
Privacy Preserving Data Generation for Database
Application Performance Testing?

Yongge Wang, Xintao Wu, and Yuliang Zheng

UNC Charlotte, USA ({yonwang, xwu, yzheng}@uncc.edu)

Abstract. Synthetic data plays an important role in software testing. In this pa-
per, we initiate the study of synthetic data generation models for the purpose of
application software performance testing. In particular, we will discuss models
for protecting privacy in synthetic data generations. Within this model, we in-
vestigate the feasibility and techniques for privacy preserving synthetic database
generation that can be used for database application performance testing. The
methodologies that we will present will be useful for general privacy preserving
software performance testing.

1 Introduction

Functionality and performance testing is essential for software application develop-
ment. Currently, two approaches dominate software application testing. With the first
approach, application developers carry out their tests on their own localdevelopment
synthetic synthetic data sets. Obviously this approach can not fulfill the requirements of
all the testing phases if the synthetic data sets are of small size or do not reflect the real
data sets. In particular, the performance could be significantly different if the synthetic
data is not similar to the production databases. With the second approach, new appli-
cations are tested overlive production databases. This approach cannot be applied in
most situations due to the high risks of disclosure and incorrect updating of confidential
information.

Recently, Wu, Wang, and Zheng [15] have proposed a general framework for pri-
vacy preserving database application testing by generatingsyntheticdata sets based on
some a-priori knowledge about the currentproduction data sets. The generated data
sets will be used to help software vendors to arrive at a close estimate of the perfor-
mance of a software application. In this paper, we investigate the tradeoff of privacy
preserving and performance preserving in detail. We also present an approach on pri-
vacy preserving data generation based on the generation location model. Specifically,
our contributions include: (1) A model for quantifying the privacy leakage and appli-
cation performance metric difference in the synthetic data set; (2) Some infeasibility
results for privacy preserving synthetic data generation; (3) A heuristic approach for
privacy preserving synthetic data generation within our model.

The current state of the art is that there has been little work dedicated to appli-
cation software testing that achieves both goals: privacy preserving and performance

? This research was supported by USA National Science Foundation NSF CCR-0310974.

preserving. One related research area is the privacy preserving statistical databases [1,
5] which has developed methods to prevent the disclosure of confidential individual data
while satisfying requests for aggregate information. Though the experience in statisti-
cal database research are useful for the study of privacy preserving application software
testing, it does not consider the performance preserving issues. Furthermore, most sta-
tistical database literatures considered two types of indirect confidential information
leakage [14]: re-identification disclosure and prediction disclosure. Re-identification
disclosure occurs if an attacker is able to deduce the values of a sensitive attribute for a
target individual after this individual has been re-identified. Prediction disclosure occurs
if the data enable the attacker to predict the value of a sensitive attribute for some tar-
get individual with some degree of confidence. For example, Dinur and Nissim [5] dis-
cussed a model for the re-identification of some specific entries in the database. In a live
production database, the confidential information is not limited to the re-identification
of some specific entries. The statistical information or some rules/patterns about the
production database are also considered as the confidential information.

Also related to our research is private information retrieval and privacy preserving
data mining. The theoretical work of private information retrieval [3, 7] enables users to
obtain information from databases while keeping their queries secret from the database
managers. The objective of privacy-preserving data mining (e.g., distortion based ap-
proach [2, 6, 9]) is to prevent the disclosure of confidential individual values while pre-
serving general patterns and rules. There have been some prior investigations into data
generation [12, 11], however, the current data generation tools are built either for test-
ing data mining algorithms or for assessing the performance of database management
systems, rather than testing database applications. In addition, they lack the required
flexibility to produce more realistic data needed for software testing and do not take
into consideration privacy issues.

The organization of the paper is as follows. In Section 2, we present the general
location model and two test statistics. In Section 3, we give a formal definition for the
model of privacy preserving synthetic data generator. Section 4 describes a heuristic
approach to privacy preserving synthetic data generators. Section 5 briefly addresses
the applications of some statistical database results to privacy preserving synthetic data
generation. Section 6 concludes the paper.

2 Preliminaries

2.1 The General Location Model

Let A1, A2, · · · , Ap denote a set of categorical attributes andZ1, Z2, · · · , Zq a set of
numerical ones in a table withn entries. SupposeAj takes possible domain values
1, 2, · · · , dj , the categorical dataW can be summarized by a contingency table with
total number of cells equal toD =

∏p
j=1 dj . let x = {xd : d = 1, 2, · · · , D} denote

the number of entries in each cell. Clearly
∑D

d=1 xd = n.
The general location model [13] is defined in terms of the marginal distribution ofA

and the conditional distribution ofZ givenA. The former is described by a multinomial

distribution on the cell countsx,

x | π ∼ M(n, π) =
n!

x1! · · ·xD!
π1

x1 · · ·πD
xD

whereπ = {πd : d = 1, 2, · · · , D} is an array of cell probabilities corresponding tox.
GivenA, the rowszT

1 , zT
2 , · · · , zT

n of Z are then modeled as conditionally multivariate
normal. We assume that

zi | µi = Ed, µd, Σ ∼ N(µd, Σ)

is independent fori = 1, 2, · · · , n, whereµd is aq-vector means corresponding to cell
d, andΣ is aq× q covariance matrix. The parameters of the generation location model
can be written asθ = (π, µ,Σ), whereµ = (µ1, µ2, · · · , µD)T is aD × q matrix of
means. The maximum likelihood estimates ofθ is as follows:

π̂d =
xd

n
, µ̂T

d = x−1
d

∑
i∈Bd

zT
i , and Σ̂ =

1
n

D∑
d=1

∑
i∈Bd

(zi − µ̂d)(zi − µ̂d)
T (1)

whereBd = {i : µi = Ed} is the set of all tuples belonging to celld.

2.2 Test Statistics of Two Distributions

Test Staistics 1χ2-test for two binned data sets, letx and x′ be two data sets with
the same number of binsD, the chi − square probability functionQ(χ2 | ν) is an
incomplete gamma function with the degrees of freedomν (equal toD), where

χ2 =
∑

d

(
√

n′/nxd −
√

n/n′x′d)
2

xd + x′d
, n =

∑
d

xd, and n′ =
∑

d

x′d

Test Staistics 2Kolmogorov-Smirnov test [4] for unbinned data sets, letz and z′ be
two continuous data sets with sizen andn′ respectively. The Kolmogorov-Smirnov test
statisticG is the largest absolute deviation between two cumulative distribution func-
tionsF (z) andF (z′):

G = maxz,z′{| F (z′)− F (z) |}

The significance level of an observed value ofG (as a disproof of the null hypothesis
that the distributions are the same) is given by

Prob(G > obs) = QKS([
√

ne + 0.12 + 0.11/
√

ne]G)

whereQKS(λ) = 2
∑∞

j=1 (−1)j−1
e−2j2λ2

andne = nn′

n+n′

3 (γ, τ)-privacy preserving synthetic data generator

Notation. N is the set of natural numbers andR is the set of real numbers.Σ = {0, 1}
is the binary alphabet,Σ∗ is the set of (finite) binary strings andΣn is the set of binary
strings of lengthn. The length of a stringx is denoted by|x|. For stringsx, y ∈ Σ∗,
xy is the concatenation ofx andy. For a stringx ∈ Σ∗ and an integer numbern ≥ 0,
x[0..n] denotes the initial segment of lengthn+1 of x (x[0..n] = x if |x| ≤ n+1) and
x[i] denotes theith bit of x, i.e.,x[0..n] = x[0] · · ·x[n].

3.1 Definition

A database application software packageF that needs to be tested can be regarded as
a Turing machine defined on binary strings. Its input can be divided into two parts, the
database partx (with size of MBs or GBs) and the test case inputy (with a relatively
small size). The test case inputy could be a simple SQL command or a script file such
as a collection of SQL commands. As it is problematic to testF on the production
databasex, here we choose to testF on some mock datax′.

Private information in a databasex could be defined as a Turing computable func-
tion τ(x, i) wherei is the index of the private information. In another word, the private
information in a databasex is a sequence of binary strings:τ(x, 1), τ(x, 2), τ(x, 3), . . .,
τ(x, m).

Example 1 Consider the following confidential information: “The average balance
range of term deposits from Asian people in a specific zip code area”. We translate
this property to a binary string. For a 90-bit binary stringz, let z[0..19] represent the
zip code,z[20..29] represent the background of the people (e.g., 0000000001 for Asia,
0000000002 for British, etc.),z[30..59] andz[60..89] represent the term deposit aver-
age balance lower bound and upper bound respectively for the people fromz[20..29]
background andz[0..19] zip code area. The above private information could be in-
dexed as the first private information by lettingτ(x, 1) = z if and only if the people
from z[20..29] background andz[0..19] zip code area have average balance of term
deposit in the interval[z[30..59], z[60..89]].

Output of the performance testing forF can be measured by a metric functionTF .
In particular,TF can be regarded as a mapping fromΣ∗×Σ∗ to N . The metric function
TF (x, y) could represent the time used by the software packageF when running on
databasex with input test casey.

The goal of the synthetic data generation is to produce a synthetic data setx′ from
the production data setx such that metric function outputsTF (x, y) andTF (x′, y) are
approximately the same for most input test casesy. At the same time the synthetic data
x′ should contain no private information. Our above discussion can be formalized as in
the following definition.

Definition 1. Let γ : Σ∗ × Σ∗ → N be a function denoting the acceptable metric difference
for the testing purpose,τ : Σ∗ × N → Σ∗ be a Turing computable privacy function,F :
Σ∗ ×Σ∗ → Σ∗ be a Turing machine denoting the software package, andTF : Σ∗ ×Σ∗ → N
be a metric function defined forF . We say that a probabilistic Turing machineG : Σ∗ → Σ∗ is a
(γ, τ)-privacy preserving synthetic data generatorfor F if the following conditions are satisfied:

1. For all x ∈ Σ∗, |G(x)| = |x|.
2. (Performance similarity)|TF (x, y)− TF (G(x), y)| ≤ γ(x, y) with overwhelming probabil-

ity, where the probability is taken over all possible values forx, y, and internal coin tosses
ofF andG.

3. (Privacy preserving) Letδ(·) : N → R be the acceptable level function of privacy leakage
which is generally a negligible function. For each databasex and eachi, we have∑

w

|Prob[τ(x, i) = w|G(x), priorK]− Prob[τ(x, i) = w|priorK]| ≤ δ(i),

where the sum is over all potential outputw of τ(x, i), and priorK is the prior knowledge
that is known to the software tester before the testing.

Remarks:

– In definition 1, we assume that all functions and Turing machines are defined for all
inputs. In practice, there is no guarantee that a program will halt in finite many steps
on all inputs. In particular, when a program contains bugs, then for some inputs it
may run forever without a valid output. For these scenarios, we assume that when a
Turing machine does not halt in expected time (which should be large enough) on
an input, then it will halt and output a default result.

– In the item 1, we require that|G(x)| = |x|. This requirement is only for the con-
venience of our analysis. In practice, the generated synthetic data set may have
different (but approximately same) size than the original data set.

– In the item 3, the prior knowledge could include the schema definition of the
databasex and other prior knowledge aboutx.

– From the definition, it is straightforward to see that a privacy preserving synthetic
data generator must be one-way. Otherwise one can computex fromG(x) and then
compute the value ofτ(x, i), violating condition 3 of Definition 1.

3.2 Infeasibility

In the following, we first show that, for given conditions, a(γ, τ)-privacy preserving
synthetic data generator forF does not necessarily exist.

Statement 1 (γ, τ)-privacy preserving synthetic data generator forF does not neces-
sarily exist if the Turing machineF ’s running time depends on some bits of the input
and these bits are indeed the private information identified byτ .

Example 2 Assume that, according to prior knowledge, the first bitx[0] of the database
x is uniformly distributed overΣ, TF is the time complexity ofF ,

TF (0z, y) = 4 ·max{γ(0z, y), γ(1z, y)},
TF (1z, y) = 2 ·max{γ(0z, y), γ(1z, y)},

τ(x, 1) = x[0],

andG is a (γ, τ)-privacy preserving synthetic data generator forF . Then in order to
satisfy the condition 2 of Definition 1, we must haveG(x)[0] = x[0] for almost allx.
Otherwise, forx = bz,

|TF (bz, y)− TF (G(bz), y)| = 2 ·max{γ(0z, y), γ(1z, y)} ≥ 2γ(bz, y) > γ(bz, y)

for anyb ∈ Σ andz ∈ Σ∗. Then forw = G(x)[0], we have

Prob[τ(x, 1) = w|G(x), priorK]− Prob[τ(x, 1) = w|priorK] = 1− 1
2

=
1
2
.

Thus the privacy leakage is larger than (or equal to) a non negligible value1
2 and the

condition 3 of Definition 1 is not satisfied. This is a contradiction, which shows that no
(γ, τ)-privacy preserving synthetic data generator forF exists.

Statement 2 Even if there is noconflict betweenτ and the running time ofF , (γ, τ)-
privacy preserving synthetic data generator forF may still not exist if the Turing ma-
chineF has some conflict with the performance requirementγ(x, y).

Example 3 For any binary stringx ∈ Σ∗, let intx denote the positive integer whose
binary representation isx. Assume thatTF is the time complexity ofF with the property
that

TF (x, y) = 2 · intx ·max{γ(z, y) : |z| = |x|},

τ(x, i) is a non-trivial privacy function (that is, a function whose output values depend
on input values), andG is a (γ, τ)-privacy preserving synthetic data generator forF .
As we have noted in the previous paragraph,G should be one-way, thusG(x) 6= x for
almost allx. Then

|TF (x, y)− TF (G(x), y)| = 2 · |intx − intG(x)| ·max{γ(z, y) : |z| = |x|}
≥ 2 ·max{γ(z, y) : |z| = |x|}
> γ(x, y)

for almost allx ∈ Σ∗. Thus the condition 2 of Definition 1 is not satisfied, which is
a contradiction. This shows that no(γ, τ)-privacy preserving synthetic data generator
for F exists.

The above two statements essentially show that if the Turing machineF is a “dis-
tinguisher” of some privacy bits or a “distinguisher” of the input strings, then privacy
preserving synthetic data generator does not exist. On the other hand, if the Turing ma-
chineF has approximately same metrics on all inputs of the same length, then any
random mapping serves as the privacy preserving synthetic data generator forF . That
is, if |TF (x1, y)− TF (x2, y)| ≤ γ(x1, y) for all x1 andx2, then any length-preserving
random mapping is a(γ, τ)-privacy preserving synthetic data generator forF . In this
paper, we will concentrate on Turing machineF which do not go to the two extremes
that we have just mentioned.

3.3 Problem Formulation

The results in the previous section show that, without the knowledge of the underlying
data structures inx and the operation commands inF , it is generally impossible to con-
struct(γ, τ)-privacy preserving synthetic data generator for a generic Turing machine
F . In this section, we concentrate on the synthetic database generation and on database
application software packages and assume the workload is given. Generally, we have
two problems depending on different scenarios:

Problem 1.Given a private propertyτ , andδ(i), find a synthetic databasex′ to mini-
mize ∑

y

|TF (x, y)− TF (x′, y)| · Prob[y]

subject to
∑

w

∣∣Prob[τ(x, i) = w|x′, priorK]− Prob[τ(x, i) = w|priorK]
∣∣ ≤ δ(i).

Problem 2.Given acceptable performance metricγ(x, y), and private propertyτ , find
synthetic databasex′ to minimize∑

i

∑
w

∣∣Prob[τ(x, i) = w|x′, priorK]− Prob[τ(x, i) = w|priorK]
∣∣

subject to|TF (x, y)− TF (x′, y)| ≤ γ(x, y) for almost ally.

The two problems are related to each other. In the remaining part of this paper, we
will focus on Problem 1. One should note that the subject condition in Problem 1 is
generally not a linear inequality and the distribution ofy is not uniform (i.e., Prob[y] is
not a constant). Thus the Problem 1 is not a linear programming problem and heuristic
methods are needed to solve this problem.

4 Constructing (γ, τ)-Privacy Preserving Synthetic Data
Generator

Categorical Numerical
Zip BackgroundAge Gender Balance

1 10001 Asia 20 M 10k
2 10001 Asia 30 F 15k
3 10002 British 20 M 50k
.

m 10001 British 25 M 80k
Table 1.An Example of ACCOUNT Database

In this paper, we assume that file organizations, sorted fields, and index structures of
the production databasex are not private information and the synthetic data generator
will use these information to build the synthetic databaseG(x) in the same way that
x has been built. We view the database as a multi-dimensional table with categorical
attributes and numerical attributes and model it by using thegeneral location model.
Table 1 shows an example ACCOUNT database withm tuples. Assume the workload
is given as follows and the private property is as Example 1:

Q1: INSERT INTO ACCOUNT VALUES ()
Q2: SELECT * FROM ACCOUNT WHERE Zip = z AND Background = b

It is clear that the distribution of underlying data affects the execution time of work-
load. In general data sets, some columns’ distribution may be dependent on those of
other columns, hence we would like to derive an approximate joint distribution of all
columns which is used to generate synthetic data for performance testing. For example,
the approximate joint distribution onZip,Background,Balance would satisfy the
performance requirements of workload (Q1 and Q2). Our intuition is that, for database
applications, if two databasesx andx′ are approximately the same from a statistical
viewpoint, then the performance of the application on the two databases should also be
approximately the same.

However, the joint distribution may contain sensitive information about private prop-
erties. In the next subsection, we will present an heuristic algorithm to derive approx-
imate joint distribution based on the general location model and to check whether it
contains confidential information.

4.1 A Greedy Algorithm

We view the database as a multi-dimensional table with categorical attributes and nu-
merical attributes and model it by using thegeneral location model. We also assume
the general location model itself is not confidential information and only the parame-
ters of the general location model are confidential. We can see from Equation 1 that
the maximum likelihood estimates ofθ = (π, µ,Σ) can be fully derived from statistics
(e.g., the frequencies of tuples which satisfy some conditions of categorical attributes,
the mean and variance values of tuples which belong to same cell). Those statistics are
not completely contained in database catalog1. However, it is straightforward to derive
those statistics by imposing various queries if we are allowed to access the original data.

It is worth pointing out that we do not need to build the general location model at
the finest level as those statistics are with very high complexity which is exponential to
the size of contingency table and many statistics do not have effects on a given work-
load performance. Hence an approximate and condensed general location model on the
subsets of attributes is sufficient for performance testing. Here the condensed model is
derived from a condensed contingency table which is formed by a subset of categor-
ical attributes (even with coarser domain values) which can be identified by SQLs in
workload.

For the reason of convenience, we useDB0
F,x to denote all the information (e.g.,

the distribution, rules and the priori knowledge priorK) needed to build databasex to
satisfy the condition 2 of Definition 1. We call the distributionDB0

F,x theperformance
characteristicof a databasex for the applicationF . The heuristic method for solving
the problem 1 could be given as follows.

– Step 1. ExtractDB0
F,x from the real databasex based on workload and construct

the estimated performance error functionγ(x, y).
– Step 2. Specify a list of confidential informationτ(x, i) and an acceptable privacy

leakage levelδ(i) for each privacy indexed byi.

1 In current commercial database datalog, only the simple statistics (e.g., mean, max, min etc.)
of each single column are collected.

– Step 3. Check whether the performance characteristicDB0
F,x leaks any privacy

information defined inτ(x, i) in a non-acceptable level (that is, larger thanδ(i))
according to Definition 1 (see section 4.2).

– Step 4. If the privacy leakage is not acceptable, repeat the following untilDB′F,x

leaks privacy information aboutτ(x, i) in the acceptable level defined byδ.
• Step 4.1. The analyzer constructs a new characteristicDB′F,x by perturbingθ

asθ′ = (π + δπ, µ + δµ, Σ + δΣ).
• Step 4.2. The performance analyzer constructs a new estimated performance

error functionγ′(x, y) according to the new distributionDB′F,x. This is gener-
ally larger than the previousγ(x, y).

– Step 5. A synthetic data generator generates a synthetic data set using the distribu-
tionDB′F,x.

During Steps 1 and 4.2, we apply two test statistics discussed in section 2.2 to test
whether the generated datax′ usingDB′F,x has the same distribution with original data
(assuming a sample is given). From the point of statistical view, we can never prove that
two data sets come from a single distribution. On the contrary, we aim to disprove, to
a certain required level of significance, the null hypothesis that two data sets are drawn
from the same population distribution function. As there is no test statistics which can
be directly used for the general location model, we decompose the general location
model to two parts and useχ2 test for multinomial distribution andKolmogorov −
Smirnov test for multivariate normal distributions of each cell.

4.2 Privacy Analyzer

The results from the previous section show that in order to construct a privacy pre-
serving synthetic data generator for the applicationF , one first needs to extract the
performance characteristicDB0

F,x from the input databasex. Then one can draw a ran-
dom databasex′ according to the distributionDB0

F,x and build the same file structures,
sorted fields, and indexes forx′. If x′ leaks no private information aboutx, thenx′ could
serve for performance testing. However,x′ constructed in such a way may leak some
confidential information. In this section, we will address techniques to decide whether
there are private information leakage inDB0

F,x and, if the answer is yes, how to con-
struct a new distributionDB′F,x that contains no confidential information. Without loss
of generality, we assume that the functionτ is defined only for the first index. We write
this confidential information asτ(x) = τ(x, 1) for short. In the following, we give
some examples to illustrate how to decide whether there is information leakage about
τ(x) in a distributionDB0

F,x.

Example 4 Let l andm be two integers such thatn = l × m. For a databasex, let
X[i] = x[il] . . . x[il + l − 1] for 0 ≤ i ≤ m− 1. In practice,X[0], · · · , X[m− 1] may
correspond only to one column of a table. For the reason of simplicity, in this example,
we assume that the database has one table which has one columnX[0], · · · , X[m− 1].
Assume that the following conditions hold:

1. According topriorK, X[0], . . . , X[m−1] follow a normal distributionN(µ, σ) and
µ is uniformly distributed over100 ≤ µ ≤ 500;

2. τ(x) =
∑m−1

i=0
X[i]

m ; and
3. according toDB0

F,x, X[0], . . . , X[m−1] follow the normal distributionN(µ0, σ0).

Then ∣∣Prob[τ(x) = µ0|DB0
F,x]− Prob[τ(x) = µ0|priorK]

∣∣
=

∣∣(1− ε)− 1
400

∣∣ = 399
400 − ε

(2)

for some smallε. ObviouslyDB0
F,x leaks significant information aboutτ(x). Thus

we need to modify the performance characteristicDB0
F,x. One potential solution is

to pick a random valuev, and use a new distributionN(µ0 + v, σ0). This may have
further impact on the application performance and we need to re-compute the new
performance error functionγ(x, y) for this new distribution. If we choose|v| ≤ t, then
for anyµ0 + v − t ≤ w ≤ µ0 + v + t,∣∣Prob[τ(x) = w|DB′F,x]− Prob[τ(x) = w|priorK]

∣∣
=

∣∣(1
2t − ε

)
− 1

400

∣∣ = 1
2t −

1
400 − ε

(3)

for some smallε. Whent is large enough, the value in equation (3) is small enough so
that the sum on allw is less than the pre-specified valueδ 2.

The example in the previous paragraph shows a heuristic method to modify the
performance characteristic to meet the privacy requirements. In order to construct a
confidential-information-free distributionDB′F,x fromDB0

F,x, we first need to identify
those parts ofX[i] on which the value ofτ(x) depends. Then we need to perturb the
elements inDB0

F,x that have impacts on the values of thoseX[i]. After these pertur-
bation, we get a new distributionDB′F,x and we can check whether the information
leakage is acceptable.

We close this section by giving a formula for evaluating Prob[τ(x) = w|DB′F,x] for
the new distributionDB′F,x, wherew is any given string. Note that this computation is
necessary for checking whether the information leakage is acceptable.

Let DBco denote the conversion method, that is used to convertDB0
F,x toDB′F,x,

together with the prior knowledge. Then givenDB′F,x, one can evaluate the probabil-
ities of possible valuesDB of DB0

F,x, givenDB′F,x. Using Bayes formula, one can
compute the posterior probabilities:

Prob[DB|DB′F,x, DBco] =
Prob[DB] · Prob[DB′F,x|DB, DBco]

Prob[DB′F,x|DBco]

Note that the probabilities Prob[DB] of possible valuesDB of DB0
F,x can be eas-

ily computed when the distribution of the general location model’s parameters,θ =
(π, µ,Σ), are given (e.g., we can assumeθ has a uniform distribution over a specified
range[θl, θu]). The probability Prob[DB′F,x|DBco] can be computed using the formula:

Prob[DB′F,x|DBco] =
∑
DB

Prob[DB] · Prob[DB′F,x|DB, DBco].

2 Note that the computation in the equation (3) is only for illustration purpose and is not exact. At
the end of this section, we will give exact evaluation formulae for the computation of posterior
probability.

Thus the posterior probability Prob[τ(x) = w|DB′F,x] could be computed as:

Prob[τ(x) = w|DB′F,x] =
∑

x′, DB

(
Prob[DB|DB′F,x] · Prob[x′|DB] · Prob[τ(x) = w|x′]

)
,

where we omitted the prior knowledgeDBco from the formula.
As there may have exponentially manyw’s, we need to use discretization method

and divide possiblew’s into discrete intervals and compute their probabilities.

5 Other Issues Related to Our Work

5.1 Privacy Breach Issues

In section 1, we briefly described researches on privacy leakage in related areas such as
statistical database and privacy preserving data mining. We observed that existing defi-
nitions for privacy leakage are not sufficient for our research. Our definition of privacy
leakage is closely related to the statistical indistinguishability concept in cryptographic
research [8]. It is straightforward to check that our definition covers both straight (up-
ward) privacy breach and inverse (downward) privacy breach defined in [6]. However,
our definition is more general as it also covers the collective privacy breaches: for each
individual event, the observable probability difference is small, but, collectively, the
sum of these observable probability differences are large enough. This kind of collec-
tive privacy breaches could be important for many applications.

5.2 Statistical Database and Privacy Preserving Synthetic Data Generation

The problem of privacy issues in statistical databases have been extensively studied (see,
e.g., [1]). Recently, Dinur and Nissim [5] have tried to give a formal definition of privacy
issues in statistical databases and they have obtained several impossibility results and
several feasibility results. Their main feasibility result is based on the assumption that
the adversary has no prior knowledge about the database. That is, they assume that the
database is a uniform distribution overΣn. This is generally an impractical assumption
since in practice the adversary have much prior knowledge about the database. However,
several techniques in the paper [5] is helpful in understanding the privacy preserving
synthetic data generation issues and can be used for privacy preserving data generation.

For example, [5, Theorem 5] provides a feasibility results for privacy preserving
statistical databases if one assumes that the statistical database is a uniform distribution
on binary strings. Specifically, [5, Theorem 5] says that for at(n) > polylog(n) time
bounded adversary, one can achieve statistical database privacy by perturbing the query
output by an order ofO(

√
t(n)). In the following, we apply the techniques in the proof

of [5, Theorem 5] to privacy preserving synthetic data generation. Assume that the
values of an attribute in the live production databasex is distributed uniformly and the
application software performance depends on the values of

∑
i∈I x[i] for different kinds

of I ⊆ {0, . . . , n−1} and the private information is the re-identification of any specific
entry in the database. Then one can construct a performance characteristicDB0

F,x as
follows. Fix a valuet(n) (for example, lett(n) = n), let R = t(n) · logµ n for some

µ > 0, and letI0, . . . , It(n) be a sequence of random chosen subsets of{0, . . . , n− 1}.
For eachj ≤ t(n), let aIj be defined as follows:

1. If |I| <
√

R · log2 n thenaIj
= 0.

2. Otherwise,aIj
=

∑
i∈Ij

x[i] + E , whereE =
∑R−1

i=0 w[i] − R/2 for a random

chosenw ∈ ΣR.

LetDB0
F,x be constructed in such a way that any databasex′ drawn according toDB0

F,x

satisfies ∣∣∣∣∣∣
∑
i∈Ij

x′[i]− aIj

∣∣∣∣∣∣ ≤ √
t(n).

Then a similar proof as in the proof of [5, Theorem 5] shows that the performance
characteristicDB0

F,x leaks no private information aboutx.

5.3 Generating Synthetic Data via Statistical Queries

In certain cases, the performance characteristicDB0
F,x of the original database could

only be extracted from the real databasex via statistical queries tox. If the answers
to the statistical queries is not perturbed and no modification toDB0

F,x has been done,
then the existence of a database satisfying the distribution is guaranteed to exist since
x itself satisfy the distribution. However, if the answers to the queries has been per-
turbed or, in order to remove the confidential information contained in the performance
characteristic,DB0

F,x has been modified, there are several concerns for this procedure.
The first problem is related to the existence of a sample database for the revised dis-

tribution. The new distribution may contain contradiction and the sample space could
be empty. If this case happens, one may try to remove the contradiction from the distri-
bution. This modification could have further impact on the application performance.

The second problem is related to the efficiency of synthetic data generation. It may
take exponential time to generate a synthetic data set according to a given distribution.
For example, if the distribution requires that for each index subsetI ⊆ {0, . . . , n −
1}, the databasex′ satisfies some condition on

∑
i∈I x[i], then one may have to try

exponentially many instances to outputx′. For a specific class of distributions, one may
design generic optimized algorithms to construct the synthetic data efficiently.

6 Conclusion

We studied the problem of generating synthetic data for database application perfor-
mance testing while preserving privacy. We presented a model for quantifying the pri-
vacy leakage and application performance metric difference by using the general loca-
tion model. Our infeasibility results show the strict privacy preserving synthetic data
generator does not necessarily exist when the application workload is a “distinguisher”
of some privacy properties or a “distinguisher” of the input strings. A heuristic method
was given for the relaxed problem, i.e., to construct the generator which satisfies per-
formance requirements as many as possible while preserving all the privacy properties.

The analysis in this paper shows that it is a challenging problem to design efficient
privacy preserving synthetic data generators. One open problem is to study complexity
issues. Another topic for future work is to extend our approach for multiple tables and
integrate with a-priori rules and constraints in databases.

References

1. N. R. Adam and J. C. Wortman. Security-control methods for statistical databases.ACM
Computing Surveys, 21(4):515–556, Dec 1989.

2. R. Agrawal and R. Srikant. Privacy-preserving data mining. InProc. ACM SIGMOD Inter-
national Conference on Management of Data, pages 439–450. Dallas, Texas, May 2000.

3. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. InProc.
of FOCS, 1995.

4. R.B. Dagostino and M.A. Stephens.Goodness-of-fit Techniques. New York Dekker, 1986.
5. I. Dinur and K. Nissim. Revealing information while preserving privacy. InProc. 22nd

Symposium on Principles of Database Systems, pages 202–210, 2003.
6. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving

data mining. InProc. 22nd Symp. on Principles of Database Systems, pages 211–222, 2003.
7. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private infor-

mation retrieval schemes.JCSS, 60(3):592–629, 2000.
8. O. Goldreich.Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University

Press, 2001.
9. Y.Lindell and B.Pinkas. Privacy preserving data mining.J. Cryptology, 15(3):177–206, 2002.

10. B. Malin, L. Sweeney, and E. Newton. Trail re-identification: learning who you are from
where you have been. InProc. of the LIDAP-WP12. Carnegie Mellon University, 2003.

11. Niagara. http://www.cs.wisc.edu/niagara/datagendownload.html.
12. Quest. http://www.quest.com/datafactory.
13. J.L. Schafer.Analysis of Incomplete Multivariate Data. Chapman Hall, 1997.
14. C. J. Skinner. On identification disclosure and prediction disclosure for microdata.Statistical

Neerlandical, 44:21–32, 1992.
15. X. Wu, Y. Wang, and Y. Zheng. Privacy preserving database application testing. InProc.

ACM Workshop on Privacy in Electronic Society, pages 118–128, 2003.

