
Until now, we’ve interacted with comput-
ers mostly by using wire-based devices.

Typically, the wires limit the distance of movement and
inhibit freedom of orientation. In addition, most inter-
actions are indirect. The user moves a device as an ana-
log for the action created in the display space. We
envision an untethered interface that accepts gestures

directly and can accept  any objects
we choose as interactors. In con-
ventional 3D interaction, the de-
vices that track position and
orientation are still usually tethered
to the machine by wires.

Devices, such as pinch gloves, that
permit the user to experience a
more natural interface often don’t
perform as well. Users generally pre-
fer simple handheld devices with
buttons.1 Pinch gloves carry
assumptions about the position of
the user’s hand and fingers with
respect to the tracker. Of course,
users’ hands differ in size and shape,
so the assumed tracker position
must be recalibrated for each user.
This is hardly ever done. Also, the
glove interface causes subtle

changes to recognized hand gestures. The result is that
fine manipulations can be imprecise, and the user comes
away with the feeling that the interaction is slightly off
in an indeterminate way. If we can recognize gestures
directly, we take into account the difference in hand
sizes and shapes.

An additional problem is that any device held in the
hand can become awkward while gesturing. We’ve
found this even with a simple pointing device, such as a
stick with a few buttons1 (see Figure 1). Also, unless fair-
ly skilled, a user often has to pause to identify and select
buttons on the stick. With accurately tracked hands,
most of this awkwardness disappears. We’re adept at
pointing in almost any direction and can quickly pinch

fingers, for example, without looking at them.
Finally, physical objects are often natural interactors

(such as phicons2). However, with current systems these
objects must be inserted in advance or specially pre-
pared. We’d like the system to accept objects that we
choose spontaneously for interaction.

In this article we discuss methods for producing more
seamless interaction between the physical and virtual
environments through the Perceptive Workbench. We
applied the system to an augmented reality game and a
terrain navigating system. The Perceptive Workbench
can reconstruct 3D virtual representations of previous-
ly unseen real-world objects placed on its surface. In
addition, the Perceptive Workbench identifies and
tracks such objects as they’re manipulated on the desk’s
surface and allows the user to interact with the aug-
mented environment through 2D and 3D gestures.
These gestures can be made on the plane of the desk’s
surface or in the 3D space above the desk. Taking its cue
from the user’s actions, the Perceptive Workbench
switches between these modes automatically. Comput-
er vision controls all interaction, freeing the user from
the wires of traditional sensing techniques.
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Related work
While the Perceptive Workbench

is unique in its ability to interact with
the physical world, it has a rich her-
itage of related work.1-7 Many aug-
mented desk and virtual reality
designs use tethered props, tracked
by electromechanical or ultrasonic
means, to encourage interaction
through manipulation and ges-
ture.1,3,7-9 Such designs tether the
user to the desk and require the time-
consuming ritual of donning and
doffing the appropriate equipment.

Fortunately, the computer vision community has
taken up the task of tracking the user’s hands and iden-
tifying gestures. While generalized vision systems track
the body in room- and desk-based scenarios for games,
interactive art, and augmented environments,10 recon-
struction of fine hand detail involves carefully calibrat-
ed systems and is computationally intensive.11 Even so,
complicated gestures such as those used in sign lan-
guage12 or the manipulation of physical objects13 can be
recognized. The Perceptive Workbench uses computer
vision techniques to maintain a wireless interface.

Most directly related to the Perceptive Workbench,
Ullmer and Ishii’s Metadesk2 identifies and tracks
objects placed on the desk’s display surface using a near-
infrared computer vision recognizer, originally designed
by Starner. Unfortunately, since not all objects reflect
infrared light and infrared shadows aren’t used, objects
often need infrared reflective “hot mirrors” placed in
patterns on their bottom surfaces to aid tracking and
identification. Similarly, Rekimoto and Matsushita’s Per-
ceptual Surfaces6 employ 2D barcodes to identify objects
held against the HoloWall and HoloTable. In addition,
the HoloWall can track the user’s hands (or other body
parts) near or pressed against its surface, but its poten-
tial recovery of the user’s distance from the surface is
relatively coarse compared to the 3D pointing gestures
of the Perceptive Workbench. Davis and Bobick’s
SideShow14 resembles the HoloWall except that it uses
cast shadows in infrared for full-body 2D gesture recov-
ery. Some augmented desks have cameras and projec-
tors above the surface of the desk and are designed to

augment the process of handling paper or interacting
with models and widgets through fiducials or bar-
codes.15,16 Krueger’s VideoDesk,4 an early desk-based
system, used an overhead camera and a horizontal vis-
ible light table (for high contrast) to provide hand-ges-
ture input for interactions displayed on a monitor on the
desk’s far side. In contrast to the Perceptive Workbench,
none of these systems address the issues of introducing
spontaneous 3D physical objects into the virtual envi-
ronment in real time and combining 3D deictic (point-
ing) gestures with object tracking and identification.

Apparatus
The display environment for the Perceptive Work-

bench builds on Fakespace’s Immersive Workbench. It
consists of a wooden desk with a horizontal frosted glass
surface on which a stereoscopic image can be projected
from behind the workbench (see Figure 1).

We placed a standard monochrome surveillance cam-
era under the projector that watches the desk surface
from underneath (see Figure 2). A filter placed in front
of the camera lens makes it insensitive to visible light
and to images projected on the desk’s surface. Two
infrared illuminators placed next to the camera flood
the desk’s surface with infrared light reflected toward
the camera by objects placed on the desk.

We mounted a ring of seven similar light sources on
the ceiling surrounding the desk (Figure 2). Each com-
puter-controlled light casts distinct shadows on the
desk’s surface based on the objects on the table (Figure
3a). A second camera, this one in color, is placed next
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to the desk to provide a side view of the user’s arms (Fig-
ure 4a). We use this side camera solely for recovering
3D pointing gestures (Figure 5).

We decided to use near-infrared light, since it’s invis-
ible to the human eye. Thus, illuminating the scene
with it doesn’t interfere with the user’s interaction. The
user can’t observe the illumination from the infrared
light sources underneath the table, nor the shadows
cast from the overhead lights. On the other hand, most
standard charge-coupled device (CCD) cameras can
still see infrared light. This makes it an inexpensive
method for observing the interaction. In addition, by
equipping the camera with an infrared filter, the cam-
era image can be analyzed regardless of changes in
(visible) scene lighting.

All vision processing occurs on two SGI R10000 O2s
(one for each camera), which communicate with a dis-
play client on an SGI Onyx via sockets. However, the
vision algorithms can also be run on one SGI with two
digitizer boards or implemented using inexpensive,
semicustom signal-processing hardware.

We use this setup for three different kinds of interac-
tion (which we’ll explain in more detail in the following
sections):

■ recognition and tracking of objects placed on the desk
surface based on their contour,

■ recognition and quantification of hand and arm ges-
tures, and

■ full 3D reconstruction of object shapes on the desk
surface from shadows cast by the ceiling light-sources.

For display on the Perceptive Workbench, we use the
Simple Virtual Environment (SVE) Toolkit, a graphics
and sound library the Georgia Tech Virtual Environ-
ments Group developed.17 SVE lets us rapidly prototype
applications used in this work. In addition, we use the
workbench version of the Virtual Geographic Informa-
tion System (VGIS), a global terrain visualization and
navigation system18 as an application for interaction
using hand and arm gestures. The workbench version
of VGIS has stereoscopic rendering and an intuitive
interface for navigation.19 Both systems are built on
OpenGL and have SGI and PC implementations.

Object tracking and recognition
As a basic building block for our interaction frame-

work, we want to let users manipulate the virtual envi-
ronment by placing objects on the desk surface. The
system should recognize these objects and track their

positions and orientations as they
move over the table. Users should
freely pick any set of physical objects.

The motivation behind this is to
use physical objects in a graspable
user interface.20 Physical objects are
often natural interactors. They can
provide physical handles to let users
control the virtual application intu-
itively.21 In addition, the use of
objects encourages two-handed
direct manipulation and allows par-

allel input specification, thereby improving the com-
munication bandwidth with the computer.20,21

To achieve this goal, we use an improved version of
the technique described in Starner et al.22 Two near-
infrared light-sources illuminate the desk’s underside
(Figure 2). Every object close to the desk surface (includ-
ing the user’s hands) reflects this light, which the cam-
era under the display surface can see. Using a
combination of intensity thresholding and background
subtraction, we extract interesting regions of the cam-
era image and analyze them. We classify the resulting
blobs as different object types based on a set of features,
including area, eccentricity, perimeter, moments, and
contour shape.

However, the hardware arrangement causes several
complications. The foremost problem is that our two
light sources under the table can only provide uneven
lighting over the whole desk surface—bright in the mid-
dle and weaker toward the borders. In addition, the light
rays aren’t parallel, and the reflection on the mirror sur-
face further exacerbates this effect. As a result, the per-
ceived sizes and shapes of objects on the desk surface
can vary depending on position and orientation. Final-
ly, when users move an object, the reflection from their
hands can also add to the perceived shape. This requires
an additional stage in the recognition process: match-
ing recognized objects to objects known to lie on the
table and filtering out wrong classifications or even han-
dling complete loss of information about an object for
several frames.

In this work, we use the object recognition and track-
ing capability mainly for cursor objects. We focus on fast
and accurate position tracking, but the system may be
trained on a different set of objects to serve as naviga-
tional tools or physical icons.2 A future project will explore
different modes of interaction based on this technology.

Deictic gesture tracking
Hand gestures can be roughly classified into symbol-

ic (iconic, metaphoric, and beat) and deictic (pointing)
gestures. Symbolic gestures carry an abstract meaning
that may still be recognizable in iconic form in the asso-
ciated hand movement. Without the necessary cultural
context, however, the meaning may be arbitrary. Exam-
ples for symbolic gestures include most conversational
gestures in everyday use, and whole gesture languages,
such as American Sign Language. Previous work by
Starner12 showed that a large set of symbolic gestures
can be distinguished and recognized from live video
images using hidden Markov models.
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Deictic gestures, on the other hand, depend strongly
on location and orientation of the performing hand.
Their meaning is determined by the location at which a
finger points or by the angle of rotation of some part of
the hand. This information acts not only as a symbol for
the gesture’s interpretation, but also as a measure of the
extent to which the corresponding action should be exe-
cuted or to which object it should be applied.

For navigation and object manipulation in a virtual
environment, many gestures will have a deictic com-
ponent. It’s usually not enough to recognize that an
object should be rotated—we’ll also need to know the
desired amount of rotation. For object selection or
translation, we want to specify the object or location of
our choice just by pointing at it. For these cases, ges-
ture recognition methods that only take the hand shape
and trajectory into account will not suffice. We need to
recover 3D information about users’ hands and arms in
relation to their bodies.

In the past, this information has largely been
obtained by using wired gloves or suits, or magnetic
trackers.3,8 Such methods provide sufficiently accurate
results but rely on wires tethered to the user’s body or
to specific interaction devices, with all the aforemen-
tioned problems. We aim to develop a purely vision-
based architecture that facilitates unencumbered 3D
interaction.

With vision-based 3D tracking techniques, the first
issue is to determine which information in the camera
image is relevant—that is, which regions represent the
user’s hand or arm. What makes this even more difficult
is the variation in user clothing or skin color and back-
ground activity. Although typically only one user inter-
acts with the environment at a given time using
traditional methods of interaction, the physical dimen-
sions of large semi-immersive environments such as the
workbench invite people to watch and participate. 

In a virtual workbench environment, a camera can
only be placed in a few places to provide reliable hand
position information. One camera can be set up next
to the table without overly restricting the available
space for users, but if a similar second camera were to
be used at this location, either multiuser experience or
accuracy would be compromised. We addressed this
problem by employing our shadow-based architecture
(as described in the “Apparatus” section). The user
stands in front of the workbench and extends an arm
over the surface. One of the infrared light sources
mounted on the ceiling to the left of, and slightly
behind the user, shines its light on the desk surface,
from where it can be seen by the infrared camera under
the projector (see Figure 5). When users move an arm
over the desk, it casts a shadow on the desk surface
(see Figure 3a). From this shadow, and from the known
light-source position, we can calculate a plane in which
the user’s arm must lie.

Simultaneously, the second camera to the right of the
table (Figures 4a and 5) records a side view of the desk
surface and the user’s arm. It detects where the arm
enters the image and the position of the fingertip. From
this information, it extrapolates two lines in 3D space, on
which the observed real-world points must lie. By inter-

secting these lines with the shadow plane, we get the
coordinates of two 3D points—one on the upper arm and
one on the fingertip. This gives us the user’s hand posi-
tion and the direction in which the user is pointing. We
can use this information to project an icon for the hand
position and a selection ray in the workbench display.

Obviously, the success of the gesture-tracking capa-
bility relies strongly on how fast the image processing
can be done. Therefore, we must use simple algorithms.
Fortunately, we can make some simplifying assumptions
about the image content.

We must first recover arm direction and fingertip posi-
tion from both the camera and the shadow image. Since
the user stands in front of the desk and the user’s arm is
connected to the user’s body, the arm’s shadow should
always touch the image border. Thus our algorithm
exploits intensity thresholding and background sub-
traction to discover regions of change in the image. It
also searches for areas in which these regions touch the
desk surface’s front border (which corresponds to the
shadow image’s top border or the camera image’s left
border). The algorithm then takes the middle of the
touching area as an approximation for the origin of the
arm (Figures 3b and 4b). For simplicity, we call this point
the “shoulder,” although in most cases it is not. Tracing
the shadow’s contour, the algorithm searches for the
point farthest away from the shoulder and takes it as the
fingertip. The line from the shoulder to the fingertip
reveals the arm’s 2D direction.

In our experiments, the point thus obtained was coin-
cident with the pointing fingertip in all but a few
extreme cases (such as the fingertip pointing straight
down at a right angle to the arm). The method doesn’t
depend on a pointing gesture, but also works for most
other hand shapes, including but not restricted to, a
hand held horizontally, vertically, or in a fist. These
shapes may be distinguished by analyzing a small sec-
tion of the side camera image and may be used to trig-
ger specific gesture modes in the future.

The computed arm direction is correct as long as the
user’s arm isn’t overly bent (see Figure 4). In such cases,
the algorithm still connects the shoulder and fingertip,
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resulting in a direction somewhere between the direc-
tion of the arm and the one given by the hand. Although
the absolute resulting pointing position doesn’t match
the position towards which the finger is pointing, it still
manages to capture the movement’s trend very well.
Surprisingly, the technique is sensitive enough so that
users can stand at the desk with their arm extended over
the surface and direct the pointer simply by moving their
index finger, without arm movement.

Limitations
The architecture we used poses several limitations.

The primary problem with the shadow approach is find-
ing a position for the light source that produces a good
shadow of the user’s arm for a large set of possible posi-
tions while avoiding capturing the shadow from the
user’s body. Since the area visible to the infrared camera
is coincident with the desk surface, in some regions the
shadow isn’t visible, or it touches the borders or falls out-
side of them. To solve this problem, we switch auto-
matically to a different light source whenever such a
situation occurs. The choice of the new light source
depends on where the shadows touched the border. By
choosing overlapping regions for all light sources, we
can keep the number of light-source switches to a nec-
essary minimum. In practice, four light sources in the
original set of seven covered the relevant area of the
desk surface. However, we added an additional spot-
light, mounted directly over the desktop, to provide
more direct coverage of the desktop surface.

Figure 4b shows another problem where segmenta-
tion based on color background subtraction detects both

the hand and the change in the display on the work-
bench. A more recent implementation replaces the side
color camera with an infrared spotlight and a mono-
chrome camera equipped with an infrared-pass filter.
By adjusting the angle of the light to avoid the desk’s
surface or any other close objects, the user’s arm is illu-
minated and made distinct from the background.
Changes in the workbench’s display don’t affect the
tracking.

A bigger problem results from the side camera’s actu-
al location. If a user extends both arms over the desk
surface, or if more than one user tries to interact with
the environment simultaneously, the images of these
multiple limbs can overlap and merge into a single blob.
Consequently, our approach will fail to detect the hand
positions and orientations in these cases. A more sophis-
ticated approach using previous position and movement
information could yield more reliable results, but we
chose at this first stage to accept this restriction and con-
centrate on high frame-rate support for one-handed
interaction. This may not be a serious limitation for a
single user for certain tasks; a recent study shows that
for a task normally requiring two hands in a real envi-
ronment, users have no preference for one versus two
hands in a virtual environment that doesn’t model
effects such as gravity and inertia.1

3D reconstruction
To complement the capabilities of the Perceptive

Workbench, we want to insert real objects into the vir-
tual world and share them with other users at different
locations. An example application for this could be a
telepresence or computer-supported collaborative work
(CSCW) system. Instead of verbally describing an object,
users would be able to quickly create a 3D reconstruc-
tion and send it to their coworkers (see Figure 6). This
requires designing a reconstruction mechanism that
doesn’t interrupt the interaction. Our focus is to provide
an almost instantaneous visual cue for the object as part
of the interaction, not necessarily on creating a highly
accurate model.

Several methods reconstruct objects from silhou-
ettes23,24 or dynamic shadows25 using either a moving
camera or light source on a known trajectory or a
turntable for the object.24 Several systems have been
developed for reconstructing relatively simple objects,
including some commercial systems.

However, the necessity to move either the camera or
the object imposes severe constraints on the working
environment. Reconstructing an object with these meth-
ods usually requires interrupting the user’s interaction
with it, taking it out of the user’s environment, and plac-
ing it into a specialized setting (sometimes in a differ-
ent room). Other approaches use multiple cameras from
different viewpoints to avoid this problem at the
expense of more computational power to process and
communicate the results. 

In this project, using only one camera and the infrared
light sources, we analyze the shadows cast on the object
from multiple directions (see Figure 7). Since the
process is based on infrared light, it can be applied inde-
pendently of the lighting conditions and without inter-
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fering with the user’s natural interaction with the desk.
The existing approaches to reconstruct shape from

shadows or silhouettes can be divided into two camps.
The volume approach, pioneered by Baumgart,26 inter-
sects view volumes to create a representation for the
object. Common representations for the resulting model
are polyhedra26 or octrees.23 The surface approach
reconstructs the surface as the envelope of its tangent
planes. Both approaches can be combined, as in Sulli-
van’s work,24 which uses volume intersection to create
an object, then smoothes the surfaces with splines.

We used a volume approach to create polyhedral
reconstructions for several reasons. We want to create
models that users employ instantaneously in a virtual
environment. Our focus isn’t on getting a photorealistic
reconstruction, but on creating a quick, low-polygon-
count model for an arbitrary real-world object in real
time without interrupting the ongoing interaction. Poly-
hedral models offer significant advantages over other
representations, such as generalized cylinders, super-
quadrics, or polynomial splines. They’re simple and
computationally inexpensive, Boolean set operations can
be performed on them with reasonable effort, and most
current VR engines are optimized for fast rendering of
polygonal scenes. In addition, polyhedral models form
the basis for many later processing steps. If desired, they
can still be refined with splines using a surface approach.

To obtain the different views, we mounted a ring of
seven infrared light sources in the ceiling, each inde-
pendently controlled by a computer. The system detects
when users place a new object on the desk surface, and
they can initiate the reconstruction by touching a virtu-
al button rendered on the screen. The camera detects
this action, and, during only one second, captures all
shadow images. In another second, the reconstruction
is complete, and the newly reconstructed object
becomes part of the virtual world. 

Our approach is fully automated and doesn’t require
any special hardware (such as stereo cameras, laser
range finders, structured lighting, and so on). The
method is extremely inexpensive, both in hardware and
in computational cost. In addition, there’s no need for
extensive calibration, which is usually necessary in other
approaches to recover the object’s exact position or ori-
entation in relation to the camera. We only need to know
the approximate position of the light sources (± 2 cm)
and adjust the camera to reflect the display surface’s size
(which only needs to be done once). We don’t move the
camera, light sources, or the object during the recon-
struction process. Thus, recalibration is unnecessary.
We substituted all mechanical moving parts—often
prone to wear and imprecision—with a series of light
beams from known locations.

An obvious limitation to this approach is that we’re
confined to a fixed number of different views from
which to reconstruct the object. The turntable approach
permits the system to take an arbitrary number of
images from different viewpoints. However, Sullivan’s
work24 and our experience with our system have shown
that even for quite complex objects, usually seven to
nine different views suffice to get a reasonable 3D
model of the object. Note that the reconstruction uses

the same hardware as the deictic gesture-tracking capa-
bility discussed in the previous section. Thus, it comes
at no additional cost. 

The switching time of the light sources limits the
speed of the reconstruction process. Whenever a new
light source is activated, the image-processing system
has to wait for several frames to receive a valid image.
The camera under the desk records the sequence of
shadows cast by an object on the table when illuminat-
ed by the different lights. Figure 8 shows two series of
contour shadows extracted from two sample objects by
using different infrared sources sources. By approxi-
mating each shadow as a polygon (not necessarily con-
vex),27 we create a set of polyhedral “view cones”
extending from the light source to the polygons. The
intersection of these cones creates a polyhedron that
roughly contains the object. Figure 9 shows more shad-
ows with the resulting polygons and a visualization of
the intersection of polyhedral cones.

Intersecting nonconvex polyhedral objects is a com-
plex problem, further complicated by numerous special
cases. Fortunately, this problem has already been
exhaustively researched and solutions are available. For
the intersection calculations in our application, we used
Purdue University’s Twin Solid Modeling Library.28
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Figure 10  shows the reconstructed models of a water-
ing can and a teapot placed on the desk surface. We chose
the colors to highlight the different model faces by inter-
preting the face normal as a vector in RGB color space.

Limitations
An obvious limitation to our approach is that not

every nonconvex object can be exactly reconstructed
from its silhouettes or shadows. The closest approxi-
mation that can be obtained with volume intersection
is its visual hull, that is, the volume enveloped by all the
possible circumscribed view cones.29 Even for objects
with a polyhedral visual hull, an unbounded number of
silhouettes may be necessary for an exact reconstruc-
tion. In practice, we can get sufficiently accurate mod-
els for a large variety of real-world objects, even from a
relatively small number of different views. 

Exceptions are spherical or cylindrical objects. The
quality of reconstruction for these objects depends large-
ly on the number of available views. With only seven light
sources, the resulting model will appear faceted. This
problem can be solved either by adding more light sources
or by improving the model with the help of splines.

Apart from this, the accuracy with which objects can
be reconstructed is bounded by another limitation of our
architecture. We mounted all our light sources to the ceil-
ing. From this point of view they can’t provide full infor-
mation about the object’s shape. There’s a pyramidal
blind spot above all horizontal flat surfaces that the recon-
struction can’t eliminate. The slope of these pyramids
depends on the angle between the desk surface and the
rays from the light sources. For our current hardware set-
ting, this angle ranges between 37 and 55 degrees,
depending on the light source. Only structures with a
greater slope will be reconstructed entirely without error.
This problem is intrinsic to the method and also occurs
with the turntable approach, but on a much smaller scale.

We expect that we can greatly reduce the effects of
this error by using the image from the side camera and
extracting an additional silhouette of the object. This
will help keep the error angle well below 10 degrees.
Calculations based on the current position of the side
camera (optimized for gesture recognition) promise an
error angle of just 7 degrees.

In the current version of our soft-
ware, an additional error is intro-
duced because we aren’t yet
handling holes in the shadows. This
is merely an implementation issue,
which will be resolved in a future
extension to our project.

Performance analysis
We analyzed the performance of

the Perceptive Workbench’s object
and gesture tracking and the 3D
reconstruction of objects.

Object and gesture tracking
Both object and gesture tracking

perform at a stable 12 to 18 frames
per second (fps). Frame rate

depends on the number of objects on the table and the
size of the shadows, respectively. Both techniques fol-
low fast motions and complicated trajectories. Latency
is currently 0.25 to 0.33 second, including display lag.
(An acceptable threshold for 3D object selection and
manipulation tasks is typically around 0.075 to 0.100
second.30) Surprisingly, this level of latency still seems
adequate for most (navigational) pointing gestures in
our current applications. Since users receive continu-
ous feedback about their hand and pointing positions,
and most navigation controls are relative rather than
absolute, users adapt their behavior readily to the sys-
tem. With object tracking, the physical object itself can
provide users with adequate tactile feedback as the sys-
tem catches up with their manipulations. In general,
since users move objects across a very large desk sur-
face, the lag is noticeable but rarely troublesome in the
current applications. 

Even so, we expect that simple improvements in the
socket communication between the vision and render-
ing code and in the vision code itself will improve laten-
cy significantly. For the terrain navigation task below,
rendering speed provides a limiting factor. However,
Kalman filters may compensate for render lag and will
also add to the tracking system’s stability.

3D reconstruction
Calculating the error from the 3D reconstruction

process requires choosing known 3D models, perform-
ing the reconstruction process, aligning the recon-
structed model and the ideal model, and calculating an
error measure. For simplicity, we chose a cone and pyra-
mid. We set the centers of mass of the ideal and recon-
structed models to the same point in space and aligned
their principal axes.

To measure error, we used the Metro tool developed
by Cignoni, Rocchini, and Scopigno.31 It approximates
the real distance between the two surfaces by choosing
a set of (100,000 to 200,000) points on the recon-
structed surface, then calculating the two-sided distance
(Hausdorff distance) between each of these points and
the ideal surface. This distance is defined as max (E(S1,
S2), E(S2, S1)) with E(S1, S2) denoting the one-sided
distance between the surfaces S1 and S2:
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E(S1, S2) = maxp∈ S1 (dist(p, S2)) 
= maxp∈ S1 (minp′∈ S2 (dist(p, p′)))

The Hausdorff distance directly corresponds to the
reconstruction error. In addition to the maximum dis-
tance, we also calculated the mean and mean-square
distances. Table 1 shows the results. In these examples,
the relatively large maximal error was caused by the dif-
ficulty in accurately reconstructing the tip of the cone
and the pyramid. 

Improvements may be made by precisely calibrating
the camera and lighting system, adding more light
sources, and obtaining a silhouette from the side cam-
era (to eliminate ambiguity about the top of the sur-
face). However, the system meets its goal of providing
virtual presences for physical objects in a quick and time-
ly manner that encourages spontaneous interactions.

Putting it to use: Gesture interfaces
All the components of the Perceptive Workbench—

deictic gesture tracking, object recognition, tracking,
and reconstruction—can be combined into a single, con-
sistent framework. The Perceptive Workbench interface
detects how users want to interact with it and automat-
ically switches to the desired mode. 

When users move a hand above the display surface,
the system tracks the hand and arm as described in the
section “Object tracking and recognition.” A cursor
appears at the projected hand position on the display
surface, and a ray emanates along the projected arm
axis. These can be used in selection or manipulation, as
in Figure 11a. When users place an object on the sur-
face, the cameras recognize this and identify and track
the object. A virtual button also appears on the display
(indicated by the arrow in Figure 11b). Through shad-
ow tracking, the system determines when the hand over-
laps the button, thus selecting it. This action causes the
system to capture the 3D object shape, as described in
the section “Deictic gesture tracking.”

Since shadows from the user’s arms always touch
the image border, it’s easy to decide whether an object
lies on the desk surface. If the system detects a shad-
ow that doesn’t touch any border, it can be sure that an
object on the desk surface caused the shadow. As a
result, the system will switch to object-recognition and
tracking mode. Similarly, the absence of such shad-
ows, for a certain period, indicates that the object has

been taken away, and the system can safely switch
back to gesture-tracking mode. Note that once the sys-
tem is in object-recognition mode, it turns off the ceil-
ing lights, and activates the light sources underneath
the table. Therefore, users can safely grab and move
objects on the desk surface, since their arms will not
cast any shadows that could disturb the perceived
object contours.

This setup provides the elements of a perceptual inter-
face—operating without wires and without restrictions
on the objects. For example, we constructed a simple
application where the system detects objects placed on
the desk, reconstructs them, then places them in a tem-
plate set, displayed as slowly rotating objects on the
workbench display’s left border. Users can grab these
objects, which could act as new physical icons that they
attach to selection or manipulation modes. Or the
shapes themselves could be used in model building or
other applications.

An augmented reality game
We created a more elaborate collaborative interface

using the Perceptive Workbench. The workbench com-
municates with a person in a separate space wearing an
augmented reality headset. All interaction occurs via
image-based gesture tracking without attached sensors.
We patterned the game after a martial arts fighting
game. The user in the augmented reality headset is the
player, and one or more people interacting with the
workbench are the game masters. The workbench dis-
play surface acts as a top-down view of the player’s
space. The game masters place different objects on the
surface, which appear to the player as distinct monsters
at different vertical levels in the game space. The game
masters move the objects around the display surface,
toward and away from the player. This motion is repli-
cated in the player’s view by the monsters, which move
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Table 1. Reconstruction errors averaged over three runs (in
meters and percentage of object diameter).

Cone Pyramid

Maximal error 0.0215 (7.26%) 0.0228 (6.90%)
Mean error 0.0056 (1.87%) 0.0043 (1.30%)
Mean-square error 0.0084 (2.61%) 0.0065 (1.95%)

Hand icon

Selection ray

(a) (b)

Virtual button

Reconstructed object

11 (a) Pointing gesture with hand
icon and selection ray. (b) Virtual
button rendered on the screen
when object is detected on the
surface. Figure 10 shows the recon-
struction of this watering can.



in their individual planes. Figure 12a shows the game
masters moving objects, and Figure 13b displays the
moving monsters in the virtual space.

The mobile player wears a “see-through” Sony
Glasstron (Figure 12b) equipped with two cameras. The
forward-facing camera tracks fiducials or natural fea-
tures in the player’s space to recover head orientation.
This allows graphics (such as monsters) to be rendered
roughly registered with the physical world. The second
camera looks down at the player’s hands to recognize
martial arts gestures.12

While we’re developing a more sophisticated hidden
Markov model system, a simple template-matching
method suffices for recognizing a small set of martial
arts gestures. To effect attacks on the monsters, the user
accompanies the appropriate attack gesture (Figure
13a) with a Kung Fu yell (“heee-YAH”). Each foe
requires a different gesture. Foes not destroyed enter
the player’s personal space and injure the player.
Enough injuries will cause the player’s defeat.

Faculty and graduate students in the Graphics, Visu-
alization, and Usability lab have used the system. They
found the experience compelling and balanced. Since
it’s difficult for the game master to keep pace with the
player, two or more game masters may participate (Fig-
ure 12a). The Perceptive Workbench’s object tracker
scales naturally to handle multiple, simultaneous users.
For a more detailed description of this application, see
Starner et al.22

3D terrain navigation
We developed a global terrain navigation system on

the virtual workbench that lets you fly continuously
from outer space to terrain or buildings with features at
1 foot or better resolution.19 Since features are displayed
stereoscopically, the navigation is both compelling and
detailed. In our third-person navigation interface, users
interact with the terrain as if it were an extended relief
map laid out below them on a curved surface. Main
interactions include zooming, panning, and rotating.
Since users are head-tracked, they can move their head
to look at the 3D objects from different angles. Previ-
ously, interaction took place by using button sticks with
6-DOF electromagnetic trackers attached.

We employed the deictic gestures of the Perceptive
Workbench to remove this constraint. Users choose the
direction of navigation by pointing and can change the
direction continuously (Figure 14c). Moving the hand
toward the display increases the speed toward the earth
and moving it away increases the speed away from the
earth. Users accomplish panning by making lateral ges-
tures in the direction to be panned (Figure 14a). They
rotate views by making a rotating gesture with their arm
(Figure 14b). Currently, users choose these three modes
by keys on a keyboard attached to the workbench. In the
future we expect to use gestures entirely (for example,
pointing will indicate zooming).

Although some problems exist with latency and accu-
racy (both of which will lessen in the future), users can
successfully employ gestures for navigation. In addition,
the gestures are natural to use. Further, we find that the
vision system can distinguish hand articulation and ori-
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entation quite well. Thus we’ll be able to attach inter-
actions to hand movements (even without the larger
arm movements). At the time of this writing, we devel-
oped a hidden Markov model framework that lets users
train their own gestures for recognition. This system, in
association with the terrain navigation database, should
permit more sophisticated interactions in the future.

Telepresence, CSCW
As another application of the Perceptive Workbench,

we built a small telepresence system. Using the sample
interaction framework described at the beginning of this
section, users can point to any location on the desk,
reconstruct objects, and move them across the desk sur-
face. Every one of their actions is immediately applied
to a VR model of the workbench mirroring the current

state of the real desk. Thus, when performing deictic
gestures, the current hand and pointing position appear
on the model workbench as a red selection ray. Similar-
ly, the reconstructed shapes of objects on the desk sur-
face are displayed at the corresponding positions in the
model (Figure 15). This makes it possible for coworkers
at a distant location to follow the user’s actions in real-
time, while having complete freedom to choose a favor-
able viewpoint.

Future work
We propose several improvements to the Perceptive

Workbench. Use an active pan/tilt/zoom camera
mounted underneath the desk for higher resolution
reconstruction and improved recognition for small
objects. Deploy the color side camera to improve 3D
reconstruction and construct texture maps for the dig-
itized object. Modify the reconstruction code to handle
holes in objects and to correct errors caused by non-
square pixels. Improve the latency of the gesture-
rendering loop through code refinement and the appli-
cation of Kalman filters. With a difficult object, recog-
nition from the reflections from the light source
underneath can be successively improved by using cast
shadows from the light sources above or the 3D recon-
structed model directly. Employ hidden Markov models
to recognize symbolic hand gestures12 for controlling
the interface. Finally, as hinted by the multiple game
masters in the gaming application, several users may be
supported through careful, active allocation of
resources.

Conclusion
The Perceptive Workbench uses a vision-based system

to enable a rich set of interactions, including hand and
arm gestures, object recognition and tracking, and 3D
reconstruction of objects placed on its surface. These ele-
ments combine seamlessly into the same interface and
can be used in various applications. In addition, the sens-
ing system is relatively inexpensive, retailing for approx-
imately $1,000 for the cameras and lighting equipment
plus the cost of a computer with one or two video digi-
tizers, depending on the functions desired. As seen from
the multiplayer gaming and terrain navigation applica-
tions, the Perceptive Workbench provides an untethered
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(b)

(c)

14 Terrain navigation using deictic gestures: (a) pan-
ning, (b) rotating (about an axis perpendicular to and
through the end of the rotation lever), and (c) zooming.

15 A virtual
instantiation of
the workbench
that mirrors, in
real time, the
type and posi-
tion of objects
placed on the
real desk.



and spontaneous interface that encourages the inclusion
of physical objects in the virtual environment. ■
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