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Figurel.2 Conventional computer having
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Figure1l.4 Message-passing
Computers multiprocessor model (multicomputer).
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Figure1.6 MPMD structure.
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Figure1.8 Nodewith aswitch for internode message transfers.
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Figure1.10 Ring.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998

10




. Computer/
Links Processor

| | | 7

Figure1.11 Two-dimensiona array
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Figure1.13 Three-dimensional hypercube.
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Figure1.14 Four-dimensional hypercube.
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Figure1.22 Multiple virtual channels mapped onto a single physical channel.
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Figure 1.24 Ethernet frame format.
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Figure1.25 Network of workstations connected viaaring.
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Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998 26




Parallel programming cluster

[ [ [ [ [ [
il il il il il il

(a) Using specially designed adaptors

AN N ¥ N I O O 1

4 4 @ @ @ 4

(b) Using separate Ethernet interfaces

Figure1.27 Overlapping connectivity Ethernets.
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Figure1.28 Space-time diagram of a message-passing program.
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Figure1.29 Parallelizing sequential problem — Amdahl’s law.
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Figure1.30 (a) Speedup against number of processors. (b) Speedup against serial fraction, f.
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Figure2.2 Spawning aprocess.
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library calls.
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Figure2.4 Synchronoussend() andrecv() library callsusing athree-way protocol.
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Figure2.6 Broadcast operation.
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Figure 2.7 Scatter operation.
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Figure2.10 Message passing between workstations using PVM.
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Figure2.11 Multiple processes allocated to each processor (workstation).
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Figure2.13 PVM packing messages, sending, and unpacking.
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#i ncl ude <stdio. h>
#i ncl ude <stdlib. h> Master
#i ncl ude <pvnB. h>
tdefine SLAVE *“spsunf
fdefine PROC 10
tdefi ne NELEM 1000
main() {
int mytid,tids[PROC;
int n = NELEM nproc = PRCC,

int no, i, who, nsgtype; Slave
i nt data[ NELEM , resul t [ PROC], t ot =0; . .
char fn[255]: #i ncl ude <stdio. h>
FILE *fp: #i ncl ude “pvnB8. h”
tid=pvm nytid();/*Enroll in PVM */ #define PROC 10
ytid=pvmnytid() #def i ne NELEM 1000
'* Start Slave Tasks */ .
no= mai n() { .
pvm spawn( SLAVE, (char**)0, 0, ““, nproc, ti ds); Int mytid _
if (no < nproc) { I nt t'dS[PR.OC]’ )
printf(“Trouble spawning slaves \n"); tnt n, me, i, megtype;
for (i=0; i<no; i++) pvmkill(tids[i]); Int X, nproc, master;
pvmexit(): exit(1): i nt data[ NELEM, sum

mytid = pvmnytid();
'* Qpen Input File and Initialize Data */

strcpy(fn, getenv(“ HOVE")); /* Receive data from master */

strcat(fn,”/pvn8/src/rand_data.txt”); nmsgtype = O; _

if ((fp = fopen(fn,”r”)) == NULL) { pvmrecv(-1, msgtype);
printf(“Can’t open input file %\n”,fn); pvm upkint (&nproc, 1, 1);

pvm upkint (tids, nproc, 1);
pvm upkint (&, 1, 1);
pvm upki nt (data, n, 1);

exit(1);

}
for(i=0;i<n;i++)fscanf(fp,”"%l", &ata[i]);

/* Determne ny tid */
for (i=0; i<nproc; i++)

if(nytid==tids[i])

{me = i; break;}

'* Broadcast data To sl aves*/
pvm i ni t send( PvnDat aDef aul t) ;
megtype = 0;
pvm pki nt (&proc, 1, 1);
pvm pkint (tids, nproc, 1);
pvm pkint (&, 1, 1);
pvm pki nt (data, n, 1);
pvm ntast (tids, nproc, nsgtag);

Broadcast data /[* Add ny portion OF data */
X = n/nproc;
low = me * x;

high = low + x;
for(i =1low i < high; i++)
'* Get results from Slaves*/ sum += data[i];
msgtype = 5;
fo? {ip:O' i <nproc; i++){ /* Send result to master */
X ! i ini PvnDat aDef aul t) ;
pvmrecv(-1, nsgtype); . pvm_i ni t send( : ;
pvm upki nt (&ho, 1, 1): Recaive results pvm pki nt (&me, 1, 1);

pvm upki nt (& esul t[who], 1, 1); pvm pkint (&um 1, 1);

printf(“% from %\ n”,resul t[ who], who); negtype = 5
} master = pvm parent();

pvm send(master, nsgtype);

'* Conpute gl obal sum */

for (i=0; i<nproc; i++) tot += result[i]; [* Exit PVM*/

printf (“The total is %l.\n\n", tot); pvmexit();
return(0);

pvmexit(); /* Programfinished. Exit PVM */ }

return(0);

Figure2.14 Sample PVM program.
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(b) Possible behavior

Figure2.15 Unsafe message passing with libraries.
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#i ncl ude “npi.h”

#i ncl ude <stdio. h>
#i ncl ude <mat h. h>
#def i ne MAXSI ZE 1000

voi d mai n(int argc, char *argv)
{
int nmyid, nunprocs;
int data[ MAXSI ZE], i, x, low, high, nyresult, result;
char fn[255];
char *fp;

MPlI I nit(&argc, &rgv);
MPI _Comm si ze( MPI _COVM WORLD, &unpr ocs) ;
MPI _Comm r ank( MPI _COVM WORLD, &nyi d) ;

if (nyid == 0) { /* Open input file and initialize data */
strcpy(fn, getenv(“HOVE"));
strcat(fn,”/MPl/rand_data.txt”);
if ((fp = fopen(fn,”r”)) == NULL) {
printf(“Can’'t open the input file: %\n\n”, fn);
exit(1);
}
for(i = 0; i < MAXSIZE; i++) fscanf(fp,"%l", &data[i]);
}

/* broadcast data */
MPI _Bcast (data, MAXSIZE, MPI _INT, 0, MPI_COVM WORLD);

/[* Add ny portion OF data */
X = n/ nproc;
low = nyid * x;
high = low + x;
for(i = low i < high; i++)
nyresult += data[i];
printf(“l got % from%\n", myresult, nyid);

[ * Conpute gl obal sum */
MPI _Reduce(&nmyresult, &esult, 1, MPI _INT, MPI _SUM 0, MPI _COVM WORLD);
if (myid == 0) printf(“The sumis %l.\n", result);

VPl _Finalize();

Figure2.16 Sample MPI program.
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Figure2.18 Growth of function f(x) = 4x° + 2x + 12.
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Figure2.19 Broadcast in athree-dimensiona hypercube.
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Figure2.20 Broadcast as atree construction.
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Figure2.21 Broadcast in amesh.
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Figure2.22 Broadcast on an Ethernet
Source Destinations network.
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Figure2.25 Space-time diagram of a parallel program.
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Figure3.2 Practical embarrassingly parallel computational graph with dynamic process
creation and the master-slave approach.
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Figure 3.3 Partitioning into regions for individual processes.
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Figure3.5 Work pool approach.
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Figure3.7 Computing thy aMonte Carlo
method.
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X Figure3.8 Function being integrated in
1 computing Ttby a Monte Carlo method.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998 64




Master

Partial sum

Saves { J----------

Random number Figure3.9 Parallel Monte Carlo
process integration.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998

65




Figure3.10 Paralel computation of a sequence.
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Figure4.1 Partitioning a sequence of numbersinto parts and adding the parts.
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Figure4.4 Partial summation.
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Figure4.6 Quadtree.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998 12




Image area —_|

L

First division
into four parts ~

Second division

Figure4.7 Dividing animage.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998

73




Unsorted numbers

Buckets

Sort
contents
of buckets

Merge lists

Sorted numbers

Figure4.8 Bucket sort.
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Figure4.9 Oneparallel version of bucket sort.
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Figure4.10 Parallel version of bucket sort.
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Figure4.11 *“All-to-all” broadcast.
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“All-to-all”

Aoo|Ao1|Poz2|Po3 Poo|A10|A20|As0
A10|A11|AL2|AL3 Ao1|A11|A21 (A3
A20|A21|A22|A23 Ao2| P12 | A22|As2
Azo|As1|As2|Ags Aos|Ars|Ass|Ags Figure4.12 Effect of “dl-to-al” onan

array.
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f(p) f(a)

> Figure4.15 Numerical integration using
p & q X thetrapezoidal method.
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Figure4.16 Adaptive quadrature
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Figure4.18 Clustering distant bodies.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998

84




Subdivision
direction

Particles Partial quadtree

Figure4.19 Recursive division of two-dimensional space.
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U Figure4.20 Orthogonal recursivebisection
method.
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Figure4.21 Process diagram for Problem 4-12(b).
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f(b) Figure4.22 Bisection method for finding
the zero crossing location of afunction.
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Figure4.23 Convex hull (Problem 4-22).
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Figure5.1 Pipelined processes.
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Figure5.2 Pipelinefor an unfolded loop.
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Figure5.3 Pipelinefor afrequency filter.

Filtered signal
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p—1 m
Instance| I nstance| I nstance| I nstance| I nstance
Ps 1 2 3 4 5
Instance|Instance| I nstance| I nstance| I nstance| I nstance
Pa 1 2 3 4 5 6
Instance|Instance|Instance| I nstance| I nstance| I nstance| Instance
P3 1 2 3 4 5 6 7
Instance| Instance| I nstance| Instance| I nstance| I nstance| I nstance
P2 1 2 3 4 5 6 7
Instance| I nstance| I nstance| I nstance| I nstance| I nstance| I nstance
P1 1 2 3 4 5 6 7
Instance|Instance| | nstance| I nstance| I nstance| I nstance| Instance
Po| 1 2 3 4 5 6 7
>
Time
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Instance O PO Pl P2 P3 P4 P5
Instance 1 Po Pl P2 P3 P4 P5
Instance 2 Pg P P> P3 Py Pg
Instance 3 PO P1 P> P3 P4 P5
Instance 4 Po Pl P2 P3 P4 P5

| |

| |

— >
Time

Figure5.5 Alternative space-time diagram.
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Input sequence
dodgd7zdgdsdsdadodidy > Po Pl PL I P2 P P3 1 P4 1 Ps ] Pe | P7 1l Ps [ Po

(a) Pipeline structure

B p-1 o n
Pg do | dp | d2 | d3 | dg | d5 | dg
Pg dg | dq | dp| d3g|dg|d5|dg|dy
P, dop | dy | dp | d3 | dg|d5|dg|dy|dg
Pg dgp | dy | dp | d3g|dg|d5|dg|d7|dg|dg
Ps do | dp | dp | d3 | dg| d5|dg|d7|dg|dg
Py dg | dy | dp | d3g|dg|ds5|dg|dy|dg | dg
P3 dgp | dy | dp | d3g|dg|d5|dg|d7|dg|dg
P, dgp | dy | dp | d3g|dg|d5|dg|d7|dg|dg
Py do | dp | dp | d3 | dg| d5 | dg|d7|dg|dg
Po | do|dy|dy|dg|dy|ds|dg|cy|dg]|dg

Time
(b) Timing diagram

Figure5.6 Pipeline processing 10 data elements.
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Ps Ps
f Py Py
Information
transfer P3 P3
sufficient to P, P,
start next
process Py P,
— 1 Information passed
Pg to next stage Po
—> —>
Time Time
(a) Processes with the same (b) Processes not with the
execution time same execution time

Figure5.7 Pipeline processing where information passes to next stage before end of process.
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Processor 0 Processor 1 Processor 2

1{ 1{

Po*Pl*Pz*P?,J[P4’P5’P6*P7J[Ps*Pg*Plo*Pll

Figure5.8 Partitioning processes onto processors.
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Figure5.9 Multiprocessor system with aline configuration.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998 98




Figure5.10 Pipelined addition.
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Figure5.11
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Figure5.12 Pipelined addition of numbers with direct access to slave processes.
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Figure5.13 Stepsin insertion sort with five numbers.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998

102




Series of numbers Compare ‘ /\ /\
Xmax

Next largest
number

Largest number

Figure5.14 Pipeline for sorting using insertion sort.
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Figure5.15 Insertion sort with results returned to the master process using a bidirectional line configuration.
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Figure5.16 Insertion sort with results returned.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998 105




Not multiples of
1st prime number
P1 P2

Series of numbers /\ /\
Xn-1 -+ X1X0 . 2 U“

Compare 1st prime 2nd prime 3rd prime
multiples number number number

Po

> >
> r

Figure5.17 Pipelinefor sieve of Eratosthenes.
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Po Py P, P3

X X0 X%
X0 > X1 g F———> X1
Compute Xq >| Compute xq X1 | Computexo Xo > Compute X3 »
> > F———> 2
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Figure5.18 Solving an upper triangular set of linear equation using a pipeline.
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P2l A A
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Po ™ First value passed onward
5 Figure5.19 Pipeline processing using back
Time substitution.
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Po Py P2 P3 Py
divide
send(xg) O recv(xg)
end send(xg) O recv(Xg)
multiply/add send(xg) O recv(Xg)
divide/subtract multiply/add send(xg) O recv(Xg)
send(xq) O recv(xy) multiply/add send(x;) O
end send(xq) O recv(xy) multiply/add
multiply/add send(x;) O recv(xy)
Time divide/subtract multiply/add send(x;) O
send(xy) O recv(x,) multiply/add
end send(xp) O recv(xo)
multiply/add send(xy) O
Y divide/subtract multiply/add
send(xz) O recv(Xa)
end send(xz) O
multiply/add
divide/subtract
send(xy) O
end

Figure5.20 Operationsin back substitution pipeline.
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Figure5.21 Pipelinefor Problem 5-9.
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Figure5.22 Audio histogram display.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen O Prentice Hall, 1998

111




Processes
Po P1 P2 Pn-1

Active !

Time .
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Figure6.1 Processesreachingthebarrier at
different times.
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al reach their
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Figure6.2 Library call barriers.
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Figure6.3 Barrier using a centralized counter.
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Master Slave processes

i . . . B ier:
Arrival for(i=0;i<n;i++) art Idezg .
phase recv(Pyn) : send( Prgster) ;
Departure oo ooanyde »recV(Prgster) ;
¢ for(i=0;i<n;i++)
phase -

send(P;);

Barrier:
send( Praster)

1 ecV(Praster):

Figure 6.4 Barrier implementation in a message-passing system.
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Figure6.5 Treebarrier.
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Figure6.6 Buitterfly construction.
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Instruction
a[] = a[] +

|

Processors( a[ 0] =a[ 0] +k; a[ 1] =a[ 1] +k; a[ n- 1] =a[ n- 1] +k;

=~

a[ 0] a[ 1] a[ n- 1]

Figure6.7 Dataparallel computation.
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Numbers | Xo | Xq | X2 | X3 | X4 | X5 | Xg | X7 | Xg | Xo | X10 | X121 | X12 | %13 | X14 | X15

0 1 2 3 4 5 6 7 8 9 10 (11| 12 | 13| 14 | 15
Sepl |2 |2 |2 |2 |2 |22 |22 |2 |2|2|2 |2 |2 |2
(J:o) i=0 | i=0|i=1|i=2|i=3|i=4 | i=5|i=6|i=7 [ i=8 [ i=9 |i=10|i=11]i=12|i=13|i=14
IR\ D\ D\ D\ I\ | Y WY WY WY Oy Add
0 1 2 3 4 5 6 7 8 9 12 [ 13| 14 | 15
Sep2 |2 |2 2|2 |2 |2 |2 |22 |2 2|21z
(J:l) i=0 | i= i=0 [ i=0 [i=1|i=2|i=3|i=4|i=5|i=6 | i=7 | i=8 | i=9 |i=10]|i=11|i=12
~II
\\s\\\\\\s\\\\\\s\y\i Add
0 1 2 3 4 5 6 7 8 9 10| 11|12 | 13 | 14 | 15
Step 3 2 2l2zlzl2|2lzZ|l2|2]|2]Z 2122
(=2 i= i= i=0 | i= i=0 | i=0 [ i=0|i=0|i=1|i=2 |i=3|i=4|i=5]|i=6 | i=7 | i=8
i\
— ——— —
0 1 2 3 4 5 6 7 8 9 10 (11| 12 | 13| 14 | 15
Findstep| 2 | 2 | 2 2 2 2l2|l2l2|2l2|2|2
(=3 i=0 | i=0 [i=0[i=0[i=0|i=0|i=0|i=0|i=0 | i=0 [ i=0 | i=0 [ i=0 | i=0 | i=0 | i=0

Figure 6.8 Dataparalld prefix sum operation.
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Figure6.10 Allgather operation.
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Figure6.11 Effectsof computation and communication in Jacobi iteration.
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Figure6.12 Heat distribution problem.
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send(g, Pi+1);
send(g, Py j.1);
send(g, P j+1);
recv(W, Pi-l,j)

\feCV(Z P j+1);

recv(X, |:)i+1,j);
recv(y, Pij.1); /

~
N

(send(g, Pi-1j): \

send(g, Pi+1));
send(g, P j.1);
send(g, P j+1);
recv(w, Pi-l,j)
> recv(X, Pi+1’j);
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\recv(z, Pij+): /
‘y(send(g, Pi-1j); \

send(g, P+1);

/

send(g, P, j.1);
send(g, P, j+1);
recv(w, Pi_1 ) <

] reov(x, Pig )= \

™ recv(y, Pjp);
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send(g, P j+1);
recv(w, Pi-l,j)
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send(g, Pi+1));
send(g, P j.1);
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recv(w, Pi-l,j)
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\
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~

Figure6.14 Message passing for heat distribution problem.
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Figure6.15 Partitioning heat distribution problem.
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Figure6.16 Communication consequences of partitioning.
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Figure6.17 Startup timesfor block and
strip partitions.
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Figure6.18 Configurating array into contiguous rows for each process, with ghost points.
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Figure6.19 Room for Problem 6-14.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998

130




A
o Sl
vehicle :
a -
o o

- - - - - -

Figure6.20 Road junction for
Problem 6-16.
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(b) Perfect load balancing Figure 7.1 Load balancing.
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Figure7.2 Centraized work pool.
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Figure7.3 A distributed work pool.
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Figure 7.4 Decentralized work pool.
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Figure7.5 Decentralized selection algorithm requesting tasks between daves.
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Figure7.6 Load balancing using a pipeline structure.
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Figure 7.7 Using acommunication processin line load balancing.
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Figure7.8 Load balancing using atree.
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Figure7.10 Ring termination detection algorithm.
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Figure7.12 Passing task to previous processes.
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Figure7.13 Treetermination.
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Figure7.14 Climbing a mountain.
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Figure7.15 Graph of mountain climb.
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(b) Adjacency list

Figure7.16 Representing a graph.
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Vertex |

Figure7.17 Moore's shortest-path algo-
rithm.
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Master process

Start at
source
vertex

Vert ex

distance

Process B

Figure 7.18 Distributed graph search.
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Entrance Search path

! /

i

Exit Figure7.19 Sample mazefor Problem 7-9.
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Entrance /

)))
/ ). H

Figure7.20 Plan of roomsfor Problem 7-10.
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Room B

Door

Figure7.21 Graph representation for
Room A Problem 7-10.
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Figure8.1 Shared memory multiprocessor
Memory modules using asingle bus.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen O Prentice Hall, 1998




TABLE 8.1 SOME EARLY PARALLEL PROGRAMMING LANGUAGES

Language Originator/date Comments
Concurrent Pasca Brinch Hansen, 19752 Extension to Pascal
Ada U.S. Dept. of Defense, 1979° Completely new language
Modula-P Bréunl, 1986° Extension to Modula 2
C* Thinking Machines, 1987¢ Extension to C for SIMD systems
Concurrent C Gehani and Roome, 1989° Extensionto C
Fortran D Fox et al., 1990 Extension to Fortran for data parallel programming

a. Brinch Hansen, P. (1975), “ The Programming L anguage Concurrent Pascal,” IEEE Trans. Software Eng.,
Vol. 1, No. 2 (June), pp. 199-207.

b. U.S. Department of Defense (1981), “The Programming Language Ada Reference Manual,” Lecture
Notes in Computer Science, No. 106, Springer-Verlag, Berlin.

c. Braunl, T., R. Norz (1992), Modula-P User Manual, Computer Science Report, No. 5/92 (August), Univ.
Stuttgart, Germany.

d. Thinking Machines Corp. (1990), C* Programming Guide, Version 6, Thinking Machines System Docu-
mentation.

e. Gehani, N., and W. D. Roome (1989), The Concurrent C Programming Language, Silicon Press, New
Jersey.

f. Fox, G., S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu (1990), Fortran D
Language Specification, Technical Report TR90-141, Dept. of Computer Science, Rice University.
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Main program

FORK
T Spawned processes
FORK
T
FORK
JOIN JOIN  Figure8.2 FORK-JOIN construct.
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Code Heap
IP
| —>
Stack _
| Interrupt routi nes|
(a) Process

Code Heap

____________

| Interrupt routi n%l

Stack Thread
IP ;

Figure 8.3 Differences between a process

(b) Threads and threads.
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Main program

thread1

|

l

: /mar 9)
{

pt hread_create( & hreadl, NULL, procl, &arg); — > \

return(*status);

[

[

1 /}
pt hread_j oi n(t hreadl, *status);

Figure84 pthread_create() andpthread_join().
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Main program

pt hr ead_create() ;Head
[
[

pt hread_create();

Thread
[

pt hread_create(); Thread Y Termination

Termination
Termination

Figure8.5 Detached threads.
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Shared variable, x

Figure8.6 Conflict in accessing shared
Process 1 Process 2 variable.
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Process 1 Process 2

while (lock == 1) do_not hi ng; whil e (1l ock == 1)do_not hi ng;
lock = 1;

Critical section

l ock = O; >
| ock = 1;

Critical section

| ock = 0;

Figure8.7 Control of critical sections through busy waiting.
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@ Resource
@ & o

(8) Two-process deadlock

1
\
, . . ,
. VA . .
p L p .
/ ' / /

(b) n-process deadlock Figure8.8 Deadlock (deadly embrace).
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Main memory

Block

OoOFRrNWhTION

Address
tag
|
Cache [T TTT1 Cache [TT T
A Block in cache A
Y Y
Processor 1 Processor 2 . L

> > Figure8.9 False sharingin caches.
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sum

Figure8.10 Shared memory locations for Section 8.4.1 program example.
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gl obal _i ndex sum

\ l - Array a[ |

Figure8.11 Shared memory locations for Section 8.4.2 program example.

Y
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Testl —
Test2 —

TABLE 8.2 LOGIC CIRCUIT DESCRIPTION FOR FIGURE 8.12

Gate  Function Inputl Input2  Output

1 AND Testl Test2 Gatel
2 NOT Gatel Outputl
3 OR Test3 Gatel  Output2

Test3

3—0—% Outputl

‘Df Output2
Figure8.12 Samplelogic circuit.
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L0 — - - [ Moverment
) of logs
River ] ] _— - <>

=

Frog

Figure8.13 River and frog for Problem 8-23.
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Pool of threads

Request

O-__ "~

Master gignd™ >0
@)
Figure8.14 Thread pool for Problem 8-24.
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a[i] a[0] a[i] a[n-1]

Increment
counter, X

b[ x] =a[i] Figure9.1 Findingtherank in parallel.
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a[i] a[0] a[i] a[1] a[i] a[2] a[i] a[ 3]

Compare
0/1 0/1 0/1 0/1
A
Add Add
0/1/2 0/1/2
Tree
Add
0/1/2/3/4
\

Figure9.2 Pardlelizing the rank computation.
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Figure9.3 Rank sort using a master and
slaves.
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Sequence of steps
P1 P2

Send(A) B

/
IfA>B d(B
A s

©)

Compare

If A>Bload A
elseload B

®

Figure9.4 Compare and exchange on a message-passing system — Version 1.
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If A>Bload B If A>Bload A

Figure 9.5 Compare and exchange on a message-passing system — Version 2.
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Original
numbers

Final
numbers

Keep
higher
numbers

Return
lower
numbers

Figure9.6 Merging two sublists — Version 1.
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Original

numbers
Keep
higher
numbers
(final
Keep numbers)
lower
numbers
(final
numbers)

Original
numbers

Figure 9.7 Merging two sublists— Version 2.
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Origina

sequence: 4 2 7 8 5 1 3 6
A P ——
4 2 7 8 5 1 3 6
M~— 7
P ——
2 4 7 8 5 1 3 6
M~— 7
P ——
2 4 7 8 5 1 3 6
Phase 1
Place || 2 4 7 8 [ 5 1 3 6
largest ]
number
P ——
2 4 7 5 8 1 3 6
M~— 7
P ——
2 4 7 5 1 8 3 6
M~— 7
P ——
2 4 7 5 1 3 8 6
Y M~
A P ——
2 4 7 5 1 3 6 8
M~— 7
P ——
2 4 7 5 1 3 6 8
M~— 7
Phase 2 |
2 4 7 5 1 3 6 8
Place Ia—
next
largest || 2 4 5 7 [ 1 3 6 8
number Ia—
P ——
2 4 5 1 7 3 6 8
M~— 7
P ——
2 4 5 1 3 7 6 8
\) M~ >
A P ——
2 4 5 1 3 6 7 8
M~— 7
Phase 3 JP——
2 4 5 1 3 6 7 8
1
I
\ : |
Time I !

Figure9.8 Stepsin bubble sort.
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Phase 1

“5
“@
Phase 2
“5 “a
Time @ @
Phase 3
<5 “o “5
“® “® ] “O0
Phase 4 7 7 7
<@ <5 “ “5
Y

Figure9.9 Overlapping bubble sort actionsin a pipeline.
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St
(?p 4 «=—> 2 7 =—> 8 5<— 1 3<=—> 6
1 2 4 =—> 7 8 =1 5 <— 3 6
2 2 =—> 4 7 =1 8 =—> 3 5<=—> 6
3 2 4 <«<—> 1 7 «<—> 3 8§ «=—> § 6
Time 4 2 «—> 1 4 <«—> 3 7 «<—> § 8 =—> 6
5 1 2 =—> 3 4 <«—> § 7 <«<—> § 8
6 1] =—> 2 3<—> 4 5 <—> 6 7 <—> 8
y 7 1 2 =—> 3 4 =—> 5 6 =—> 7 8

Figure9.10 Odd-even transposition sort sorting eight numbers.
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Figure9.11 Snakelike sorted list.
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(a) Original placement (b) Phase 1 — Row sort (c) Phase 2 — Column sort
of numbers

(d) Phase 3 — Row sort (e) Phase 4 — Column sort (f) Final phase — Row sort

Figure9.12 Shearsort.
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(@) Operations between elements (b) Transpose operation (c) Operations between elements
inrows in rows (originally columns)

Figure9.13 Using the transpose operation to maintain operations in rows.
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Unsorted list

4 (217|851

Divide

is y \ y

N |=<— | D | =] »
Dl |=] DN
O || o | <| @©
= | <] OO | =] »n
O | -—| b | =]

Merge

1123|456

Sorted list Process dlocation

Figure9.14 Mergesort using tree allocation of processes.
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Unsorted list

o
@ @

] ® ® 6 ®
: GE

Sorted list Process alocation

Pivot

= B 3 N
N | ]|
I
< |
<—| o
S

Figure9.15 Quicksort using tree allocation of processes.
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Unsorted list

Pivot
Tal|2|7]|8|5|1|3]6
¥ N
31211 5|7 | 8] 6
y \
1] 2 7|1 81| 6
{ v
2 6 8
Sorted list Pivots

Figure9.16 Quicksort showing pivot withheld in processes.
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Work pool

- - - - - -1
Sublists

Request
sublist / Return

-------------------- Figure9.17 Work pool implementation of
Slave processes quicksort.
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omer (@) (@) () (@) (=) @) @ @
P | > Py
oz () () (20) ()] (@) (@) (o) ()
<P | > P2 <P3 | >Pp3

@@@@@@@@

<Pg > Py < Ps >Ps < Ps > Pe <p7 > Py

Figure9.18 Hypercube quicksort algorithm when the numbers are originally in node 000.
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Broadcast pivot, p;

Broadcast pivot, p, Broadcast pivot, p3
oz (@) () () (@) () (@) (o) (2
<p2 | > P2 <p3 | > P3
Broadcast Broadcast Broadcast Broadcast
pivot, py pivot, pg pivot, pg pivot, py
omes (w0) ()| (o0) ()| () ()| () (o0
<Ps | > Py <Ps | >Ps < Ps | > Ps sp7 | >p7

Figure9.19 Hypercube quicksort algorithm when numbers are distributed among nodes.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998 187




110 111

1]

(a) Phase 1 communication 010 011
10 101
000 001
110 111
A A
(b) Phase 2 communication 010A Y AOLlL Y
\i 100 vy 101
000 001
110 -« > 111
(c) Phase 3 communication 010 011
100 101
< > Figure9.20 Hypercube quicksort
communication.
000 001
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Broadcast pivot, pl

- 66660000

Broadcast pivot, p2 Broadcast pivot, p3
ooz () (@), (@) @) @) (@) (2
<p2 >p2 <p3 >p3
Broadcast Broadcast Broadcast Broadcast
pivot, p4 pivot, p5 pivot, p6 pivot, p7

o (w0) ()] (22) (20)] () ()| () ()
Sp4|>p4

<ps | >p5 <p6 | >p6 <p7 | >p7

Figure9.21 Quicksort hypercube agorithm with Gray code ordering.
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a[] b[ ]

Sorted lists |2458| |1367|

Even indices
Odd indices

Compare and exchange

Final sorted list e[ ]

| | Merge L1

Merge

Figure9.22 Odd-even merging of two
8 sorted lists.

W <—]
N <]
01 <—
o <]
~ <]
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Compare and
exchange

Con

Con-1

Con-2

Even
mergesort

Odd
mergesort

c% Figure9.23 Odd-even mergesort.
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Vaue

> >
> r

3, 81,82,85 - 8281 8,81,82,85 - 8281

(a) Single maximum (b) Single maximum and single minimum

Figure9.24 Bitonic sequences.
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Bitonic sequence

exchange

A
\

Figure9.25 Creating two bitonic
Bitonic sequence Bitonic sequence sequences from one hitonic sequence.
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Unsorted numbers
3 5 8 9 7 4 2 1

Comprems NAAXNM AN
exchange

11347 5(8]|9

U Y

1 2 3 4 5 7 8 9
Sorted list Figure9.26 Sorting a bitonic sequence.
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Bitonic
sorting  — |
operation

/Y

Direction
of increasing
numbers

Unsorted numbers

T S T S T A

) =] ] [
T T

/\

L l

P——

Sorted list

Figure9.27 Bitonic mergesort.
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Compare and exchange
a; with a2 (n numMbers)

Step 3 3 3 z 3 i * * A:[blgg.ngé?(a) or (b)]
1 > [=] [=] [=] n=2 awitha,
Form It AN
bitonic lists 3 8 7 4 2 9 5 1
e PO v
2 [>] [=] [=| [=] n=4 auitha,
AN .
LTS LTS A
N T P S
numbers 3 ||_>|| ||_>|| ||<_|| ||<_|| n=2 gwithay
v =) =) =] 3] s avinas
Sort bitonic list :|3 a 5 1 9 5 > |8 /\/\ Split
v F Yy oYY vy
5 [>| [=>=] [=] [=] n=4 auitha,
AN
Cgcaa;ﬁgaénd |i i-><j !I |1 j><i9 |i /\/\ /\ v
1= (=) =) =) ez avina

1 2 3 4 5 7 8 9

Lower Higher

Figure9.28 Bitonic mergesort on eight numbers.
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Step 1

Step 2

Step 3

Figure9.29 Compare-and-exchange
Terminates when insertions at top/bottom of lists  algorithm for Problem 9-5.
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i 20,0 81 ----- qm2 Hm1 i
@0 A1 ----- Ym2 Hm1
Row l l l l
820 &-21 ----- 8n-2m2 Gn-2m-1
y [&10 G117 G-1m2 ®-1m-1 | Figure10.1 Annx mmatrix.
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Column
u Sum

Multiply j reslts
l__/—>_\
//%_
Row
>
i [T1 [ \’D
N ij
)
A X B = C

Figure10.2 Matrix multiplication, C = A x B.
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>
X
[1] o
]
[T]o

T
| —>
Row
%
i [T [ ] Ci
\\* Figure10.3 Matrix-vector multiplication
[ [] c=Axh.
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. Sum

I m—
p ﬂ//ﬁ

A X B = C

=

Figure 10.4 Block matrix multiplication.
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30 a1 | %2 @3 boo bo1 | Po2 bo3
a0 411 | 42 A3 bio b1 [ b1p  Dby3
X
o a1 | &2 a3 boo bp1 | bpp  bo3
azp ag1 | g2 a33 b3g b31 | bgp b33

) (a) Matrices
Ao Bo,o Aol B1o
a0 a1 boo  bo1 a2 a3 boo bo1
X + X
a0 a1 bio b11 ajp 13 bsg b31

ag,0bp,0tag,1P10 ap0Po,11a0,101,1 agbpotagabs o agobo1tagsbsg

a1 obpotag P10 apoboatagibi a1 pbootagabzg  agobpqtagshsg

ap,0b0,0tap,1P1,0ta0 202 0803030 @pobo,1tag 1b1,1 80202 180 303 1

a1 0bpotas 1brotarsbpotas sz g a1 obg1tag by 1tag by q+ag gbs g

= Coo
(b) Multiplying Ag g X Bg o to obtain Cp

Figure10.5 Submatrix multiplication.
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Column j b[1[]]

Row | ali][]

Figure 10.6 Direct implementation of

cl[illil matrix multiplication.

Processor P; ;
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0,0 Po,o @01 P10 02020 @03 b3p

Figure10.7 Accumulation using atree
Co,0 construction.
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— ‘ ~~ — (P +Py) (Py+Py)
Aop Apg—~=—]| 7B | 7B Cop Cpq
j >
é% i \ <P4 + P5> CPG + P7>
Agp Aga ] H >Bp | 5B Cap Caq
P, Ps PgP;

Figure10.8 Submatrix multiplication and summation.
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J
TB Figure10.9 Movement of Aand B
elements.
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i places
— |
& j+i
bi+j,j

j places

| 1+

Figure10.10 Step 2 — Alignment of
elements of A and B.
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Figure10.11 Step 4 — One-place shift of
elements of A and B.
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3o b, 3
- b3 b, > b3
Pumpin ' ' '
octi 0‘; g b3 by b2 bo 3
b, o b1 bo 2 .
> b1o Po 1 . :
b0,0 L] L] L]

83 802 8,1 800 —> Coo > co1 > o2 > coa
One cycle delay Y y y Y
a3 a2 @1 0 * —> ¢ > ¢, > ¢, > ¢ 3
Y Y Y Y
@3 a2 @1 Bo « o —> ¢y > g >l ¢, > o3
y Yy Yy Y
833832831830 +« + <« —> 3 > ¢34 > ¢35 > ¢35

Figure10.12 Matrix multiplication using a systolic array.
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. b,
Pumping b
action b;

Y
<—

80,3 @2 8,1 8,0 —> cg

321 A0 ¢« —>

3 o a1 Bo + <« —> ¢

338328180 *+ *+ + —> Figure10.13 Matrix-vector multiplication
using asystolic array.
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|
|
Row |
|
|
|
Row i
&i Step through
Row j
Cleared
Already B T~ to zero
cleared — |
to zero Columnii

Figure10.14 Gaussian elimination.
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» Column

|
|
Row |
| n—i+1elements
| (includingb[i])
| < >
Row i
N T y
Broadcast
ith row
Already |
cleared —1
to zero

Figure10.15 Broadcast in parallel implementation of Gaussian elimination.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998

212




Y
A
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] Broadcast

rows

Y

Figure10.16 Pipelineimplementation of
Gaussian elimination.

Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen O Prentice Hall, 1998

213




\\\\{
200
R

)




e
g

L L L LLL L LLLLL O
ANANNNANNNANNNANNNAANS

L L LLL L e
ANNANNANNNANNNANNAAN.

L

L L 2P
ANANNNANNNANNNANNNAANS

A S

N

OO 3/p
SIS A SIS D

Figure10.18 Cyclic partitioning to
equalize workload.
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Solution space

Figure10.19 Finite difference method.
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Boundary points (see text)
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Figure10.20 Mesh of points numbered in natural order.
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Figure10.21 Sparse matrix for Laplace’s equation.
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Sequentia order of computation
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Figure10.22 Gauss-Seidel relaxation with natural order, computed sequentially.
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Figure10.24 Nine-point stencil.
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Figure10.25 Multigrid processor
allocation.
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Figure10.26 Printed circuit board for Problem 10-18.
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Figure1l.1 Pixmap.
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Gray level 255  Figure11.2 Image histogram.
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6|7 |78 Figure11.3 Pixel valuesfor a3 x 3 group.
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Figure11.4 Four-step datatransfer for the computation of mean.
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Figure11.5 Parallel mean data accumulation.
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Figure11.6 Approximate median algorithm requiring six steps.
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Figure1l.7 Using a3 x 3 weighted mask.
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Figure11.8 Mask to compute mean.
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Figure11.9 A noise reduction mask.
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Figure11.10 High-pass sharpening filter
mask.
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Intensity transition
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Second derivative

Figure11.11 Edge detection using
differentiation.
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Figure11.13 Prewitt operator.
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Figure11.14 Sobel operator.
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(a) Original image (Annabel) (b) Effect of Sobel operator

Figure11.15 Edge detection with Sobel operator.
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Figure11.16 Laplace operator.
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Figure11.18 Effect of Laplace operator.
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Figure11.19 Mapping alineinto (a, b) space.
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Figure11.20 Mapping alineinto (r, 6) space.
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0 the Hough transform.
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Figure11.23 Two-dimensiona DFT.
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(b) Using Fourier transform

Figure11.24 Convolution using Fourier transforms.
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Master process

Figure11.25 Master-slave approach for
X[0] X[1] X[n—1]  implementing the DFT directly.
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Figure11.27 Discrete Fourier transform with a pipeline.
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Figure 11.28
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T ~ Figure11.29 Four-point discrete Fourier
X3 W, X3 transform.
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X, = 5(0,2,4,6,8,10,12,14)+w3(1,3,5,7,9,11,13,15)
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Figure11.30 Sixteen-point DFT decomposition.
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Figure11.31 Sixteen-point FFT computational flow.
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Figure11.32 Mapping processors onto 16-point FFT computation.
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Figure11.33 FFT using transpose
algorithm — first two steps.
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Figure11.34 Transposing array for
transpose a gorithm.
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Figure11.35 FFT using transpose
algorithm — last two steps.
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1 2 3 4 5 6 7 Figure11.36 Image for Problem 11-3.
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Figure12.1 State spacetree.
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Child 2 By Ao Figure12.2 Single-point crossover.
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Figure12.3 Idand model.
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FigureD.1 PRAM model.
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FigureD.2 List ranking by pointer jumping.
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FigureD.3 A view of the bulk synchronous parallel model.
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FigureD.4 LogP parameters.
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