
A Geographically-Distributed, Assignment-Structured
Undergraduate Grid Computing Course

Mark A. Holliday, Barry Wilkinson, Jeffrey
House, and Samir Daoud

Department of Mathematics and Computer Science
Western Carolina University

Cullowhee, NC 28723
+1 (828) 227-3951

{holliday, abw, jhouse, sdaoud}@cs.wcu.edu

Clayton Ferner
Department of Computer Science

University of North Carolina at Wilmington
601 South College Road
Wilmington, NC 28403

+1 (910) 962-7129
cferner@uncw.edu

ABSTRACT
Grid computing is now mature enough and important enough to
be studied as a full course at the undergraduate level for upper-
level computer science majors. We have developed such a
course, including a set of lecture slides, assignments, and
assignment handouts specifically targeted for this audience. The
sequence of assignments is a key part of the course. Some of the
assignments are modifications of pre-existing work and others
are completely new. We describe the key decisions we made
about the course organization and content and describe the
assignments. An important feature of the course is that it was
geographically distributed with copies of the grid software
installed at three campuses. Those campuses plus three others
were receiving sites and included students and faculty associated
with nine universities.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – client/server, distributed applications, distributed
databases, network operating systems.

General Terms
Design, Experimentation, Security, Standardization.

Keywords
Grid Computing, Assignments, Globus, Web Services, Grid
Services.

1. INTRODUCTION
Grid computing is an approach to distributed computing over the
Internet that uses open standards [2]. The goal is to virtualize the
resources at geographically distributed and often heterogeneous
sites. Such resources can include computational devices, data
storage, and instrumentation and sensors. Grid computing should
lead to more efficient use of these resources by allowing remote
and transparent access. Increasing Internet bandwidth and the

recent development of key open standards are making the
development of production grids increasingly feasible.

We believe that the field of grid computing has matured to the
point where a course aimed at the undergraduate, upper-level
computer science major is both feasible and desirable. Graduate
level courses on grid computing which consist of a seminar
reading and presenting a series of papers in the area have been
ongoing at a number of universities. However, a true
undergraduate course should be different. Such a course should
provide a coherent set of lectures that describe the organization
of the software that implements grid computing. Just as
importantly, such a course should provide a series of hands-on
programming assignments so that the students can directly use
the key components of the grid infrastructure and develop their
own grid-enabled applications.

We have been working over the last year to develop such a
course. We received funding from the University of North
Carolina Office of the President [9, 10] and the National Science
Foundation [11] to support this effort. The first offering of the
course is ending at the time of this writing. Undergraduate, grid
computing courses for computer science majors are still quite
novel. In fact, we chose to offer the course to other universities in
North Carolina over the state-supported tele-conferencing
network. The response was larger than we expected.

Figure 1: A map of all the University of North Carolina (UNC)
campuses. The course originated at the Western Carolina
University campus of UNC and was received at Appalachian
State University, NC State University, UNC Asheville, UNC
Greensboro, UNC Wilmington. In addition, NC Central
University, Cape Fear Community College and the private
institution Elon University had students or faculty participating.

Over forty students and faculty participated in the course. In
addition to the students from our own university, students and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’05, February 23-27, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/05/0002…$5.00.

faculty at eight other universities participated in the course
remotely via the video network. Figure 1, which is a map of the
University of North Carolina system, includes the locations of
most of the universities involved. The enthusiastic response to
our course clearly indicates the need and interest for such a
course.

It is our premise that students best learn with hands-on
experiences that include working software that they use and
modify. In fact, because of the importance of the programming
assignments in such a course we structured the course around the
assignments. The course involves a series of six assignments
including detailed assignment handouts and extensive lecture
slides. This paper describes these assignments and thus also
explains the course organization.

This paper is organized with the next section addressing some
preliminary decisions we had to make about course coverage and
expectations of student backgrounds. The third section has a
subsection for each of the six assignments. In the fourth section
we discuss our experiences. In the last section we review related
work and conclude.

2. PRELIMINARY DECISIONS
Deciding on what not to have as the first assignment was an early
key decision. What we chose not to cover in the lectures or the
assignments are the details of installing the grid software.
Installation is complex and understanding the details would not
be appropriate for an undergraduate course, especially at the start
of such a course. Nevertheless, we did develop a detailed
installation guide handout that we posted on the website for
students to read if they wish.

The posted installation guide served another important purpose
which is to ensure consistency across the installations at all the
sites. Some of the remote sites had just a few students so we gave
those students accounts on our local machines that they could
logon to remotely. However, two of the remote sites (NC State
University and UNC Wilmington) had about thirteen students
each in the course. At those remote sites, the faculty or system
administrator performed their own installations or had
preexisting installations. Our installation guide provided a point
of reference to help ensure consistent installation procedures and
resulting grid environments across the sites.

Another issue concerning the installation guide involved what to
describe installing. The Globus Toolkit of the Globus Alliance
[7] has become the most widely-used basic, open source grid
software. However, an installation guide for only the current
version of the Globus Toolkit is insufficient. A working grid
requires many other pieces of software. Fortunately, the National
Science Foundation Middleware Initiative (NMI) [8] has
developed a distribution containing many open source grid
software contributions. We developed our installation guide
based on downloading the NMI distribution and installing
selected key parts of it.

Though there is some proprietary grid software, the grid
environment is one in which open source software based on open
standards is the predominant case. Furthermore, much of the
software includes several other features: it is written in the Java
programming language, Linux is the operating system, and
standard open source software from other application areas
(especially software developed as part of the Apache web server
project) is used. There are certainly significant efforts with

respect to other languages and operating systems, but a
representative introduction to current grid software should
involve Linux and Java. Consequently we decided that because
the course audience consists of upper-level computer science
majors we did not think it unreasonable to expect the students to
have had some experience with both of these.

Though grid environments are often used to access high-
performance computing resources and large capacity storage
resources, the hardware requirements needed to install an open
source grid environment are not exceptional. At our university
we used four 1.3 GHz Pentium IV machines each with 512
megabytes of main memory and a 30 gigabyte disk.

Another key decision we had to make was how the students
would use the software. We would characterize a grid as having
at least the following key parts:

1. a graphical portal that requires authentication and displays
available resources

2. a graphical means to create a workflow (in other words, a) to
create job instances out of selected resources, b) to place
those job instances at specified sites, and c) to identify
execution ordering dependencies between the job instances)

3. the actual procedure of submission and distribution of the
jobs that form the workflow

4. monitoring and visualization of the progression of the
execution of the workflow and visualization of the results
upon completion of the workflow

Because computer science majors make up the audience for this
course, we decided to focus on the implementation issues rather
than on the user's perspective. Consequently, we chose to use a
bottom-up approach. The assignments and lectures start with the
lowest level concepts (i.e. web services) and build up to higher
levels of software. Thus, the way to use the software is
command-level for most of the course. Only after we reach the
top level do the students see and start using graphical interfaces
for accessing the grid.

3. THE ASSIGNMENTS
Each of the assignments includes a detailed handout available on
the course website. Here we merely identify the key points. The
lectures for the course cover the material needed for each
assignment. The lectures also include introductory material
motivating the use of grids and providing a historical context.
The last several lectures were by guest speakers on specialized
topics.

3.1 Assignment One: Web Services
The standards which grid software implement have been
changing rapidly. However, those standards and software appear
to be converging to a stable state. A key feature of that state is
that the grid is implemented by grid services and that grid
services are an extension of web services. Web services, in turn,
are based on a set of well-defined standards [12]. Thus, we
decided that the series of assignments should start with an
assignment where the students learn how to implement and
execute a web service.

A web service is often implemented using a Java servlet which in
turn requires the presence of a servlet container. Our assignment
one uses the widely used Apache Tomcat servlet container. One

instance of Tomcat is running on the machine before the student
starts the assignment.

All of the assignments have two halves. In the first half the
student is guided through the steps of running a version of the
software being demonstrated. In the second half the student
modifies or extends the provided client and server software and
then repeats the steps. Assignment one involves creating all the
needed server source files, creating the server executable files,
creating the client source file, and compiling and running the
client.

The server source files are partially provided. The example
service is a MyMath class that includes a method returning the
square of the number which is passed to it as an argument. A
source file with only that class is provided. The student then uses
the Apache Axis software to generate all the other needed server
source files. These source files include the WSDL (Web Services
Description Language) describing the service, Java interfaces
used by the client, a Java stub class to be called by the client, and
a Java class to use in locating the service.

The student then compiles the service source files using the Java
compiler. We provide and explain the source file for an example
client that accesses the server. The student then compiles the
client source file and runs the client. The output can be examined
to see that the server worked.

The student then extends the MyMath class by adding another
method that checks whether the number passed as an argument is
even or odd. This assignment and its handout were motivated by
one developed by Amy Apon [1].

3.2 Assignment Two: Grid Services
Assignment one does not require the use of any grid software
since it involves only a web service. Assignment two adds the
complexity of requiring some grid software. However, it only
uses the most basic layer of grid software which is implemented
by the Globus Toolkit (we are using version 3.2 which is the
most recent version).

The assignment two grid service is another mathematics-related
class that has methods for changing the value of a state variable
by addition or subtraction as well as a method for returning the
current value of the state variable. In contrast to the web service,
this grid service maintains some state between method calls.

Being a grid service makes the assignment more complex in
several ways. One is that Tomcat is not used directly as the
servlet container. Instead the servlet container is started through
Globus by the student as part of the assignment and terminated
by the student as part of the assignment. Since multiple students
are using the same machine there will be multiple containers
running and the students must ensure that each container is
listening on a different TCP port. The students need to learn how
to determine which TCP ports are free.

A second way that a grid service is more complex is that
deployment of the service is more explicit than it was in
assignment one. As in assignment one, the base server source file
is provided. However, the WSDL file (actually Grid WSDL) is
also provided and described instead of merely generated and
used. The student then builds all the other required source files,
compiles them, and deploys the resulting service using the
Apache Ant build system. Ant is similar to the UNIX make
program but based on XML.

At this point the student turns his or her focus to the client
software. The source code for an example client is provided and
described. The student compiles this code to create the client
executable, starts the container on a free port and runs the client.
The student then learns to end the session including terminating
the container. As in assignment one, the student then extends the
server and redoes all the steps. This assignment is a modification
of the one in Bojo Sotomayor's tutorial [5] though our handout is
significantly more detailed.

3.3 Assignment Three: Job Submission
At this point the student has the basic understanding of how to
define, create, deploy, and use a generic grid service. In
assignment three we focus on how to use a particular, very
important, grid service: the grid service that is used to submit a
job. That grid service is called the Globus Resource Allocation
Manager (GRAM).

The student first is introduced to the Resource Specification
Language-2 (RSL-2). RSL-2 is the language that GRAM uses
starting with version 3.2 of the Globus Toolkit. It is an XML
schema (RSL-1 was not) with some standard attributes such as
the file path to the executable for the job that is being submitted
and the file paths for standard input, standard output, and
standard error. The RSL-2 file used to submit the executable
file /bin/echo is examined.

At this point the student is ready to start the sequence for
submitting a job to the grid. As discussed for assignment two, the
student must first identify a free port and then start a container on
one of those free ports. It would be convenient for the next step
to be for the student to submit the job. However, an intermediate
step is needed that involves security.

An important part of Globus is its implementation of the Grid
Security Infrastructure (GSI). In a grid when a user requests a
service that service is often not on the same machine as the user.
In fact the service is often on a machine at a different site and
that other site may belong to a different organization. Thus,
mutual authentication of both the user and the service is essential.
Mutual authentication is done by GSI via certificates and the
Secure Socket Layer (SSL) protocol. In particular, each user and
service in the grid is identified via a certificate in the X.509
certificate format. Each certificate has been signed by a
Certificate Authority (CA) through the use of digital signatures
and public key cryptography. The mutual authentication is
initiated by the user entering a passphrase.

The presence of these certificates and the mutual authentication
process have so far not been visible to the user. However, at this
point in the use of GRAM, the presence of GSI in the
background becomes apparent. In particular, GSI includes a
delegation capability which is an extension to the SSL protocol.
The service requested by the user often needs to, in turn, make a
request of other services in order to complete the user's request.
Each of these secondary requests requires mutual authentication
and thus an entering of a passphrase by the user. Delegation
avoids the need to reenter the passphrase through the creation of
a proxy certificate.

Thus, before the student can perform the actual job submission, a
proxy certificate must be created to be used by GSI when the job
submission takes place. The proxy certificate creation is done by
the student executing the grid-proxy-init command. After that
command the student can submit the job. GRAM is invoked
using the managed-job-globusrun command. That command

takes as its argument the RSL-2 file that identifies the job to be
run and other information (such as the file to be used for standard
output).

The job runs and the student can see that it ran by looking at the
output of /bin/echo in the file designated for standard output. The
student then repeats this sequence but with a new executable job
that she has written and compiled The new job is a Java program
that implements the functionality of /bin/echo. In addition to
creating the new executable job the student must edit the RSL-2
file appropriately.

Just before assigning assignment three we decided to add another
major step. In the additional step the student combines
assignment two and assignment three. First, the student writes a
grid service called Item, which provides inventory information
about the items being sold in a store. Second, the student deploys
an instance of the Item grid service. Next the student writes a
client called Shopper that accesses that instance of the Item grid
service. All of these steps are like parts of assignment two, but
are non-trivial since many grid-related files have to be changed
as well as the writing of the source code for the grid service and
the client.

The next phase of this step involves GRAM job submission and
the previous steps of assignment three. First, the student creates a
RSL-2 file to submit via GRAM one instance of the Shopper
client. That client, once submitted, interacts with the deployed
Item grid service as before. Then, the student modifies the RSL-2
file to submit via GRAM four instances of the Shopper client. All
four instances of the client then concurrently access the one
instance of the deployed Item grid service.

3.4 Assignment Four: Job Distribution
The Globus Toolkit only provides part of the software needed for
a grid environment. Assignment four is the first assignment that
goes beyond the Globus Toolkit. In particular, GRAM provides
only basic job submission. More sophisticated job submission
and distribution is done by software such as Condor-G (Grid-
enabled Condor) [7]. Fortunately, the National Science
Foundation Middleware Initiative (NMI) grid distribution
includes many programs including Condor-G (Grid-enabled
Condor).

In assignment four the student uses Condor-G to submit a job.
The student first learns the format of the submit description text
file that Condor-G requires. An example of such a file is
provided. The student then creates a proxy certificate, learns how
to check the status of the condor pool of machines, and uses the
submit description text file and the condor-submit command to
submit the job. The student then monitors and manages the
progress of the job and the status of the condor pool and verifies
the output of the job when the job completes. As in assignment
three the student then repeats this sequence but with a job that he
or she writes and compiles.

3.5 Assignment Five: Parallel Programming
The previous assignments illustrate how grids can be used to
solve important classes of problems. These classes include cases
where jobs are single executions but they are embedded within a
larger problem such as the parameter sweep of a design space or
a step within a workflow. However, grids can also be used for
parallel programming. Message Passing Interface (MPI) is
widely used to support parallel programming [3]. A version of
MPI, called MPICH-G2, works with Globus. Assignment five

involves the students writing some parallel programs using
MPICH-G2 and running them on our grid.

3.6 Assignment Six: A Workflow Editor
By the end of assignment five the student has an understanding
of how the internals of a significant part of a grid environment
work. It is now time for the student to turn to the view seen by a
user. As mentioned earlier, the user is authenticated via a grid
portal and then uses the portal to specify which resources to
execute within a workflow. The workflow is then submitted and
the user can monitor the progression of the workflow and use
visualization to examine the results when the workflow
completes.

Figure 2: Creation of a workflow [9] using the workflow editor
developed at the Department of Computer Science of UNC-
Wilmington.

We show the user viewpoint to the student by examining the
workflow editor developed at the Department of Computer
Science of UNC-Wilmington [9]. An example use of this
workflow editor is shown in Figure 2. This example illustrates
the flexibility of the UNC-W software. The module selected by
the user and placed in the workflow need not be a regular job.
Instead it can be the data set resulting from a database query (as
in the top left rectangle of the figure), a particular constant value
(as in the bottom left rectangle of the figure), or useful general
modules such as a filter (left middle rectangle) or a statistical
analyzer (right middle rectangle). Assignment six involves the
students using this workflow editor in an example grid problem.

4. EXPERIENCES
The course that is structured around the above assignments is
now finished except for the final exam. Before the semester
started we had carefully tested the first four assignments. We
tested them ourselves on our own machines. We also conducted a
trial run of using them in a workshop attended by UNC computer
science faculty. We were fairly confident at that point that they
would work as expected. The one surprise from the pre-course
workshop was how memory intensive the servlet container is. If
more than a few containers are started on a single machine with
512 megabytes of main memory, thrashing occurs.

During the course those four assignments worked as we
expected. Our one mistake was the last minute addition of the last
step to assignment three (the store grid service and the shopper
client). Completing this step is quite complex and turned out to
be beyond the skills of most of the students. We extended the
deadline for assignment three in an attempt to give the students
sufficient time to complete it. As a result we did not have enough
time for all of the remaining assignments. Our solution was to

post assignment five (MPI programming) but not to require the
students to complete it.

Our experience with assignment three highlights an issue that we
debated about the nature of the assignment handouts. If we want
the assignment handout to be as useful as possible as a resource
for the students then it should contain a great deal of detail. On
the other hand, too much detail can make the assignment too
straightforward and not require sufficient independent thinking
on the part of the student.

The grid software was installed at two of the remote sites as well
as at our site. Even though the three sites had different hardware
configurations, students were able to complete the assignments at
all three sites. We found that supporting the student use of the
software was very labor-intensive. We had two students at our
university dedicated to providing support for software issues in
the course. Their time was completely occupied by answering
questions and resolving problems. Consequently, we did not have
time to accomplish one of our goals in the course. That goal was
to connect the grid software at the three sites into a single
operational grid, instead of three independent grids.

5. RELATED WORK AND CONCLUSIONS
The study of grid computing education is in its early stages. A
significant step was the set of papers presented at the
International Workshop on Grid Education at the 4th IEEE/ACM
International Symposium on Cluster Computing and the Grid
(CCGrid04) in April of 2004.

The paper [4] by Bini Ramamurthy on the GridForce project is
especially noteworthy. The GridForce project involves
developing a two course sequence on grid computing at the
senior undergraduate/first year graduate student level. The
laboratories in the first course involve web services and grid
services. However, their approach to grid services is different
than ours and aimed at more advanced students. The first grid
service laboratory does not use Globus (or Apache Axis); instead
it uses a “minimal grid framework”. The students build the
framework themselves. The second grid service laboratory
requires the students to install Globus themselves. The GridForce
approach is a useful complement to our approach. It would be
attractive to students who complete our course and want to
investigate grid computing further.

Bojo Sotomayor has written The Globus Tookit 3 Programmer's
Tutorial [5]. An early section of the tutorial shows how to write
“your first grid service in five easy steps.” Our assignment two is
an adaptation of this section to our environment with our handout
expanding on what we feel are the key points.

The work [1] by Amy Apon at the University of Arkansas is also
related. Like us, she recommends starting with a web services
assignment and then a grid services assignment. Our web
services assignment was motivated by hers. Her grid service
assignment, like ours, is a modification of the Bojo Sotomayor
example.

In conclusion, we believe that the course we have developed is a
significant contribution to the study of grid computing education.
The sequence of assignments builds upon earlier work. The
overall sequence of assignments is new. Some assignments are
completely new. Other assignments are based on earlier work but
for all the assignments we have developed unusually detailed
handouts to help explain the concepts and to ensure that the
student will avoid common pitfalls. The lecture slides are

completely new. Materials appropriate for the undergraduate
computer science major are significantly different from those
appropriate for graduate students or professionals. We believe
(and are supported by our experiences) that we have found the
right level of assignments and materials for the undergraduate
audience.

All of the course materials including lecture slides, assignment
slides, the grid software installation handout, and the assignment
handouts are available on the web at
http://cs.wcu.edu/~abw/CS492F04/index.html.

6. ACKNOWLEDGEMENTS
Our thanks to the National Science Foundation (DUE 0410667)
and the Office of the President of the University of North
Carolina System for their financial support of this project. Our
thanks also to Mark Baker and the Distributed Systems Group at
the University of Portsmouth in England for the time Mark
Holliday spent there while working on this paper.

7. REFERENCES
[1] Apon, A., Mache, J., Yara, Y., and Landrus, L., Classroom

Exercises for Grid Services, Proc. of the Linux Cluster
Institute Int. Conf. on High Performance Computing,
Austin, TX, USA, May 2004.

[2] Foster, I. and Kesselman, C. The Grid 2: Blueprint for a
New Computing Infrastructure, Second Edition, Morgan
Kaufmann, 2004.

[3] Gropp, W., Lusk, E., and Skjellum A., Using MPI Portable
Parallel Programming with the Message-Passing Interface,
Second Edition, MIT Press, 1999.

[4] Ramamurthy, B., GridForce: A Comprehensive Model for
Improving the Technical Preparedness of our Workforce for
the Grid, Int. Workshop on Grid Education (CCGrid04),
April 2004, Chicago, IL. USA.

[5] Sotomayor, B., “The Globus Toolkit 3 Programmer's
Tutorial,” http://www.casa-sotomayor.net/gt3-
tutorial/multiplehtml/index.html.

[6] The Condor Project Homepage,
http://www.cs.wisc.edu/condor/.

[7] The Globus Alliance: The Globus Toolkit, http://www-
unix.globus.org/toolkit/.

[8] The National Science Foundation Middleware Initiative,
http://www.nsf-middleware.org/.

[9] Wilkinson, B., et. al. (UNC-Wilmington, lead), Fostering
Undergraduate Research Partnerships through a Graphical
User Environment for the North Carolina Computing Grid,
University of North Carolina Office of the President, 2004-
2006.

[10] Wilkinson, B., Holliday, M., et. al. (Appalachian State Univ.
lead), A Consortium to Promote Computational Science and
High Performance Computing, University of North Carolina
Office of the President, 2004-2006.

[11] Wilkinson, B., Holliday, M., and Luginbuhl, D.,
Introducing Grid Computing into the Undergraduate
Curriculum, National Science Foundation, DUE 0410667,
2004-2006.

[12] World Wide Web (W3C) Consortium, Web Services
Activity, http://www.w3.org/2002/ws/.

