∆-levelability, respectively. In this thesis, we study a little
different version of unsafe approximations.

Resource bounded measure and category are useful in the study of typical properties of
intractable complexity classes. It was shown in Ambos-Spies et al. [9] that the generic sets
of Ambos-Spies are P-immune, and that the class of sets which have optimal safe approx-
imations is comeager in the sense of resource bounded Ambos-Spies category. Mayordomo
[75] has shown that the class of P-immune sets is neither meager nor comeager in the sense
of resource bounded Lutz category and in the sense of resource bounded Fenner category.
We extend this result by showing that the class of sets which have optimal safe approxima-
tions is neither meager nor comeager both in the sense of resource bounded Lutz category
and in the sense of resource bounded Fenner category. Moreover, we will show the following
relationships between unsafe approximations and resource bounded categories.

1. The class of weakly ∆-levelable sets is neither meager nor comeager in the sense of
resource bounded Ambos-Spies category [9].

2. The class of weakly ∆-levelable sets is comeager in the sense of resource bounded
general Ambos-Spies [5], Fenner [34] and Lutz [63] categories.

3. The class of ∆-levelable sets is neither meager nor comeager in the sense of resource
bounded general Ambos-Spies [5], Fenner [34] and Lutz [63] categories.

In the last section of Chapter 6, we will show the relations between polynomial time
approximations and p-measure. Mayordomo [76] has shown that the class of P-bi-immune
sets has p-measure 1. It follows that the class of sets which have optimal polynomial time
safe approximations has p-measure 1. Using the law of the iterated logarithm for p-random
sequences which we have proved in Chapter 5, we will show that:

1. The class of ∆-levelable sets has p-measure 0.
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2. The class of sets which have optimal polynomial time unsafe approximations has p-
measure 0.

3. p-Random sets are weakly ∆-levelable but not ∆-levelable.

Hence typical sets in the sense of Lutz measure theory do not have optimal polynomial time
unsafe approximations.

Chapter 7 is devoted the study of P-selective hard sets for NP. Selman [91] showed that
if NP ⊆ Pm(SELECT), where SELECT is the class of P-selective sets, then P = NP.
Recently, Agrawal and Arvind [1], Beigel, Kummer and Stephan [15] and Ogihara [81]
showed that if NP ⊆ Pnα-tt(SELECT) for some real α < 1, then P = NP. It seems
difficult to remove the condition α < 1 in the above result. In this chapter, however, we will
remove this condition under a stronger but reasonable hypothesis. That is, we show that if
NP does not have p-measure 0, then no ≤p

tt-hard set for NP is P-selective. We also give
a partial affirmative answer to a conjecture by Beigel, Kummer and Stephan [15]. They
conjectured that every ≤p

tt-hard set for NP is p-superterse unless P = NP. We will prove
that every ≤p

tt-hard set for NP is p-superterse unless NP has p-measure 0.

1.2 Summary of Main Contributions

The main contributions in Chapter 3 are:

• We give Solovay style characterizations (in terms of martingales) of notions of Martin-
Löf, Lutz, Schnorr and Kurtz randomness, respectively.

• We give a martingale characterization and an effective null cover characterization of
the notion of Kurtz randomness.

• We show that the set of rec-random sequences is a proper subset of the set of Schnorr
random sequences. This question has been left open by Schnorr [89], and later was
conjectured to be true by van Lambalgen [57] and Lutz [65].

• We show that there is a sequence which is Schnorr random, but not Church stochastic.

The main contributions in Chapter 4 are:

• We introduce notions of n-randomness corresponding to the notions of rec-randomness
and Schnorr randomness.

• We give martingale characterizations of the notions of Martin-Löf, rec-, Schnorr and
Kurtz n-randomness, respectively. It should be noted that Kurtz [54] introduced the
notions of Martin-Löf and Kurtz n-randomness in terms of effective null covers.

The main contributions in Chapter 5 are:

• We establish the relations among various notions of resource bounded randomness, for
example, the relations among the notions of resource bounded Ko, rec-, Schnorr and
Kurtz randomness.
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• We study the notions of resource bounded stochasticity. In particular, we show that
all “standard” statistical laws hold for p-random sequences.

The main contributions in Chapter 6 are:

• We establish the relations between resource bounded genericity concepts (resp. re-
source bounded randomness concepts) and the unsafe approximation concept. In
particular, we show that p-random sets do not have optimal polynomial time unsafe
approximations.

The main contribution in Chapter 7 is:

• We show that all ≤p
tt-hard sets for NP are p-superterse unless NP is small.

1.3 Notation

For the most part our notation is standard, following that used by Soare [93] and Balcázar
et al. [11]. We assume that the reader is familiar with the basics of recursion theory.

N,Q(Q+) and R(R+) are the set of natural numbers, the set of (nonnegative) rational
numbers and the set of (nonnegative) real numbers, respectively. For a real number α ∈ R,
[α] denotes the greatest integer less than or equal to α. Σ = {0, 1} is the binary alphabet,
Σ∗ is the set of (finite) binary strings, Σn is the set of binary strings of length n, and Σ∞

is the set of infinite binary sequences. The length of a string x is denoted by |x|. < is the
length-lexicographical ordering on Σ∗ and zn (n ≥ 0) is the nth string under this ordering.
λ is the empty string. For strings x, y ∈ Σ∗, xy is the concatenation of x and y, x v y
denotes that x is an initial segment of y. For a sequence x ∈ Σ∗ ∪ Σ∞ and an integer
number n ≥ −1, x[0..n] denotes the initial segment of length n + 1 of x (x[0..n] = x if
|x| < n + 1) and x[n] denotes the nth bit of x, i.e., x[0..n] = x[0] · · ·x[n]. Lower case letters
· · · , k, l, m, n, · · · , x, y, z from the middle and the end of the alphabet will denote numbers
and strings, respectively. The letter b is reserved for elements of Σ, and lower case Greek
letters ξ, η, · · · denote infinite sequences from Σ∞.

A subset of Σ∗ is called a language, a problem or simply a set. Capital letters are
used to denote subsets of Σ∗ and boldface capital letters are used to denote subsets of
Σ∞. The cardinality of a language A is denoted by ‖A‖. We identify a language A with
its characteristic function, i.e., x ∈ A iff A(x) = 1. The characteristic sequence of a lan-
guage A is the infinite sequence A(z0)A(z1)A(z2) · · ·. We freely identify a language with
its characteristic sequence and the class of all languages with the set Σ∞. For a language
A ⊆ Σ∗ and a string x ∈ Σ∗, A |̀x denotes the finite initial segment of A below x, i.e.,
A |̀x = {y : y < x & y ∈ A}, and we identify this initial segment with its characteristic
string, i.e., A |̀ zn = A(z0) · · ·A(zn−1) ∈ Σ∗. For languages A and B, Ā = Σ∗ − A is the
complement of A, A∆B = (A − B) ∪ (B − A) is the symmetric difference of A and B,
A ⊆ B (resp. A ⊂ B) denotes that A is a subset of B (resp. A ⊆ B and B 6⊆ A), and
A =∗ B (resp. A ⊆∗ B) denotes that A∆B (resp. A − B) is finite. For a number n,
A=n = {x ∈ A : |x| = n} and A≤n = {x ∈ A : |x| ≤ n}.
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A class C of languages is closed under finite variation iff, for all languages A and B, if
A =∗ B, then A ∈ C iff B ∈ C. If X is a set of strings (i.e., a language) and C is a set of
infinite sequences (i.e., a class of languages), then X ·C denotes the set {wξ : w ∈ X, ξ ∈ C}.
For each string w, Cw = {w} · Σ∞ is called the basic open set defined by w. An open set
is a (finite or infinite) union of basic open sets, that is, a set X · Σ∞ where X ⊆ Σ∗. A
closed set is the complement of an open set. A class of languages is recursively open if it
is of the form X · Σ∞ for some recursively enumerable set X ⊆ Σ∗. A class of languages is
recursively closed if it is the complement of some recursively open set.

For a class C of languages, we write Prob[C] for the probability that A ∈ C when A is
chosen by a random experiment in which an independent toss of a fair coin is used to decide
whether a string is in A. This probability is defined whenever C is measurable under the
usual product measure on Σ∞.

We fix a standard polynomial time computable and invertible pairing function λx, y <
x, y > on Σ∗ such that, for a string x, there is a real α(x) > 0 satisfying

‖Σ[x] ∩ Σn‖ ≥ α(x) · 2n for almost all n

where Σ[x] = {< x, y >: y ∈ Σ∗} and Σ[≤x] = {< x′, y >: x′ ≤ x & y ∈ Σ∗}. For a
set U , let U [k] = {x :< k, x >∈ U}. We will use P, E and E2 to denote the complexity
classes DTIME(poly), DTIME(2linear) and DTIME(2poly), respectively. For a function
f : Σ∗ → N , O(f) denotes the class {g : g ≤ cf for some c ∈ N} of functions. Finally, we
fix a recursive enumeration {Pe : e ≥ 0} of P such that Pe(x) can be computed in O(2|x|+e)
steps (uniformly in e and x).
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Chapter 2

Basics of Lebesgue Measure Theory

In this chapter we review some of the basic concepts of Lebesgue measure theory which we
need in this thesis. In particular, we give an alternative definition (by Ville [98]) of Lebesgue
measure in terms of martingales.

2.1 Lebesgue Measure Theory

We identify the unit interval [0, 1] with the set Σ∞ of infinite 0-1 sequences. For two infinite
sequences ξ, η ∈ Σ∞, we write ξ < η if there exists n ∈ N such that ξ[0..n− 1] = η[0..n− 1]
and ξ[n] < η[n], and we write ξ ≤ η if ξ = η or ξ < η. (ξ, η) denotes the corresponding open
interval inside [0, 1].

The measure (or probability) of a basic open set Cx = x · Σ∞ is defined as Prob[Cx] =
2−|x|.

A sequence of basic open sets {Cxn : n ∈ N} is said to cover a set C ⊆ Σ∞ if its
union contains C. The greatest lower bound of the sums

∑
n∈N Prob[Cxn ], for all sequences

{Cxn : n ∈ N} that cover C, is called the outer measure (or outer probability) of C, and is
denoted by Prob∗[C]. I.e.,

Prob∗[C] = inf

{∑
n∈N

Prob[Cxn ] : C ⊆ ∪n∈NCxn

}
.

The inner measure (or inner probability) of a set C ⊆ Σ∞ is defined as Prob∗[C] = 1 −
Prob∗[C̄]. A set C ⊆ Σ∞ is Lebesgue measurable if Prob∗[C] = Prob∗[C]. For a Lebesgue
measurable set C, Prob[C] = Prob∗[C] is called the measure (or probability) of C.

Lemma 2.1.1 A set C ⊂ Σ∞ has Lebesgue measure 0 if and only if, for each n ∈ N , there
is a set A ⊆ Σ∗ such that the following hold.

1.
∑

x∈A Prob[Cx] ≤ 2−n.

2. C ⊆ A · Σ∞ = ∪x∈ACx.

9
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Proof. Straightforward.

We often call a set C a null set if it has Lebesgue measure 0. It is obvious that singletons
are null sets and that any subset of a null set is a null set. Any countable union of null sets
is also a null set.

Theorem 2.1.2 (Borel) If a finite or infinite sequence {Cxn : n ∈ N} of basic open sets
covers a basic open set Cx, then Prob[Cx] ≤

∑
n∈N Prob[Cxn ].

Proof. Straightforward.

The following two theorems are useful in the study of Lebesgue measure.

Theorem 2.1.3 (The first Borel-Cantelli Lemma) Let C0,C1, · · · be an infinite sequence
of Lebesgue measurable sets such that

∑
n∈N Prob[Cn] converges. Then

C = {ξ : ξ belongs to infinitely many Cn}

is a null set.

Proof. Choose n0, n1, · · · so that, for each i ∈ N ,
∑

j≥ni
Prob[Cj ] ≤ 2−i. Obviously, for

each i ∈ N ,
C ⊆ ∪j≥niCj .

Hence, by Lemma 2.1.1 and Theorem 2.1.2, C is a null set.

The following theorem is a “converse” of the above theorem for the special case of
mutually independent Cn.

Theorem 2.1.4 (The second Borel-Cantelli Lemma) Let C0,C1, · · · be an infinite sequence
of independent, Lebesgue measurable sets, i.e., Prob[Ci]·Prob[Cj ] = Prob[Ci∩Cj ] for i 6= j,
such that

∑
n∈N Prob[Cn] diverges. Then

C = {ξ : ξ ∈ Cn for infinitely many n ∈ N},

has probability 1.

Remark. The proof of this theorem can be found in many textbooks. In the proof of
the law of the iterated logarithm for p-random sequences (Chapter 5), the idea underlying
the following proof will be used.

Proof. Let cn = Prob[Cn] and

An = {ξ : ξ /∈ Ci for all i ≤ n}.

Then, by the independence property of the sequence {Cn : n ∈ N}, Prob[An] ≤ (1 −
c0) · · · (1− cn) < e−(c0+···+cn). Hence the set

B1 = {ξ : ξ ∈ Cn for at least one n ∈ N}
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has probability 1.
Next, divide the sequence C0,C1, · · · into two subsequences C′

0,C
′
1, · · · and C′′

0,C
′′
1, · · ·

so that both series
∑

n∈N Prob[C′
n] and

∑
n∈N Prob[C′′

n] diverge. Applying our above result
to the two subsequences we obtain that

B2 = {ξ : ξ ∈ Cn for at least two n ∈ N}

has probability 1. Applying, in turn, this statement to the sequences C′
0,C

′
1, · · · and

C′′
0,C

′′
1, · · ·, and going on this procedure, we can show that, for every i ∈ N , the set

Bi = {ξ : ξ ∈ Cn for at least i numbers n ∈ N}

has probability 1. Hence C = ∩∞i=1Bi has probability 1.

2.2 Martingales

Following Ville [98], in this section we give an alternative definition of Lebesgue measure
based on martingales.

Definition 2.2.1 A martingale is a function F : Σ∗ → R+ such that, for all x ∈ Σ∗,

F (x) =
F (x1) + F (x0)

2
. (2.1)

A martingale F covers a set C of infinite sequences if, for each ξ ∈ C, lim infn F (ξ[0..n −
1]) ≥ 1. A martingale F succeeds on an infinite sequence ξ ∈ Σ∞ if lim supn F (ξ[0..n−1]) =
∞. NULLF denotes the set of infinite sequences on which F succeeds.

Ville [98] has shown that Lebesgue measure can be defined in terms of martingales.
In particular, a set of infinite sequences has Lebesgue measure 0 if and only if there is a
martingale which succeeds on all sequences in the set.

For each basic open set Cx, define a martingale Fx by

Fx(y) =


2|y|−|x| y v x
1 x v y
0 otherwise

Then Fx(λ) = Prob[Cx] and, for all y ∈ x · Σ∗, Fx(y) = 1. That is to say, Cx is covered by
Fx. In the same way, it is easy to prove the following lemma.

Lemma 2.2.2 For each open set C ⊆ Σ∞, there is a martingale F such that F (λ) =
Prob[C] and C is covered by F .

Proof. Straightforward.

Lemma 2.2.3 For each null set C, there is a martingale F which succeeds on C.
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Proof. Because C is a null set, by Lemma 2.1.1, for each n, there is an open set Cn such
that C ⊆ Cn and Prob[Cn] ≤ 2−n. By Lemma 2.2.2, there is a martingale Fn such that
Fn(λ) ≤ 2−n and Cn is covered by Fn. Let F (x) =

∑
n∈N Fn(x). Then F is a martingale

which succeeds on C.

Lemma 2.2.4 (Ville [98]) Let F be a martingale and Fk = {x ∈ Σ∗ : F (x) > k}. Then
Prob[Fk · Σ∞] ≤ F (λ)k−1.

Proof. Let F ′
k be a prefix free set (i.e. F ′

k ∩ F ′
kΣΣ∗ = ∅) satisfying Fk · Σ∞ = F ′

k · Σ∞.
Then

F (λ) ≥
∑

x∈F ′
k

F (x)2−|x| ≥ k · Prob[Fk · Σ∞].

Consequently,
Prob[Fk · Σ∞] ≤ F (λ)k−1.

By combining Lemma 2.2.3 and Lemma 2.2.4, we get

Corollary 2.2.5 A set C ⊂ Σ∞ is a null set if and only if there exists a martingale F such
that F succeeds on C.

Corollary 2.2.5 shows that we can give an alternative definition of Lebesgue measure in
terms of martingales. As an example, we rephrase the first Borel-Cantelli lemma in terms
of martingales.

Theorem 2.2.6 (The first Borel-Cantelli Lemma) Let F0, F1, · · · be an infinite sequence of
martingales such that

∑
n∈N Fn(λ) converges. Then the martingale F =

∑
n∈N Fn succeeds

on
C = {ξ : ξ is covered by infinitely many Fn}.

Hence C is a null set.

Proof. Straightforward



Chapter 3

A Comparison of Classical
Randomness Concepts

3.1 Typicalness

We have already mentioned in the introduction that Martin-Löf defined a notion of ran-
domness in terms of typicalness, that is, he identified the notion of randomness with the
notion of typicalness. Since every single sequence has Lebesgue measure 0, we can not use
Lebesgue measure to define the notions of “small sets” and “large sets”. So Martin-Löf
[74] introduced the notion of an “effectively null set”, which can be used for a definition of
random sequences. Each constructive null set can be considered as an effective statistical
test (see Martin-Löf [74]), and it is more intuitive to give definitions of randomness concepts
in terms of effective tests. In the style of the first Borel-Cantelli Lemma, a variant definition
of Martin-Löf’s randomness concept was given by Solovay (see, e.g., Chaitin [30] or Kautz
[46]).

Schnorr [88, 89] characterized Martin-Löf’s effective tests in terms of martingales, and
criticized Martin-Löf’s concepts as being too strong. Using ideas from intuitionistic mathe-
matics by L. E. J. Brouwer, he modified Martin-Löf’s notion of randomness by adding some
additional requirements to the effective tests, and got a new weaker notion of randomness.

Ko [48] has tried to introduce a notion of pseudorandomness along the line of Martin-Löf,
but he observed that this approach does not work if we only replace the effective tests with
polynomial time tests: A sequence does not withstand some effective test if and only if it does
not withstand some polynomial time test. Ko succeeded in defining a meaningful concept
of pseudorandmoness, however, by additionally taking into account the resources which
is needed to check whether a sequence withstands an effective test. Roughly speaking, a
sequence is Ko pseudorandom if it cannot be easily rejected by any efficient method of testing
randomness. Here we introduce a recursive version of Ko’s pseudorandomness concept by
replacing easily and efficient with effectively and effective, respectively. We characterize this
notion in terms of effective null covers consisting of finite unions of basic open sets and
in terms of martingales. From these characterizations, it is easy to show that this notion
coincides with the notion of Schnorr randomness and to give a Solovay style characterization

13
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of this notion.
Using martingale concepts, Lutz [63, 65] introduced an effective version of Lebesgue

measure. He and others have studied this subject systematically. For example, Lutz [65]
has shown the first Borel-Cantelli Lemma for his effective measure, from which it is easy to
give a Solovay style criterion for the notion of rec-randomness.

Kurtz [54] has further studied a randomness concept based on the notion of “typicalness”.
He defined that a sequence is weakly random if and only if it is not in any recursively closed
set of Lebesgue measure 0. We characterize this notion in terms of constructive null covers,
martingales and a Solovay style criterion.

3.1.1 Martin-Löf randomness

For a definition of random sequences, many insufficient approaches have been made until
a definition was proposed by Martin-Löf, which for the first time included all standard
statistical properties of random sequences.

Definition 3.1.1 (Martin-Löf [74]) A Martin-Löf test is a recursively enumerable set U
with the property that Prob[U [k] ·Σ∞] ≤ 2−k for all k ∈ N . An infinite sequence ξ does not
withstand the Martin-Löf test U if ξ ∈ U [k] ·Σ∞ for all k ∈ N . A sequence ξ is Martin-Löf
random if it withstands all Martin-Löf tests.

Let M-NULL be the set of sequences which do not withstand some Martin-Löf test,
and let M-RAND = Σ∞ −M-NULL be the set of Martin-Löf random sequences.

In the following, we show that, in the definition of Martin-Löf’s random sequences, we
can require that the Martin-Löf test U be polynomial time computable (this fact was first
observed by Ko [48]).

Definition 3.1.2 (Ko [48]) An m-1-test is a Martin-Löf test U which is polynomial time
computable. A sequence ξ is m-1-random if it withstands all m-1-tests.

Let M-1-NULL be the set of sequences which do not withstand some m-1-test, and let
M-1-RAND = Σ∞ −M-1-NULL be the set of m-1-random sequences.

The above definition of Martin-Löf’s randomness concept is based on effective tests,
which are given by recursively open sets. As shown by Schnorr [88, 89], the martingale
concept can be used to characterize effective tests also. Schnorr [88, 89] used various types
of martingales to characterize effective tests and to give a uniform approach to definitions
of various randomness concepts. In particular, he characterized the notion of Martin-Löf
randomness in terms of martingales.

Definition 3.1.3 (Schnorr [88, 89]) A total function F : Σ∗ → R is weakly approximable
if there is a recursive function h : N × Σ∗ → Q such that

1. For each n ∈ N and x ∈ Σ∗, h(n, x) ≤ h(n + 1, x).

2. For each x ∈ Σ∗, limn h(n, x) = F (x).
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Definition 3.1.4 (Schnorr [88, 89]) An m-2-test is a weakly approximable martingale F .
An infinite sequence ξ does not withstand the m-2-test F if F succeeds on ξ. A sequence ξ
is m-2-random if it withstands all m-2-tests.

Let M-2-NULL be the set of sequences which do not withstand some m-2-test, and let
M-2-RAND = Σ∞ −M-2-NULL be the set of m-2-random sequences.

Now we introduce Solovay’s characterization of Martin-Löf’s randomness concept. Solo-
vay’s original characterization is based on open covers, whereas the following one is based
on martingales.

Definition 3.1.5 A Solovay test is a recursive function F : N × Σ∗ → Q+ with the prop-
erties that

1.
∑∞

i=0 F (i, λ) < ∞.

2. For each i ∈ N , Fi(x) = F (i, x) is a martingale.

An infinite sequence ξ does not withstand the Solovay test F if it is covered by infinitely
many Fi. A sequence ξ is Solovay random if it withstands all Solovay tests.

Let So-M-NULL be the set of sequences which do not withstand some Solovay test,
and let So-M-RAND = Σ∞ − So-M-NULL be the set of Solovay random sequences.

The following theorem shows that the above defined randomness concepts coincide.

Theorem 3.1.6 (Ko [48] and Schnorr [88, 89]) M-RAND = M-1-RAND = M-2-RAND =
So-M-RAND.

Remark. M-RAND = M-1-RAND was proved by Ko [48] and M-RAND =
M-2-RAND was proved by Schnorr [88, 89]. We include proofs of these facts here only for
the sake of completeness.

Proof. In order to show M-NULL = M-1-NULL = M-2-NULL = So-M-NULL, it
is sufficient to show the following implications.

M-1-NULL ⊆ So-M-NULL ⊆ M-2-NULL ⊆ M-NULL ⊆ M-1-NULL.

(1). M-1-NULL ⊆ So-M-NULL
Let U be an m-1-test. W.l.o.g. we may assume that U [k] is prefix-free for all k ∈ N , that

is, for each x ∈ U [k], there is no nonempty string y such that xy ∈ U [k]. Define a recursive
function F by

F (< k, l >, x) =


2−|y| if xy = x<k,l> for some y ∈ Σ∗

1 if x = x<k,l>y for some y ∈ Σ∗

0 otherwise

where x<k,l> is the lth element of U [k].
It is straightforward to verify that the following hold.
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1.
∑

<k,l>∈N F (< k, l >, λ) =
∑

i∈N Prob[U [i] · Σ∞] ≤
∑

i∈N 2−i = 2.

2. F : N × Σ∗ → Q is recursive.

3. For each i, Fi(x) = F (i, x) is a martingale.

So F is a Solovay test. Moreover, for each < k, l >, if ξ ∈ x<k,l> ·Σ∞, then ξ is covered
by F<k,l>. Hence, for every ξ which does not withstand the m-1-test U , ξ is covered by
infinitely many Fi, that is, ξ does not withstand the Solovay test F .

(2). So-M-NULL ⊆ M-2-NULL
Let F (i, x) be a Solovay test. Define a function F ′ by

F ′(x) =
∞∑
i=0

F (i, x).

Then F ′ is a martingale which is weakly approximable as witnessed by h(n, x) =
∑n

i=0 F (i, x),
and, for every sequence ξ, if ξ is covered by infinitely many Fi(x) = F (i, x), then F ′ succeeds
on ξ.

(3). M-2-NULL ⊆ M-NULL
Let F be an m-2-test and let h be the recursive function witnessing the weak approx-

imability of F . W.l.o.g. we may assume that F (λ) ≤ 1. Define a recursively enumerable set
U by

U = {< k, x >: ∃n (h(n, x) ≥ 2k)}.

By Lemma 2.2.4, Prob[U [k] · Σ∞] ≤ 2−k for all k ∈ N . Hence U is a Martin-Löf test
and NULLF ⊆ U [k] · Σ∞ for all k ∈ N . That is, no sequence in NULLF withstands the
Martin-Löf test U .

(4). M-NULL ⊆ M-1-NULL
Given a Martin-Löf test U , for each k, let U

[k]
s be the set of all strings which have been

enumerated in U [k] by the end of the sth step of a fixed recursive enumeration of U , and let

V = {< k, x >: there exists y v x such that y ∈ U
[k]
|x|}.

Then V is polynomial time computable and V [k] ·Σ∞ = U [k] ·Σ∞ for all k ∈ N . That is, V
is an m-1-test and every sequence that does not withstand the Martin-Löf test U does not
withstand the m-1-test V .

We close this section with the observation that there is a universal Martin-Löf test.

Theorem 3.1.7 (Martin-Löf [74] and Schnorr [88, 89]) There exists a universal m-2-test
F , that is, there is a weakly approximable martingale F such that M-2-NULL= NULLF .

Proof. See Schnorr [88, 89].



3.1. TYPICALNESS 17

3.1.2 Rec-randomness

Schnorr [88, 89] objected to Martin-Löf’s randomness concepts, because the algorithmic
structure of an m-2-test F is not symmetrical. He thought that there is no reason why we
should require that the martingale F be weakly approximable but at the same time may
allow that −F is not weakly approximable. So Schnorr proposed the following definition.

Definition 3.1.8 (Schnorr [88, 89]) A rec-1-test is a martingale F such that −F is weakly
approximable. An infinite sequence ξ does not withstand the rec-1-test F if F succeeds on
ξ. A sequence ξ is rec-1-random if it withstands all rec-1-tests.

Let rec-1-NULL be the set of sequences which do not withstand some rec-1-test, and
let rec-1-RAND = Σ∞ − rec-1-NULL be the set of rec-1-random sequences.

By the martingale property (2.1), a rec-1-test can be characterized by a recursive mar-
tingale.

Lemma 3.1.9 (Schnorr [89]) For each rec-1-test F , there exists a recursive martingale
F ′ : Σ∗ → Q+ such that F ′(x) > F (x) for all x ∈ Σ∗.

Proof. Let F be a rec-1-test which is given by a recursive function h : N × Σ∗ → Q+,
that is, limn h(n, x) = F (x) and h(n + 1, x) ≤ h(n, x) for all n ∈ N and x ∈ Σ∗. W.l.o.g.
we may assume that F (x) < h(n, x) for all n ∈ N and x ∈ Σ∗. (If h does not have this
property, replace h by h′(n, x) = h(n, x) + 2−n.)

We inductively define a recursive martingale F ′ such that F ′(x) > F (x) + 2−|x| for all
strings x. Let

F ′(λ) = h(0, λ) + 1.

Then F ′(λ) = h(0, λ) + 2−|λ| > F (x) + 2−|λ|. For the inductive step, fix x and assume that
F ′(x) has been defined. Let

F ′(x1) = h(n, x1) + 2−|x|−1.

where n = min{i : h(i, x1) + h(i, x0) < 2(F ′(x)− 2−|x|)}, and let

F ′(x0) = 2F ′(x)− F ′(x1).

By the recursiveness of h, the above n can be found effectively, whence F ′ is recursive.
Moreover, by definition, F ′(x1) > F (x1) + 2−|x1|. So it suffices to show that F ′(x0) >
F (x0) + 2−|x0|. This is shown as follows.

F ′(x0) = 2F ′(x)− F ′(x1)

= 2F ′(x)− h(n, x1)− 2−|x|−1

> h(n, x0) + 2−|x|−1 (by the choice of n)

> F (x0) + 2−|x0|.
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By Lemma 3.1.9, we can rephrase the definition of rec-1-randomness in terms of recursive
martingales. The following definition was introduced by van Lambalgen [57] and Lutz [65].

Definition 3.1.10 (van Lambalgen [57] and Lutz [65]) A rec-test is a recursive martingale
F : Σ∗ → Q+. An infinite sequence ξ does not withstand the rec-test F if F succeeds on ξ.
A sequence ξ is rec-random if it withstands all rec-tests.

Let rec-NULL be the set of sequences which do not withstand some rec-test, and let
rec-RAND= Σ∞ − rec-NULL be the set of rec-random sequences.

It should be noted that Lutz [65] introduced his resource bounded measure theory and
resource bounded randomness concepts in terms of approximable martingales. However, the
following lemma shows that it is enough to consider recursive martingales.

Definition 3.1.11 (Schnorr [89]) A function F : Σ∗ → R is approximable if there is a
recursive function h : N × Σ∗ → Q such that, for all n,

|F (x)− h(n, x)| ≤ 2−n.

By the martingale property (2.1), the approximable martingales do not have additional
power in characterizing effective tests when compared with recursive martingales.

Lemma 3.1.12 (Schnorr [89, Satz 9.3]) For each approximable martingale F : Σ∗ → R+,
there exists a recursive martingale F ′ : Σ∗ → Q+ such that F ′(x) ≥ F (x) for all x ∈ Σ∗.

Proof. Let h : N × Σ∗ → Q be a function such that |h(n, x) − F (x)| ≤ 2−n for all
n ∈ N and x ∈ Σ∗. We inductively define a function h1 by letting h1(0, x) = h(0, x) + 2 for
all x ∈ Σ∗, and by letting

h1(n + 1, x) = min{h1(0, x), · · · , h1(n, x), h(n + 1, x) + 2−n}

for all n ∈ N and x ∈ Σ∗. Then limn h1(n, x) = F (x) and F (x) ≤ h1(n + 1, x) ≤ h1(n, x)
for all n ∈ N and x ∈ Σ∗. By Lemma 3.1.9, there is a recursive martingale F ′ : Σ∗ → Q+

such that F ′(x) ≥ F (x) for all x ∈ Σ∗.

Corollary 3.1.13 A sequence ξ is rec-random if and only if, for each approximable mar-
tingale F , F does not succeed on ξ.

We can also give a Solovay style characterization of rec-randomness concept as follows.

Definition 3.1.14 A So-rec-test is a recursive function F : N × Σ∗ → Q+ such that

1.
∑∞

i=0 F (i, λ) < ∞ is computable, that is, we can recursively find a number nk for each
k ∈ N such that

∑∞
i=nk

F (i, λ) < 2−k.

2. For each i, Fi(x) = F (i, x) is a martingale.
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An infinite sequence does not withstand the So-rec-test F if it is covered by infinitely many
Fi. A sequence ξ is So-rec-random if it withstands all So-rec-tests. So-rec-NULLF denotes
the set of sequences that do not withstand the So-rec-test F .

Let So-rec-NULL be the set of sequences which do not withstand some So-rec-test,
and let So-rec-RAND = Σ∞ − So-rec-NULL be the set of So-rec-random sequences.

Theorem 3.1.15 rec-RAND=So-rec-RAND=rec-1-RAND.

Proof. By Lemma 3.1.9, rec-RAND=rec-1-RAND. Hence it suffices to show that
rec-NULL =So-rec-NULL.

(1). rec-NULL ⊆So-rec-NULL
Given a recursive martingale F , define a function F ′ by

F ′(i, x) =
1
2i

F (x).

Then F ′ is a So-rec-test and rec-NULLF ⊆ So-rec-NULLF ′ .

(2). So-rec-NULL⊆ rec-NULL
Given a So-rec-test F , define a martingale F ′ by

F ′(x) =
∞∑
i=0

F (i, x).

Then F ′ is approximable and So-rec-NULLF ⊆ rec-NULLF ′ . Moreover, by Lemma
3.1.12, there is a recursive martingale F ′′ such that So-rec-NULLF ⊆ rec-NULLF ′′ .

3.1.3 Schnorr and Ko randomness

After characterizing Martin-Löf’s statistical tests in terms of martingales, Schnorr [88] re-
marked:

Computability and the martingale property (2.1) suffice to characterize effective
tests. But which sequences are refused by an effective test? · · · one would define
that a sequence ξ does not withstand the test F if and only if lim supn F (ξ[0..n−
1]) = ∞. However, if the sequence F (ξ[0..n− 1]) increases so slowly that no one
working with effective methods only would observe its growth, then the sequence
ξ behaves as if it withstands the test F . The definition of NULLF has to reflect
this fact. That is, we have to make constructive the notion lim supn F (ξ[0..n −
1]) = ∞. (From Schnorr [88, p256])

Using ideas from intuitionistic mathematics by L. E. J. Brouwer, Schnorr [89] developed
a randomness concept by adding some additional requirements to the notion of martingale-
succeeding on a sequence.
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Definition 3.1.16 (Schnorr [89]) An s-test (Schnorr test) is a pair (F, h) of functions such
that F is a recursive martingale and h : N → N is an unbounded, nondecreasing, recursive
function. A sequence ξ does not withstand the s-test (F, h) if lim supn(F (ξ[0..n − 1]) −
h(n)) ≥ 0, i.e., if F (ξ[0..n − 1]) ≥ h(n) i.o. A sequence ξ is s-random (Schnorr random)
if it withstands all s-tests. S-NULL(F,h) denotes the set of sequences that do not withstand
the s-test (F, h).

Let S-NULL be the set of sequences which do not withstand some s-test, and let
S-RAND = Σ∞ − S-NULL be the set of s-random sequences.

In the following, we will list some characterizations of Schnorr randomness. The equiv-
alence of these concepts will be proved at the end of this section. We start with Schnorr’s
characterization of his randomness concept in terms of Martin-Löf style statistical tests.

Definition 3.1.17 (Schnorr [89]) An s-1-test is a pair (U, g) consisting of a recursively
enumerable set U and a recursive function g, together with a recursive enumeration {Us}s∈N

of U such that, for each k and j,

1. Prob[U [k] · Σ∞] ≤ 2−k.

2. Prob[(U [k] − U
[k]
g(k,j)) · Σ

∞] ≤ 2−j.

An infinite sequence ξ does not withstand the s-1-test (U, g) if ξ ∈ U [k] · Σ∞ for all k ∈ N .
A sequence ξ is s-1-random if it withstands all s-1-tests.

Let S-1-NULL be the set of sequences which do not withstand some s-1-test, and let
S-1-RAND = Σ∞ − S-1-NULL be the set of s-1-random sequences.

The additional constraint 2 in an s-1-test (which is absent in a Martin-Löf test) has the
implication that lims Prob[U [k]

s · Σ∞] not only converges to a number less than 2−k, but
converges effectively also.

As we will show below, in the definition of s-1-tests, we can require that the set U be
polynomial time computable.

Definition 3.1.18 An s-2-test is a pair (U, g) where U is a polynomial time computable set
and g is a recursive function such that, for each k and j,

1. Prob[U [k] · Σ∞] ≤ 2−k.

2. Prob[(U [k] ∩ Σg(k,j)Σ∗) · Σ∞] ≤ 2−j.

An infinite sequence ξ does not withstand the s-2-test (U, g) if ξ ∈ U [k] · Σ∞ for all k ∈ N .
A sequence ξ is s-2-random if it withstands all s-2-tests.

Let S-2-NULL be the set of sequences which do not withstand some s-2-test, and let
S-2-RAND = Σ∞ − S-2-NULL be the set of s-2-random sequences.

There is also a Solovay style characterization of Schnorr’s randomness concept.



3.1. TYPICALNESS 21

Definition 3.1.19 A So-s-test is a pair (F, h) of functions with the properties that both
F : N × Σ∗ → Q+ and h : N → N are recursive functions satisfying

1.
∑∞

i=0 F (i, λ) < ∞ is computable, that is, we can recursively find a number nk for each
k such that

∑∞
i=nk

F (i, λ) < 2−k.

2. For each i, Fi(x) = F (i, x) is a martingale.

A sequence ξ ∈ Σ∞ is covered by Fi with respect to h if Fi(ξ[0..n− 1]) ≥ 1 for all n > h(i).
A sequence ξ does not withstand the So-s-test (F, h) if it is covered by infinitely many
Fi w.r.t. h. A sequence ξ is So-s-random if it withstands all So-s-tests. So-S-NULL(F,h)

denotes the set of sequences that do not withstand the So-s-test (F, h).

Let So-S-NULL be the set of sequences which do not withstand some So-s-test, and
let So-S-RAND = Σ∞ − So-S-NULL be the set of So-s-random sequences.

Ko [48] introduced a notion of pseudorandomness in terms of efficient tests. Intuitively,
in an efficient Ko test, we reject the hypothesis that ξ is random on the significance level
2−k if ξ does not pass the test by examining only the first g−1(k) bits of ξ, where g belongs
to some specified set of functions. In the following, we will introduce a recursive version of
this notion by letting g−1 be any recursive function.

Definition 3.1.20 (Ko [48]) A k-test is a pair (U, g) where U is a recursive set and g is
an unbounded, nondecreasing, recursive function such that U [0] = Σ∗ and, for all k, the
following hold.

1. For x, y ∈ Σ∗, if x ∈ U [k], then xy ∈ U [k].

2. U [k+1] ⊆ U [k].

3. Prob[U [k] · Σ∞] ≤ 2−k.

A sequence ξ does not withstand the k-test (U, g) if max{m : ξ[0..n− 1] ∈ U [m]} > g(n) i.o.
A sequence ξ is k-random (Ko random) if it withstands all k-tests.

Let K-NULL be the set of sequences that do not withstand some k-test, and let
K-RAND = Σ∞ −K-NULL be the set of k-random sequences.

It is possible to define k-tests in terms of finite sets, which is useful for a Solovay style
characterization of Ko’s randomness concept.

Definition 3.1.21 A k-1-test is a pair (U, g) where U is a recursive set and g is a recursive
function such that the following hold.

1. U [k] ⊆ Σ≤g(k).

2. Prob[U [k] · Σ∞] ≤ 2−k.

A sequence ξ does not withstand the k-1-test (U, g) if ξ ∈ U [k] · Σ∞ i.o. A sequence ξ is
k-1-random if it withstands all k-1-tests.
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Let K-1-NULL be the set of sequences that do not withstand some k-1-test, and let
K-1-RAND = Σ∞ −K-1-NULL be the set of k-1-random sequences.

The following theorem shows that these notions of randomness defined above coincide.

Theorem 3.1.22 S-RAND = S-1-RAND = S-2-RAND = So-S-RAND = K-RAND =
K-1-RAND.

Remark. S-1-RAND = S-RAND was proved by Schnorr [89], and part (2) of the
following proof is taken from Schnorr [89]. We include it here only for the sake of complete-
ness.

Proof. It suffices to show the following implications.
S-2-NULL ⊆ S-1-NULL ⊆ S-NULL ⊆ K-1-NULL ⊆ K-NULL ⊆ K-1-NULL ⊆

So-S-NULL ⊆ K-1-NULL ⊆ S-2-NULL.

(1). S-2-NULL ⊆ S-1-NULL
Straightforward.

(2). S-1-NULL ⊆ S-NULL
Let (U, g) be an s-1-test. W.l.o.g., assume that, for each k, U [k] is prefix-free. Let

B = ∪k∈NU [k] and let f(n) be an unbounded, nondecreasing, recursive function satisfying∑
x∈B∩ΣnΣ∗

2−|x| ≤ 2−2f(n).

(Note that
∑

x∈B∩ΣnΣ∗ 2−|x| converges to zero, whence such a function f exists.) Then∑
x ∈ B

f(|x|) = m

2−|x|2f(|x|) ≤ 2−2m2m = 2−m,

i.e., ∑
x∈B

2−|x|2f(|x|) ≤
∞∑

n=0

2−n = 2.

Hence there exists an unbounded, nondecreasing, recursive function h : N → N such that∑
x∈B∩Σh(n)Σ∗

2−|x|2f(|x|) ≤ 2−n.

For k ∈ N , let V [k] = B ∩ Σh(k)Σ∗. Then it is straightforward that ∩k∈N (U [k] · Σ∞) =
∩k∈N (V [k] · Σ∞). Define a function F by

F (x) =
∑
k∈N


∑

xy∈V [k]

2−|y|2f(|xy|) +
∑

x[0..n− 1] ∈ V [k]

n < |x|

2f(n)

 .

Firstly we show that F is a martingale.
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By the definition of f and V ,

F (λ) =
∑
k∈N

∑
x∈V [k]

2−|x|2f(|x|) ≤
∑
k∈N

2−k < ∞.

It is straightforward that, for each x ∈ Σ∗, F (x0) + F (x1) = 2F (x).
Secondly, we show that F is approximable.
Obviously, F is weakly approximable. F (λ) is approximable because∣∣∣∣∣∣F (λ)−

n∑
k=0

∑
x∈V [k]

2−|x|2f(|x|)

∣∣∣∣∣∣ ≤ 2−n

and ∣∣∣∣∣∣
∑

x∈V [k]

2−|x|2f(|x|) −
∑

x∈V [k]∩Σh(j)Σ∗

2−|x|2f(|x|)

∣∣∣∣∣∣ ≤ 2−j .

In order to compute F (x0) and F (x1), we compute F (x) with error less than ε
4 and find

u0 ≤ F (x0), u1 ≤ F (x1) such that

|2F (x)− u0 − u1| <
ε

2
.

Then |F (x0)−u0| < ε and |F (x1)−u1| < ε. Because F (λ) is approximable and F is weakly
approximable, F is approximable.

By the construction of F , it is straightforward that, for each sequence ξ that does not
withstand the s-1-test (U, g), ξ ∈ S-NULL(F,f). By Lemma 3.1.12, there is a recursive
martingale F ′ such that S-NULL(F,f) ⊆ S-NULL(F ′,f).

(3). S-NULL ⊆ K-1-NULL
Let (F, f) be an s-test. W.l.o.g., assume that F (λ) ≤ 1.
Let h(n) = µm(f(m) ≥ 2n+1) and U [k] = {x ∈ Σ≤h(k) : F (x) ≥ 2k}. Then, for each k,

1. U [k] ⊆ Σ≤h(k).

2. Prob[U [k] · Σ∞] ≤ 2−k.

It follows that, for each sequence ξ ∈ S-NULL(F,f), ξ does not withstand the k-1-test (U, h).

(4). K-1-NULL ⊆ K-NULL
Given a k-1-test (U, g), let

g′(n) = max{g(i) : i ≤ n},

h(n) = min{m : g′(m) > n} − 1,

and, for each k, let
V [k] = ∪i≥k+1{xy : x ∈ U [i], y ∈ Σ∗}.

Then it is easily checked that (V, h) is a k-test.
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Let ξ be a sequence that does not withstand the k-1-test (U, g). For each k0, there exist
n ≥ k > k0 such that ξ[0..n− 1] ∈ U [k]. Hence

max{m : ξ[0..n− 1] ∈ V [m]} ≥ k − 1

≥ min{m : ξ[0..n− 1] ∈ U [m]} − 1

≥ min{m : g(m) ≥ n} − 1

≥ min{m : g′(m) ≥ n} − 1

= h(n).

That is, ξ does not withstand the k-test (V, h).

(5). K-NULL ⊆ K-1-NULL
Given a k-test (U, h), let

h1(n) = max{m : h(m) < n + 1},

and
V = {< k, x >: x ∈ U [k] ∩ Σ≤h1(k)}.

Then, obviously, (V, h1) is a k-1-test. It suffices to show that the sequences ξ ∈ Σ∞ that do
not withstand the k-test (U, h) do not withstand the k-1-test (V, h1).

Given a sequence ξ ∈ Σ∞ that does not withstand the k-test (U, h), for each n0 ∈ N ,
there exists n > n0 such that

max{m : ξ[0..n− 1] ∈ U [m]} ≥ h(n),

that is, there exists m1 ≥ h(n) such that ξ[0..n− 1] ∈ U [m1]. But then

h1(m1) = max{m : h(m) < m1 + 1} ≥ n,

so ξ[0..n − 1] ∈ U [m1] ∩ Σ≤h1(m1) = V [m1]. Hence ξ ∈ V [k] · Σ∞ i.o. That is, ξ does not
withstand the k-1-test (V, h1).

(6). K-1-NULL ⊆ So-S-NULL
Let (U, h) be a k-1-test. W.l.o.g., assume that, for each i, U [i] is prefix-free.
Define a function F by

F (i, x) =
∑

xy∈U [i]

2−|y| +
∑

x[0..n− 1] ∈ U [i]

n < |x|

1.

Then it is straightforward that (F, h) is a So-s-test.
For ξ ∈ Σ∞, if ξ ∈ U [i] · Σ∞, then ξ is covered by Fi with respect to h. So, for each ξ

that does not withstand the k-1-test (U, h), ξ is covered by infinitely many Fi with respect
to h. Hence ξ ∈ So-S-NULL(F,h).
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(7). So-S-NULL ⊆ K-1-NULL
Let (F, h) be a So-s-test and n0, n1, · · · be a sequence of numbers such that, for all k,

∞∑
i=nk

F (i, λ) ≤ 2−k.

For each i, let
U [i] = {x ∈ Σ≤h(j) : F (j, x) ≥ 1, ni ≤ j < ni+1}.

Obviously, (U, h) is a k-1-test and, for each ξ ∈ Σ∞, if ξ is covered by some martingale
Fj (ni ≤ j < ni+1) w.r.t. h, then ξ ∈ U [i] · Σ∞. Hence, for each ξ ∈ So-S-NULL(F,h), ξ
does not withstand the k-1-test (U, h).

(8). K-1-NULL ⊆ S-2-NULL
Given a k-1-test (U, h), let

V1 = {< k, x >: x ∈ U [i] for some i ≥ k + 1}

and let M be a Turing machine which accepts the recursive set V1. Let

V = {< k, x >: there exists y v x such that M accepts < k, y > in |x| steps },

and r(k, j) = t(j + 2 + max{h(i) : i ≤ j + 2}), where t is the time bound of M . Then V is
polynomial time computable and

1. Prob[V [k] · Σ∞] = Prob[V [k]
1 · Σ∞] ≤ 2−k.

2. Prob[(V [k] ∩ Σr(k,j)Σ∗) · Σ∞] ≤ 2−j .

Hence (V, r) is an s-2-test and the sequences that do not withstand the k-1-test (U, h)
do not withstand the s-2-test (V, r).

3.1.4 Weak randomness

Kurtz [54] defined a notion of weak randomness in terms of recursively open sets of Lebesgue
measure 1.

Definition 3.1.23 (Kurtz [54]) A Kurtz test is a recursively enumerable set U such that
Prob[U · Σ∞] = 1. A sequence ξ does not withstand the Kurtz test U if ξ /∈ U · Σ∞. A
sequence ξ is Kurtz random if it withstands all Kurtz tests.

Let W-NULL be the set of sequences that do not withstand some Kurtz test, and let
W-RAND = Σ∞ −W-NULL be the set of Kurtz random sequences.

Now we develop alternative definitions of Kurtz random sequences in terms of Martin-Löf
style statistical tests, martingales and a Solovay style criterion.

Definition 3.1.24 An mw-test is a pair (U, g) where U is a recursive set and g is a recursive
function such that, for all k, the following hold.
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1. U [k] ⊆ Σ≤g(k).

2. Prob[U [k] · Σ∞] ≤ 2−k.

A sequence ξ does not withstand the mw-test (U, g) if ξ ∈ U [k] · Σ∞ a.e. A sequence ξ is
mw-random if it withstands all mw-tests.

Let MW-NULL be the set of sequences that do not withstand some mw-test, and let
MW-RAND = Σ∞ −MW-NULL be the set of mw-random sequences.

Definition 3.1.25 An sw-test is a pair (F, h) of functions such that F is a recursive
martingale and h : N → N is an unbounded, nondecreasing, recursive function. A se-
quence ξ does not withstand the sw-test (F, h) if lim infn(F (ξ[0..n − 1]) − h(n)) ≥ 0, i.e.,
if F (ξ[0..n − 1]) ≥ h(n) a.e. A sequence ξ is sw-random if it withstands all sw-tests.
SW-NULL(F,h) denotes the set of sequences that do not withstand the sw-test (F, h).

Let SW-NULL be the set of sequences which do not withstand some sw-test, and let
SW-RAND = Σ∞ − SW-NULL be the set of sw-random sequences.

The Solovay style characterization of Kurtz’s randomness concept can be given as follows.

Definition 3.1.26 A So-w-test is a pair (F, h) of recursive functions F : N × Σ∗ → R+

and h : N → N such that the following hold.

1.
∑∞

i=0 F (i, λ) < ∞ is computable, that is, we can recursively find a number nk for each
k such that

∑∞
i=nk

F (i, λ) < 2−k.

2. For each i, Fi(x) = F (i, x) is a martingale.

A sequence ξ ∈ Σ∞ is covered by Fi with respect to h if Fi(ξ[0..n− 1]) ≥ 1 for all n > h(i).
A sequence ξ does not withstand the So-w-test (F, h) if ξ is covered by almost all Fi w.r.t.
h. A sequence ξ is So-w-random if it withstands all So-w-tests. So-W-NULL(F,h) denotes
the set of sequences that do not withstand the So-w-test (F, h).

Let So-W-NULL be the set of sequences which do not withstand some So-w-test, and
let So-W-RAND = Σ∞ − So-W-NULL be the set of So-w-random sequences.

The following theorem shows that the notions of randomness defined above coincide.

Theorem 3.1.27 W-RAND = MW-RAND = SW-RAND = So-W-RAND.

Proof. It suffices to prove the following implications.
SW-NULL⊆MW-NULL⊆W-NULL⊆MW-NULL⊆So-W-NULL⊆MW-NULL⊆SW-

NULL.

(1). SW-NULL ⊆ MW-NULL
Let (F, f) be an sw-test. W.l.o.g., assume that F (λ) = 1. Let

h(n) = µm(f(m) ≥ 2n+1)

and
U [k] = {x ∈ Σ≤h(k) : F (x) > 2k}.

Then, for each k, the following hold.
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1. U [k] ⊆ Σ≤h(k).

2. Prob[U [k] · Σ∞] ≤ 2−k.

Hence (U, h) is an mw-test. Moreover, for each ξ ∈ SW-NULL(F,h), we have ξ ∈ U [n] ·Σ∞

a.e., that is, ξ does not withstand the mw-test (U, h).

(2). MW-NULL ⊆ W-NULL
Given an mw-test (U, g), let Vs ⊆ Σ≤g(s) be a set satisfying

1. U [s] · Σ∞ ∪ Vs · Σ∞ = Σ∞.

2. U [s] · Σ∞ ∩ Vs · Σ∞ = ∅.

For a sequence ξ that does not withstand the mw-test (U, g), there is a k0 ∈ N such that
ξ ∈ U [n] · Σ∞ for all n > k0. Let V = ∪s>k0Vs. Then V is a Kurtz test and ξ /∈ V · Σ∞.

(3). W-NULL ⊆ MW-NULL
Given a Kurtz test V , let Vs be the set of elements which have been enumerated into V

at the end of the sth step, g(s) = max{|x| : x ∈ Vs} and U [s] ⊆ Σ≤g(s) be a set satisfying

1. U [s] · Σ∞ ∪ Vs · Σ∞ = Σ∞.

2. U [s] · Σ∞ ∩ Vs · Σ∞ = ∅.

Then (U, g) is an mw-test. It is straightforward that the sequences that do not withstand
the Kurtz test V do not withstand the mw-test (U, g).

(4). MW-NULL ⊆ So-W-NULL
Let (U, h) be an mw-test. W.l.o.g., assume that for each i, U [i] is prefix-free. Define a

function F by
F (i, x) =

∑
xy∈U [i]

2−|y| +
∑

x[0..n− 1] ∈ U [i]

n < |x|

1.

It is straightforward that (F, h) is a So-w-test and, for each sequence ξ that does not
withstand the mw-test (U, h), ξ ∈ So-W-NULL(F,h).

(5). So-W-NULL ⊆ MW-NULL
Let (F, h) be a So-w-test and n0, n1, · · · be a sequence of numbers such that, for each k,

∞∑
i=nk

F (i, λ) ≤ 2−k.

For each i, let U [i] = {x ∈ Σ≤h(ni) : F (ni, x) ≥ 1}. Obviously, (U, h) is an mw-test and,
for each sequence ξ, if ξ is covered by Fni w.r.t. h, then ξ ∈ U [i] · Σ∞. Hence, for each
ξ ∈ So-W-NULL(F,h), ξ does not withstand the mw-test (U, h).

(6). MW-NULL ⊆ SW-NULL
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Let (U, h) be an mw-test. W.l.o.g., assume that h is nondecreasing. Let

F (x) =
∑
k∈N


∑

xy∈U [k]

2−|y| +
∑

x[0..n− 1] ∈ U [k]

n < |x|

1


and

gi(x) =
i+|x|∑
k=0


∑

xy∈U [k]

2−|y| +
∑

x[0..n− 1] ∈ U [k]

n < |x|

1

 .

Then F is approximable as witnessed by gi. By Lemma 3.1.12, there is a recursive martingale
F ′ such that F ′(x) ≥ F (x) for all x ∈ Σ∗. For each sequence ξ that does not withstand
the mw-test (U, h), there exists k1 ∈ N such that ξ ∈ U [n] · Σ∞ for all n ≥ k1. Hence
F (ξ[0..h1(n)− 1]) ≥ n− k1 and F ′(ξ[0..h1(n)− 1]) ≥ n− k1 for all n ≥ k1. That is, ξ does
not withstand the sw-test (F ′, h2), where h2 = 1

2h−1
1 .

3.2 Relations among Notions of Typicalness

In this section, we show the relationship among these notions of randomness we have dis-
cussed in the previous section.

Theorem 3.2.1 (Schnorr [88, 89]) M-RAND⊂rec-RAND.

Remark. Theorem 3.2.1 has already been proved by Schnorr in [88, Theorem 3.2] and
[89, Satz 7.2]. In the following, we will present another proof which will be useful for our
discussions.

Proof. It is straightforward that M-RAND⊆rec-RAND. So it suffices to construct a
sequence ξ ∈ rec-RAND−M-RAND.

Later in this proof, we call a rec-test F standard if F (λ) = 1.
Let G0, G1, · · · be an enumeration of all standard rec-tests. The standard method to

construct a rec-random sequence η is to minimize the value of the weighted sum of these
martingales on η. For example, let η[0] = 0 and, for n > 0, let η[n] = 1 ⇔ g(η[0..n− 1]0) ≥
g(η[0..n− 1]1), where

g(x) =
|x|∑
i=0

2−2iGi(x).

Then the sequence η is rec-random.
If we had a recursive enumeration G0, G1, · · · of all standard rec-tests, then the above

construction yielded a recursive sequence which is rec-random. Since there is no recursive
rec-random sequence, we have to take a recursive enumeration of all partial recursive func-
tions from Σ∗ to Q+ and have to guess which of these functions are standard rec-tests. So
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let {Fe : e ≥ 0} be a recursive enumeration of all partial recursive functions from Σ∗ to Q+.
We use strings x to denote the possible guesses which of them are standard rec-tests. That
is, x encodes the guess

∀e < |x| (Fe is a standard rec-test ⇔ x[e] = 1).

Now the basic idea for defining a sequence ξ ∈ rec-RAND−M-RAND is as follows.
We define a partial recursive function u : Σ∗ → Σ∗ such that

1. If x is a correct guess, then u(x) is defined.

2. If x < y and y is a correct guess, then u(x) < u(y).

So, for the “correct infinite guess” γ ∈ Σ∞, i.e.,

∀e (Fe is a standard rec-test ⇔ γ[e] = 1),

the sequence
ξ = lim

n→∞
u(γ[0..n− 1])

is a well defined infinite sequence.
To make ξ rec-random, we minimize the weighted sum of the standard rec-tests guessed

by γ[0..n− 1] on the part of u(γ[0..n]) extending u(γ[0..n− 1]). In order to ensure that ξ is
not Martin-Löf random, we ensure that |u(γ[0..n− 1])| = 2n. Then, for

U [k] = {u(x) : |x| = k and u(x) is defined },

U is recursively enumerable, Prob[U [k] · Σ∞] ≤ 2−k, and ξ ∈ U [k] · Σ∞ for all k. So ξ will
not withstand the Martin-Löf test U .

Now we give the formal construction of u and the “universal” functions Φ(x,u(x)) with
respect to the guess x.

Stage 0.
Let u(λ) = λ and let Φ(λ,u(λ))(z) = 0 for all z ∈ Σ∗.

Stage s + 1 (s ≥ 0).
In this stage, we define u(xb) and Φ(xb,u(xb)) for all x ∈ Σs and b ∈ Σ.
Given x ∈ Σs such that u(x) is defined, we say that a string yx is optimal with respect

to the pair (x, u(x)) if

1. yx ∈ Σ2.

2. For i < 2, yx[i] = 1 iff Φ(x,u(x))(u(x)yx[0..i− 1]1) < Φ(x,u(x))(u(x)yx[0..i− 1]0).

For each x ∈ Σs such that u(x) is defined, we distinguish the following two cases.
Case 1. There exists a string yx which is optimal with respect to the pair (x, u(x)).
Let u(x0) = u(x1) = u(x)yx and, for all z ∈ Σ∗, let

Φ(x0,u(x0))(u(x0)z) = Φ(x,u(x))(u(x0)z)
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and
Φ(x1,u(x1))(u(x1)z) = Φ(x,u(x))(u(x1)z) +

1
2|x|F|x|(u(x1))

F|x|(u(x1)z)

where we assume that F|x|(u(x1)) 6= 0 (otherwise, let Φ(x1,u(x1))(u(x1)z) = Φ(x,u(x))(u(x1)z)).
Case 2. There is no string yx which is optimal with respect to the pair (x, u(x)).
Let u(xb) and Φ(xb,u(xb)) be undefined for b ∈ Σ.
End of construction.

It remains to verify that the above constructed g and ξ satisfy the requirements, we
establish this by proving a sequence of claims.

Claim 1 For the correct infinite guess γ, g(γ[0..n− 1]) is defined and |g(γ[0..n− 1])| = 2n
for all n. Moreover, g(γ[0..n− 1]) < g(γ[0..n]).

Proof. Straightforward from the construction. 2

Claim 2 Let U [k] = {u(x) : |x| = k and u(x) is defined }. Then ξ ∈ U [k] · Σ∞ and
Prob[U [k] · Σ∞] ≤ 2−k for all k.

Proof. It is obvious from the definition of ξ that ξ ∈ U [k] · Σ∞ for all k.

Prob[U [k] · Σ∞] =
∑
|x|=k&u(x)↓ 2−|u(x)|

=
∑
|x|=k&u(x)↓ 2−2k

≤ 2−k.

2

Claim 3 Let Fe be a standard rec-test. Then lim supn→∞ Fe(ξ[0..n− 1]) < ∞.

Proof. Let γ be the correct infinite guess. By Claim 1, u(γ[0..e]) is defined. For
n ≥ |u(γ[0..e])|, by the construction,

Fe(u(γ[0..n− 1])) ≤ 2eFe(u(γ[0..e]))
(
Φ(γ[0..e],u(γ[0..e]))(u(γ[0..e])) +

∑n−1
j=e+1

1
2j

)
≤ 2eFe(u(γ[0..e]))(Φ(γ[0..e],u(γ[0..e]))(u(γ[0..e])) + 2).

I.e.,
Fe(ξ[0..2n− 1]) = Fe(u(γ[0..n− 1]))

≤ 2eFe(u(γ[0..e]))(Φ(γ[0..n−1],u(γ[0..e]))(u(γ[0..e])) + 2).

Hence lim supn→∞ Fe(ξ[0..n− 1]) < ∞. 2

All of these claims complete the proof of Theorem 3.2.1.

Theorem 3.2.2 rec-RAND ⊂ S-RAND.
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Proof. Obviously, we have rec-RAND ⊆ S-RAND. So it suffices to construct a
sequence ξ ∈ S-RAND− rec-RAND.

We start with some notation. Call a Schnorr test (F, h) standard if F (λ) = 1 and
h(0) = 0.

Let (F0, h0), (F1, h1), · · · be an effective enumeration of all pairs of partial recursive func-
tions satisfying, for each e ∈ N ,

Fe : Σ∗ → Q+ and he : N → N,

and let (M ′
0,M

′′
0 ), (M ′

1,M
′′
1 ), · · · be the corresponding Turing machines computing those

functions.
Let n0, n1, · · · be a sequence of numbers such that
(1). For each i, (Fni , hni) is a standard Schnorr test.
(2). For each i, if (Fi, hi) is a standard Schnorr test, then there exists j such that i = nj .

That is, (Fn0 , hn0), (Fn1 , hn1), · · · is an enumeration (note that this enumeration is not ef-
fective) of all standard Schnorr tests.

For the sequence n0, n1, · · ·, define a “universal” martingale Φ by

Φ(x) =
∞∑
i=0

2−niFni(x).

In the following we construct a recursive martingale F and a sequence ξ such that F
succeeds on ξ and, for each e, the following requirement is satisfied.

Ne : If (Fe, he) is a standard Schnorr test, then there exists c ∈ N such that, for all n > c,
Fe(ξ[0..n− 1]) < he(n).

These requirements ensure that ξ is Schnorr random. Namely, if ξ is not Schnorr random,
then there exists a standard Schnorr test (Fe1 , he1) such that Fe1(ξ[0..n− 1]) ≥ he1(n) i.o.,
which contradicts the requirement Ne1 .

In the process of construction, we will construct F recursively and construct ξ using the
oracle Φ (the “universal” martingale defined above).

We cannot effectively decide whether (Fe, he) is a standard Schnorr test or not. In order
to construct F (x) recursively, we will use some bits of x to code assumptions whether certain
(Fe, he)s are standard Schnorr tests or not. That is, in the construction, we define a partial
recursive function d : Σ∗ → Σ∗ such that, for a string x on which d is defined, d(x) denotes
the following assumptions: For e < |d(x)|, we assume that (Fe, he) is a standard Schnorr
test if and only if d(x)[e] = 1.

The strategy for making F succeed on ξ is as follows: At some stages, let F (x1) = 2F (x)
if x1 has the potential possibility of becoming an initial segment of ξ. The strategy for
meeting requirements Ne is as follows: At some stage s, let d(ξ[0..s])[e] = 1, and, for each
y ∈ ξ[0..s] · Σ∗, do not increase the value of F (y) until he(|y|) is large enough such that
Fe(ξ[0..|y| − 1]) < he(|y|), where ξ is defined by induction on i satisfying,

Φ(ξ[0..i− 1]) ≤ 2|d(ξ[0..i−1])|F (ξ[0..i− 1])Φ(λ).
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Construction of ξ, F and d.

Stage 0.
F (λ) = 1 and d(λ) = λ.

Stage 1.
F (0) = F (1) = 1, d(0) = 0 and d(1) = 1.
If (F0, h0) is a standard Schnorr test then ξ[0] = 1 else ξ[0] = 0.

Stage s + 1(s > 0).
For each string x ∈ Σs such that neither F (x0) nor F (x1) has been defined before stage

s + 1, we distinguish the following two cases.
Case 1. d(x) is not defined.
F (x0) = F (x1) = F (x).
Case 2. d(x) = b0 · · · bk is defined.
For each j ≤ k satisfying bj = 1, and for each m ≤ |x|, simulate M ′′

j (m) for s + 1 steps.
If, for each j ≤ k satisfying bj = 1, there exists mj ≤ |x| such that M ′′

j (mj) stops in s + 1
steps and

2j+|d(x)|+3F (x) < hj(mj), (3.1)

then go to Process 1, else go to Process 2.
Process 1. F (x0) = 0, F (x10) = F (x11) = F (x1) = 2F (x), d(x1) = d(x), d(x10) =

d(x)0, d(x11) = d(x)1.
If ξ[0..s−1] = x, then ξ[0..s+1] = ξ[0..s−1]1b, where b = 1 if (Fk+1, hk+1) is a standard

Schnorr test and b = 0 otherwise.
Process 2. F (x0) = F (x1) = F (x), d(x0) = d(x1) = d(x).
If ξ[0..s − 1] = x, then ξ[0..s] = ξ[0..s − 1]b, where b = 1 if Φ(x1) ≤ Φ(x0) and b = 0

otherwise.
End of construction.

It remains to verify that the above constructed F and ξ satisfy the requirements, we
establish this by proving a sequence of claims.

Claim 1 limn F (ξ[0..n− 1]) = ∞.

Proof. First, we prove by induction that d(ξ[0..s]) is defined for all s ∈ N . Hence, at
each stage s, F (ξ[0..s]) is defined in Case 2 of the construction. Assume that d(ξ[0..s− 1])
is defined. At stage s + 1, for x = ξ[0..s − 1] ∈ Σs, if Process 1 of Case 2 happens, then
ξ[0..s] = ξ[0..s−1]1, d(ξ[0..s]) = d(ξ[0..s−1]) and d(ξ[0..s+1]) = d(ξ[0..s])ξ[s+1]; Otherwise,
Process 2 of Case 2 happens and d(ξ[0..s]) = d(ξ[0..s− 1]).

At stage s + 1, if F (ξ[0..s]) is defined in the Process 1 of Case 2, then F (ξ[0..s]) =
2F (ξ[0..s − 1]); Otherwise F (ξ[0..s]) = F (ξ[0..s − 1]). So it suffices to show that there
are infinitely many stages s such that F (ξ[0..s − 1]) is defined in the Process 1 of Case 2.
We prove this by induction. Given s0, we have to show that there exists a stage s > s0

such that F (ξ[0..s − 1]) is defined in the Process 1 of Case 2. For each i < |d(ξ[0..s0])|
satisfying d(ξ[0..s0])[i] = 1, (Fi, hi) is a standard Schnorr test, hence hi is an unbounded,
nondecreasing, recursive function, which implies that there exists some s > s0 such that, at
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stage s + 1, the condition (3.1) holds for x = ξ[0..s − 1]. Let s1 be the least such s. Then
F (ξ[0..s1]) is defined in the Process 1 of Case 2. This completes the proof. 2

Claim 2 For each s ∈ N , Φ(ξ[0..s− 1]) ≤ 2|d(ξ[0..s−1])|+1F (ξ[0..s− 1]).

Proof. We prove the claim by induction on s. For s = 0, because Φ(λ) ≤ 2, it is
straightforward that Φ(λ) ≤ 20+1F (λ).

For the inductive step, we distinguish the following two cases.
Case 1. At stage s + 1, ξ[0..s] is defined in the Process 1. Then

Φ(ξ[0..s]) ≤ 2Φ(ξ[0..s− 1])

≤ 2|d(ξ[0..s−1])|+12 · F (ξ[0..s− 1])

= 2|d(ξ[0..s])|+1F (ξ[0..s])

and
Φ(ξ[0..s + 1]) ≤ 2Φ(ξ[0..s])

≤ 2|d(ξ[0..s])|+2F (ξ[0..s])

≤ 2|d(ξ[0..s+1])|+1F (ξ[0..s + 1]).

Case 2. At stage s + 1, ξ[0..s] is defined in the Process 2. Then

Φ(ξ[0..s]) ≤ Φ(ξ[0..s− 1])

≤ 2|d(ξ[0..s−1])|+1F (ξ[0..s− 1])

= 2|d(ξ[0..s])|+1F (ξ[0..s]).

2

Claim 3 For each e, if (Fe, he) is a standard Schnorr test, then

2e+|d(ξ[0..n−1])|+1F (ξ[0..n− 1]) < he(n) a.e.

Proof. Let c1 be large enough such that |d(ξ[0..c1 − 1])| > e. By the construction, there
exist c0 > me > c1 such that

2e+|d(ξ[0..c0−1])|+3F (ξ[0..c0 − 1]) < he(me) ≤ he(c0).

For each s + 1 > c0, we distinguish the following two cases.
Case 1. At stage s + 1, ξ[0..s] is defined in the Process 1. Then, by the construction,

there exists se < s + 1 such that

2e+|d(ξ[0..s−1])|+3F (ξ[0..s− 1]) < he(se).
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So
2e+|d(ξ[0..s])|+1F (ξ[0..s]) = 2e+|d(ξ[0..s−1])|+2F (ξ[0..s− 1])

< he(se)

≤ he(s + 1)

and
2e+|d(ξ[0..s+1])|+1F (ξ[0..s + 1]) = 2e+|d(ξ[0..s−1])|+3F (ξ[0..s− 1])

< he(se)

≤ he(s + 2).

Case 2. At stage s + 1, ξ[0..s] is defined in the Process 2. Then

2e+|d(ξ[0..s])|+1F (ξ[0..s]) = 2e+|d(ξ[0..s−1])|+1F (ξ[0..s− 1])

< he(s)

≤ he(s + 1).

2

Claim 4 For each e, the requirement Ne is met.

Proof. If (Fe, he) is not a standard Schnorr test, then Ne is met trivially. Otherwise let
c0 be large enough so that 2e+|d(ξ[0..n−1])|+1F (ξ[0..n− 1]) < he(n) for all n ≥ c0.

It suffices to show that, for all s ≥ c0,

Fe(ξ[0..s− 1]) ≤ 2eΦ(ξ[0..s− 1])

≤ 2e+|d(ξ[0..s−1])|+1F (ξ[0..s− 1])

< he(s).

2

All of these claims complete the proof of Theorem 3.2.2.

Theorem 3.2.3 S-RAND ⊂ W-RAND.

Proof. (1). S-RAND ⊆ W-RAND follows from Theorem 3.1.22 and Theorem 3.1.27.
(2). There is a Kurtz random sequence which does not satisfy the law of large numbers

(see, e.g., Kautz [44] or Kurtz [54]), whereas all Schnorr random sequences satisfy the law
of large numbers (see, e.g., Schnorr [89] or van Lambalgen [57]).
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3.3 Chaoticness and Stochasticity

3.3.1 Chaoticness

In this section we give an exposition of the complexity approach to random sequences based
on the natural idea that randomness is an absence of regularities. It became possible to make
this idea precise when Chaitin [29] and, independently, Kolmogorov [51] introduced a notion
of complexity of finite objects. However, this plan encountered some difficulties (see Martin-
Löf [74]). These difficulties were overcome by Levin [59] and Schnorr [90], independently.
Levin [59] introduced the following notion of monotonic Kolmogorov complexity.

Let f : Σ∗ → Σ∗ be a partial recursive function and let y ∈ Σ∗. If y is a prefix of f(x) for
some x, then x is called a description of y. The complexity of y with respect to f is defined
by

KMf (y) = inf{|x| : x is a description of y}.

As the following theorem shows, there is a universal description system.

Theorem 3.3.1 (Chaitin and Kolmogorov) There exists a universal function, that is, there
exists a partial recursive function g such that, for any partial recursive function f , there is
a constant c satisfying KMg(x) ≤ KMf (x) + c for all x.

In the rest of the thesis, unless otherwise stated, we will use a fixed universal partial
recursive function g in the sense of Theorem 3.3.1 and omit the subscript g. A sequence ξ is
chaotic if and only if ξ is a member of CHAOT = ∪c∈N{ξ : KM(ξ[0..n− 1]) ≥ n− c a.e.}.

Theorem 3.3.2 (Levin and Schnorr) CHAOT = M-RAND.

Theorem 3.3.2 shows that, for a Martin-Löf random sequence ξ, ξ has the maximal
monotonic Kolmogorov complexity. However, as the following theorem shows, some rec-
random sequences have arbitrary small monotonic Kolmogorov complexity.

Theorem 3.3.3 Let f : N → N be a strictly increasing, total recursive function. Then
there is a rec-random sequence ξ and a constant c such that f(KM(ξ[0..n− 1])− c) ≤ n for
all n.

Proof. In the proof of Theorem 3.2.1, we constructed a partial recursive function
u : Σ∗ → Σ∗ such that if u(x) is defined, then |u(x)| = 2|x|. In fact, we can define u in such
a way that if u(x) is defined, then |u(x)| = f(|x|). Let ξ = limn→∞ u(γ[0..n− 1]), where γ
is the correct infinite guess. Then, for each n, γ[0..n − 1] is a description of u(γ[0..n − 1]).
This completes the proof of the theorem.

3.3.2 Stochasticity

As we have mentioned in the introduction, the stochasticity of a sequence means that the
property of frequency stability holds for this sequence and for its subsequences obtained by
“legal choices”. Von Mises was the first to suggest defining the notion of randomness in
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terms of stochasticity. But von Mises’ “legal selection rule” was not formally given. In the
past, work in this area mainly concentrated on the definition of “legal selection rules”. For
example, Church suggested that a “legal selection rule” should be some recursive processes
and proposed the following definition.

For a sequence ξ ∈ Σ∗ ∪Σ∞ such that |ξ| ≥ n, let sn(ξ) =
∑n−1

i=0 ξ[i]. A Church selection
rule is a total recursive function ϕ : Σ∗ → Σ. A Church selection rule ϕ induces a partial
function Φ : Σ∞ → Σ∞, where Φ(ξ) is defined if ϕ(ξ[0..n−1]) = 1 for infinitely many n ∈ N
and Φ(ξ) = b0b1 · · · where

bn =

{
λ ϕ(ξ[0..n− 1]) = 0
ξ[n] ϕ(ξ[0..n− 1]) = 1

A sequence ξ is Church stochastic if and only if, for each Church selection rule ϕ such that
Φ(ξ) is defined, limn

sn(Φ(ξ))
n = 1

2 . Let C-STOCH be the set of Church stochastic sequences.
Later, Kolmogorov [51] and, independently, Loveland [61] generalized the notion of se-

lection rules and got a narrower set of stochastic sequences.
A Kolmogorov-Loveland selection rule is a pair (ϕ1, ϕ2) of partial recursive functions,

where ϕ1 : Σ∗ → N and ϕ2 : Σ∗ → Σ. Given a sequence ξ = b0b1 · · ·, first we define a
sequence of natural numbers n0 = ϕ1(λ), n1 = ϕ1(bn0), n2 = ϕ1(bn0bn1), and so on. The
construction terminates if at least one of the values ϕ1(bn0bn1 · · · bnk

) and ϕ2(bn0bn1 · · · bnk
)

turns out to be undefined or the value ϕ1(bn0bn1 · · · bnk
) coincides with one of n0, n1, · · · , nk.

Each Kolmogorov-Loveland selection rule (ϕ1, ϕ2) induces a partial function Φ : Σ∞ → Σ∞,
where Φ(ξ) = b′0b

′
1 · · · satisfies

b′k =

{
λ ϕ2(bn0bn1 · · · bnk−1

) = 0
bnk

ϕ2(bn0bn1 · · · bnk−1
) = 1

where we assume that b−1 = λ. A sequence ξ is Kolmogorov-Loveland stochastic if and only
if, for each Kolmogorov-Loveland selection rule (ϕ1, ϕ2) such that Φ(ξ) ∈ Σ∞, limn

sn(Φ(ξ))
n =

1
2 . Let KL-STOCH be the set of Kolmogorov-Loveland stochastic sequences.

Theorem 3.3.4 (Muchnik [80]) KL-STOCH ⊂ C-STOCH.

Proof. (Idea) By the definition, KL-STOCH ⊆ C-STOCH. We can construct a
Church stochastic sequence which has monotonic Kolmogorov complexity O(log n) for each
initial segment of length n, whereas Muchnik [80] has shown that, for c < 1, any sequence
which has monotonic Kolmogorov complexity less than cn is not Kolmogorov-Loveland
stochastic.

The following theorem summarizes the relations between the notions of typicalness and
the notions of stochasticity.

Theorem 3.3.5 1. (Shen [92]) M-RAND ⊂ KL-STOCH.

2. C-STOCH 6⊆ S-RAND.

3. rec-RAND ⊂ C-STOCH.
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4. rec-RAND 6⊆ KL-STOCH.

5. S-RAND 6⊆ C-STOCH.

Proof. (Idea) 1. The proof of M-RAND ⊆ KL-STOCH is just an effective modifi-
cation of the classical proof (see, e.g. [97]) for the law of large numbers. KL-STOCH 6⊆
M-RAND is proved by Shen [92]: There is a probability distribution p = (p0, p1, · · ·)
on Σ∞ such that each Martin-Löf typical sequence with respect to this distribution p is
Kolmogorov-Loveland stochastic with respect to the uniform Bernoulli distribution, and no
Martin-Löf typical sequence with respect to this distribution p is Martin-Löf typical with
respect to the uniform Bernoulli distribution.

2. By the construction of Ville [98], there is a Church stochastic sequence which does
not satisfy the law of the iterated logarithm, whereas all Schnorr random sequences satisfy
the law of the iterated logarithm (see Schnorr [89]). (See also Chapter 5).

3. See Chapter 5.
4. In Theorem 3.3.3, we showed that there exists a rec-random sequence which has

arbitrary small monotonic Kolmogorov complexity. So the claim follows from the result of
Muchnik [80].

5. In the proof of Theorem 3.2.2, we constructed a recursive martingale F and a Schnorr
random sequence ξ which have the following properties.

(1). F succeeds on ξ.
(2). For all x ∈ Σ∗ and b ∈ Σ, F (xb) = 2bF (x) or F (xb) = F (x).
(3). If F (ξ[0..n]) = 2ξ[n] · F (ξ[0..n− 1]), then ξ[n] = 1.
Define a Church selection rule ϕ by

ϕ(x) =

{
1 if F (xb) = 2bF (x)
0 if F (xb) = F (x)

Then, obviously, ϕ induces a partial function Φ : Σ∞ → Σ∞ such that Φ(ξ) = 111 · · ·.
Hence, ξ is not Church stochastic.

The item 5 of Theorem 3.3.5 shows that the notion of Schnorr randomness seems to us
less adequate to our intuition than the notions of Martin-Löf and rec-randomness.

3.4 Invariance Properties of Typical Sequences

In the previous sections, we have shown that basically there are three different notions of
randomness: stochasticity, chaoticness and typicalness. It is interesting to get the same
notion from the three different approaches. For example, we have pointed out in section 3.3
that a sequence is monotonic Kolmogorov random if and only if it is Martin-Löf random.
Hence we have the same meaning when we say that a sequence is chaotic or typical. But it
is still open whether we can define a concrete set of place selection rules so that the notion
of stochasticity and the notion of typicalness coincide. Some partial results have been got
in this line for abstract selection rules.
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In this section we give a summary of Schnorr’s characterization of Martin-Löf’s random-
ness concept (resp. Schnorr’s randomness concept) in terms of invariance properties. We
also give a similar characterization of Kurtz’s randomness concept.

Definition 3.4.1 (Schnorr [89])

1. A partial function Φ : Σ∞ → Σ∞ is measure-nondecreasing (note that Schnorr used a
different word: massverkleinernd) if, for each Lebesgue measurable set C ⊆ Σ∞,

Prob[Φ−1(C)] ≤ Prob[C].

2. A partial function Φ : Σ∞ → Σ∞ is measure-invariant if, for each Lebesgue measurable
set C ⊆ Σ∞,

Prob[Φ−1(C)] = Prob[C].

3. A partial function Φ : Σ∞ → Σ∞ is measure bounded if, for each Lebesgue measurable
set C ⊆ Σ∞, there exists a constant c such that

Prob[Φ−1(C)] ≤ c · Prob[C].

Definition 3.4.2 (Schnorr [89])

1. A partial function ϕ : Σ∗ → Σ∗ is monotonic if ϕ(xy) ∈ ϕ(x) · Σ∗ for all x, xy ∈
dom(ϕ).

2. A partial function Φ : Σ∞ → Σ∞ is continuous if, for each set A ⊆ Σ∗, there exists a
set B ⊆ Σ∗ such that Φ−1(A ·Σ∞) = (B ·Σ∞)∩dom(Φ), where dom(Φ) is the domain
of Φ.

Definition 3.4.3 A partial function Φ : Σ∞ → Σ∞ is induced by a partial function ϕ :
Σ∗ → Σ∗ if, for each ξ ∈ dom(Φ) and n ∈ N , Φ(ξ) ∈ ϕ(ξ[0..n− 1]) · Σ∞.

Lemma 3.4.4 (Schnorr [89]) A partial function Φ : Σ∞ → Σ∞ is continuous if and only
if there is a partial, monotonic function ϕ : Σ∗ → Σ∗ such that, on the domain of Φ, Φ is
induced by ϕ.

Definition 3.4.5 (Schnorr [89])

1. A partial function Φ : Σ∞ → Σ∞ is sub-computably continuous if it is induced by
some partial recursive, monotonic function ϕ : Σ∗ → Σ∗.

2. A partial function Φ : Σ∞ → Σ∞ is computably continuous if it is induced by some
total recursive, monotonic function ϕ : Σ∗ → Σ∗, and there is a total recursive function
h : N → N such that dom(Φ) = {ξ ∈ Σ∞ : |ϕ(ξ[0..h(n)− 1])| ≥ n, n ∈ N}.

After these preliminary definitions, we can introduce von Mises style characterizations
of the notions of Martin-Löf randomness and Schnorr randomness now.
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Theorem 3.4.6 (Schnorr [89]) Let Φ : Σ∞ → Σ∞ be a total, sub-computably continuous,
measure-bounded function. Then Φ(M-RAND) ⊆ M-RAND.

Theorem 3.4.7 (Schnorr [89]) Given a recursive sequence η ∈ Σ∞, a sequence ξ ∈ Σ∞

is Martin-Löf random if and only if there is no total, sub-computably continuous, measure-
nondecreasing function Φ : Σ∞ → Σ∞ such that Φ(ξ) = η.

Theorem 3.4.8 (Schnorr [89]) Let Φ : Σ∞ → Σ∞ be a partial, sub-computably continuous,
measure-invariant function. Then Φ(S-RAND ∩ dom(Φ)) ⊆ S-RAND.

Theorem 3.4.9 (Schnorr [89]) Let Φ : Σ∞ → Σ∞ be a total, computably continuous,
measure-bounded function. Then Φ(S-RAND) ⊆ S-RAND.

Let C1 be the set of total, computably continuous, measure-bounded functions Φ :
Σ∞ → Σ∞, C2 be the set of total, computably continuous, measure-nondecreasing functions
Φ : Σ∞ → Σ∞, C3 be the set of partial, sub-computably continuous, measure-invariant
functions Φ : Σ∞ → Σ∞, and C4 be the set of computably continuous, measure-invariant
functions Φ : Σ∞ → Σ∞.

Theorem 3.4.10 (Schnorr [89]) For i = 1, 2, 3, 4, a sequence ξ ∈ Σ∞ is Schnorr random
if and only if, for all Φ ∈ Ci with ξ ∈ dom(Φ), Φ(ξ) satisfies the law of large numbers.

By our characterization of Kurtz’s randomness concept in previous sections, a similar
characterization as Theorem 3.4.10 can be given for Kurtz’s concept. The proofs of the
following theorems are a minor modification of the proofs of Theorem 3.4.8, Theorem 3.4.9
and Theorem 3.4.10.

Theorem 3.4.11 Let Φ : Σ∞ → Σ∞ be a partial, sub-computably continuous, measure-
invariant function. Then Φ(W-RAND ∩ dom(Φ)) ⊆ W-RAND.

Proof. It suffices to show that, for each mw-test (U, g), there is another mw-test (V, f)
such that

Φ−1(NULL(U,g)) ⊆ NULL(V,f) (3.2)

where NULL(U,g) (resp. NULL(V,f)) is the set of sequences that do not withstand the
mw-test (U, g) (resp. (V, f)).

W.l.o.g., we may assume that Φ is induced by a total recursive, monotonic function
ϕ : Σ∗ → Σ∗. Let V [k] = {x : ϕ(x) ∈ U [k]} and f(n) = g(n) for all k, n ∈ N . Then, by the
measure-invariance property of Φ, Prob[V [k] · Σ∞] = Prob[U [k] · Σ∞] and V [k] ⊆ Σ≤f(k).

Obviously, (3.2) holds. This completes the proof of the theorem.

Theorem 3.4.12 Let Φ : Σ∞ → Σ∞ be a total, computably continuous, measure-bounded
function. Then Φ(W-RAND) ⊆ W-RAND.
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Proof. It suffices to show that, for each mw-test (U, g), there is another mw-test (V, f)
such that (3.2) holds.

Let ϕ : Σ∗ → Σ∗ and h : N → N be a pair of total functions which witness that Φ
is computably continuous. Fix the number c such that, for all Lebesgue measurable set
C ⊆ Σ∞, Prob[Φ−1(C)] ≤ c · Prob[C].

Let V [k] = {x : ϕ(x) ∈ U [k+c]} and f(k) = h(g(k+ c)) for all k. W.l.o.g., we may assume
that U [k] is prefix-free for all k. Then

Prob[V [k] · Σ∞] ≤ c · Prob[U [k+c] · Σ∞] ≤ 2−k

and V [k] ⊆ Σ≤f(k) for all k ∈ N .
Obviously, (3.2) holds. This completes the proof of the theorem.

Theorem 3.4.13 Let (U, g) be an mw-test and η ∈ Σ∞ be a recursive sequence. Then
there exists a computably continuous, measure-invariant function Φ : Σ∞ → Σ∞ such that
Φ(ξ) = η for all ξ ∈ NULL(U,g).

Proof. W.l.o.g., we may assume that, for all k, the following hold.

1. g is strictly increasing.

2. U [k] ⊆ Σg(k).

3. For all x ∈ U [k+1], there is a prefix y of x such that y ∈ U [k].

4. Prob[U [k] · Σ∞] = 2−k.

In the following we define a total recursive, monotonic function ϕ : Σ∗ → Σ∗ such that
the induced function Φ : Σ∞ → Σ∞ satisfies our requirements.

At first, we define sequences C(k,0), · · · , C(k,2k−1) of sets and sequences x(k,0), · · · , x(k,2k−1)

of strings by induction on k.
Let C(0,0) = {λ} and x(0,0) = {λ}.
Let C(k+1,0), · · · , C(k+1,2k+1−1) be a sequence of subsets of Σg(k+1) such that

1. (C(k+1,2i) ∪ C(k+1,2i+1)) · Σ∞ = C(k,i) · Σ∞ for i < 2k.

2. C(k+1,0) = U [k+1].

3. C(k+1,i) ∩ C(k+1,j) = ∅ for i 6= j.

4. Prob[C(k+1,i) · Σ∞] = 2−(k+1) for i < 2k+1.

and let x(k+1,0), · · · , x(k+1,2k+1−1) be an enumeration of all strings in Σk+1 such that

1. x(k+1,0) = η[0..k].

2. x(k,i) · Σ∞ = {x(k+1,2i), x(k+1,2i+1)} · Σ∞ for all i < 2k.



3.4. INVARIANCE PROPERTIES OF TYPICAL SEQUENCES 41

Now the function ϕ is defined by

ϕ(xb) =

{
x(k,i) if xb ∈ C(k,i) for some k, i ∈ N

ϕ(x) otherwise

where b ∈ Σ.
It is straightforward to check that the induced function Φ : Σ∞ → Σ∞ by ϕ is computably

continuous and measure-invariant. Moreover, for all ξ ∈ NULL(U,g), Φ(ξ) = η.

Now we are ready to characterize the notion of Kurtz randomness in terms of invariance
properties.

Theorem 3.4.14 Given a recursive sequence η ∈ Σ∞, a sequence ξ ∈ Σ∞ is Kurtz random
if and only if, for all computably continuous, measure-invariant function Φ : Σ∞ → Σ∞,
Φ(ξ) 6= η.

Proof. This follows from Theorem 3.4.13.

By combining the previous theorems, we get the following theorem.

Theorem 3.4.15 For i = 1, 2, 3, 4 and a recursive sequence η ∈ Σ∞, a sequence ξ ∈ Σ∞ is
Kurtz random if and only if Φ(ξ) 6= η for all Φ ∈ Ci with ξ ∈ dom(Φ).

Proof. This follows from Theorem 3.4.11, Theorem 3.4.12 and Theorem 3.4.13.

The topic of this section is related to the independence properties of subsequences of a
random sequence and is also related to the independent random sequences. A number of
general independence properties for subsequences of a random sequence are established by
Kautz [46] and van Lambalgen [58, 57] et al. There are various applications of independence
properties and independent random sequences. For example, Book [20] and Lutz [66] used
the independent random oracles to characterize complexity classes, and Kautz and Miltersen
[46] used independence properties of Martin-Löf random sequences to show that relative to
a random oracle, NP is not small in the sense of p-measure.



42 CHAPTER 3. A COMPARISON OF CLASSICAL RANDOMNESS CONCEPTS



Chapter 4

n-Randomness

In this chapter, we study the notions of n-randomness, which are the refinements of the
notions of effective randomness corresponding to the levels of the arithmetical hierarchy.
The notion of n-randomness (resp. weak n-randomness) corresponding to the notion of
Martin-Löf randomness (resp. Kurtz randomness) was first introduced by Kurtz [54]. We
introduce notions of n-randomness corresponding to all notions of randomness we have
discussed in Chapter 3, that is, Martin-Löf n-randomness, n-rec-randomness, Schnorr n-
randomness and Kurtz n-randomness. We will characterize these n-randomness concepts in
different terms as we have done for 1-randomness concepts in Chapter 3.

4.1 Different Kinds of n-Randomness

At first we introduce the Kleene hierarchy of sets. The Kleene hierarchy classifies the
“arithmetical” sets in classes Σn,Πn (n = 0, 1, · · ·) defined as follows. Σn is the class
of all sets A of the form A = {x : (Q1x1)(Q2x2) · · · (Qnxn)R(x, x1, x2, · · · , xn)}, where
R is a recursive predicate, the Q2k+1 are existential quantifiers and the Q2k are universal
quantifiers. Πn is the class of all sets as above, except that the Q2k+1 are universal quantifiers
and the Q2k are existential quantifiers. The class Σn ∩ Πn is usually denoted as ∆n. The
following facts are known (see Soare [93]):

1. ∆0 = Σ0 = Π0 = ∆1 is the collection of all recursive sets.

2. A ∈ Σn ⇐⇒ Ā ∈ Πn (Ā is the complement of A).

3. Σn ∪Πn ⊆ ∆n+1 for all n ≥ 0 and the containment is proper for n > 0.

4. A ∈ Σn+1 if and only if A is recursively enumerable relative to a set B ∈ Πn.

5. A ∈ ∆n+1 if and only if A is recursive relative to a set B ∈ Πn.

Afterwards, we say that a function f : Σ∗ → Q is ∆n-computable if it is computable
relative to a set in ∆n.
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4.1.1 Martin-Löf n-randomness

Definition 4.1.1 (Kurtz [54]) A Martin-Löf n-test is a ∆n-recursively enumerable set U
with the property that Prob[U [k] · Σ∞] ≤ 2−k for all k ∈ N . An infinite sequence ξ does
not withstand the Martin-Löf n-test U if ξ ∈ U [k] · Σ∞ for all k ∈ N . A sequence ξ is
Martin-Löf n-random if it withstands all Martin-Löf n-tests.

Let n-M-NULL be the set of sequences which do not withstand some Martin-Löf n-test,
and let n-M-RAND = Σ∞ − n-M-NULL be the set of Martin-Löf n-random sequences.

The notion of Martin-Löf n-randomness can also be characterized in terms of martin-
gales.

Definition 4.1.2 A total function F : Σ∗ → R is weakly ∆n-approximable if there is a
∆n-computable function h : N × Σ∗ → Q such that

1. For each n ∈ N and x ∈ Σ∗, h(n, x) ≤ h(n + 1, x) ≤ F (x).

2. For each x ∈ Σ∗, limn h(n, x) = F (x).

Definition 4.1.3 An n-m-1-test is a weakly ∆n-approximable martingale F . An infinite
sequence ξ does not withstand the n-m-1-test F if F succeeds on ξ. A sequence ξ is n-m-1-
random if it withstands all n-m-1-tests.

Let n-M-1-NULL be the set of sequences which do not withstand some n-m-1-test, and
let n-M-1-RAND = Σ∞ − n-M-1-NULL be the set of n-m-1-random sequences.

Theorem 4.1.4 n-M-1-RAND = n-M-RAND.

Proof. The proof is a relativization of the proof of Theorem 3.1.6.

There is also a similar theorem for Martin-Löf n-randomness like Theorem 3.1.7 for
Martin-Löf randomness.

Theorem 4.1.5 There exists a universal n-m-1-test, that is, there is a weakly ∆n-approximable
martingale F such that NULLF = n-M-1-NULL.

Proof. The proof is a relativization of the proof of Theorem 3.1.7.

4.1.2 n-rec-randomness

Definition 4.1.6 A n-rec-test is a ∆n-computable martingale F : Σ∗ → Q+. An infinite
sequence ξ does not withstand the n-rec-test F if F succeeds on ξ. A sequence ξ is n-rec-
random if it withstands all n-rec-tests.

Let n-rec-NULL be the set of sequences which do not withstand some n-rec-test, and
let n-rec-RAND = Σ∞ − n-rec-NULL be the set of n-rec-random sequences.
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4.1.3 Schnorr n-randomness

Definition 4.1.7 A Schnorr n-test is a pair (F, h) of functions with the properties that
F is a ∆n-computable martingale and h : N → N is an unbounded, nondecreasing, ∆n-
computable function. A sequence ξ does not withstand the Schnorr n-test (F, h) if lim supn(F (ξ[0..n−
1]) − h(n)) ≥ 0, i.e., if F (ξ[0..n − 1]) ≥ h(n) i.o. A sequence ξ is Schnorr n-random if it
withstands all Schnorr n-tests.

Let n-S-NULL be the set of sequences which do not withstand some Schnorr n-test,
and let n-S-RAND = Σ∞ − n-S-NULL be the set of Schnorr n-random sequences.

The following is a Martin-Löf style characterization of the notion of Schnorr n-randomness.

Definition 4.1.8 An n-s-1-test is a pair (U, g) consisting of a ∆n-recursively enumerable
set U and a ∆n-computable function g, together with a ∆n-recursive enumeration {Us}s∈N

of U such that, for each k and j,

1. Prob[U [k] · Σ∞] ≤ 2−k.

2. Prob[(U [k] − U
[k]
g(k,j)) · Σ

∞] ≤ 2−j.

An infinite sequence ξ does not withstand the n-s-1-test (U, g) if ξ ∈ U [k] ·Σ∞ for all k ∈ N .
A sequence ξ is n-s-1-random if it withstands all n-s-1-tests.

Let n-S-1-NULL be the set of sequences which do not withstand some n-s-1-test, and
let n-S-1-RAND = Σ∞ − n-S-1-NULL be the set of n-s-1-random sequences.

Theorem 4.1.9 n-S-1-RAND = n-S-RAND.

Proof. The proof is a relativization of the proof of Theorem 3.1.22.

4.1.4 Weak n-randomness

Kurtz [54] defined a notion of weak n-randomness.

Definition 4.1.10 (Kurtz [54]) A Kurtz n-test is a ∆n-recursively enumerable set U with
the property that Prob[U ·Σ∞] = 1. A sequence ξ does not withstand the Kurtz n-test U if
ξ /∈ U · Σ∞. A sequence ξ is Kurtz n-random if it withstands all Kurtz n-tests.

Let n-W-NULL be the set of sequences that do not withstand some Kurtz n-test, and
let n-W-RAND = Σ∞ − n-W-NULL be the set of Kurtz n-random sequences.

Now we give a martingale characterization of the notion of Kurtz n-randomness.

Definition 4.1.11 An n-sw-test is a pair (F, h) of functions with the properties that F is a
∆n-computable martingale and h : N → N is an unbounded, nondecreasing, ∆n-computable
function. A sequence ξ does not withstand the n-sw-test (F, h) if lim infn(F (ξ[0..n − 1]) −
h(n)) ≥ 0, i.e., if F (ξ[0..n− 1]) ≥ h(n) a.e. A sequence ξ is n-sw-random if it withstands
all n-sw-tests.
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Let n-SW-NULL be the set of sequences which do not withstand some n-sw-test, and
let n-SW-RAND = Σ∞ − n-SW-NULL be the set of n-sw-random sequences.

Theorem 4.1.12 n-SW-RAND = n-W-RAND.

Proof. The proof is a relativization of the proof of Theorem 3.1.27.

4.2 Relations among Notions of n-Randomness

Theorem 4.2.1 n-M-RAND⊂ n-rec-RAND⊂ n-S-RAND.

Proof. The proof is a relativization of the proofs of Theorem 3.2.1 and Theorem 3.2.2.

Theorem 4.2.2 (Kautz [44]) n-S-RAND ⊂ n-W-RAND.

Proof. See Kautz [44].

Remark. Theorem 4.2.2 is open until Kautz [44]. Kurtz [54] showed that 1-M-RAND
is a proper subset of 1-W-RAND, and conjectured that this situation holds for n-randomness
also, that is, n-M-RAND is a proper subset of n-W-RAND. Kautz used finitary injury
argument to answer this conjecture affirmatively, in fact, he proved that n-S-RAND is a
proper subset of n-W-RAND.

Now we establish the relations between the notion of n-randomness and the notion of
n + 1-randomness.

Lemma 4.2.3 There exists a set A in ∆n+1 which is Martin-Löf n-random.

Proof. Let F : Σ∗ → R+ be a universal n-m-1-test (see Theorem 4.1.5) which is given
by a ∆n-computable function h : N × Σ∗ → Q+. W.l.o.g., assume that F (λ) < 1. Let ξ be
defined inductively by

ξ[i] = 1 iff ∀j ∈ N (h(j, ξ[0..i]) < 1).

Let A be the set which is represented by the characteristic sequence ξ. Then A is in ∆n+1.
The construction implies that A is Martin-Löf n-random.

Lemma 4.2.4 No set in ∆n is Kurtz n-random.

Proof. Let A ∈ ∆n and ξ be its characteristic sequence. Define a ∆n-computable
martingale F by

F (x1) = 2F (x) iff ξ[|x|] = 1.

Then F (ξ[0..i]) ≥ 2i−2 for all i ∈ N . Hence A is not Kurtz n-random.

Each infinite set in Σn+1 has an infinite subset in ∆n, so a similar proof can be given
for a strengthening of Lemma 4.2.4.
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Theorem 4.2.5 No set in Σn+1 ∪Πn+1 is Kurtz n + 1-random.

Proof. Straightforward.

Remark. Schnorr [88] introduced a kind of (0)-randomness concept which coincides
with our 2-rec-randomness concept, and he has already observed that there is no 2-rec-
random set in Σ2 ∪Π2 (see [88, Theorem 3.6] and [89, Satz 7.7]), hence 2-rec-randomness is
a proper refinement of Martin-Löf randomness. But his proof is not correct, his proof only
works for the fact that no set in ∆2 is 2-rec-random.

By combining the previous theorems, we get the following theorem.

Theorem 4.2.6 (Kurtz [54]) n + 1-W-RAND ⊂ n-M-RAND.

Proof. Follows from Lemma 4.2.3 and Lemma 4.2.4.

By combining these theorems in this chapter and in Chapter 3, we get the table 4.1 that
describes the relations among these notions of randomness we have discussed.

Table 4.1: The relation among the notions of randomness
W-RAND

S-RAND=K-RAND
rec-RAND
M-RAND

2-W-RAND
· · · · · ·

n-W-RAND
n-S-RAND

n-rec-RAND
n-M-RAND

n + 1-W-RAND
· · · · · ·
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Chapter 5

Resource Bounded Randomness

This chapter is devoted to the study of resource bounded randomness concepts. In section
5.1, we introduce various notions of resource bounded randomness in terms of typicalness,
and we investigate their relations to each other. We will show that:

1. For polynomial time bounds, the notion of rec-randomness is stronger than the notion
of Schnorr randomness and the notion of Schnorr randomness is stronger than the
notion of Kurtz randomness. The former was conjectured to be true by Lutz [65].
We also show, however, that if we consider only recursive sets, then these randomness
concepts coincide.

2. For polynomial time bounds, the notion of Ko randomness is independent of the
notions of rec-randomness, Schnorr randomness and Kurtz randomness.

In section 5.2 and section 5.3, we discuss notions of resource bounded stochasticity. Here
we concentrate our attention on the stochastic properties of p-random sequences, and we
show that many important laws in probability theory hold for p-random sequences. The
law of large numbers and the law of the iterated logarithm, which require that all random
sequences should have some stochastic properties (cf. von Mises’ definition of randomness),
play a central role in the study of probability theory (see e.g., [33]) and in the study of
classical randomness concepts (see e.g., [44, 74, 89, 98]). We will show that these two
laws hold for p-random sequences also. In fact, we can show that all the standard laws in
probability theory which only depend on the 0-1 distributions within the sequences hold for
p-random sequences. However, we do not carry out this tedious work of verification in this
thesis. The two laws mentioned above give a quantitative characterization of the density
of p-random sets. It is well known that all p-random sets have symmetric density. By
the law of large numbers and by the law of the iterated logarithm for p-random sequences,
it is obvious that all p-random sets have stochastic distributions on their elements, hence
the density of most intractable set is just “one half”. When combined with an invariance
property of p-random sequences, these laws are also useful in proving that some complexity
classes have p-measure 0. We will give an application of these laws in Chapter 6.

It is difficult to find the relationship between P/poly and E at present. Wilson [114] has
shown that there are oracles A and B such that EA ⊆ PA/poly and EB 6⊆ PB/poly, which
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means that this question is unrelativizable. If E ⊆ P/poly, then, for every set A ∈ E, the
initial segments of its characteristic sequence have polynomial time bounded Kolmogorov
complexity (log)k. Hence it is difficult to introduce notions of resource bounded randomness
in E in terms of chaoticness, that is to say, in terms of resource bounded Kolmogorov
complexity. In this thesis we do not consider the question of introducing resource bounded
chaoticness concepts.

5.1 Resource Bounded Typicalness

In this section, we will introduce various notions of resource bounded randomness in terms
of typicalness, and we will investigate their relations to each other. In particular, we will
show that the notions of resource bounded rec-, Schnorr and Kurtz randomness coincide in
recursive sets. Hence it suffices to consider the notion of resource bounded randomness in
the context of complexity classes.

5.1.1 Resource bounded randomness, resource bounded Schnorr and Kurtz
randomness

At first we introduce the notions of resource bounded randomness, resource bounded Schnorr
and Kurtz randomness, these notions are obtained from the corresponding classical notions
by putting resource bounds on them. In the rest of the thesis, unless otherwise stated, C
denotes some given class of functions.

Definition 5.1.1 (Schnorr [89] and Lutz [65]) A C-test is a martingale F ∈ C. An infinite
sequence ξ does not withstand the C-test F if F succeeds on ξ. A sequence ξ is C-random
if it withstands all C-tests.

Let C-NULL be the set of sequences which do not withstand some C-test, and let C-
RAND = Σ∞ − C-NULL be the set of C-random sequences.

Definition 5.1.2 A Schnorr (C1, C2)-test is a pair (F, h) of functions such that F ∈ C1 is a
martingale and h ∈ C2 is an unbounded, nondecreasing function from N to N . An infinite
sequence ξ does not withstand the Schnorr (C1, C2)-test (F, h) if lim supn(F (ξ[0..n − 1]) −
h(n)) ≥ 0, i.e., if F (ξ[0..n − 1]) ≥ h(n) i.o. A sequence ξ is Schnorr (C1, C2)-random if it
withstands all Schnorr (C1, C2)-tests.

Let (C1, C2)-S-NULL be the set of sequences which do not withstand some Schnorr
(C1, C2)-test, and let (C1, C2)-S-RAND = Σ∞ − (C1, C2)-S-NULL be the set of Schnorr
(C1, C2)-random sequences.

Definition 5.1.3 A Kurtz (C1, C2)-test is a pair (F, h) of functions such that F ∈ C1 is a
martingale and h ∈ C2 is an unbounded, nondecreasing function from N to N . An infinite
sequence ξ does not withstand the Kurtz (C1, C2)-test (F, h) if lim infn(F (ξ[0..n−1])−h(n)) ≥
0, i.e., if F (ξ[0..n− 1]) ≥ h(n) a.e. A sequence ξ is Kurtz (C1, C2)-random if it withstands
all Kurtz (C1, C2)-tests.
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Let (C1, C2)-W-NULL be the set of sequences which do not withstand some Kurtz
(C1, C2)-test, and let (C1, C2)-W-RAND = Σ∞ − (C1, C2)-W-NULL be the set of Kurtz
(C1, C2)-random sequences.

The following relations among resource bounded randomness, resource bounded Schnorr
and Kurtz randomness are immediate by definition.

Lemma 5.1.4 For any function classes C1 and C2,

C1-RAND ⊆ (C1, C2)-S-RAND ⊆ (C1, C2)-W-RAND

Moreover,
C1-RAND = (C1,all)-S-RAND

where all is the class of all functions.

Proof. Straightforward.

Lemma 5.1.5 For any function classes C1, C2, C′1 and C′2 such that C1 ⊆ C′1 and C2 ⊆ C′2,

(C′1, C′2)-S-RAND ⊆ (C1, C2)-S-RAND

and
(C′1, C′2)-W-RAND ⊆ (C1, C2)-W-RAND

Proof. Straightforward.

Next we will give separation results for these concepts, where we restrict our results to
the polynomial time case.

Theorem 5.1.6 Let f1, f2 ∈ P be two functions such that f1

f2
converges to 0 monotonically.

Then (P, OL(f1))-S-RAND ⊂ (P, OL(f2))-S-RAND, where OL(fi) = {cfi : c ∈ N}.

Proof. Schnorr [89, Satz 16.2] proved that

(REC, OL(f1))-S-RAND ⊂ (REC, OL(f2))-S-RAND

where REC is the class of recursive functions. It is easily checked that his proof works for
the function class P also.

We showed in Chapter 3 that rec-RAND ⊂ (REC,REC)-S-RAND by constructing a
martingale F and a sequence ξ such that F succeeds on ξ and ξ ∈ (REC,REC)-S-RAND.
In fact, the martingale F constructed there is computable in time n3, whence we obtain the
following theorem.

Theorem 5.1.7 Let C be a class of recursive functions such that DTIME(n3) ⊆ C. Then
C-RAND ⊂ (C,REC)-S-RAND ⊆ (C, C)-S-RAND.
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Theorem 5.1.8 (P,P)-S-RAND ⊂ (P,P)-W-RAND.

Proof. By Lemma 5.1.4, (P,P)-S-RAND ⊆ (P,P)-W-RAND. It was observed by
Kurtz [54] that there exists a Kurtz random sequence ξ which does not satisfy the law of
large numbers, whereas all Schnorr (P,P)-random sequences satisfy the law of large numbers
(cf. the proof of Theorem 5.2.12).

The above theorems show that, in general, the notion of resource bounded randomness
is stronger than the notion of resource bounded Schnorr randomness and the notion of
resource bounded Schnorr randomness is stronger than the notion of resource bounded
Kurtz randomness.

5.1.2 Resource bounded measure

In the rest of the thesis, we will use the following notation.

1. Let nk-RAND, nk-S-RAND and nk-W-RAND denote DTIME(nk)-RAND, (DTIME(nk), Ck)-
S-RAND and (DTIME(nk), Ck)-W-RAND, respectively, where Ck is the class of
nk-time computable (with respect to the unary representation of numbers), unbounded,
nondecreasing functions from N to N .

2. A martingale F is an nk-martingale if it is computable with time bound in O(nk).

3. We will say that a sequence ξ is p-random if it is P-random.

In this section we will introduce a fragment of Lutz’s effective measure theory which will
be sufficient for our investigation.

Definition 5.1.9 (Lutz [65]) A class C of sets has p-measure 0 (µp(C) = 0) if there is a
polynomial time computable martingale F which succeeds on every set in C. The class C
has p-measure 1 (µp(C) = 1) if µp(C̄) = 0 for the complement C̄ = {A ⊆ Σ∗ : A /∈ C} of
C.

It should be noted that Lutz [65] introduced his p-measure in terms of approximable
martingales. However, the following lemma shows that it is equivalent to the above defini-
tion.

Definition 5.1.10 (Lutz [65]) A function F is p-approximable if there exists a polynomial
time computable function h(0n, x) such that |F (x) − h(0n, x)| ≤ 2−n for all n ∈ N and
x ∈ Σ∗.

For the reason of convenience, in the rest of this thesis, unless otherwise stated, we will
use h(n, x) to denote h(0n, x).

Lemma 5.1.11 For each p-approximable martingale F , there exists a polynomial time com-
putable martingale F ′ such that F ′(x) ≥ F (x) for all x ∈ Σ∗.



5.1. RESOURCE BOUNDED TYPICALNESS 53

Proof. See Ambos-Spies et al. [10], Juedes and Lutz [43] or Mayordomo [76].

The following theorem gives a characterization of p-measure 0 sets in terms of the nk-
randomness concept.

Theorem 5.1.12 Let C be a class of languages. Then C has p-measure 0 if and only if
there exists a number k ∈ N such that there is no nk-random set in C.

Proof. Straightforward.

It was proved by Ambos-Spies et al. [10] that, for each k ∈ N , there exist nk-random
sets in E. Hence we have the following theorem.

Theorem 5.1.13 (Lutz [65]) E does not have p-measure 0.

Proof. This follows from Theorem 5.1.12.

It has been shown that p-measure (whence nk-randomness concepts) is a natural tool
for the quantitative analysis of the class E. We can also introduce p-measure in terms of
Schnorr and Kurtz nk-randomness concepts. In the next section, we will show that, in
the complexity classes, the p-measures based on Schnorr and Kurtz randomness concepts
coincide with the above p-measure based on rec-randomness concepts.

5.1.3 Resource bounded randomness and complexity

In this section we will show that nk-RAND and nk-S-RAND coincide within E. We will
also show that a recursive set is polynomial time random if and only if it is polynomial time
Schnorr random, and if and only if it is polynomial time Kurtz random.

In order to show that the notions of p-randonmess, polynomial time bounded Schnorr
and Kurtz randomness coincide in the recursive sets, we need the following lemma which is
essentially due to Allender and Strauss [3]. It should be noted that our results and proof is
a little different from that of Allender and Strauss [3].

Lemma 5.1.14 (cf. Allender and Strauss [3]) Let F be an nk-martingale. Then there
exists an nk+1-martingale F ′ and an nk+1-time computable function d : Σ∗ → N such that,

1. For all x v y, d(x) ≤ d(y).

2. For all x, F ′(x) ≥ d(x).

3. For any sequence ξ ∈ Σ∞, if lim supnF (ξ[0..n−1]) = ∞, then limn d(ξ[0..n−1]) = ∞.

Proof. We construct d and F ′ in stages, where at stage s we define F ′(x) and d(x) for
all strings of length s. W.l.o.g., we may assume that F (λ) = 1.

Stage 0.
Let F ′(λ) = F (λ) = 1 and let d(λ) = F (λ)− 1 = 0.
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Stage s + 1.
Fix a string x of length s and, for b ∈ Σ, let l(xb) = F (xb)

F (x) if F (x) 6= 0 and let l(xb) = 0
otherwise. For the definition of F ′(xb) and d(xb), we distinguish the following two cases.

Case 1. d(x) + 1 ≥ F ′(x).
Let F ′(xb) = d(x) + (F ′(x)− d(x))l(xb) and d(xb) = d(x).
Case 2. d(x) + 1 < F ′(x).
Let F ′(xb) = d(x) + 1 + (F ′(x)− d(x)− 1)l(xb) and d(xb) = d(x) + 1.
End of construction.

We show that the above constructed functions F ′ and h have the required properties by
establishing a series of claims.

Claim 1 F ′ is an nk+1-martingale.

Proof. By the construction, F ′ is nk+1-computable. It is easily checked that F ′ has the
martingale property. 2

Claim 2 For all x v y, d(x) ≤ d(y).

Proof. Straightforward from the construction. 2

Claim 3 For all x ∈ Σ∗, F ′(x) > d(x).

Proof. A simple induction. 2

Claim 4 Given two strings x, y ∈ Σ∗, if d(x) < F ′(x) ≤ d(x) + 1 and F ′(xy′) ≤ d(x) + 1
for all y′ v y, then

F ′(xy) =
F (xy)
F (x)

· (F ′(x)− d(x)) + d(x).

Proof. If y ∈ Σ, then the claim follows from the construction. Assume that

F ′(xy) =
F (xy)
F (x)

· (F ′(x)− d(x)) + d(x)

and F ′(xy) ≤ d(x) + 1. Then, by the construction, d(xy) = d(x) and

F ′(xyb) = d(xy) + (F ′(xy)− d(xy))l(xyb)

= d(xy) + (F ′(xy)− d(xy))F (xyb)
F (xy)

= d(x) +
(

F (xy)
F (x) · (F

′(x)− d(x)) + d(x)− d(x)
)
· F (xyb)

F (xy)

= d(x) + F (xyb)
F (x) · (F ′(x)− d(x)).

where b = 0, 1. 2
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Claim 5 For a sequence ξ ∈ Σ∞, if lim supnF (ξ[0..n− 1]) = ∞, then limn d(ξ[0..n− 1]) =
∞.

Proof. We prove by induction that, for each k ∈ N , there exists n ∈ N such that
d(ξ[0..n− 1]) > k.

By the construction, d(λ) ≥ 0.
Assume that k + 1 ≥ F ′(ξ[0..n1 − 1]) > d(ξ[0..n1 − 1]) = k for some n1 ∈ N . Then, by

Claim 4,

F ′(ξ[0..n− 1]) =
F (ξ[0..n− 1])
F (ξ[0..n1 − 1])

· (F ′(ξ[0..n1 − 1])− d(ξ[0..n1 − 1])) + d(ξ[0..n1 − 1])

for n ≥ n1 until F ′(ξ[0..n−1]) > d(ξ[0..n1−1])+1 = k+1. Because lim supnF (ξ[0..n−1]) =
∞, there exists n2 > n1 such that

F (ξ[0..n2 − 1]) >
F (ξ[0..n1 − 1])

F ′(ξ[0..n1 − 1])− d(ξ[0..n1 − 1])
.

Hence there exists n3 ≤ n2 such that F ′(ξ[0..n3 − 1]) > d(ξ[0..n1 − 1]) + 1 = k + 1 and
d(ξ[0..n3]) ≥ k + 1.

Theorem 5.1.15 Let k ≥ 2 and let ξ be an infinite recursive sequence which is Kurtz
nk-random. Then ξ is nk−1-random.

Proof. For a contradiction assume that ξ is not nk−1-random.
Let M be a Turing machine computing the sequence ξ, and let F be an nk−1-martingale

which succeeds on ξ. Let F ′ and d be the nk-martingale and the nk-time computable
function corresponding to F according to Lemma 5.1.14. Define a function h as follows.

Stage 0
Let h(0) = 0.
Stage s + 1.
For at most s + 1 steps search for a string x v ξ[0..s] (using the Turing machine M)

such that d(x) ≥ h(|x|) + 1 = h(s) + 1. If such an x is found, then let h(s + 1) = h(s) + 1.
Otherwise let h(s + 1) = h(s). Go to Stage s + 2.

End of construction.

It is obvious that h is an n2-time computable (with respect to the unary representation
of numbers), unbounded, nondecreasing function and F ′(ξ[0..n− 1]) ≥ h(n) a.e. Hence ξ is
not Kurtz nk-random contrary to assumption.

Corollary 5.1.16 For any recursive sequence ξ, ξ is p-random if and only if ξ is Schnorr
p-random, if and only if ξ is Kurtz p-random. That is to say,

P-RAND ∩REC = (P,P)-S-RAND ∩REC = (P,P)-W-RAND ∩REC

Corollary 5.1.16 shows that it suffices to study resource bounded randomness in the
context of complexity classes. In the rest of the thesis, unless otherwise stated, we will
study resource bounded randomness and omit the prefix name of person.
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5.1.4 Resource bounded Ko randomness

In the previous sections, we have studied the resource bounded randomness concepts based
on martingales. In this section, we discuss resource bounded Ko randomness concept which
is based on the constructive null covers.

Definition 5.1.17 (Ko [48]) A Ko (C1, C2)-test is a pair (U, g) where U ∈ C1 is a subset of
Σ∗ (notice that we identify a set with its characteristic function) and g ∈ C2 is an unbounded,
nondecreasing function from N to N such that the following hold.

1. U [0] = Σ∗.

2. U [k+1] ⊆ U [k].

3. Prob[U [k] · Σ∞] ≤ 2−k.

A sequence ξ does not withstand the Ko (C1, C2)-test (U, g) if max{m : ξ[0..n−1] ∈ U [m]} >
g(n) i.o. A sequence ξ is Ko (C1, C2)-random if it withstands all Ko (C1, C2)-tests.

Let (C1, C2)-K-NULL be the set of sequences that do not withstand some Ko (C1, C2)-
test, and let (C1, C2)-K-RAND = Σ∞−(C1, C2)-K-NULL be the set of Ko (C1, C2)-random
sequences.

In the following theorems, we will show that the notion of polynomial time bounded
Ko randomness is independent of the notions of polynomial time bounded Schnorr, Kurtz
randomness and p-randomness.

Lemma 5.1.18 (Ko [48]) Let ξ be an infinite sequence such that KM22n
(ξ[0..n − 1]) >

n−[4 log n] a.e., where KM22n
(x) is the 22n-time bounded monotonic Kolmorogov complexity

of x (cf. Chapter 3). Then ξ ∈ (P, log)-K-RAND.

Proof. See the proof of Ko [48, Corollary 3.9].

Lemma 5.1.19 (P, log)-K-RAND 6⊆ (P, log)-W-RAND.

Proof. Let ξ1 be a Martin-Löf random sequence. Define a sequence ξ by

ξ[n] =


ξ1[n] if n ≤ 1
0 if n = 2i for some i > 0
ξ1[n− [log n]] otherwise

Then
KM22n

(ξ[0..n− 1]) ≥ KM(ξ[0..n− 1])

≥ KM(ξ1[0..n− [log n]− 1])− c1

≥ n− [log n]− c (By Theorem 3.3.2)

> n− [4 log n] a.e.
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Hence, by Lemma 5.1.18, ξ ∈ (P, log)-K-RAND.
It remains to show that ξ /∈ (P, log)-W-RAND. Define a martingale F by

F (λ) = 1

F (xb) =

{
2(1− b)F (x) if |x| = 2i for some i > 0
F (x) otherwise

where b = 0, 1. Then F (ξ[0..n− 1]) ≥ n
2 for all n ∈ N , so ξ /∈ (P, log)-W-RAND.

As a corollary of the proof of Lemma 5.1.19, we have

Corollary 5.1.20 There exists a Ko (P, log)-random set which is not P-immune.

Remark. Using Meyer and McCreight’s weighted priority diagonalization, Ko [48]
showed some stronger results about resource bounded Kolmogorov complexity, which can
be used to produce a sequence in the double exponential time complexity class (w.r.t. the
length of the initial segment of the sequence) which is an element of (P, log)-K-RAND ∩
(P, log)-W-NULL.

Lemma 5.1.21 Let A ∈ E2. Then A /∈ (P, log)-K-RAND.

Proof. Assume that A ∈ DTIME(2nk
), and let ξ be the characteristic sequence of A.

Then ξ[0..n− 1] can be computed in n1+(log n)k ≤ 2n steps for almost all n.
Let U [i] = {ξ[0..i− 1]x : ξ[0..i− 1] can be computed in i + |x| steps}. Then U ∈ P and

1. U [i+1] ⊆ U [i].

2. Prob[U [i] · Σ∞] = 2−i.

3. For almost all n, ξ[0..n − 1] ∈ U [[log n]], that is to say, max{m : ξ[0..n − 1] ∈ U [m]} ≥
[log n] for almost all n.

Hence ξ /∈ (P, log)-K-RAND.

Lemma 5.1.22 P-RAND 6⊆ (P, log)-K-RAND.

Proof. Lutz [65] has shown that there is a p-random set A in DTIME(2n2
). So the

lemma follows from Lemma 5.1.21.
By Lemma 5.1.19 and Lemma 5.1.22, we get the following independence results.

Theorem 5.1.23 1. P-RAND and (P, log)-K-RAND are independent.

2. (P, log)-S-RAND and (P, log)-K-RAND are independent.

3. (P, log)-W-RAND and (P, log)-K-RAND are independent.
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5.2 Resource Bounded Stochasticity and the Law of Large
Numbers

Von Mises was the first to suggest identifying the notion of randomness with the notion of
stochasticity. But von Mises’ “legal selection rules” were not formally given. In the past,
work in this area mainly concentrated on the definition of “legal selection rules”. For exam-
ple, Church [31] suggested that “legal selection rules” should be some recursive processes and
Kolmogorov and, independently, Loveland proposed a stronger form which is now known as
Kolmogorov-Loveland “selection rules” (see e.g., [97]). Di Paola [85] considered notions of
stochasticity in subrecursive hierarchies. Based on these works, Wilber [113] and Ko [48]
introduced two notions of polynomial time pseudostochasticity. Huynh [39] showed that the
notion of Wilber’s pseudostochasticity is independent of the notion of P-immunity. Espe-
cially, there exists a Wilber pseudostochastic set which is not P-immune. Since a random set
must not contain any infinite easy parts, this shows that Wilber’s concept is not an accept-
able randomness notion. Lutz and Mayordomo [76] defined a notion of weak stochasticity
to prove that, for α < 1, all ≤p

nα−tt-hard sets for E are exponentially dense. And it is also
easy to show that there exists a weakly stochastic set of Lutz and Mayordomo which is not
P-immune. The reason why these concepts do not guarantee P-immunity is that they select
too many elements from Σn for each n. In [8], Ambos-Spies, Mayordomo, Wang and Zheng
removed this restraint and got a stronger, more satisfactory notion of p-stochasticity. They
showed that this notion of p-stochasticity is weaker than the notion of p-randomness, and
all p-stochastic sets are P-immune. Moreover, all p-stochastic sequences, hence p-random
sequences, satisfy the strong law of large numbers. Furthermore, we show that p-stochastic
sequences are normal in the sense of Borel. (The fact that p-random sequences are normal
was proved by Schnorr in [89]).

Definition 5.2.1 (Ko [48]) Let C be a class of total functions from Σ∗ to Σ. A sequence
ξ ∈ Σ∞ is Ko C-stochastic if, for all f ∈ C,

lim
n→∞

‖{k < n : f(ξ[0..k − 1]) = ξ[k]}‖
n

=
1
2
. (5.1)

The function f in Definition 5.2.1 can be considered as a prediction function, that is,
given a finite initial segment ξ[0..n− 1] of a sequence ξ, f predicts the next bit ξ[n] of the
sequence. Intuitively, a sequence ξ is Ko C-stochastic if and only if, for each prediction
function f ∈ C, the probability of success is not better than tossing an unbiased coin.

For the reason of convenience, in the rest of the thesis, we use the notation p-stochastic
instead of P-stochastic.

Theorem 5.2.2 (Ambos-Spies et al. [8]) There exists a Ko p-stochastic set A which is not
P-immune.

Proof. Let ξ be a Ko p-stochastic sequence. Define a sequence η by

η[n] =

{
0 n = 2i for some i ∈ N
ξ[n] otherwise
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Let A be the set with the characteristic sequence η. Then A is not P-immune. So it suffices
to show that η is Ko p-stochastic.

Let f : Σ∗ → Σ be a total function in P. We have to show that (5.1) holds with η in
place of ξ.

Define a total function f ′ by letting f ′(x) = f(xη), where xη is defined by

xη[n] =

{
0 n = 2i for some i ∈ N
x[n] otherwise

for n < |x|. Then f ′ ∈ P and f ′(ξ[0..n− 1]) = f(η[0..n− 1]) for all n ≥ 1. Since

lim
n→∞

‖{k ≤ n : ξ[k] 6= η[k]}‖
n

= 0

this implies

lim
n→∞

‖{k < n : f(η[0..k − 1]) = η[k]}‖
n

= lim
n→∞

‖{k < n : f ′(ξ[0..k − 1]) = ξ[k]}‖
n

Now, by Ko p-stochasticity of ξ, the limit on the right side equals to 1
2 . This completes the

proof.
For a better understanding of Ko p-stochasticity, we next give a characterization of Ko’s

concepts in terms of martingales.

Definition 5.2.3 A Schnorr C-exp-test is a pair (F, c), where F ∈ C is a martingale and
c > 1 is a real number. A sequence ξ does not withstand the Schnorr C-exp-test (F, c) if
lim supn(F (ξ[0..n− 1])− cn) > 0. A sequence ξ is Schnorr C-exp-random if it withstands all
Schnorr C-exp-tests.

Theorem 5.2.4 For any infinite sequence ξ ∈ Σ∞, ξ is Ko p-stochastic if and only if ξ is
Schnorr p-exp-random.

Proof. The proof technique is the same as that in the proof of Schnorr’s Satz 18.4 in
[89]. We omit the details here.

By Theorem 5.2.4, the notion of Ko p-stochasticity is just a little stronger than the
notion of non-p-computability. Namely, a sequence ξ ∈ Σ∞ is polynomial time computable
(that is to say, ξ[0..n− 1] is computable in time nk for some k ∈ N) if and only if there is a
polynomial time computable martingale F such that

lim sup
n

(F (ξ[0..n− 1])− 2n) ≥ 0.

In [8], Ambos-Spies, Mayordomo, Wang and Zheng introduced an even stronger notion
of stochasticity based on partial prediction functions that implies P-immunity.
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Definition 5.2.5 (Ambos-Spies et al. [8]) Let C be a class of partial functions from Σ∗ to
Σ. A sequence ξ ∈ Σ∞ is C-stochastic if, for each f ∈ C such that {n : f(ξ[0..n − 1]) is
defined } is infinite,

lim
n→∞

‖{k ≤ n : f(ξ[0..k − 1]) = ξ[k]}‖
‖{k ≤ n : f(ξ[0..k − 1])is defined}‖

=
1
2
. (5.2)

The set of C-stochastic sequences is denoted by C-STOCH.

Definition 5.2.5 is based on prediction functions. While the notion of stochasticity was
originally introduced in terms of selection functions (cf. Chapter 3). Next we characterize
C-stochasticity in these terms.

Definition 5.2.6 (Ambos-Spies et al. [8]) Let C be a class of total functions from Σ∗ to Σ.
A sequence ξ ∈ Σ∞ is C-1-stochastic if, for each f ∈ C such that {n : f(ξ[0..n− 1]) = 1} is
infinite,

lim
n→∞

‖{k ≤ n : f(ξ[0..k − 1]) = ξ[k] = 1}‖
‖{k ≤ n : f(ξ[0..k − 1]) = 1}‖

=
1
2
. (5.3)

The set of C-1-stochastic sequences is denoted by C-1-STOCH.

The function f in Definition 5.2.6 can be considered as a selection function (cf. Church
[31]), that is, a function which select a subsequence η of ξ. Intuitively, a sequence ξ is
C-1-stochastic if and only if, for each selection function f ∈ C, the numbers of 0s and 1s in
the selected subsequence η are asymptotically the same.

Theorem 5.2.7 (Ambos-Spies et al. [8]) Let P1 (resp. P2) be the class of polynomial time
computable total (resp. partial) functions from Σ∗ to Σ. Then

P2-STOCH = P1-1-STOCH.

Proof. (1). P1-1-STOCH ⊆ P2-STOCH.
Given a sequence ξ /∈ P2-STOCH, there exists a prediction function f ∈ P2 such that

{n : f(ξ[0..n− 1]) is defined} is infinite and (5.2) does not hold. Then one of the following
two conditions holds:

‖{k : f(ξ[0..k−1]) = 1}‖ = ∞ and lim
n→∞

‖{k ≤ n : f(ξ[0..k − 1]) = ξ[k] = 1}‖
‖{k ≤ n : f(ξ[0..k − 1]) = 1}‖

6= 1
2

(5.4)

‖{k : f(ξ[0..k− 1]) = 0}‖ = ∞ and lim
n→∞

‖{k ≤ n : f(ξ[0..k − 1]) = ξ[k] = 0}‖
‖{k ≤ n : f(ξ[0..k − 1]) = 0}‖

6= 1
2

(5.5)

W.l.o.g., we may assume that (5.4) holds. Define a selection function f1 by

f1(x) =

{
1 if f(x) = 1
0 otherwise
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Then obviously {n : f1(ξ[0..n− 1]) = 1} is infinite, and

‖{k ≤ n : f1(ξ[0..k − 1]) = ξ[k] = 1}‖
‖{k ≤ n : f1(ξ[0..k − 1]) = 1}‖

=
‖{k ≤ n : f(ξ[0..k − 1]) = ξ[k] = 1}‖

‖{k ≤ n : f(ξ[0..k − 1]) = 1}‖

So (5.3) does not hold with f1 in place of f . I.e., ξ /∈ P1-1-STOCH.
(2). P2-STOCH ⊆ P1-1-STOCH.
Given a sequence ξ /∈ P1-1-STOCH, there exists a selection function f ∈ P1 such that

{n : f(ξ[0..n − 1]) = 1} is infinite and (5.3) does not hold. Define a prediction function f1

by

f1(x) =

{
1 if f(x) = 1
undefined otherwise

Then obviously {k : f1(ξ[0..k − 1]) is defined} is infinite, and

‖{k ≤ n : f1(ξ[0..k − 1]) = ξ[k]}‖
‖{k ≤ n : f1(ξ[0..k − 1]) is defined}‖

=
‖{k ≤ n : f(ξ[0..k − 1]) = ξ[k] = 1}‖

‖{k ≤ n : f(ξ[0..k − 1]) = 1}‖

So (5.2) does not hold with f1 in place of f . I.e., ξ /∈ P2-STOCH.

Theorem 5.2.8 (Ambos-Spies et al. [8]) Let A be a p-stochastic set. Then A is E-immune.

Proof. For a contradiction assume that A has an infinite subset B ∈ E. Define a
prediction function f by

f(x) =

{
1 if z|x| ∈ B

undefined otherwise

Then f ∈ P, {n : f(A |̀ zn) is defined} is infinite, and

lim
n→∞

‖{k ≤ n : f(A |̀ zk) = A(zk)}‖
‖{k ≤ n : f(A |̀ zk) is defined}‖

= 1

Hence A is not p-stochastic contrary to the assumption.

In the following, we show that resource bounded stochasticity is weaker than resource
bounded typicalness. This coincides with the relationship between the corresponding clas-
sical (recursive) notions. At first, we show the invariance property of p-random sequences.
This property is implicit in Ambos-Spies et al. [10].

Theorem 5.2.9 Let ξ be an nk-random sequence and let f : Σ∗ → Σ be an nk−1-time
computable selection function such that {n : f(ξ[0..n−1]) = 1} is infinite. Then the selected
subsequence ξf of ξ by f is nk−1-random, where ξf = b0b1 · · · is defined by

bi =

{
λ if f(ξ[0..i− 1]) = 0
ξ[i] if f(ξ[0..i− 1]) = 1
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Proof. For a contradiction, assume that ξf is not nk−1-random. Then there is an nk−1-
martingale F which succeeds on ξf . Define an nk-martingale G by G(x) = F (xf ), where xf

is defined in the same way as ξf . It is straightforward to check that lim supn→∞ G(ξ[0..n−
1]) = lim supn→∞ F (ξf [0..n − 1]) = ∞. Hence G succeeds on ξ, which is contrary to the
assumption.

Corollary 5.2.10 Let ξ ∈ Σ∞ be a p-random sequence and f : Σ∗ → Σ be a polynomial
time computable selection function such that {n : f(ξ[0..n − 1]) = 1} is infinite. Then the
selected subsequence ξf of ξ by f is p-random.

Definition 5.2.11 An infinite sequence ξ ∈ Σ∞ satisfies the law of large numbers if

lim
n

∑n−1
i=0 ξ[i]

n
=

1
2

Schnorr has already shown that the law of large numbers holds for p-random sequences.

Theorem 5.2.12 (The law of large numbers, Schnorr [89]) Let ξ ∈ Σ∞ be an n2-random
sequence. Then ξ satisfies the law of large numbers.

Proof. The following proof is taken from Schnorr [89]. We include it here only for the
sake of completeness.

For a contradiction assume that ξ does not satisfy the law of large numbers. W.l.o.g.,
we may assume that

lim supn

sn

n
>

1
2

where sn =
∑n−1

i=0 ξ[i]. We will construct an n2-martingale F which succeeds on ξ.
Let 0 < q < 1 be small enough such that

1
2
(log(1 + q) + log(1− q)) + a(log(1 + q)− log(1− q)) = c > 0

where a = lim supn→∞
sn
n − 1

2 . Note that this q exists since log(1 + q) + log(1− q) converges
to 0 very quickly as q → 0 and log(1 + q)− log(1− q) is positive for q > 0.

Define an n2-martingale F : Σ∗ → Q+ by letting F (λ) = 1 and letting

F (xb) =

{
(1 + q)F (x) if b = 1
(1− q)F (x) if b = 0

Then, for n ∈ N ,
F (ξ[0..n− 1]) = (1− q)n−sn(1 + q)sn .

Hence

log F (ξ[0..n− 1]) =
n

2
(log(1 + q) + log(1− q)) + (sn −

1
2
)(log(1 + q)− log(1− q))
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and

lim supn→∞
1
n log F (ξ[0..n− 1]) ≥ 1

2(log(1 + q) + log(1− q)) + a(log(1 + q)− log(1− q))

= c > 0.

I.e.,
lim supn→∞F (ξ[0..n− 1]) ≥ lim supn→∞2c·n = ∞.

So ξ is not n2-random, contrary to assumption.

Theorem 5.2.13 (Ambos-Spies et al. [8]) P-RAND ⊂ P1-1-STOCH, where P1 is de-
fined in Theorem 5.2.7.

Proof. Let ξ ∈ Σ∞ be a p-random sequence, and f : Σ∗ → Σ be a polynomial time
computable selection function such that {n : f(ξ[0..n − 1]) = 1} is infinite. Then, by
Corollary 5.2.10, the selected subsequence ξf of ξ by f is p-random. Hence, by Theorem
5.2.12, (5.3) holds. That is to say, ξ is p-stochastic.

Ville [98] constructed a Church stochastic sequence ξ satisfying the property

0 ≤ 1
2
− 1

n

n−1∑
i=0

ξ[i] ≤ f(n)
n

where f(n) is a given unbounded, nondecreasing, time constructible function. That is to
say, ξ does not satisfy the law of the iterated logarithm. Obviously ξ is p-stochastic too.
In Theorem 5.3.6, we will show that p-random sequences satisfy the law of the iterated
logarithm, hence ξ is not p-random.

In order to study the property of stochastic sequences, the concept of normal sequences
has been introduced and has been studied extensively. Recently Strauss [94] used the concept
of normal sequences to show that almost all sets in PSPACE are sources for BPP (the
concept of sources for BPP was introduced by Lutz in [64]). In the following, we show that
all p-stochastic sequences are normal.

Definition 5.2.14 For ξ ∈ Σ∞, w ∈ Σ+ and n ∈ N+, let

freqw(ξ[0..n− 1]) =
‖{i ≤ n− |w| : ξ[i..i + |w| − 1] = w}‖

n

and
freqw(ξ) = lim

n→∞
freqw(ξ[0..n− 1])

provided that this limit exists.

Definition 5.2.15 Let m ∈ N+. A sequence ξ ∈ Σ∞ is m-normal, and we write ξ ∈
NORMm, if, for all w ∈ Σm,

freqw(ξ) = 2−m.

A sequence ξ ∈ Σ∞ is normal, and we write ξ ∈ NORM, if ξ is m-normal for all m ∈ N+,
i.e.,

NORM =
∞⋂

m=1

NORMm.
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Theorem 5.2.16 n2
part-STOCH ⊆ NORM, where n2

part is the class of n2-time com-
putable partial functions.

Proof. Assume that ξ ∈ n2
part-STOCH. We show ξ ∈ NORMm by induction on m.

Basic Step
For w ∈ Σ, define the total prediction function f by letting f(x) = w for all x ∈ Σ∗.

Then, by n2
part-stochasticity of ξ,

freqw(ξ) = lim
n→∞

freqw(ξ[0..n− 1])

= lim
n→∞

‖{i < n : ξ[i] = w}‖
n

= lim
n→∞

‖{i < n : f(ξ[0..i− 1]) = ξ[i]}‖
n

=
1
2
.

Inductive Step
Let w ∈ Σ∗ and b ∈ Σ be given, where, by inductive hypothesis, freqw(ξ) = 2−|w|. To

show that freqwb(ξ) = 2−(|w|+1), define the n2-computable partial prediction function f by

f(x) =

{
b if x = yw for some y ∈ Σ∗,
undefined otherwise.

Then, by the n2
part-stochasticity of ξ,

freqwb(ξ) = lim
n→∞

freqwb(ξ[0..n− 1])

= lim
n→∞

‖{i < n− |w| : ξ[i..i + |w|] = wb}‖
n

= lim
n→∞

‖{i < n : f(ξ[0..i− 1]) = ξ[i]}‖
n

= lim
n→∞

‖{i < n : f(ξ[0..i− 1]) is defined}‖
n

·

‖{i < n : f(ξ[0..i− 1]) = ξ[i]}‖
‖{i < n : f(ξ[0..i− 1]) is defined}‖

= freqw(ξ) · 1
2

= 2−|w|−1.

This completes the proof.

Corollary 5.2.17 (Schnorr [89]) n2-RAND ⊆ NORM.
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5.3 The Law of the Iterated Logarithm for p-Random Se-
quences

For a nonempty string x ∈ Σ∗, let

S(x) =
|x|−1∑
i=0

x[i]

denote the number of 1s in x, and let

S∗(x) =
2 · S(x)− |x|√

|x|

denote the reduced number of 1s in x. Note that S∗(x) amounts to measuring the deviations
of S(x) from |x|

2 in units of 1
2

√
|x|. In probability theory, S(x) is called the number of

successes and S∗(x) is called the reduced number of successes.
The law of large numbers says that, for an n2-random sequences ξ, the limit of S(ξ[0..n−1])

n
is 1

2 . But it says nothing about the reduced deviation S∗(ξ[0..n − 1]). It is intuitively
clear that, for a random sequence ξ, S∗(ξ[0..n − 1]) will sooner or later take on arbitrary
large values. Moderate values of S∗(ξ[0..n − 1]) are most probable, but the maxima will
slowly increase. How fast? Can we give an optimal upper bound for the fluctuations of
S∗(ξ[0..n−1])? The law of the iterated logarithm, which was first discovered by Khintchine
for the classical cases, gives a satisfactory answer for the above questions.

Definition 5.3.1 A sequence ξ ∈ Σ∞ satisfies the law of the iterated logarithm if

lim sup
n→∞

2
∑n−1

i=0 ξ[i]− n√
2n ln lnn

= 1

and

lim inf
n→∞

2
∑n−1

i=0 ξ[i]− n√
2n ln lnn

= −1

In this section, we will prove that the law of the iterated logarithm holds for p-random
sequences also.

There are various applications of the law of the iterated logarithm. For example, in the
next chapter, we will use this law to prove that both the class of P-∆-levelable sets and the
class of sets which have optimal polynomial time unsafe approximations have p-measure 0,
hence p-random sets are not ∆-levelable.

We will now introduce some technical tools for the proof of the law of the iterated
logarithm.

In the traditional proof of the law of the iterated logarithm for random sequences, the
first and the second Borel-Cantelli lemmas are used. Lutz [63] has proved the first Borel-
Cantelli lemma for p-measure: Roughly speaking, let Fi (i = 0, 1, · · ·) be a sequence of
uniformly polynomial time computable density functions (the definition will be given below).
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If Fi(λ) ≤ 2−i for all i, then we can define a martingale F =
∑∞

i=0 Fi which is p-approximable
by h(n, x) =

∑n
i=0 Fi(x) such that, for each sequence ξ ∈ Σ∞, if ξ is covered by infinitely

many Fi, then F succeeds on ξ.
But in the proof of the law of the iterated logarithm, we can only define a sequence of

density functions Fi (i = 1, 2, · · ·) such that, for each i

Fi(λ) ≤ i−α

where α > 1. And h(n, x) =
∑n

i=1 Fi(x) is not a p-approximation of F =
∑∞

i=1 Fi. Hence,
we cannot use Lutz-Borel-Cantelli lemma to prove this law directly. In our following proof,
the main objective, roughly speaking, is to use p-approximations of h(n, x) =

∑n
i=1 Fi(x) +∫∞

n+1
dx

(x−1)α to define a p-approximation of F =
∑∞

i=1 Fi.

Definition 5.3.2 (Lutz [63]) A function F : Σ∗ → R+ is a density function if, for all
x ∈ Σ∗,

F (x) ≥ F (x0) + F (x1)
2

.

Lemma 5.3.3 Given a polynomial time computable function F (i, x) and a nondecreasing,
time constructible function u : N → N satisfying

2F (i, x) ≥ F (i, x0) + F (i, x1)

for all i and all |x| ≥ u(i), the set ∪∞i=0NULLFi has p-measure 0, where NULLFi = {ξ ∈
Σ∞ : lim supn F (i, ξ[0..n− 1]) = ∞}.

Remark. If we only require that F be p-approximable, then Lemma 5.3.3 still holds.
Proof. By the p-union lemma of Lutz [65], it suffices to show that there exists a polyno-

mial time computable function F ′(i, x) such that F ′
i (x) = F ′(i, x) is a density function for

each i and ∞⋃
i=0

NULLFi ⊆
∞⋃
i=0

NULLF ′
i
. (5.6)

Let v be a function defined by the recursion

v(1) = u(1)

v(k + 1) = max{k + 1, u(k + 1), v(k)}+ 1

Then we define the function F ′ as follows. If i 6= 2v(k) for any k ∈ N , then let F ′(i, x) = 0
for all x ∈ Σ∗. If i = 2v(k) for some k ∈ N , then F ′(i, x) is defined by

F ′(i, x) =

{ ∑
|y|=u(k)−|x| 2

|x|−u(k)F (k, xy) |x| < u(k)
F (k, x) |x| ≥ u(k)

It is obvious that, for every k, F ′
k(x) = F ′(k, x) is a density function and

NULLFk
⊆ NULLF ′

2v(k)
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Hence (5.6) holds.

In our following proof, we will use the following variant of DeMoivre-Laplace limit the-
orem.

Theorem 5.3.4 [33, p144] Let u : N → R+ be a function satisfying

1
2

√
ln lnn ≤ u(n) ≤ 2

√
ln lnn

for all n. Then there exists a constant c0 which is independent of u such that, for all
u(n) > c0,

u−2e−u2/2 ≤ Prob [{ξ ∈ Σ∞ : S∗(ξ[0..n− 1]) > u(n)}] ≤ e−u2/2.

We will also use the following lemma from Feller [33, p158].

Lemma 5.3.5 Let u : N → R+ be a function. Then there exists a constant c1 which is
independent of both u and n such that if

C =
{

ξ ∈ Σ∞ : S(ξ[0..k − 1])− 1
2
k > u(n) for some k ≤ n

}
,

then
Prob[C] ≤ 1

c1
Prob

[{
ξ ∈ Σ∞ : S(ξ[0..n− 1])− 1

2
n > u(n)

}]
.

Now we are ready to prove our main theorem of this section.

Theorem 5.3.6 Let

U =
{

ξ ∈ Σ∞ : lim sup
n→∞

S∗(ξ[0..n− 1])√
2 ln ln n

= 1
}

.

Then U has p-measure 1. This means that if we let Yk (k ≥ 1) be the set of infinite
sequences such that

S(ξ[0..n− 1]) >
1
2
n +

(
1 +

1
k

)√
1
2
n ln lnn

for infinitely many n, and let Xk (k ≥ 1) be the set of infinite sequences such that

S(ξ[0..n− 1]) >
1
2
n +

(
1− 1

k

)√
1
2
n ln lnn

for finitely many n, then

Σ∞ −U = (
∞⋃

k=1

Xk)
⋃

(
∞⋃

k=1

Yk)

has p-measure 0.
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For reasons of symmetry, the above theorem implies that the following set has p-measure
1

V =
{

ξ ∈ Σ∞ : lim inf
n→∞

S∗(ξ[0..n− 1])√
2 ln lnn

= −1
}

.

Outline of the Proof: The proof goes on as follows. First, we will show uniformly that
every Yk has p-measure 0, that is to say, Y = ∪∞k=1Yk has p-measure 0. Then we will
use this result to show that X = ∪∞k=1Xk has p-measure 0. In order to show that Yk has
p-measure 0, we define a sequence n0, n1, · · · of natural numbers. For each ni, we define a
martingale Fk(i, x) in such a way that, for all m > l > ni, Fk(i, x[0..l]) = Fk(i, x[0..m]).
That is to say, Fk(i, x) is defined to check the 0-1 distributions on strings in Σni . If a string
x ∈ Σni seems to be an initial segment of some sequences in Yk, Fk(i, x) is then given a large
value; Otherwise, Fk(i, x) is given a small value. Lastly, Fk(x) =

∑∞
i=0 Fk(i, x) succeeds on

every sequence in Yk. All we need to do is to choose ni and to define Fk(i, x) appropriately
so that our proving process is uniformly polynomial time computable and Fk(x) succeeds
on all sequences in Yk.

Proof of Theorem 5.3.6.
First we show that Y =

⋃∞
k=1 Yk has p-measure 0.

Let α = 1 + 1
k , β = 1 + 1

3k and ni = [βi] + 1 (i = 1, 2, · · ·). Then 1 < β <
√

α. Let

Yk,i =

{
ξ ∈ Σ∞ : S(ξ[0..n− 1])− 1

2
n > α

√
1
2
ni ln lnni for some ni ≤ n < ni+1

}
and

Y′
k = {ξ ∈ Σ∞ : ξ ∈ Yk,i for infinitely many i} .

Obviously, Yk ⊆ Y′
k, so it suffices to show that Y′ =

⋃∞
k=1 Y′

k has p-measure 0.
Let

Fi(k, x) = Prob[Yk,i|Cx]

where Prob[Yk,i|Cx] is the conditional probability of Yk,i under the condition Cx, and let

F (k, x) =
∞∑
i=0

Fi(k, x).

It is straightforward that, for each k ∈ N , Fk(x) = F (k, x) is a martingale and, for each
ξ ∈ Y′

k, Fk(x) = F (k, x) succeeds on ξ.
By the remark of Lemma 5.3.3, it suffices to construct a p-approximable function G and

a time constructible function v : N → N such that, for all k ∈ N and for all |x| > v(k),

2G(k, x) ≥ G(k, x0) + G(k, x1)

G(k, x) ≥ F (k, x)

Let

G(k, x) =
∑

i≤
[

4 ln |x|
ln β

]Prob[Yk,i|Cx] +
∑

i>
[

4 ln |x|
ln β

]
∫ i+1

i

dx

c · ((x− 1) ln β)α

where c is a constant which will be given below.
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Claim 1 G(k, x) is p-approximable (w.r.t. k + |x|).

Proof. Obviously, in the expression of G, the second clause

∑
i>
[

4 ln |x|
ln β

]
∫ i+1

i

dx

c · ((x− 1) ln β)α
=

1
c(lnβ)α(α− 1)

([
4 ln |x|
lnβ

])1−α

is p-approximable (w.r.t. k + |x|).
If i ≤

[
4 ln |x|
ln β

]
, then ni ≤ |x|4 + 1. Hence, the values of Prob[Yk,i|Cx] in the first clause

of G(k, x) can be computed using binomial coefficients of base less than ni+1 ≤ β · (|x|4 +1).
That is to say, the first clause of G(k, x) can be computed in time polynomial in k + |x|. 2

Claim 2 Let c0 be the constant in Theorem 5.3.4, c1 be the constant in Lemma 5.3.5,
c = c1

3 > 0 and u1(k) = [6e2c20k2]. Then the following conditions hold for all k.

1. For all i > u1(k),

Prob[Yk,i] ≤
∫ i+1

i

dx

c · ((x− 1) ln β)α
.

2. For all i > max{u1(k),
[

4 ln |x|
ln β

]
},

Prob[Yk,i|Cx] ≤
∫ i+1

i

dx

c · ((x− 1) ln β)α
.

Proof. 1. By Lemma 5.3.5,

Prob[Yk,i] ≤ 1
c1

Prob
[{

ξ ∈ Σ∞ : S(ξ[0..ni+1 − 1])− 1
2ni+1 > α

√
1
2ni ln lnni

}]
= 1

c1
Prob

[{
ξ ∈ Σ∞ : S∗(ξ[0..ni+1 − 1]) > α

√
2 ni

ni+1
ln lnni

}]
By a simple computation, it can be shown that if i > 6k2 then niα

2

ni+1
> α. Hence, for i > 6k2,

Prob[Yk,i] ≤ c−1
1 Prob

[{
ξ ∈ Σ∞ : S∗(ξ[0..ni+1 − 1]) >

√
2α ln lnni

}]
.

If i > 6ec20k2, then
√

2α ln lnni > c0. By the DeMoivre-Laplace limit theorem (Theorem
5.3.4) we get, therefore, for i > u1(k) = [6ec20k2],

Prob[Yk,i] ≤ c−1
1 e−α ln ln ni

= 1
c1(ln ni)α

< 1
c(i ln β)α

<
∫ i+1
i

dx
c·((x−1) ln β)α .
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2. First we note the following fact: for x ∈ Σ≤ni ,

Prob[Yk,i|C0|x| ] ≤ Prob[Yk,i|Cx]

≤ Prob[Yk,i|C1|x| ]

= Prob[Yk,i,|x||C0|x| ]

where

Yk,i,j =

{
ξ ∈ Σ∞ : S(ξ[0..n− 1])− 1

2
n + j > α

√
1
2
ni ln lnni, ni ≤ n < ni+1

}

for i, j ∈ N .

It is easily checked that if i > u1(k) = [6e2c20k2] then niα
2

ni+1
> α and

√
2α ln lnni− |x|√

ni+1
>
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c0. Hence, in the same way as in 1, we can show that

Prob[Yk,i|Cx] = 2|x|Prob[Yk,i ∩Cx]

≤ 2|x|Prob[Yk,i,|x| ∩C0|x| ]

≤
∑

y∈Σ|x| Prob[Yk,i,|x| ∩Cy]

= Prob[Yk,i,|x|]

≤ c−1
1 Prob

[{
ξ ∈ Σ∞ : S(ξ[0..ni+1 − 1])− 1

2ni+1 + |x| > α
√

1
2ni ln lnni

}]
= c−1

1 Prob

[{
ξ ∈ Σ∞ : S∗(ξ[0..ni+1 − 1]) > α

√
2 ni

ni+1
ln lnni − |x|√

ni+1

}]

≤ c−1
1 Prob

[{
ξ ∈ Σ∞ : S∗(ξ[0..ni+1 − 1]) >

√
2α ln lnni − |x|√

ni+1

}]

≤ c−1
1 e

−α ln ln ni+
|x|√
ni+1

√
2α ln ln ni

≤ c−1
1 e

4
√

ni+1
√

2α ln ln ni√
ni+1 e−α ln ln ni

(
By i >

[
4 ln |x|
ln β

])
≤ 3c−1

1 e−α ln ln ni

=
3

c1(lnni)α

≤ 3
c1(i lnβ)α

=
1

c(i lnβ)α

≤
∫ i+1

i

dx

c · ((x− 1) ln β)α
. 2

Claim 3 Let v(k) ≥ βu1(k)/4 be a time constructible function. Then, for all k ∈ N and for
all |x| > v(k),

2G(k, x) ≥ G(k, x0) + G(k, x1)

G(k, x) ≥ F (k, x)

Proof. If [4 ln |x0|
ln β ] = [4 ln |x|

ln β ], then it is obvious from the definition of G that

2G(k, x) = G(k, x0) + G(k, x1).
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For |x| > v(k), if m = [4 ln |x0|
ln β ] = [4 ln |x|

ln β ] + 1, then m > u1(k). So, by Claim 2 and by
the definition of G, we have

2G(k, x)−G(k, x0)−G(k, x1) =
∫m+1
m

2dx
c·((x−1) ln β)α − Prob[Yk,m|Cx0]− Prob[Yk,m|Cx1]

≥ 0.

By Claim 2, for all |x| > v(k) (i.e.,
[

4 ln |x|
ln β

]
> u1(k)), we have

G(k, x)− F (k, x) =
∑

i>
[

4 ln |x|
ln β

]
(∫ i+1

i

dx

c · ((x− 1) ln β)α
− Prob[Yk,i|Cx]

)
≥ 0

2

All these Claims complete the proof that ∪kYk has p-measure 0.
Next we show that X =

⋃∞
k=6 Xk has p-measure 0.

Let α = 1− 1
k (k > 5), β = k4, γ = 1− 1

k3 and ni = βi (i = 1, 2, · · ·). Then

β − 1
β

> γ > α.

Let
Di(ξ) = S(ξ[0..ni − 1])− S(ξ[0..ni−1 − 1])

and

Xk,i =

{
ξ ∈ Σ∞ : Di(ξ)−

1
2
(ni − ni−1) > γ

√
1
2
ni ln lnni

}
.

We first show that if i > ec20 (where c0 is the constant in Theorem 5.3.4), then Prob[Xk,i] ≥
i−1.

Prob[Xk,i] = Prob

[{
ξ ∈ Σ∞ :

2Di(ξ)− (ni − ni−1)√
ni − ni−1

> γ

√
2

ni

ni − ni−1
ln lnni

}]
.

Here ni/(ni − ni−1) = β/(β − 1) < γ−1. Hence

Prob[Xk,i] ≥ Prob

[{
ξ ∈ Σ∞ :

2Di(ξ)− (ni − ni−1)√
ni − ni−1

>
√

2γ ln lnni

}]
.

If i > ec20 , then
√

2γ ln lnni > c0. So, by the DeMoivre-Laplace limit theorem (Theorem
5.3.4), for i > ec20 ,

Prob[Xk,i] ≥
1

2γ ln lnni
e−γ ln ln ni =

1
2γ(ln lnni)(lnni)γ

.

Since ni = βi and γ < 1, there is a time constructible function u2(k) > ec20 such that if
i > u2(k) then Prob[Xk,i] ≥ i−1.
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Let
Zk,0 = {ξ ∈ Σ∞ : ξ /∈ Xk,i for all i},

and let F be a density function defined as follows. For all x ∈ Σni and y ∈ Σni+1 with x v y,
let

F (k, 0, y) =

 0 y · Σ∞ ⊆ Xk,i+1
i + 1

i
F (k, 0, x) y · Σ∞ 6⊆ Xk,i+1

For all other z ∈ Σ∗ with x v z v y, let

F (k, 0, z) =
F (k, 0, z0) + F (k, 0, z1)

2
.

Obviously, using binomial coefficients, we can compute F (k, 0, x) in time polynomial in

k + |x| and, for all k ∈ N and |x| > βec20 ,

2F (k, 0, x) ≥ F (k, 0, x0) + F (k, 0, x1).

And, for all ξ ∈ Zk,0,

F (k, 0, ξ[0..ni − 1]) =
2
1
· 3
2
· · · i

i− 1
= i.

Hence, by Lemma 5.3.3, Zk,0 has p-measure 0.
Next, divide the sequence Xk,i (i = 1, 2 · · ·) into two subsequences X(1,1)

k,i and X(1,2)
k,i such

that both
∑

i Prob[X(1,1)
k,i ] = ∞ and

∑
i Prob[X(1,2)

k,i ] = ∞. Let

Zk,1 = {ξ ∈ Σ∞ : ξ /∈ X(1,1)
k,i for all i}

⋃
{ξ ∈ Σ∞ : ξ /∈ X(1,2)

k,i for all i}.

In the same way as showing that Zk,0 has p-measure 0, we can define a density function
F (k, 1, x) to show that Zk,1 has p-measure 0.

Applying, in turn, this statement to the sequences X(1,1)
k,i and X(1,2)

k,i , we can define
p-measure 0 sets Zk,3 and Zk,4, and so on. Let

Z =
⋃
k

⋃
i

Zk,i.

Then Z is a p-union of p-measure 0 sets Zk,i (k, i ∈ N). Hence, by Lemma 5.3.3, Z has
p-measure 0.

Let
X′

k = {ξ ∈ Σ∞ : ξ ∈ Xk,i for finitely many i}.

Then X′ =
⋃∞

k=6 X′
k ⊆ Z, hence X′ has p-measure 0.

The last step of the proof is to show that, in the definition of Xk,i, the term S(ξ[0..ni−1−
1]) can be neglected. From the part (1) of this theorem, we know that Y has p-measure 0,
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hence Y ∪X′ has p-measure 0. For each ξ ∈ Σ∞ − (Y ∪X′), we can find a large enough n0

so that, for all i > n0,∣∣∣∣S(ξ[0..ni−1 − 1])− 1
2
ni−1

∣∣∣∣ < 2
√

1
2
ni−1 ln lnni−1.

By the choice of γ,

1− γ <

(
γ − α

2

)2

,

so
4ni−1 = 4

ni

β
< ni(γ − α)2.

Hence

S(ξ[0..ni−1 − 1])− 1
2
ni−1 > −(γ − α)

√
1
2
ni ln lnni. (5.7)

Because ξ /∈ X′, ξ ∈ Xk,i for infinitely many i, i.e.,

Di(ξ)−
1
2
(ni − ni−1) > γ

√
1
2
ni ln lnni i.o. (5.8)

Adding (5.7) to (5.8), we obtain that, for each sequence ξ ∈ Σ∞ − (X′ ∪Y), there are
infinitely many n such that

S(ξ[0..n− 1]) >
1
2
n + α

√
1
2
n ln lnn.

So Σ∞ − (X′ ∪Y) ⊆ Σ∞ −X, i.e., X ⊆ X′ ∪Y. Hence X has p-measure 0.

Corollary 5.3.7 There exists a number k ∈ N such that every nk-random sequence satisfies
the law of the iterated logarithm.

5.4 Some Remarks on Statistical Laws

In the previous two sections, we showed that the two most important statistical laws hold for
p-random sequences. Actually, almost all standard stochastic properties of Schnorr random
sequences can be carried over to p-random sequences. Especially, for those laws which only
depend on the 0-1 distributions of the sequences.

Theorem 5.4.1 (the “gap” law, see [58] or [33]) For each Schnorr random sequence ξ and
each real α < 1, there are infinitely many n ∈ N such that

ξ[0..n + [α lnn]− 1] = ξ[0..n− 1]1[α ln n].

Using a variation of the proof of Theorem 5.4.1, we can show that this law holds for
p-random sequences also (we will not prove it here).

Our work shows that, on the one hand, the pure statistical laws can not characterize
classical randomness concepts very well (because all p-random sets in E2 satisfies these laws
also), on the other hand, we can design low-complexity (using some p-random sets in E2)
systems which can be used for statistical interest.



Chapter 6

Resource Bounded Category,
Resource Bounded Measure and
Polynomial Time Approximations

The notion of polynomial time safe approximations was introduced by Meyer and Paterson
in [78] (see also [49]). A safe approximation algorithm for a set A is a polynomial time
algorithm M that on each input x outputs either 1 (accept), 0 (reject) or ? (do not know)
such that all inputs accepted by M are members of A and no member of A is rejected by
M . An approximation algorithm is optimal if no other polynomial time algorithm correctly
decides infinitely many more inputs, that is, outputs infinitely many more correct 1s or 0s.
In Orponen et al. [83], the existence of optimal approximations was phrased in terms of
P-levelability: A set A is P-levelable if for any deterministic Turing machine M accepting
A and for any polynomial p there is another machine M ′ accepting A and a polynomial p′

such that for infinitely many elements x of A, M does not accept x within p(|x|) steps while
M ′ accepts x within p′(|x|) steps. It is easy to show that A has an optimal polynomial time
safe approximation if and only if neither A nor Ā is P-levelable.

The notion of unsafe approximations was introduced by Yesha in [116]: An unsafe ap-
proximation algorithm for a set A is just a standard polynomial time bounded deterministic
Turing machine M with outputs 1 and 0. Duris and Rolim [32] further investigated un-
safe approximations and introduced a levelability concept, ∆-levelability, which implies the
nonexistence of optimal polynomial time unsafe approximations. They showed that com-
plete sets for E are ∆-levelable and there exists an intractable set in E which has an optimal
safe approximation but no optimal unsafe approximation. But they did not succeed to pro-
duce an intractable set with optimal unsafe approximations. Ambos-Spies [4] defined a
concept of weak ∆-levelability and showed that there exists an intractable set in E which is
not weakly ∆-levelable (hence it has an optimal unsafe approximation). In this thesis, we
study a little different notion of unsafe approximations.

Like resource bounded measure and resource bounded randomness concepts, different
kinds of resource bounded categories and resource bounded genericity concepts were intro-
duced by Ambos-Spies et al. [5, 6, 7], Fenner [34] and Lutz [63] to determine whether a

75
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complexity class is large or small in a topological sense. It has been proved that resource
bounded generic sets are useful in providing a coherent picture of complexity classes. They
embody the method of diagonalization construction, that is, requirements which can always
be satisfied by finite extensions are automatically satisfied by generic sets.

It was shown in Ambos-Spies et al. [9] that the generic sets of Ambos-Spies are P-
immune, and that the class of sets which have optimal safe approximations is large in the
sense of resource bounded Ambos-Spies category. Mayordomo [75] has shown that the class
of P-immune sets is neither meager nor comeager both in the sense of resource bounded Lutz
category and in the sense of resource bounded Fenner category. We extend this result by
showing that the class of sets which have optimal safe approximations is neither meager nor
comeager both in the sense of resource bounded Lutz category and in the sense of resource
bounded Fenner category. Moreover, we will show the following relations between unsafe
approximations and resource bounded categories.

1. The class of weakly ∆-levelable sets is neither meager nor comeager in the sense of
resource bounded Ambos-Spies category [9].

2. The class of weakly ∆-levelable sets is comeager (so is large) in the sense of resource
bounded general Ambos-Spies [5], Fenner [34] and Lutz [63] categories.

3. The class of ∆-levelable sets is neither meager nor comeager in the sense of resource
bounded general Ambos-Spies [5], Fenner [34] and Lutz [63] categories.

In the last section of this chapter, we will show the relations between polynomial time
approximations and the p-measure. Mayordomo [76] has shown that the class of P-bi-
immune sets has p-measure 1. It follows that the class of sets which have optimal polynomial
time safe approximations has p-measure 1. Using the law of the iterated logarithm for p-
random sequences which we have proved in Chapter 5, we will show that:

1. The class of ∆-levelable sets has p-measure 0.

2. The class of sets which have optimal polynomial time unsafe approximations has p-
measure 0.

3. p-Random sets are weakly ∆-levelable but not ∆-levelable.

Hence typical sets in the sense of resource bounded measure do not have optimal polynomial
time unsafe approximations.

It should be noted that the above results show that the class of weakly ∆-levelable sets is
large both in the sense of resource bounded categories and in the sense of resource bounded
measure. That is to say, typical sets in E2 (in the sense of resource bounded categories or
in the sense of resource bounded measure) are weakly ∆-levelable.

We will use some special notation for this chapter. We define a finite function to be a
partial function from Σ∗ to Σ whose domain is finite. For a finite function σ and a string
x ∈ Σ∗, we write σ(x) ↓ if x ∈ dom(σ), and σ(x) ↑ otherwise. For two finite functions σ, τ , we
say σ and τ are compatible if σ(x) = τ(x) for all x ∈ dom(σ)∩dom(τ). The concatenation στ
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of two finite functions σ and τ is defined as: στ = σ∪{(znσ+i+1, b) : zi ∈ dom(τ) & τ(zi) = b}
where nσ = max{n : zn ∈ dom(σ)}. For a set A and a string x, we identify the characteristic
string A |̀x with the finite function {(y, A(y)) : y < x}. For a finite function σ and a set A,
σ is extended by A if σ(x) = A(x) for all x ∈ dom(σ).

6.1 Genericity versus Polynomial Time Safe Approximations

In this section, we summarize some known results on the relations between the notions of
resource bounded genericity and the notion of polynomial time safe approximations.

At first, we introduce some concepts of resource bounded genericity.

Definition 6.1.1 A partial function f from Σ∗ to {σ : σ is a finite function } is dense
along a set A if there are infinitely many strings x such that f(A |̀x) is defined. A set A
meets f if, for some x, the finite function (A |̀x)f(A |̀x) is extended by A. Otherwise, A
avoids f .

Definition 6.1.2 A class C of sets is nowhere dense via f if f is dense along all sets in C
and for every set A ∈ C, A avoids f .

Definition 6.1.3 Let F be a class of (partial) functions from Σ∗ to {σ : σ is a finite
function}. A class C of sets is F-meager if there exists a function f ∈ F such that C=
∪i∈NCi and Ci is nowhere dense via fi(x) = f(< i, x >). A class C of sets is F-comeager
if C̄ is F-meager.

Definition 6.1.4 A set G is F-generic if G is an element of all F-comeager classes.

Lemma 6.1.5 (See [5]) A set G is F-generic if and only if G meets all functions f ∈ F
which are dense along G.

For a class F of functions, each function f ∈ F can be considered as a finitary property
P of sets. If f(A |̀x) is defined, then all sets extending (A |̀x)f(A |̀x) have the property P.
So a set A has the property P if and only if A meets f . f is dense along A if and only if
in a construction of A along the ordering <, where at stage s of the construction we decide
whether or not the string zs belongs to A, there are infinitely many stages s such that, by
appropriately defining A(zs) · · ·A(zs+k−1) where k = |f(A |̀ zs)|, we can ensure that A has
the property P (that is to say, for some string x, (A |̀x)f(A |̀x) is extended by A).

For different function classes F, we have different notions of F-genericity. In this thesis,
we will concentrate on the following four kinds of function classes which have been investi-
gated by Ambos-Spies et al. [5, 9], Fenner [34] and Lutz [63], respectively. F1 is the class of
polynomial time computable partial functions from Σ∗ to Σ; F2 is the class of polynomial
time computable partial functions from Σ∗ to {σ : σ is a finite function}; F3 is the class of
polynomial time computable total functions from Σ∗ to {σ : σ is a finite function}; F4 is
the class of polynomial time computable total functions from Σ∗ to Σ∗.

Definition 6.1.6 1. (Ambos-Spies et al. [9]) A set G is A-generic if G is F1-generic.
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2. (Ambos-Spies [5]) A set G is general A-generic if G is F2-generic.

3. (Fenner [34]) A set G is F-generic if G is F3-generic.

4. (Lutz [63]) A set G is L-generic if G is F4-generic.

Obviously, we have the following implications.

Theorem 6.1.7 1. If a set G is general A-generic, then G is A-generic, F-generic and
L-generic.

2. If a set G is F-generic, then G is L-generic.

Proof. Straightforward.

In this thesis, we will also study the following nk-time (k > 1) bounded genericity
concepts: A set G is Ambos-Spies nk-generic (resp. general Ambos-Spies nk-generic, Fenner
nk-generic, Lutz nk-generic) if G meets all nk-time computable functions f ∈ F1 (resp. F2,
F3, F4) which are dense along G.

Theorem 6.1.8 (see Ambos-Spies [5]) A class C of sets is meager in the sense of Ambos-
Spies category (resp. general Ambos-Spies category, Fenner category, Lutz Category) if and
only if there exists a number k ∈ N such that there is no Ambos-Spies nk-generic (resp.
general Ambos-Spies nk-generic, Lutz nk-generic, Fenner nk-generic) set in C.

As an example, we show that Ambos-Spies n2-generic sets are P-immune.

Theorem 6.1.9 (Ambos-Spies et al. [9]) Let G be an Ambos-Spies n2-generic set. Then
G is P-immune.

Proof. For a contradiction assume that A ∈ P is an infinite subset of G. Then the
function f : Σ∗ → Σ defined by

f(x) =

{
0 z|x| ∈ A

↑ z|x| /∈ A

is computable in time n2 and is dense along G. So, by the Ambos-Spies n2-genericity of G,
G meets f . By the definition of f , this implies that there exists some string zi ∈ A such
that zi /∈ G, a contradiction.

It has been shown (see Mayordomo [76]) that neither F-genericity concept nor L-genericity
concept can characterize the property of P-immunity. But still we have the following weaker
result which states that any L-generic set cannot have a too “large” subset in P.

Theorem 6.1.10 Let B = {z2n : n ∈ N} and G be a Lutz n2-generic set. Then B is not a
subset of G.
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Proof. The function f : Σ∗ → Σ∗ defined by f(x) = 00 for all x ∈ Σ∗ is computable in
time n2. So, by the Lutz n2-genericity of G, G meets f . By the definition of f , this implies
that there exists some string zi ∈ B such that zi /∈ G.

A partial set A is defined by a partial characteristic function f : Σ∗ → Σ. A partial
set A is polynomial time computable if its partial characteristic function is computable in
polynomial time.

Definition 6.1.11 (Meyer et al. [78]) A polynomial time safe approximation of a set A
is a polynomial time computable partial set Q which is consistent with A, that is to say,
for every string x ∈ dom(Q), A(x) = Q(x). The approximation Q is optimal if, for every
polynomial time safe approximation Q′ of A, dom(Q′)− dom(Q) is finite.

Definition 6.1.12 (Orponen et al. [83]) A set A is P-levelable if, for any subset B ∈ P
of A, there is another subset B′ ∈ P of A such that ‖B′ −B‖ = ∞.

Lemma 6.1.13 (Orponen et al. [83]) A set A possesses an optimal polynomial time safe
approximation if and only if neither A nor Ā is P-levelable.

Proof. Straightforward.

Lemma 6.1.14 If a set A is P-immune, then A is not P-levelable.

Proof. Straightforward.

Theorem 6.1.15 (Ambos-Spies et al. [5]) Let G be an Ambos-Spies n2-generic set. Then
neither G nor Ḡ is P-levelable. That is to say, G has an optimal polynomial time safe
approximation.

Proof. This follows from Theorem 6.1.9 and Lemma 6.1.14.

Theorem 6.1.15 shows that the class of P-levelable sets is “small” in the sense of resource
bounded (general) Ambos-Spies category.

Corollary 6.1.16 The class of P-levelable sets is meager in the sense of resource bounded
(general) Ambos-Spies category.

Now we show that the class of P-levelable sets is neither meager nor comeager in the
sense of resource bounded Fenner and Lutz categories.

Theorem 6.1.17 1. There exists a set G in E2, which is both F-generic and P-levelable.

2. There exists a set G in E2, which is F-generic but not P-levelable.

3. There exists a set G in E2, which is P-levelable but not L-generic.

4. There exists a set G in E2, which is neither L-generic nor P-levelable.
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Proof. 1. Let δ(0) = 0, δ(n + 1) = 22δ(n)
, I1 = {x : δ(2n) ≤ |x| < δ(2n + 1), n ∈ N},

I2 = Σ∗ − I1 and {fi : i ∈ N} be an enumeration of F3.
In the following, we construct a set G at stages which is both F-generic and P-levelable.

In the construction we will ensure that

G ∩ Σ[e] ∩ I1 =∗ Σ[e] ∩ I1

for e ≥ 0. Hence G ∩ Σ[e] ∩ I1 ∈ P for e ≥ 0. In order to ensure that G is P-levelable, it
suffices to satisfy for all e ≥ 0 the following requirements:

Le : Pe ⊆ G ∩ I1 ⇒ Pe ⊆∗ Σ[≤e] ∩ I1.

To show that the requirements Le(e ≥ 0) ensure that G is P-levelable, fix a subset C ∈ P
of G. We have to define a subset C ′ ∈ P of G such that C ′ − C is infinite. Fix e such that
Pe = C ∩ I1. Then, by the requirement Le, C ∩ I1 ⊆∗ Σ[≤e]∩ I1. So, for C ′ = G∩Σ[e+1]∩ I1,
C ′ ∈ P and C ′ is infinite. Since C ′ ∩ C is finite, C ′ has the required property.

The strategy for meeting a requirement Le is as follows: If there is a string x ∈ (I1 ∩
Pe) − Σ[≤e], then we let G(x) = 0 to refute the hypothesis of the requirement Le (so Le is
trivially met). To ensure that G is F-generic, it suffices to meet for all e ≥ 0 the following
requirements:

Ge: There exists a string x such that G extends (G |̀x)fe(G |̀x).

Because the set I1 is used to satisfy Le, we will use I2 to satisfy Ge. The strategy for
meeting a requirement Ge is as follows: For some string x ∈ I2, let G extend (G |̀x)fe(G |̀x).

Define a priority ordering of the requirements by letting R2n = Gn and R2n+1 = Ln.
Now we give the construction of G formally.

Stage s.
If G(zs) has been defined before stage s, then go to stage s + 1.
A requirement Le requires attention if

1. e < s.

2. zs ∈ Pe ∩ Σ[>e] ∩ I1.

3. For all y < zs, if y ∈ Pe then y ∈ G ∩ I1.

A requirement Ge requires attention if e < s, Ge has not received attention yet, and
x ∈ I2 for all zs ≤ x ≤ zt where zt is the greatest element in dom((G |̀ zs)fe(G |̀ zs)).

Fix the minimal n such that Rn requires attention. If there is no such n, then let
G(zs) = 1. Otherwise, we say that Rn receives attention. Moreover, if Rn = Le then let
G(zs) = 0. If Rn = Ge then let G |̀ zt+1 = fill1((G |̀ zs)fe(G |̀ zs), t), where zt is the greatest
element in dom((G |̀ zs)fe(G |̀ zs)) and for a finite function σ and a number k, fill1(σ, k) =
σ ∪ {(x, 1) : x ≤ zk & x /∈ dom(σ)}.

This completes the construction of G.

It is easy to verify that the set G constructed above is both P-levelable and F-generic,
the details are omitted here.
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2. For a general A-generic set G, by Theorem 6.1.9, G is P-immune. By Theorem 6.1.7,
G is F-generic. Hence, G is F-generic but not P-levelable.

3. Let A ∈ E be a P-levelable set and G = {z2n+1 : zn ∈ A} ∪ {z2n : n ∈ N}. Then G is
P-levelable and, by Theorem 6.1.10, G is not L-generic.

4. Let A ∈ E be a P-immune set and G = {z2n+1 : zn ∈ A} ∪ {z2n : n ∈ N}. Then G is
not P-levelable and, by Theorem 6.1.10, G is not L-generic.

Corollary 6.1.18 The class of P-levelable sets is neither meager nor comeager in the sense
of resource bounded Fenner and Lutz categories.

Proof. This follows from Theorem 6.1.17.

6.2 Genericity versus Polynomial Time Unsafe Approxima-
tions

Definition 6.2.1 (Duris and Rolim [32] and Yesha [116]) A polynomial time unsafe ap-
proximation of a set A is a set B ∈ P. The set A∆B is called the error set of the approx-
imation. Let f be an unbounded function on the natural numbers. A set A is ∆-levelable
with density f if, for any set B ∈ P, there is another set B′ ∈ P such that

‖(A∆B) |̀ zn‖ − ‖(A∆B′) |̀ zn‖ ≥ f(n)

for almost all n ∈ N . A set A is ∆-levelable if A is ∆-levelable with density f for some
unbounded function f on the natural numbers.

Definition 6.2.2 (Ambos-Spies [4]) A polynomial time unsafe approximation B of a set A
is optimal if, for any approximation B′ ∈ P of A,

∃k ∈ N ∀n ∈ N (‖(A∆B) |̀ zn‖ < ‖(A∆B′) |̀ zn‖+ k).

A set A is weakly ∆-levelable if, for any polynomial time unsafe approximation B of A,
there is another polynomial time unsafe approximation B′ of A such that

∀k ∈ N ∃n ∈ N (‖(A∆B) |̀ zn‖ > ‖(A∆B′) |̀ zn‖+ k).

It should be noted that our above definitions are a little different from the original
definitions of Ambos-Spies [4], Duris and Rolim [32], and Yesha [116]. In the original
definitions, they considered the errors on strings up to certain length (i.e. ‖(A∆B)≤n‖)
instead of errors on strings up to zn (i.e. ‖(A∆B) |̀ zn‖). But it is easy to check that all our
results except Theorem 6.3.8 in this thesis hold for the original definitions also.

Lemma 6.2.3 (Ambos-Spies [4])

1. A set A is weakly ∆-levelable if and only if A does not have an optimal polynomial
time unsafe approximation.
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2. If a set A is ∆-levelable then it is weakly ∆-levelable.

Lemma 6.2.4 Let A,B be two sets such that A is ∆-levelable with linear density and A∆B
is sparse. Then B is ∆-levelable with linear density.

Proof. Let p be a polynomial such that, for all n, ‖(A∆B)≤n‖ ≤ p(n), and assume that
A is ∆-levelable with density αn (α > 0). Then there is a real number β > 0 such that, for
large enough n, αn− 2p(1 + [log n]) > βn. We will show that B is ∆-levelable with density
βn.

Now, given any set C ∈ P, by ∆-levelability of A, choose D ∈ P such that

‖(A∆C) |̀ zn‖ > ‖(A∆D) |̀ zn‖+ αn

for almost all n. Then

‖(B∆C) |̀ zn‖ ≥ ‖(A∆C) |̀ zn‖ − p(1 + [log n])

> ‖(A∆D) |̀ zn‖+ αn− p(1 + [log n])

≥ ‖(B∆D) |̀ zn‖+ αn− 2p(1 + [log n])

> ‖(B∆D) |̀ zn‖+ βn

for almost all n. Hence, B is ∆-levelable with density βn.

Theorem 6.2.5 1. There exists a set G in E2, which is both A-generic and ∆-levelable.

2. There exists a set G in E2, which is A-generic, but not weakly ∆-levelable.

Proof. 1. Duris and Rolim [32] constructed a set A in E which is ∆-levelable with linear
density and, in [9], Ambos-Spies et al. showed that, for any set B ∈ E, there is an A-generic
set B′ in E2 such that B∆B′ is sparse. So, for any set A which is ∆-levelable with linear
density, there is an A-generic set G in E2 such that A∆G is sparse. It follows from Lemma
6.2.4 that G is ∆-levelable with linear density.

2. Ambos-Spies [4, Theorem 3.3] constructed a P-bi-immune set in E which is not weakly
∆-levelable. In his proof, he used the requirements

BI2e : Pe ⊆ G ⇒ Pe is finite

BI2e+1 : Pe ⊆ Ḡ ⇒ Pe is finite

to ensure that the constructed set G is P-bi-immune. In order to guarantee that G is not
weakly ∆-levelable, he used the requirements

R : ∀e ∈ N ∀n ∈ N (‖(G∆B) |̀ zn‖ ≤ ‖(G∆Pe) |̀ zn‖+ e + 1)

to ensure that B = ∪i≥0Σ[2i] will be an optimal unsafe approximation of G. If we change
the requirements BI2e and BI2e+1 to the requirements

Re : If fe ∈ F1 is dense along G, then G meets fe
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then a routine modification of the finite injury argument in the proof of Ambos-Spies [4,
Theorem 3.3] can be used to construct an A-generic set G in E2 which is not weakly ∆-
levelable. The details are omitted here.

Corollary 6.2.6 The class of (weakly) ∆-levelable sets is neither meager nor comeager in
the sense of resource bounded Ambos-Spies category.

Corollary 6.2.6 shows that the class of weakly ∆-levelable sets is neither large nor small
in the sense of resource bounded Ambos-Spies category. However, as we will show next, it
is large in the sense of resource bounded general Ambos-Spies category, resource bounded
Fenner category and resource bounded Lutz category.

Theorem 6.2.7 Let G be a Lutz n3-generic set. Then G is weakly ∆-levelable.

Proof. Let B ∈ P. We show that B̄ witnesses that the unsafe approximation B of G is
not optimal. For any string x, define f(x) = y, where |y| = |x|2 and y[j] = 0 if and only if
z|x|+j ∈ B. Obviously, f is computable in time n3. Because G is Lutz n3-generic, G meets
f infinitely often. Hence, for any k and n0, there exists n > n0 such that n2 − 2n > k and,
for all strings x with zn ≤ x < zn2 , x ∈ G if and only if x ∈ B̄. Hence

‖(G∆B) |̀ zn2‖ ≥ n2 − n

> n + k

≥ ‖(G∆B̄) |̀ zn2‖+ k,

which implies that G is weakly ∆-levelable.

Corollary 6.2.8 The class of weakly ∆-levelable sets is comeager in the sense of resource
bounded Lutz, Fenner and general Ambos-Spies categories.

Proof. This follows from Theorem 6.1.7, Theorem 6.1.8 and Theorem 6.2.7.

Now we show that the class of ∆-levelable sets is neither meager nor comeager in the
sense of all these resource bounded categories we have discussed above.

Theorem 6.2.9 There exists a set G in E2, which is both general A-generic and ∆-levelable.

Proof. Let δ(0) = 0, δ(n + 1) = 22δ(n)
. For each set Pe ∈ P, let Pg(e) be defined in such

a way that

Pg(e)(x) =

{
1− Pe(x) if x = 0δ(<e,n>) for some n ∈ N
Pe(x) otherwise

In the following we construct a general A-generic set G, which is ∆-levelable by keeping
Pg(e) to witness that the unsafe approximation Pe of G is not optimal. Let {fi : i ∈ N} be
an enumeration of all functions in F2.
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The set G is constructed in stages. To ensure that G is general A-generic, it suffices to
meet for all e ∈ N the following requirements:

Ge : If fe is dense along G then G meets fe.

To ensure that G is ∆-levelable, it suffices to meet for all e, k ∈ N the following require-
ments

L<e,k> : ∃n1 ∈ N ∀n > n1 (‖(G∆Pe) |̀ zn‖ > ‖(G∆Pg(e)) |̀ zn‖+ k).

The strategy for meeting a requirement Ge is as follows: At stage s, if Ge has not been
satisfied yet and fe(G |̀ zs) is defined, then let G extend (G |̀ zs)fe(G |̀ zs). But this action
may injure the satisfaction of some requirements L<i,k> and Gm. The conflict is solved by
delaying the action until it will not injure the satisfaction of the requirements L<i,k> and
Gm which have higher priority than Ge.

The strategy for meeting a requirement L<e,k> is as follows: At stage s, if L<e,k> has not
been satisfied yet and Pe(zs) 6= Pg(e)(zs), then let G(zs) = Pg(e)(zs). When a requirement
Ge becomes satisfied at some stage, it is satisfied forever. So L<e,k> can only be injured
finitely often and then it will have chance to become satisfied forever.

Stage s.
In this stage, we define the value of G(zs).
A requirement Gn requires attention if

1. n < s.

2. Gn has not been satisfied yet, that is to say, there is no t < s such that G |̀ zs extends
(G |̀ zt)f(G |̀ zt).

3. There exists t ≤ s such that

A. fn(G |̀ zt) is defined.
B. G |̀ zs is consistent with (G |̀ zt)fn(G |̀ zt).
C. For all e, k ∈ N such that < e, k >< n, there is at most one m ∈ N such that

0δ(<e,m>) ∈ dom((G |̀ zt)fn(G |̀ zt)).
D. For all e, k ∈ N such that < e, k >< n,

‖(G∆Pe) |̀ zs‖ − ‖(G∆Pg(e)) |̀ zs‖ > k + n (6.1)

Fix the minimal m such that Gm requires attention, and fix the minimal t in the above
item 3 corresponding to the requirement Gm. If there is no such m then let G(zs) = 1−Pe(zs)
if zs = 0δ(<e,n>) for some e, n ∈ N and let G(zs) = 0 otherwise. Otherwise we say that Gm

receives attention. Moreover, let

G(zs) =


((G |̀ zt)fm(G |̀ zt))(zs) if zs ∈ dom((G |̀ zt)fm(G |̀ zt))
1− Pe(zs) if zs /∈ dom((G |̀ zt)fm(G |̀ zt)) & zs = 0δ(<e,n>) for some e, n
0 otherwise

This completes the construction.

We show that all requirements are met by proving a sequence of claims.
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Claim 1 Every requirement Gn requires attention at most finitely often.

Proof. The proof is by induction. Fix n and assume that the claim is correct for all
numbers less than n. Then there is a stage s0 such that no requirement Gm with m < n
requires attention after stage s0. So Gn receives attention at any stage s > s0 at which it
requires attention. Hence if Gn requires attention infinitely often, then it will be satisfied
at some stage and stops requiring attention. 2

Claim 2 Given n0 ∈ N , if no requirement Gn (n < n0) requires attention after stage s0

and Gn0 requires attention at stage s0, then for all < e, k >< n0 and s > s0,

‖(G∆Pe) |̀ zs‖ − ‖(G∆Pg(e)) |̀ zs‖ > k + n0 − 1

Proof. Straightforward from the construction. 2

Claim 3 Every requirement Gn is met.

Proof. For a contradiction, fix the minimal n such that Gn is not met. Then fn is dense
along G. We have to show that Rn requires attention infinitely often which is contrary to
Claim 1. Since ‖Pe∆Pg(e)‖ = ∞ for all e ∈ N , by the construction and Claim 2, there will be
a stage s0 such that at all stages s > s0, (6.1) holds for all e, k ∈ N such that < e, k >< n.
Hence Gn requires attention at each stage s > s0 at which fn(G |̀ zs) is defined. 2

Claim 4 Every requirement L<e,k> is met.

Proof. This follows from Claim 1 and Claim 2. 2

Now we show that G is both A-generic and ∆-levelable. G is A-generic since all require-
ments Gn are met. For < e, k >∈ N , let n<e,k> be the least number s0 such that for all
s > s0,

‖(G∆Pe) |̀ zs‖ > ‖(G∆Pg(e)) |̀ zs‖+ k

and let
f(n) = µk(∀e ≤ k (n ≥ n<e,k>)).

Then f(n) is unbounded and, for all e ∈ N ,

‖(G∆Pe) |̀ zn‖ ≥ ‖(G∆Pg(e)) |̀ zn‖+ f(n) a.e.

That is to say, G is ∆-levelable with density f .

Theorem 6.2.10 There exists a set G in E2, which is general A-generic but not ∆-levelable.

Proof. As in the previous proof, a set G is constructed in stages. To ensure that G is
general A-generic, it suffices to meet for all e ∈ N the following requirements:

Ge : If fe is dense along G then G meets fe.

Fix a set B ∈ P. Then the requirements
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NL<e,k> : Pe∆B infinite ⇒ ∃n (‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖ ≥ k)

will ensure that B witnesses the failure of ∆-levelability of G.
To meet the requirements Ge, we use the strategy in Theorem 6.2.9. The strategy for

meeting a requirement NL<e,k> is as follows: At stage s such that Pe(zs) 6= B(zs) and
‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖ < k for all n < s, let G(zs) = B(zs). If Pe 6=∗ B, this action
can be repeated over and over again. Hence ‖G∆Pe‖ is growing more quickly than ‖G∆B‖
and eventually the requirement NL<e,k> is met at some sufficiently large stage.

Define a priority ordering of the requirements by letting R2n = Gn and R2<e,k>+1 =
NL<e,k>. We now describe the construction of G formally.

Stage s.
In this stage, we define the value of G(zs).
A requirement NL<e,k> requires attention if < e, k >< s and

1. Pe(zs) 6= B(zs).

2. ‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖ < k for all n < s.

A requirement Gn requires attention if

1. n < s.

2. Gn has not been satisfied yet, that is to say, there is no t < s such that G |̀ zs extends
(G |̀ zt)fn(G |̀ zt).

3. There exists t ≤ s such that

A. fn(G |̀ zt) is defined.

B. G |̀ zs is consistent with (G |̀ zt)fn(G |̀ zt).

C. There is no e, k ∈ N such that

(1). < e, k >< n.
(2). ∀u < s (‖(G∆Pe) |̀ zu‖ − ‖(G∆B) |̀ zu‖ < k).
(3). There exists y ∈ dom((G |̀ zt)fn(G |̀ zt))−dom(G |̀ zt) such that Pe(y) 6= B(y).

Fix the minimal m such that Rm requires attention. If there is no such m, let G(zs) =
B(zs). Otherwise we say that Rm receives attention. Moreover, if Rm = NL<e,k> then let
G(zs) = B(zs). If Rm = Gn then fix the least t in the above item 3 corresponding to the
requirement Gn. Let G(zs) = ((G |̀ zt)fn(G |̀ zt))(zs) if zs ∈ dom((G |̀ zt)fn(G |̀ zt)) and let
G(zs) = B(zs) otherwise.

This completes the construction of G.

It suffices to show that all requirements are met. Note that, by definition of requiring
attention, Rm is met if and only if Rm requires attention at most finitely often. So, for
a contradiction, fix the minimal m such that Rm requires attention infinitely often. By
minimality of m, fix a stage s0 such that no requirement Rm′ with m′ < m requires attention
after stage s0. Then Rm receives attention at any stage s > s0 at which Rm requires
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attention. Now, we first assume that Rm = Gn. Then at some stage s > s0, Gn receives
attention and become satisfied forever. Finally assume that Rm = NL<e,k>. Then B∆Pe is
infinite and, at all stages s > s0 such that B(zs) 6= Pe(zs), the requirement NL<e,k> receives
attention, hence G(zs) = B(zs). Since, for all other stages s with s > s0, B(zs) = Pe(zs),
G∆Pe grows more rapidly than G∆B, hence

lim
n

(‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖) = ∞

and NL<e,k> is met contrary to assumption.

Corollary 6.2.11 The class of ∆-levelable sets is neither meager nor comeager in the sense
of resource bounded general Ambos-Spies, Lutz and Fenner categories.

Proof. Follows from Theorem 6.1.7, Theorem 6.2.9 and Theorem 6.2.10.

6.3 Resource Bounded Measure versus Polynomial Time Ap-
proximations

The relation between p-measure and the class of P-levelable sets is characterized by the
following theorem.

Theorem 6.3.1 (Mayordomo [75]) The class of P-bi-immune sets has p-measure 1.

Corollary 6.3.2 The class of P-levelable sets has p-measure 0.

Corollary 6.3.3 The class of sets which possess optimal polynomial time safe approxima-
tions has p-measure 1.

Corollary 6.3.4 For each p-random set A, A has an optimal polynomial time safe approx-
imation.

Now we turn our attention to the relations between p-randomness concept and the
concept of polynomial time unsafe approximations. In our following proof, we will use the
law of the iterated logarithm for p-random sequences (see Theorem 5.3.6). So it is more
convenient to identify a set with its characteristic sequence. The symmetric difference of
two sets can be characterized by the parity function on sequences.

Definition 6.3.5 1. The parity function ⊕ : Σ× Σ → Σ on bits is defined by

b1 ⊕ b2 =

{
0 if b1 = b2

1 otherwise

where b1, b2 ∈ Σ.

2. The parity function ⊕ : Σ∞ × Σ∞ → Σ∞ on sequences is defined by (ξ ⊕ η)[n] =
ξ[n]⊕ η[n].
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3. The parity function ⊕ : Σ∗ × {f : f is a partial function from Σ∗ to Σ} → Σ∗ on
strings and functions is defined by x⊕ f = b0 · · · b|x|−1 where bi = x[i]⊕ f(x[0..i− 1])
if f(x[0..i− 1]) is defined and bi = λ otherwise.

4. The parity function ⊕ : Σ∞ × {f : f is a partial function from Σ∗ to Σ} → Σ∗ ∪ Σ∞

on sequences and functions is defined by ξ⊕f = b0b1 · · · where bi = ξ[i]⊕f(ξ[0..i−1])
if f(ξ[0..i− 1]) is defined and bi = λ otherwise.

The intuitive meaning of ξ ⊕ f is as follows: Given a sequence ξ and a number n ∈ N
such that f(ξ[0..n− 1]) is defined, we use f to predict the value of ξ[n] from the first n bits
ξ[0..n − 1]. If the prediction is successful, then output 0, else output 1. And ξ ⊕ f is the
output sequence.

At first, we explain a useful technique which is similar to the invariance property of
p-random sequences (see Theorem 5.2.9).

Lemma 6.3.6 (cf. Theorem 5.2.9) Let ξ ∈ Σ∞ be nk-random and f : Σ∗ → Σ be a partial
function computable in time nk such that ξ ⊕ f is an infinite sequence. Then ξ ⊕ f is
nk−1-random.

Proof. For a contradiction assume that ξ⊕f is not nk−1-random and let F : Σ∗ → Q+ be
an nk−1-martingale that succeeds on ξ⊕f . Define F ′ : Σ∗ → Q+ by letting F ′(x) = F (x⊕f)
for all x ∈ Σ∗. It is a routine to check that F ′ is an nk-martingale. Moreover, since F
succeeds on ξ ⊕ f , F ′ succeeds on ξ. A contradiction with the hypothesis that ξ is nk-
random.

Lemma 6.3.7 Let k be the number in Corollary 5.3.7, and let A,B, C ⊆ Σ∗ be three sets
such that the following conditions hold.

1. B,C ∈ P.

2. ‖B∆C‖ = ∞.

3. There exists c ∈ N such that, for almost all n,

‖(A∆C) |̀ zn‖ − ‖(A∆B) |̀ zn‖ ≥ −c. (6.2)

Then A is not nk+1-random.

Proof. Let α, β and γ be the characteristic sequences of A,B and C, respectively.
By Lemma 6.3.6, it suffices to define an n2-time computable partial function f : Σ∗ → Σ

such that α⊕ f is an infinite sequence which is not nk-random. Define the function f by

f(x) =

{
β[|x|] if β[|x|] 6= γ[|x|]
undefined if β[|x|] = γ[|x|]

Then f is n2-time computable and, since ‖B∆C‖ = ∞, α ⊕ f is an infinite sequence. In
order to show that α⊕ f is not nk-random, we show that α⊕ f does not satisfy the law of
the iterated logarithm.
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At first, we show that, for all n ∈ N+, the following equation holds.

n−1∑
i=0

(α⊕ γ)[i]−
n−1∑
i=0

(α⊕ β)[i] = ln − 2
ln−1∑
i=0

(α⊕ f)[i] (6.3)

where ln = |α[0..n− 1]⊕ f |.
Let

a(n) = ‖{i < n : α[i] 6= γ[i] = β[i]}‖

b(n) = ‖{i < n : α[i] 6= γ[i] 6= β[i]}‖

c(n) = ‖{i < n : α[i] = γ[i] 6= β[i]}‖

d(n) = ‖{i < n : α[i] = γ[i] = β[i]}‖

Then ∑n−1
i=0 (α⊕ γ)[i] = a(n) + b(n)

∑n−1
i=0 (α⊕ β)[i] = a(n) + c(n)

ln = b(n) + c(n)

∑ln−1
i=0 (α⊕ f)[i] = c(n)

Obviously, this implies (6.3).
The condition (6.2) is equivalent to

n−1∑
i=0

(α⊕ γ)[i]−
n−1∑
i=0

(α⊕ β)[i] ≥ −c

So, by (6.3),

ln − 2
ln−1∑
i=0

(α⊕ f)[i] ≥ −c (6.4)

for almost all n, where ln = |α[0..n− 1]⊕ f |. By (6.4),

lim inf
n→∞

n− 2
∑n−1

i=0 (α⊕ f)[i]√
2n ln lnn

≥ 0.

Hence, by Corollary 5.3.7, α⊕ f is not nk-random. This completes the proof.

Now we are ready to prove our main theorems of this section.

Theorem 6.3.8 The class of ∆-levelable sets has p-measure 0.



90 CHAPTER 6. APPROXIMATIONS

Proof. Let A be a ∆-levelable set. Then there is an unbounded function f(n) ≥ 0 and
polynomial time computable sets B,C such that for all n,

‖(A∆C) |̀ zn‖ − ‖(A∆B) |̀ zn‖ ≥ f(n).

By Lemma 6.3.7, A is not nk+1-random, where k is the number in Corollary 5.3.7. So
the theorem follows from Theorem 5.1.12.

Theorem 6.3.9 The class of sets which have optimal polynomial time unsafe approxima-
tions has p-measure 0.

Proof. If A has an optimal polynomial time unsafe approximation, then there is a
polynomial time computable set B and a number c ∈ N such that, for all n,

‖(A∆B) |̀ zn‖ − ‖(A∆B̄) |̀ zn‖ < c

I.e.
‖(A∆B̄) |̀ zn‖ − ‖(A∆B) |̀ zn‖ > −c

By Lemma 6.3.7, A is not nk+1-random, where k is the number in Corollary 5.3.7. So
the theorem follows from Theorem 5.1.12.

Corollary 6.3.10 The class of sets which are weakly ∆-levelable but not ∆-levelable has
p-measure 1.

Corollary 6.3.11 Every p-random set is weakly ∆-levelable but not ∆-levelable.



Chapter 7

NP-hard Sets Are Superterse
unless NP Is Small

7.1 Introduction

One of the important questions in computational complexity theory is whether every NP
problem is solvable by polynomial time circuits, i.e., NP ⊆?P/poly. Furthermore, it has
been asked what the deterministic time complexity of NP is if NP ⊆ P/poly. That is, if NP
is easy in the nonuniform complexity measure, how easy is NP in the uniform complexity
measure? It is well known that PT (SPARSE) = P/poly, where PT (SPARSE) is the class
of languages that are polynomial time Turing reducible to some sparse sets. Hence the above
question is equivalent to the following question.

NP ⊆?PT (SPARSE).

It has been shown by Wilson [114] that this question is oracle dependent. Hence it seems
difficult to give an absolute answer to this question at present. In the past, many efforts
have been made to consider the question whether NP is not included in some subclasses
of PT (SPARSE). Since PT (SPARSE) is the class of languages that are Turing reducible
to some sparse sets, one way of obtaining subclasses of PT (SPARSE) is to consider some
restrictions on the reducibility. For example, Mahaney [73] showed that if all NP sets
are many-one reducible to some sparse set, then P = NP. Subsequently this result was
improved by Ogihara and Watanabe [82] to truth-table reducibility with a constant number
of queries, i.e.,

NP 6= P ⇒ NP 6⊆ Pbtt(SPARSE).

Other subclasses of PT (SPARSE) are obtained by considering the P-selective sets intro-
duced by Selman [91]. A set A is P-selective if there exists a polynomial time computable
function that selects one of two given input strings such that if any one of the two strings is
in A, then so is the selected one. Let SELECT denote the class of P-selective sets. Then
we know the following facts:

1. (Selman and Ko (see [95])) PT (SPARSE) = PT (SELECT).

91
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2. (Watanabe [109]) PT (SELECT) 6⊆ Ptt(SELECT).

Regarding our above question, the following results are known:

1. (Selman [91]) If P 6= NP, then NP 6⊆ Pm(SELECT).

2. (Agrawal and Arvind [1], Beigel, Kummer and Stephan [15], Ogihara [81]) If P 6= NP,
then NP 6⊆ Pnα-tt(SELECT) for all α < 1.

3. (Beigel [14]) If P 6= UP or R 6= NP, then NP 6⊆ Ptt(SELECT)

It seems difficult to remove the condition α < 1 in the item 2. In the following, however,
we will remove this condition under a stronger but reasonable hypothesis. We show that

µp(NP) 6= 0 ⇒ NP 6⊆ Ptt(SELECT).

Many evidences have been presented by Lutz and Mayordomo [71] and Kautz and Miltersen
[46] that this stronger hypothesis is reasonable. For example, the following results are
known:

1. (Lutz and Mayordomo [70]) If µp(NP) 6= 0, then there exists an NP search problem
which is not reducible to the corresponding decision problem.

2. (Lutz and Mayordomo [70]) If µp(NP) 6= 0, then the “Cook versus Karp-Levin”
conjecture holds for NP.

3. (Lutz and Mayordomo [71]) If µp(NP) 6= 0, then, for every real number α < 1, every
≤p

nα-tt-hard language for NP is dense.

4. (Kautz and Miltersen [46]) For a Martin-Löf random language A, µA
p (NPA) 6= 0.

We also give a partial affirmative answer to a conjecture by Beigel, Kummer and Stephan
[15]. They conjectured that every ≤p

tt-hard set for NP is P-superterse unless P = NP. We
will prove that every ≤p

tt-hard set for NP is P-superterse unless NP has p-measure 0.

7.2 Resource Bounded Measure and Polynomial Time Mem-
bership Comparable Sets

Jockusch [40] defined a set A to be semirecursive if there is a recursive function f such that
for all x and y,

1. f(x, y) ∈ {x, y}.

2. If {x, y} ∩A 6= ∅, then f(x, y) ∈ A.
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We call the function f a selector for A. Selman [91] considered a polynomial time version
of semirecursive sets and defined a set A to be P-selective if A has a polynomial time
computable selector. P-selective sets have been widely studied, see, e.g., [1, 15, 81].

For a set A, we identify A and its characteristic function. Let f be a selector for A. If
f maps a pair (x, y) to y, then we have “x ∈ A → y ∈ A”, equivalently, “A(x)A(y) 6= 10”.
Thus we can view a selector for A as a function f that maps every pair (x, y) of strings to
a string z ∈ {01, 10} such that A(x)A(y) 6= z. By replacing pairs of strings by k-tuples of
strings for any number k ≥ 1, we obtain the concept of an approximable set. A set A is
approximable if there exists some k > 0 and a polynomial time computable function f such
that for all x0, · · · , xk−1 ∈ Σ∗, f(x0, · · · , xk−1) 6= A(x0) · · ·A(xk−1). A further extension of
this concept, namely membership comparability, was introduced by Ogihara [81]. Here the
length of the tuples is not fixed but it may vary depending on the maximum length of the
strings contained in the tuples.

Definition 7.2.1 (Beigel [15]) Given a number k ∈ N+, a set A is P-approximable via
k if there is a polynomial time computable function f :

∏k−1
i=0 Σ∗ → Σk such that for all

x0, · · · , xk−1 ∈ Σ∗, f(x0, · · · , xk−1) 6= A(x0) · · ·A(xk−1). A set A is P-approximable if A is
P-approximable via some k ∈ N+. A set A is P-superterse if A is not P-approximable.

Note that the above definition of a P-approximable set is a little different from Beigel’s
[12] original definition.

Definition 7.2.2 (Ogihara [81]) Let g : N → N+ be a nondecreasing, polynomial time
computable and polynomial bounded function.

1. A function f is called a g-membership comparing function (a g-mc-function for short)
for A if, for all m ∈ N+ and all x0, · · · , xm−1 ∈ Σ∗ with m ≥ g(max{|x0|, · · · , |xm−1|}),

f(x0, · · · , xm−1) ∈ Σm and A(x0) · · ·A(xm−1) 6= f(x0, · · · , xm−1).

2. A set A is polynomial time g-membership comparable if there exists a polynomial time
computable g-mc-function for A.

3. P-mc(g) denotes the class of all polynomial time g-membership comparable sets.

The following proposition is obvious from the definition.

Proposition 7.2.3 1. If A is P-selective, then A is P-approximable.

2. A set A is P-approximable if and only if A ∈ P-mc(c) for some constant c ∈ N . That
is to say,

P-appro = ∪c∈NP-mc(c),

where P-appro is the class of P-approximable sets.

Theorem 7.2.4 (Ogihara [81]) Ptt(SELECT) ⊆ P-mc(LOG), where LOG = {c log : c >
0}.
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Theorem 7.2.5 (Ogihara [81]) P-mc(LOG) ⊂ P-mc(n).

The next proposition gives an important property of P-approximable sets which we
need latter. If A is P-approximable then, for strings x0, · · · , xs−1 ∈ Σ∗, we can compute in
polynomial time a subset of Σs which contains A(x0) · · ·A(xs−1).

Proposition 7.2.6 (Beigel [12, 13]) If A is P-approximable via k ∈ N+, then there is a
polynomial time computable function which computes for any s strings x0, · · ·xs−1 a set of
at most

S(s, k) =

(
s

0

)
+

(
s

1

)
+ · · ·

(
s

k − 1

)

elements from Σs which contains A(x0) · · ·A(xs−1). (Note that, for a fixed k, S(s, k) is a
polynomial in s of degree k − 1).

Let Ptt(P-appro) be the class of sets which can be ≤p
tt-reduced to some P-approximable

sets. Then we have the following theorem.

Theorem 7.2.7 Ptt(P-appro) ⊆ P-mc(n).

Remark. In fact, Theorem 7.2.7 is a corollary of Corollary 2.7 in Beigel et al. [15]. For
the reason of completeness, we will give the proof here. The idea underlying the following
proof is the same as that underlying the proof of Theorem 3.3 in Ogihara [81].

Proof. Let A be a P-approximable set via k ∈ N , and let L ≤p
tt A via a machine

M . Assume that the number of queries in the reduction L ≤p
tt A is bounded by the poly-

nomial f . Now, to show that L ∈ P-mc(n), fix n ∈ N and x0, · · ·xn−1 ∈ Σ∗ such that
n ≥ max{|x0|, · · · , |xn−1|}. We have to compute a string g(x0, · · · , xn−1) of length n in
polynomial time such that L(x0) · · ·L(xn−1) 6= g(x0, · · · , xn−1). For each i < n, let Qi

denote the set of queries of M on xi, and Q = Q0 ∪ · · · ∪ Qn−1. Since f is nondecreasing,
‖Qi‖ ≤ f(n). So, for sufficiently large n,

‖Q‖k ≤ (nf(n))k < 2n.

By Lemma 7.2.6, we can compute, in time polynomial in
∑

y∈Q |y|, and thus, in time poly-
nomial in n, a set R = {z : z ∈ Σ‖Q‖} of at most ‖Q‖k elements which contains the char-
acteristic sequence of A on domain Q. Now, for each z ∈ R and j < n, let bz,j = M z(xj).
Clearly, there is some z ∈ R such that, for every j < n, L(xj) = bz,j . Since ‖R‖ < 2n, there
is some v ∈ Σn such that v 6= bz,0 · · · bz,n−1 for all z ∈ R. Let g(x0, · · · , xn−1) = v. This
proves the theorem.

In order to prove our main theorem, we prove a lemma at first.

Lemma 7.2.8 Let 1 < n1, n2, · · · be an infinite sequence of numbers such that ni+1 ≤
ni + log ni for all i. Then limm→∞

∏m
i=1(1 +

1
ni

) = ∞.
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Proof. By a simple induction, it is easy to check that there exists a number k ≥ 5 such
that ni ≤ i log i log log i for i ≥ k. Hence

lim
m→∞

m∏
i=1

(
1 +

1
ni

)
≥ lim

m→∞

m∏
i=k

(
1 +

1
i log i log log i

)
= ∞.

Theorem 7.2.9 Let A be an n2-random set. Then A /∈ P-mc(n).

Proof. For a contradiction, assume that f witnesses that A is polynomial time n-
membership comparable. In the following, we construct an n2-martingale F which succeeds
on A.

Let ni = i for i ≤ 5 and ni+1 = ni + [log ni] for i ≥ 5. For |x| ≤ n5, let F (x) = 1. For
x ∈ Σni+1 (i ≥ 5), fix the initial segment y ∈ Σni of x and let

F (x) =

{ (
1 + 1

2[log ni]−1

)
F (y) if x 6= yf(zni , · · · , zni+1−1)

0 if x = yf(zni , · · · , zni+1−1)

And, for other x ∈ Σ∗ such that |x| 6= ni (i ∈ N), we define the value of F (x) as follows.

F (x) =
1
2k

∑
y∈Σk

F (xy)

where k is the least number such that |x|+ k = ni for some i ∈ N .
It is easily verified that the above defined function F is an n2-martingale. So it suffices

to show that F succeeds on A. Obviously, for i ≥ 5,

F (A |̀ zni+1) =
(

1 +
1

2[log n5] − 1

)
· · ·
(

1 +
1

2[log ni] − 1

)
≥
(

1 +
1
n5

)
· · ·
(

1 +
1
ni

)
.

By Lemma 7.2.8, lim supi F (A |̀ zni) = ∞, that is to say, F succeeds on A.

Corollary 7.2.10 P-mc(n) has p-measure 0, i.e., µp(P-mc(n)) = 0.

By combining Theorem 5.1.13 and Corollary 7.2.10, we get

Theorem 7.2.11 E 6⊆ Ptt(P-appro).

Corollary 7.2.12 (Toda [96]) E 6⊆ Ptt(SELECT).

Note that Toda proved Corollary 7.2.12 using a direct diagonalization. The importance
of our Theorem 7.2.9 is that it also has implications on the structure of NP. By combining
Corollary 7.2.10 and Theorem 7.2.7, we get the following theorem.

Theorem 7.2.13 If NP does not have p-measure 0, then no P-approximable set is ≤p
tt-hard

for NP. That is to say, every ≤p
tt-hard set for NP is P-superterse unless µp(NP) = 0.
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Corollary 7.2.14 If NP does not have p-measure 0, then no P-selective set is ≤p
tt-hard for

NP.

Remark 1. Recently Buhrman and Longpré [26] independently proved that Ptt(SELECT)
has p-measure 0.

Remark 2. Recently Beigel (personal communication) has observed that actually our
results can be strengthed as follows:

Observation. If NP does not have p-measure 0, then no set in P-mc(
√

n) is ≤p
tt-hard

for NP.
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[74] P. Martin-Löf. The definition of random sequences. Inform. and Control, 9:602–619,
1966.

[75] E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoret. Com-
put. Sci., 136:487–506, 1994.



102 BIBLIOGRAPHY

[76] E. Mayordomo. Contributions to the Study of Resource-Bounded Measure. PhD thesis,
Barcelona, 1994.

[77] W. Merkle and Y. Wang. Separations by random oracles and “almost” classes for the
generalized reducibilities. In Proc. 20th MFCS, Lecture Notes in Comput. Sci., 969,
pages 179–190. Springer-Verlag, 1995.

[78] A. R. Meyer and M. S. Paterson. With what frequency are apparently intractable
problems difficult? Technical Report TM-126, Laboratory for Computer Science,
MIT, 1979.

[79] R. von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Math. Z., 5:52–99, 1919.

[80] A. A. Muchnik. reported in [97].

[81] M. Ogihara. Polynomial-time membership comparable sets. SIAM J. Comput.,
24:1068–1081, 1995.

[82] M. Ogihara and O. Watanabe. On polynomial bounded truth-table reducibility of NP
sets to sparse sets. SIAM J. Comput., 20:471–483, 1991.
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